1
|
Shi XD, Guo RT, Cui HF, Liu C, Pan WG. Electrocatalytic reduction of CO 2 to produce the C 2+ products: from selectivity to rational catalyst design. NANOSCALE 2025. [PMID: 39868488 DOI: 10.1039/d4nr04159c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Electrocatalytic reduction of CO2 (eCO2RR) into valuable multi-carbon (C2+) products is an effective strategy for combating climate change and mitigating energy crises. The high-energy density and diverse applications of C2+ products have attracted considerable interest. However, the complexity of the reaction pathways and the high energy barriers to C-C coupling lead to lower selectivity and faradaic efficiency for C2+ products than for C1 products. Therefore, a thorough understanding of the underlying mechanisms and identification of reaction conditions that influence selectivity, followed by the rational design of catalysts, are considered promising methods for the efficient and selective synthesis of multi-carbon products. This review first introduces the critical steps involved in forming multi-carbon products. Then, we discuss the reaction conditions that influence the selectivity of C2+ products and explore different catalyst design strategies to enhance the selective production of C2+ products. Finally, we summarize the significant challenges currently facing the eCO2RR field and suggest future research directions to address these challenges.
Collapse
Affiliation(s)
- Xu-Dong Shi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Heng-Fei Cui
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Cong Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
2
|
Liu C, Zang H, Liu X, Lu H, Yu N, Geng B. Establishment of Gas-Liquid-Solid Interface on Multilevel Porous Cu 2O for Potential-Driven Selective CO 2 Electroreduction toward C 1 or C 2 Products. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39832789 DOI: 10.1021/acsami.4c21474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Copper-based catalysts demonstrate distinctive multicarbon product activity in the CO2 electroreduction reaction (CO2RR); however, their low selectivity presents significant challenges for practical applications. Herein, we have developed a multilevel porous spherical Cu2O structure, wherein the mesopores are enriched with catalytic active sites and effectively stabilize Cu+, while the macropores facilitate the formation of a "gas-liquid-solid" three-phase interface, thereby creating a microenvironment with an increasing water concentration gradient from the interior to the exterior. Potential-driven phase engineering and protonation synergistically optimize the reaction pathway, facilitating a switch between CO and C2H4. At a low current density of 100 mA cm-2, the faradaic efficiency (FE) for CO reaches an impressive 96.97%. When the current density increases to 1000 mA cm-2, FEC2H4 attains 53.05%. Experiments and theoretical calculations indicate that at lower potentials, the pure Cu2O phase diminishes the adsorption of *CO intermediates, while weak protonation inhibits hydrogen evolution reactions, thereby promoting CO production. Conversely, at more negative potentials, the Cu0/Cu+ interface and strong protonation generate locally elevated concentrations of *CO and *COOH intermediates, which enhance C-C coupling and deep hydrogenation, ultimately improving selectivity toward C2+ products. This study provides novel insights into the rational design of copper-based catalysts for customizable CO2 electroreduction products.
Collapse
Affiliation(s)
- Changjiang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Hu Zang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Xin Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Haiyan Lu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
- Institute of Energy Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
3
|
Ma LJ, Zhang W, Wang J, Jia J, Wu HS. Supported Cu 3 cluster on N-doped graphene: An efficient triatom catalyst for CO electroreduction to propanol at low potential. J Colloid Interface Sci 2025; 678:1239-1248. [PMID: 39348791 DOI: 10.1016/j.jcis.2024.09.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Electroreduction of carbon monoxide into high-energy fuel is an excellent energy strategy for sustainable development, but the high yield of multi-carbon products remains a difficult challenge. Inspired by the successful synthesis of various trimer metal clusters and studies on electrocatalysis of CO to C3 products by Cu-based catalysts, Cu3 supported on N-doped graphene structures (Cu3@NG) are investigated as electrocatalysts for CORR toward propanol in this paper. Due to the appropriate Cu-Cu bond length, the moderate charge of the Cu site, mild CO adsorption energy, and 100 % CO coverage, the absorbed 3*CO substance can form the critical *CO-CO-CO intermediate with a rather low kinetic barrier of 0.25 eV. The limiting potential of the whole process for the formation of propanol is just -0.15 V. Our work not only showed that Cu3@NG is an excellent catalyst for the formation of propanol with high selectivity at low potential but also indicated that the *CO coverage can greatly reduce the CO hydrogenation potential and bonding of some intermediates such as *CH2O. This research will provide a new idea for the material design of products tending to multi-carbon.
Collapse
Affiliation(s)
- Li-Juan Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Wenlu Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| | - Hai-Shun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, TaiYuan 030032, China.
| |
Collapse
|
4
|
Gholizadeh R, Pavlin M, Huš M, Likozar B. Multiscale Modeling of CO 2 Electrochemical Reduction on Copper Electrocatalysts: A Review of Advancements, Challenges, and Future Directions. CHEMSUSCHEM 2025; 18:e202400898. [PMID: 39022871 PMCID: PMC11696222 DOI: 10.1002/cssc.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Although CO2 contributes significantly to global warming, it also offers potential as a raw material for the production of hydrocarbons such as CH4, C2H4 and CH3OH. Electrochemical CO2 reduction reaction (eCO2RR) is an emerging technology that utilizes renewable energy to convert CO2 into valuable fuels, solving environmental and energy problems simultaneously. Insights gained at any individual scale can only provide a limited view of that specific scale. Multiscale modeling, which involves coupling atomistic-level insights (density functional theory, DFT) and (Molecular Dynamics, MD), with mesoscale (kinetic Monte Carlo, KMC, and microkinetics, MK) and macroscale (computational fluid dynamics, CFD) simulations, has received significant attention recently. While multiscale modeling of eCO2RR on electrocatalysts across all scales is limited due to its complexity, this review offers an overview of recent works on single scales and the coupling of two and three scales, such as "DFT+MD", "DFT+KMC", "DFT+MK", "KMC/MK+CFD" and "DFT+MK/KMC+CFD", focusing particularly on Cu-based electrocatalysts as copper is known to be an excellent electrocatalyst for eCO2RR. This sets it apart from other reviews that solely focus exclusively on a single scale or only on a combination of DFT and MK/KMC scales. Furthermore, this review offers a concise overview of machine learning (ML) applications for eCO2RR, an emerging approach that has not yet been reviewed. Finally, this review highlights the key challenges, research gaps and perspectives of multiscale modeling for eCO2RR.
Collapse
Affiliation(s)
- Reza Gholizadeh
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
- Association for Technical Culture of SloveniaZaloška 65LjubljanaSI-1001Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia, Conservation Centre, Research InstitutePoljanska 40LjubljanaSI-1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica, LjubljanaSI-5000Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| |
Collapse
|
5
|
Tong X, Zhang P, Chen P, He Z, Kang X, Yin Y, Cheng Y, Zhou M, Jing L, Wang C, Xu B, Zheng L, Xing X, Wu Z, Han B. Switching CO 2 Electroreduction Pathways between Ethylene and Ethanol via Tuning Microenvironment of the Coating on Copper Nanofibers. Angew Chem Int Ed Engl 2025; 64:e202413005. [PMID: 39302152 DOI: 10.1002/anie.202413005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Engineering the microenvironment of electrode surface is one of the effective means to tune the reaction pathways in CO2RR. In this work, we prepared copper nanofibers with conductive polypyrrole coating by polymerization of pyrrole using polyvinyl pyrrolidone (PVP) as template. As a result, the obtained copper nanofibers Cu/Cu2+1O/SHNC, exhibited a superhydrophobic surface, which demonstrated very high selectivity for ethanol with a Faraday efficiency (FE) of 66.5 % at -1.1 V vs reversible hydrogen electrode (RHE) in flow cell. However, the catalyst Cu/Cu2+1O/NC, which was prepared under the same conditions but without PVP, possessed a hydrophobic surface and exhibited high selectivity towards ethylene at the given potentials. The mechanism for switch of reaction pathways from ethylene to ethanol in CO2RR was studied. Incorporating pyrrolidone groups into the polymer coating results in the formation of a superhydrophobic surface. This surface weakens the hydrogen bonding interaction between interfacial water molecules and facilitates the transfer of CO2, thereby enhancing the local CO2/H2O ratio. The high coverage of *CO promotes the coupling of *CO and *CHO to form C2 intermediates, and reduces the reaction energy for the formation of *CHCHOH (ethanol path) at the interface. This ensures that the reaction pathway is directed towards ethanol.
Collapse
Affiliation(s)
- Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuosen He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Ce Wang
- Beijing Technology and Business University, School of Light Industry Science and Engineering, Beijing, 100048, China
| | - Baocai Xu
- Beijing Technology and Business University, School of Light Industry Science and Engineering, Beijing, 100048, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062, China
| |
Collapse
|
6
|
Zhang X, Ling C, Ren S, Xi H, Ji L, Wang J, Zhu J. Nickel-Doped Facet-Selective Copper Nanowires for Activating CO-to-Ethanol Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413111. [PMID: 39463129 DOI: 10.1002/adma.202413111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/06/2024] [Indexed: 10/29/2024]
Abstract
Ethanol isa promising energy vector for closing the anthropogenic carbon cycle through reversible electrochemical redox. Currently, ethanol electrosynthesissuffers from low product selectivity due to the competitive advantage of ethylene in CO2/CO electroreduction. Here, a facet-selective metal-doping strategy is reported, tuning the reaction kinetics of CO reduction paths and thus enhancing the ethanol selectivity. The theoretical calculations reveal that nickel (Ni)doped Cu(100) surface facilitates water dissociation to form adsorbed hydrogen, which promotesselective electrochemical hydrogenation of a key C2 intermediate (*CHCOH) toward ethanol path over ethylene path. Experimentally, a solution-phase synthesis of a Ni-doped {100}-dominated Copper nanowires (Cu NWs) catalyst is reported, enabling an ethanol Faradaic efficiency of 56% and a selectivity ratio of ethanol to ethylene of 2.7, which are ≈4 and 15 times larger than those of undoped Cu NWs, respectively. The operando spectroscopic characterizations confirm that Ni-doping in Cu NWs can alter the interfacial water activity and thus regulate the C2 product selectivity. With further electrode engineering, a membrane electrode assembly electrolyzer using Ni-doped Cu NWs catalysts demonstrates an ethanol Faradaic efficiency over 50% at 300 mA cm-2 with a full cell voltage of ≈2.7 V and operates stably for over 300 h.
Collapse
Affiliation(s)
- Xing Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Siyun Ren
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hanchen Xi
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Liyao Ji
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
7
|
Zhou J, He B, Huang P, Wang D, Zhuang Z, Xu J, Pan C, Dong Y, Wang D, Wang Y, Huang H, Zhang J, Zhu Y. Regulating Interfacial Hydrogen-Bonding Networks by Implanting Cu Sites with Perfluorooctane to Accelerate CO 2 Electroreduction to Ethanol. Angew Chem Int Ed Engl 2024:e202418459. [PMID: 39623792 DOI: 10.1002/anie.202418459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 12/14/2024]
Abstract
Efficient CO2 electroreduction (CO2RR) to ethanol holds promise to generate value-added chemicals and harness renewable energy simultaneously. Yet, it remains an ongoing challenge due to the competition with thermodynamically more preferred ethylene production. Herein, we presented a CO2 reduction predilection switch from ethylene to ethanol (ethanol-to-ethylene ratio of ~5.4) by inherently implanting Cu sites with perfluorooctane to create interfacial noncovalent interactions. The 1.83 %F-Cu2O organic-inorganic hybrids (OIHs) exhibited an extraordinary ethanol faradaic efficiency (FEethanol) of ∼55.2 %, with an impressive ethanol partial current density of 166 mA cm-2 and excellent robustness over 60 hours of continuous operation. This exceptional performance ranks our 1.83 %F-Cu2O OIHs among the best-performing ethanol-oriented CO2RR electrocatalysts. Our findings identified that C8F18 could strengthen the interfacial hydrogen bonding connectivity, which consequently promotes the generation of active hydrogen species and preferentially favors the hydrogenation of *CHCOH to *CHCHOH, thus switching the reaction from ethylene-preferred to ethanol-oriented. The presented investigations highlight opportunities for using noncovalent interactions to tune the selectivity of CO2 electroreduction to ethanol, bringing it closer to practical implementation requirements.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Bingling He
- School of Electronic Engineering, Chaohu University, Hefei, 238000, P. R. China
| | - Pu Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dongge Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Columbia University, New York, NY-10027, USA
| | - Jing Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Yao X, Li T, Chung SH, Ruiz-Martínez J. Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added-Value Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406472. [PMID: 39240056 DOI: 10.1002/adma.202406472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/10/2024] [Indexed: 09/07/2024]
Abstract
Given that ethanol can be obtained from abundant biomass resources (e.g., crops, sugarcane, cellulose, and algae), waste, and CO2, its conversion into value-added chemicals holds promise for the sustainable production of high-demand chemical commodities. Nonoxygenated chemicals, including light olefins, 1,3-butadiene, aromatics, and gasoline, are some of the most important of these commodities, substantially contributing to modern lifestyles. Despite the industrial implementation of some ethanol-to-hydrocarbons processes, several fundamental questions and technological challenges remain unaddressed. In addition, the utilization of ethanol as an intermediate provides new opportunities for the direct valorization of CO and CO2. Herein, the recent advances in the design of ethanol conversion catalysts are summarized, providing mechanistic insights into the corresponding reactions and catalyst deactivation, and discussing the related future research directions, including the exploitation of active site proximity to achieve better synergistic effects for reactions involving ethanol.
Collapse
Affiliation(s)
- Xueli Yao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Teng Li
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sang-Ho Chung
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
9
|
Qin Y, Xia C, Wu T, Zhang J, Gao G, Xia BY, Coote ML, Ding S, Su Y. Specific Adsorption of Alkaline Cations Enhances CO-CO Coupling in CO 2 Electroreduction. J Am Chem Soc 2024; 146:32539-32549. [PMID: 39556788 DOI: 10.1021/jacs.4c10455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrolyte alkaline cations can significantly modulate the reaction selectivity of electrochemical CO2 reduction (eCO2R), enhancing the yield of the valuable multicarbon (C2+) chemical feedstocks. However, the mechanism underlying this cation effect on the C-C coupling remains unclear. Herein, by performing constant-potential AIMD simulations, we studied the dynamic behavior of interfacial K+ ions over Cu surfaces during C-C coupling and the origin of the cation effect. We showed that the specific adsorption of K+ readily occurs at the surface sites adjacent to the *CO intermediates on the Cu surfaces. Furthermore, this specific adsorption of K+ during *CO-*CO coupling is more important than quasi-specific adsorption for enhancing coupling kinetics, reducing the coupling barriers by approximately 0.20 eV. Electronic structure analysis revealed that charge redistribution occurs between the specifically adsorbed K+, *CO, and Cu sites, and this can account for the reduced barriers. In addition, we identified excellent *CO-*CO coupling selectivity on Cu(100) with K+ ions. Experimental results show that suppressing surface K+-specific adsorption using the surfactant cetyltrimethylammonium bromide (CTAB) significantly decreases the Faradaic efficiency for C2 products from 41.1% to 4.3%, consistent with our computational findings. This study provides crucial insights for improving the selectivity toward C2+ products by rationally tuning interfacial cation adsorption during eCO2R. Specifically, C-C coupling can be enhanced by promoting K+-specific adsorption, for example, by confining K+ within a coated layer or using pulsed negative potentials.
Collapse
Affiliation(s)
- Yanyang Qin
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tiantian Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianrui Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guoxin Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Ruffman C, Steenbergen KG, Gaston N. An Atomic-Scale Explanation for The High Selectivity Towards Carbon Dioxide Reduction Observed On Liquid Metal Catalysts. Angew Chem Int Ed Engl 2024; 63:e202407124. [PMID: 39251390 DOI: 10.1002/anie.202407124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
The low-temperature liquid metals Ga-In and Ga-Sn have previously showcased >95 % selectivity towards the electrochemical reduction of CO2 to formate, occuring only when the alloys are melted, not solid. Here, density functional theory molecular dynamics and metadynamics simulations reveal that CO2 does not directly adsorb to the Ga-alloy surface, but instead is reduced indirectly by reaction with an adsorbed hydrogen. The reaction barrier is vastly more favourable when this process occurs at In or Sn sites (average: 0.26 eV), than when it occurs on Ga (average: 0.47 eV). However, there is no difference in barrier between solid and liquid surfaces. Instead, we find that Hads is mobile only on the liquid surface, travelling due to the motion of the liquid beneath. This process drives Hads to In/Sn sites, allowing low-barrier CO2 reduction to occur only on the liquid. Therefore, the dynamic motion of liquid metal catalysts can underpin their unique reactivity. The result has far reaching implications for any protonation reaction conducted with a liquid metal catalyst.
Collapse
Affiliation(s)
- Charlie Ruffman
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology and Department of Physics, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
11
|
Li S, Zhang G, Ma X, Gao H, Fu D, Wang T, Zeng J, Zhao ZJ, Zhang P, Gong J. Atomically Isolated Pd Sites Promote Electrochemical CO Reduction to Acetate through a Protonation-Regulated Mechanism. J Am Chem Soc 2024; 146:31927-31934. [PMID: 39324833 DOI: 10.1021/jacs.4c11276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Electrochemical CO reduction reaction (CORR) offers a promising approach for sustainable acetate production, the promotion of which requires the control of multiple protonation steps. This paper describes the synthesis of atomically isolated Pd sites onto Cu nanoflakes to regulate the protonation of key intermediates. The Pd sites with moderate water activation capability are found to enhance the protonation of *CO at the neighboring Cu site to *COH, which is confirmed to be the rate-determining step through kinetic isotope effect studies. The formation of *COH-*CO is therefore promoted. Additionally, the Pd sites would preferentially protonate the C-OH group in *COH-*CO due to the spatial approximability and electronic modulation effects, generating *CCO for the selective formation of acetate. An acetate Faradaic efficiency of 59.5% is achieved at -0.78 V vs reversible hydrogen electrode (RHE), with a maximum partial current density of 286 mA cm-2 at -0.86 V vs RHE. The optimized catalyst also exhibits long-term stability for 500 h at 100 mA cm-2 in a membrane electrode assembly. This work reveals a new promoting mechanism for selective CORR with simultaneous tuning of the structural and electronic properties of the proton-supplying sites.
Collapse
Affiliation(s)
- Shuying Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Gong Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Xiao Ma
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hui Gao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Donglong Fu
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Peng Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
12
|
Fu W, Li Y, Chen J, Chen J, Xi S, Zhang J, Wang L. Preserving Molecular Tuning for Enhanced Electrocatalytic CO 2-to-Ethanol Conversion. Angew Chem Int Ed Engl 2024; 63:e202407992. [PMID: 39140436 DOI: 10.1002/anie.202407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Modifying catalyst surface with small molecular-additives presents a promising avenue for enhancing electrocatalytic performance. However, challenges arise in preserving the molecular-additives and maximizing their tuning effect, particularly at high current densities. Herein, we develop an effective strategy to preserve the molecular-additives on electrode surface by applying a thin protective layer. Taking 4-dimethylaminopyridine (DMAP) as an example of a molecular-additive, the hydrophobic protection layer on top of the DMAP-functionalized Cu-catalyst effectively prevents its leaching during CO2 electroreduction (CO2R). Consequently, the confined DMAP molecules substantially promote the CO2-to-multicarbon conversion at low overpotentials. For instance, at a potential as low as -0.47 V vs. reversible hydrogen electrode, the DMAP-functionalized Cu exhibits over 80 % selectivity towards multi-carbon products, while the pristine Cu shows only ~35 % selectivity for multi-carbon products. Notably, ethanol appears as the primary product on DMAP-functionalized Cu, with selectivity approaching 50 % at a high current density of 400 mA cm-2. Detailed kinetic analysis, in situ spectroscopies, and theoretical calculations indicate that DMAP-induced electron accumulations on surface Cu-sites decrease the reaction energy for C-C coupling. Additionally, the interactions between DMAP and oxygenated intermediates facilitate the ethanol formation pathway in CO2R. Overall, this study showcases an effective strategy to guide future endeavors involving molecular tuning effects.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yuke Li
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Jingyi Chen
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, 138632, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of, Singapore, 4 Engineering Drive 4, 117585, Singapore
- Centre for Hydrogen Innovations, National University of, Singapore, 1 Engineering Drive 3, Singapore
| |
Collapse
|
13
|
Zheng S, Yang X, Shi ZZ, Ding H, Pan F, Li JF. The Loss of Interfacial Water-Adsorbate Hydrogen Bond Connectivity Position Surface-Active Hydrogen as a Crucial Intermediate to Enhance Nitrate Reduction Reaction. J Am Chem Soc 2024; 146:26965-26974. [PMID: 39303080 DOI: 10.1021/jacs.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) offers a promising solution for remediating nitrate-polluted wastewater while enabling the sustainable production of ammonia. The control strategy of surface-active hydrogen (*H) is extensively employed to enhance the kinetics of the NO3RR, but atomic understanding lags far behind the experimental observations. Here, we decipher the cation-water-adsorbate interactions in regulating the NO3RR kinetics at the Cu (111) electrode/electrolyte interface using AIMD simulations with a slow-growth approach. We demonstrate that the key oxygen-containing intermediates of the NO3RR (e.g., *NO, *NO2, and *NO3) will stably coordinate with the cations, impeding their integration with the hydrogen bond network and further their hydrogenation by interfacial water molecules due to steric hindrance. The *H can migrate across the interface with a low energy barrier, and its hydrogenation barrier with oxygen-containing species remains unaffected by cations, offering a potent supplement to the hydrogenation process, playing the predominant factor by which the *H facilitates NO3RR reaction kinetic. This study provides valuable insights for understanding the reaction mechanism of NO3RR by fully considering the cation-water-adsorbate interactions, which can aid in the further development of the electrolyte and electrocatalysts for efficient NO3RR.
Collapse
Affiliation(s)
- Shisheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Zhong-Zhang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| |
Collapse
|
14
|
Hu Y, Asif M, Gong J, Zeb H, Lan H, Kashif Khan M, Xia H, Du M. Mechanistic insights into C-C coupling in electrocatalytic CO 2 reduction reaction. Chem Commun (Camb) 2024; 60:10618-10628. [PMID: 39240587 DOI: 10.1039/d4cc03964e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The utilization of CO2 has become an emerging area of research in response to climate change and global warming. The electrochemical CO2 reduction reaction (CO2RR) holds significant promise as a technology to address this issue by converting CO2 molecules into various commercially valuable chemicals. While CO2RR to C1 hydrocarbons has achieved high activity and selectivity, the C-C coupling to produce higher hydrocarbons remains challenging due to low energy efficiency and the prevalent hydrogen evolution reaction (HER) on the same catalyst, leading to high hydrogenation rates. In this review, we aim to elucidate the fundamental challenges of C-C coupling and explore potential strategies to enhance the selectivity for higher hydrocarbon products. We discuss the mechanisms underlying the formation of C2 and C3 products, focusing on molecular catalysts that facilitate C-C coupling by positioning CO2 molecules in close proximity. Additionally, we provide a comprehensive overview of different approaches to improve higher hydrocarbon selectivity, along with future suggestions and recommendations for new researchers in the field. This review serves as a valuable resource for both academic researchers and industrial stakeholders aiming for the commercialization of CO2RR technologies.
Collapse
Affiliation(s)
- Yao Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| | - Muhammad Asif
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do 16419, Republic of Korea
| | - Jiaxuan Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| | - Hassan Zeb
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Haihui Lan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Muhammad Kashif Khan
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do 16419, Republic of Korea
| | - Huicong Xia
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China.
| |
Collapse
|
15
|
Liu Y, Yu X, Li X, Liu X, Ye C, Ling T, Wang X, Zhu Z, Shan J. Selective Synthesis of Organonitrogen Compounds via Electrochemical C-N Coupling on Atomically Dispersed Catalysts. ACS NANO 2024; 18:23894-23911. [PMID: 39160683 DOI: 10.1021/acsnano.4c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The C-N coupling reaction demonstrates broad application in the fabrication of a wide range of high value-added organonitrogen molecules including fertilizers (e.g., urea), chemical feedstocks (e.g., amines, amides), and biomolecules (e.g., amino acids). The electrocatalytic C-N coupling pathways from waste resources like CO2, NO3-, or NO2- under mild conditions offer sustainable alternatives to the energy-intensive thermochemical processes. However, the complex multistep reaction routes and competing side reactions lead to significant challenges regarding low yield and poor selectivity toward large-scale practical production of target molecules. Among diverse catalyst systems that have been developed for electrochemical C-N coupling reactions, the atomically dispersed catalysts with well-defined active sites provide an ideal model platform for fundamental mechanism elucidation. More importantly, the intersite synergy between the active sites permits the enhanced reaction efficiency and selectivity toward target products. In this Review, we systematically assess the dominant reaction pathways of electrocatalytic C-N coupling reactions toward various products including urea, amines, amides, amino acids, and oximes. To guide the rational design of atomically dispersed catalysts, we identify four key stages in the overall reaction process and critically discuss the corresponding catalyst design principles, namely, retaining NOx/COx reactants on the catalyst surface, regulating the evolution pathway of N-/C- intermediates, promoting C-N coupling, and facilitating final hydrogenation steps. In addition, the advanced and effective theoretical simulation and characterization technologies are discussed. Finally, a series of remaining challenges and valuable future prospects are presented to advance rational catalyst design toward selective electrocatalytic synthesis of organonitrogen molecules.
Collapse
Affiliation(s)
- Yizhe Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiaoyong Yu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xintong Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Liu
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Chao Ye
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tao Ling
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jieqiong Shan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
16
|
Yang R, Cai Y, Qi Y, Tang Z, Zhu JJ, Li J, Zhu W, Chen Z. How local electric field regulates C-C coupling at a single nanocavity in electrocatalytic CO 2 reduction. Nat Commun 2024; 15:7140. [PMID: 39164320 PMCID: PMC11336232 DOI: 10.1038/s41467-024-51397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
C-C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C-C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C-C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C-C coupling pathway at a specific nanocavity from *CHO-*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.
Collapse
Affiliation(s)
- Ruixin Yang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yanming Cai
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Zhuodong Tang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control and Resource Reuse, School of Chemistry and Chemical Engineering, School of Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210023, China.
| |
Collapse
|
17
|
Wang Z, Li Y, Ma Z, Wang D, Ren X. Strategies for overcoming challenges in selective electrochemical CO 2 conversion to ethanol. iScience 2024; 27:110437. [PMID: 39114499 PMCID: PMC11304069 DOI: 10.1016/j.isci.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Zhihao Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Dazhuang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
18
|
Chen L, Chen J, Fu W, Chen J, Wang D, Xiao Y, Xi S, Ji Y, Wang L. Energy-efficient CO (2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst. Nat Commun 2024; 15:7053. [PMID: 39147764 PMCID: PMC11327302 DOI: 10.1038/s41467-024-51466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Electrocatalytic CO2 reduction to multi-carbon products is a promising approach for achieving carbon-neutral economies. However, the energy efficiency of these processes remains low, particularly at high current densities. Herein, we demonstrate that the low energy efficiencies are, in part, sometimes significantly, attributed to the high concentration overpotential resulting from the instability (i.e., flooding) of catalyst-layer during electrolysis. To tackle this challenge, we develop copper/gallium bimetallic catalysts with reduced activation energies for the formation of multi-carbon products. Consequently, the reduced activation overpotential allows us to achieve practical-relevant current densities for CO2 reduction at low cathodic potentials, ensuring good stability of the catalyst-layer and thereby minimizing the undesired concentration overpotential. The optimized bimetallic catalyst achieves over 50% cathodic energy efficiency for multi-carbon production at a high current density of over 1.0 A cm - 2 . Furthermore, we achieve current densities exceeding 2.0 A cm - 2 in a zero-gap membrane-electrode-assembly reactor, with a full-cell energy efficiency surpassing 30%.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, Singapore, Singapore.
| |
Collapse
|
19
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Zhang T, Xu S, Chen DL, Luo T, Zhou J, Kong L, Feng J, Lu JQ, Weng X, Wang AJ, Li Z, Su Y, Yang F. Selective Increase in CO 2 Electroreduction to Ethanol Activity at Nanograin-Boundary-Rich Mixed Cu(I)/Cu(0) Sites via Enriching Co-Adsorbed CO and Hydroxyl Species. Angew Chem Int Ed Engl 2024; 63:e202407748. [PMID: 38818639 DOI: 10.1002/anie.202407748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5 % faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2 % energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG~0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Shenglin Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ting Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Jinlei Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - JiuJu Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Xuexiang Weng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Zhengquan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
- Zhejiang Institute of Photoelectronics, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Fa Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Instinute of Physical Chemisry, College of Chemistry and Materials Science, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
- Zhejiang Institute of Photoelectronics, Zhejiang Normal University, 321004, Jinhua, Zhejiang, China
| |
Collapse
|
21
|
Wang S, Li X, Zheng J, Wang J. Revealing the Size and Potential Dependent D 2O Microkinetics on Pt Nanoparticles Using Grand Canonical Ensemble Modeling. J Phys Chem Lett 2024; 15:7748-7754. [PMID: 39046801 DOI: 10.1021/acs.jpclett.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Revealing the potential and nanoparticle size effect is significant for understanding the electrochemical microkinetic behaviors under real reaction conditions. Herein, an efficient strategy of combining the robust fully converged constant potential (FCP) algorithm and the size dependent site distribution rule assumption was proposed. A simple reaction of isotopic D2O/H2O adsorption and dissociation on Pt nanoparticles was set as the model reaction. The results show that the cathodic negative potential and the anodic positive potential would result in the D2O orientation of the D-down/O-down physisorption configuration. Microkinetic simulations by this strategy obtained electrochemical widows for D2O/H2O dissociation, and the optimal Pt nanoparticle diameter was predicted to be 1.8 nm, which agrees well with the experimental observation of ∼2 nm threshold. The kinetic isotope effect (KIE) rate constant ratio at the optimal potential of -0.80 V vs SHE was calculated to be ∼1.83. This work provides a guideline in studying electrochemical electrode-electrolyte interactions on nanoparticles.
Collapse
Affiliation(s)
- Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinyu Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Jingnan Zheng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| |
Collapse
|
22
|
Wang Y, Teng C, Begin E, Bussiere M, Bao JL. PW-SMD: A Plane-Wave Implicit Solvation Model Based on Electron Density for Surface Chemistry and Crystalline Systems in Aqueous Solution. J Chem Theory Comput 2024. [PMID: 39024317 DOI: 10.1021/acs.jctc.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Electron density-based implicit solvation models are a class of techniques for quantifying solvation effects and calculating free energies of solvation without an explicit representation of solvent molecules. Integral to the accuracy of solvation modeling is the proper definition of the solvation shell separating the solute molecule from the solvent environment, allowing for a physical partitioning of the free energies of solvation. Unlike state-of-the-art implicit solvation models for molecular quantum chemistry calculations, e.g., the solvation model based on solute electron density (SMD), solvation models for systems under periodic boundary conditions with plane-wave (PW) basis sets have been limited in their accuracy. Furthermore, a unified implicit solvation model with both homogeneous solution-phase and heterogeneous interfacial structures treated on equal footing is needed. In order to address this challenge, we developed a high-accuracy solvation model for periodic PW calculations that is applicable to molecular, ionic, interfacial, and bulk-phase chemistry. Our model, PW-SMD, is an extension of the SMD molecular solvation model to periodic systems in water. The free energy of solvation is partitioned into the electrostatic and cavity-dispersion-solvent structure (CDS) contributions. The electrostatic contributions of the solvation shell surrounding solute structures are parametrized based on their geometric and physical properties. In addition, the nonelectrostatic contribution to the solvation energy is accounted for by extending the CDS formalism of SMD to incorporate periodic boundary conditions. We validate the accuracy and robustness of our solvation model by comparing predicted solvation free energies against experimental data for molecular and ionic systems, carved-cluster composite energetic models of solvated reaction energies and barriers on surface systems, and deep-learning-accelerated ab initio molecular dynamics (AIMD). Our developed periodic implicit solvation model shows significantly improved accuracy compared to previous work (namely, solvation models in aqueous solution) and can be applied to simulate solvent effects in a wide range of surface and crystalline materials.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chong Teng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Elijah Begin
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Mason Bussiere
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
23
|
Liu X, Zhou M, Liao X, Zhao Y. Potential-dependent activities in interpreting the reaction mechanism of dual-metal atom catalysts for Li-CO 2 batteries. J Colloid Interface Sci 2024; 666:276-284. [PMID: 38603871 DOI: 10.1016/j.jcis.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
CO2 electrochemistry has been considered as a promising cathode reaction for energy storage due to its high theoretical energy density, high electrochemical potential, and ability to fix CO2. However, the low efficiency and poor reversibility of Li-CO2 evolution significantly impede the applications of Li-CO2 batteries. Herein, first-principles calculations were employed to investigate the 21 M1M2N4C dual-atom catalysts and explore the catalytic mechanism for the Li-CO2 evolution reaction. Among these dual-atom catalysts, the MoMoN4C shows the highest adsorption interaction with CO2 due to its high d-center and d-p orbital coupling. The effects of dual-atom sites on the catalytic activities and selectivities were investigated by searching the possible reaction pathways toward the battery-discharging processes in the ether electrolyte with the help of implicit constant electrode potential simulations. The compared results show that the Li-CO2 discharging process was limited by the rate-determining reactions involving *Li + CO2 → *LiCO2 and *LiC2O4@ + Li+ + e- → *CO + Li2CO3, and these processes on graphene are relatively sluggish due to the low onset potential range of -2 to -2.36 V vs. SHE. By contrast, The optimized onset potentials of -1.15 to -1.31 V vs. SHE were obtained at the MoMoN4C active site. Furthermore, the MoMoN4C active site shows a lower energy barrier for the decomposition of *Li2CO3 than the pure graphene, which reveals the MoMoN4C active site with excellent CO2 activation ability can reduce the polarization of the discharging reactions and energy barrier for the CO bond cleavage. This work provides deep insight into the Li-CO2 evolution mechanisms and guides the design of advanced dual-atom catalysts for highly reversible Li-CO2 batteries.
Collapse
Affiliation(s)
- Xiaolin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Mengjun Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Xiaobin Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Yan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China; The Institute of Technological Sciences, Wuhan University, Hubei, Wuhan 430072, PR China; College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
24
|
Li Y, Liu BY, Chen Y, Liu ZF. From 2e- to 4e- pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve. J Chem Phys 2024; 160:244705. [PMID: 38916267 DOI: 10.1063/5.0211477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
We report the free energy barriers for the elementary reactions in the 2e- and 4e- oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e- pathway is clearly favored, while the barrier for the O-O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O-O dissociation channel, leading to the 4e- pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0-1.2 V region (RHE). In contrast, the O-O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bing-Yu Liu
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yanxia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen, China
| |
Collapse
|
25
|
Chen J, Chen BWJ, Zhang J, Chen W, Sun YY. Origin of copper as a unique catalyst for C-C coupling in electrocatalytic CO 2 reduction. Chem Sci 2024; 15:8835-8840. [PMID: 38873051 PMCID: PMC11168101 DOI: 10.1039/d4sc02056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/05/2024] [Indexed: 06/15/2024] Open
Abstract
High yields of C2 products through electrocatalytic CO2 reduction (eCO2R) can only be obtained using Cu-based catalysts. Here, we adopt the generalized frontier molecular orbital (MO) theory based on first-principles calculations to identify the origin of this unique property of Cu. We use the grand canonical ensemble (or fixed potential) approach to ensure that the calculated Fermi level, which serves as the frontier orbital of the metal catalyst, accurately represents the applied electrode potentials. We determine that the key intermediate OCCO assumes a U-shape configuration with the two C atoms bonded to the Cu substrate. We identify the frontier MOs that are involved in the C-C coupling. The good alignment of the Fermi level of Cu with these frontier MOs is perceived to account for the excellent catalytic performance of Cu for C-C coupling. It is expected that these new insights could provide useful guidance in tuning Cu-based catalysts as well as designing non-Cu catalysts toward high-efficiency eCO2R.
Collapse
Affiliation(s)
- Jie Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Physics, National University of Singapore 2 Science Drive 3 117542 Singapore
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 201899 China
| | - Benjamin W J Chen
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 1 Fusionopolis Way, #16-16 Connexis 138632 Singapore
| | - Jia Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) 1 Fusionopolis Way, #16-16 Connexis 138632 Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Physics, National University of Singapore 2 Science Drive 3 117542 Singapore
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi-Yang Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 201899 China
| |
Collapse
|
26
|
Ostovari Moghaddam A, Mehrabi-Kalajahi S, Abdollahzadeh A, Salari R, Qi X, Fereidonnejad R, Akaahimbe SA, Nangir M, Uchaev DA, Varfolomeev MA, Cabot A, Vasenko AS, Trofimov EA. High-Entropy La(FeCuMnMgTi)O 3 Nanoparticles as Heterogeneous Catalyst for CO 2 Electroreduction Reaction. J Phys Chem Lett 2024; 15:5535-5542. [PMID: 38752703 DOI: 10.1021/acs.jpclett.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
In this work, La(FeCuMnMgTi)O3 HEO nanoparticles with a perovskite-type structure are synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR). The catalyst demonstrates high performance as an electrocatalyst for the CO2RR, with a Faradaic efficiency (FE) of 92.5% at a current density of 21.9 mA cm-2 under -0.75 V vs a saturated calomel electrode (SCE). Particularly, an FE above 54% is obtained for methyl isopropyl ketone (C5H10O, MIPK) at a partial current density of 16 mA cm-2, overcoming all previous works. Besides, the as-prepared HEO catalyst displays robust stability in the CO2RR. The excellent catalytic performance of La(FeCuMnMgTi)O3 is ascribed to the synergistic effect between the electronic effects associated with five cations occupying the high-entropy sublattice sites and the oxygen vacancies within the perovskite structure of the HEO. Finally, DFT calculations indicate that Cu plays a vital role in the catalytic activity of the La(FeCuMnMgTi)O3 HEO nanoparticles toward C2+ products.
Collapse
Affiliation(s)
- Ahmad Ostovari Moghaddam
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
| | - Seyedsaeed Mehrabi-Kalajahi
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
- Department of Petroleum Engineering, Kazan Federal University, Kazan 420008, Russia
| | - Amin Abdollahzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Rana Salari
- Department of Petroleum Engineering, Kazan Federal University, Kazan 420008, Russia
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Rahele Fereidonnejad
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
| | - Segun Ahemba Akaahimbe
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
| | - Mahya Nangir
- Department of Semiconductors, Materials and Energy Research Center (MERC), P.O. Box 14155/4777, Tehran, Iran
| | - Daniil A Uchaev
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
| | | | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, 08930 Sant Adrià de Besòs, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | | | - Evgeny A Trofimov
- Department of Materials Science Physical and Chemical Properties of Materials, South Ural State University, 76 Lenin Ave, Chelyabinsk 454080, Russia
| |
Collapse
|
27
|
O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO 2 Electrolyzers. Chem Rev 2024; 124:3648-3693. [PMID: 38518224 DOI: 10.1021/acs.chemrev.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
CO2 electrolyzers have progressed rapidly in energy efficiency and catalyst selectivity toward valuable chemical feedstocks and fuels, such as syngas, ethylene, ethanol, and methane. However, each component within these complex systems influences the overall performance, and the further advances needed to realize commercialization will require an approach that considers the whole process, with the electrochemical cell at the center. Beyond the cell boundaries, the electrolyzer must integrate with upstream CO2 feeds and downstream separation processes in a way that minimizes overall product energy intensity and presents viable use cases. Here we begin by describing upstream CO2 sources, their energy intensities, and impurities. We then focus on the cell, the most common CO2 electrolyzer system architectures, and each component within these systems. We evaluate the energy savings and the feasibility of alternative approaches including integration with CO2 capture, direct conversion of flue gas and two-step conversion via carbon monoxide. We evaluate pathways that minimize downstream separations and produce concentrated streams compatible with existing sectors. Applying this comprehensive upstream-to-downstream approach, we highlight the most promising routes, and outlook, for electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
28
|
Xu F, Feng B, Shen Z, Chen Y, Jiao L, Zhang Y, Tian J, Zhang J, Wang X, Yang L, Wu Q, Hu Z. Oxygen-Bridged Cu Binuclear Sites for Efficient Electrocatalytic CO 2 Reduction to Ethanol at Ultralow Overpotential. J Am Chem Soc 2024; 146:9365-9374. [PMID: 38511947 DOI: 10.1021/jacs.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electrocatalytic CO2 reduction (CO2RR) to alcohols offers a promising strategy for converting waste CO2 into valuable fuels/chemicals but usually requires large overpotentials. Herein, we report a catalyst comprising unique oxygen-bridged Cu binuclear sites (CuOCu-N4) with a Cu···Cu distance of 3.0-3.1 Å and concomitant conventional Cu-N4 mononuclear sites on hierarchical nitrogen-doped carbon nanocages (hNCNCs). The catalyst exhibits a state-of-the-art low overpotential of 0.19 V (versus reversible hydrogen electrode) for ethanol and an outstanding ethanol Faradaic efficiency of 56.3% at an ultralow potential of -0.30 V, with high-stable Cu active-site structures during the CO2RR as confirmed by operando X-ray adsorption fine structure characterization. Theoretical simulations reveal that CuOCu-N4 binuclear sites greatly enhance the C-C coupling at low potentials, while Cu-N4 mononuclear sites and the hNCNC support increase the local CO concentration and ethanol production on CuOCu-N4. This study provides a convenient approach to advanced Cu binuclear site catalysts for CO2RR to ethanol with a deep understanding of the mechanism.
Collapse
Affiliation(s)
- Fengfei Xu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Biao Feng
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiqun Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liu Jiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junru Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Wei F, Zhuang L. Unsupervised machine learning reveals eigen reactivity of metal surfaces. Sci Bull (Beijing) 2024; 69:756-762. [PMID: 38184386 DOI: 10.1016/j.scib.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
The reactivity of metal surfaces is a cornerstone concept in chemistry, as metals have long been used as catalysts to accelerate chemical reactions. Although fundamentally important, the reactivity of metal surfaces has hitherto not been explicitly defined. For example, in order to compare the activity of two metal surfaces, a particular probe adsorbate, such as O, H, or CO, has to be specified, as comparisons may vary from probe to probe. Here we report that the metal surfaces actually have their own intrinsic/eigen reactivity, independent of any probe adsorbate. By employing unsupervised machine learning algorithms, specifically, principal component analysis (PCA), two dominant eigenvectors emerged from the binding strength dataset formed by 10 commonly used probes on 48 typical metal surfaces. According to their chemical characteristics revealed by vector decomposition, these two eigenvectors can be defined as the covalent reactivity and the ionic reactivity, respectively. Whereas the ionic reactivity turns out to be related to the work function of the metal surface, the covalent reactivity cannot be indexed by simple physical properties, but appears to be roughly connected with the valence-electron number normalized density of states at the Fermi level. Our findings expose that the metal surface reactivity is essentially a two-dimensional vector rather than a scalar, opening new horizons for understanding interactions at the metal surface.
Collapse
Affiliation(s)
- Fengyuan Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
30
|
Yang X, Ding H, Li S, Zheng S, Li JF, Pan F. Cation-Induced Interfacial Hydrophobic Microenvironment Promotes the C-C Coupling in Electrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:5532-5542. [PMID: 38362877 DOI: 10.1021/jacs.3c13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.
Collapse
Affiliation(s)
- Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
- College of Energy, Xiamen University, Xiamen 361000, China
| | - Jian-Feng Li
- College of Energy, Xiamen University, Xiamen 361000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| |
Collapse
|
31
|
Jeong S, Huang C, Levell Z, Skalla RX, Hong W, Escorcia NJ, Losovyj Y, Zhu B, Butrum-Griffith AN, Liu Y, Li CW, Reifsnyder Hickey D, Liu Y, Ye X. Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO 2 to n-Propanol. J Am Chem Soc 2024; 146:4508-4520. [PMID: 38320122 DOI: 10.1021/jacs.3c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chuanliang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Zachary Levell
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J Escorcia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alex N Butrum-Griffith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Danielle Reifsnyder Hickey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuanyue Liu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
32
|
Deng W, Zhang P, Qiao Y, Kastlunger G, Govindarajan N, Xu A, Chorkendorff I, Seger B, Gong J. Unraveling the rate-determining step of C 2+ products during electrochemical CO reduction. Nat Commun 2024; 15:892. [PMID: 38291057 PMCID: PMC10828390 DOI: 10.1038/s41467-024-45230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
The electrochemical reduction of CO has drawn a large amount of attention due to its potential to produce sustainable fuels and chemicals by using renewable energy. However, the reaction's mechanism is not yet well understood. A major debate is whether the rate-determining step for the generation of multi-carbon products is C-C coupling or CO hydrogenation. This paper conducts an experimental analysis of the rate-determining step, exploring pH dependency, kinetic isotope effects, and the impact of CO partial pressure on multi-carbon product activity. Results reveal constant multi-carbon product activity with pH or electrolyte deuteration changes, and CO partial pressure data aligns with the theoretical formula derived from *CO-*CO coupling as the rate-determining step. These findings establish the dimerization of two *CO as the rate-determining step for multi-carbon product formation. Extending the study to commercial copper nanoparticles and oxide-derived copper catalysts shows their rate-determining step also involves *CO-*CO coupling. This investigation provides vital kinetic data and a theoretical foundation for enhancing multi-carbon product production.
Collapse
Affiliation(s)
- Wanyu Deng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Peng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yu Qiao
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Georg Kastlunger
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Nitish Govindarajan
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Brian Seger
- Department of Physics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
33
|
Winkler D, Leitner M, Auer A, Kunze-Liebhäuser J. The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals. ACS Catal 2024; 14:1098-1106. [PMID: 38269043 PMCID: PMC10806897 DOI: 10.1021/acscatal.3c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
The electrochemical reduction of CO2 is an important electrolysis reaction that enables the conversion of a waste gas to fuels or value-added chemicals. To make this reaction viable, a profound understanding of central intermediate steps, such as the CO electroreduction, is required. On Cu, the CO reduction reaction (CORR) is intimately linked to the hydrogen evolution reaction (HER) that proceeds via the reduction of water in alkaline or neutral electrolytes. Here, we demonstrate that the interaction of water or more specifically the water reduction kinetics on differently smooth Cu(100) and Cu(111) surfaces during the CORR in alkaline media significantly governs the CORR. On Cu(111), faster HER kinetics and the highest CORR activity are observed, even though HER and CORR onsets are more negative. While on Cu(100) small Cu ad-island clusters form in the cathodic potential range only when CO is present, structural changes appear on a larger length scale on Cu(111) both under CORR conditions and when no CO is present. These differences in the reconstruction characteristics may be attributed to the dominance of either the CORR and its intermediates or the HER on the different Cu surfaces. Therefore, the interfacial water reactivity is considered an essential activity descriptor for the CORR on Cu in alkaline media.
Collapse
Affiliation(s)
- Daniel Winkler
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Matthias Leitner
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Andrea Auer
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Julia Kunze-Liebhäuser
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Iqbal A, Tripathi A, Thapa R. C 2 Product Formation over the C 1 Product and HER on the 111 Plane of Specific Cu Alloy Nanoparticles Identified through Multiparameter Optimization. Inorg Chem 2024; 63:1462-1470. [PMID: 38175274 DOI: 10.1021/acs.inorgchem.3c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
C2 products are more desirable than C1 products during CO2 electroreduction (CO2ER) because the former possess higher energy density and greater industrial value. For CO2ER, Cu is a well-known catalyst, but the selectivity toward C2 products is still a big challenge for researchers due to complex intermediates, different final products, and large space of the catalyst due to its morphology, plane, size, host surface etc. Using density functional theory (DFT) calculations, we find that alloying of Cu nanoparticles can help to enhance the selectivity toward C2 products during CO2ER with a low overpotential. By a systematic investigation of 111 planes (which prefer the C1 product in the case of bulk Cu), the alloys show the generation of C2 products via *CO-*CO dimerization (* indicates adsorbed state). It also suppresses the counter-pathway of hydrogenation of *CO to *CHO, which leads to C1 products. Further, we find that *CH2CHO is the bifurcating intermediate to distinguish between ethanol and ethylene as the final product. We have used simple graphical construction to identify the catalyst for CO2ER over HER, and vice versa. We have also defined the case of hydrogen poisoning and projected a parity plot to recognize the catalyst for C2 product evolution over the C1 product. Our study reveals that Cu-Ag and Cu-Zn catalysts selectively promote ethanol production on 111 planes. Moreover, an edge-doped 2SO2 graphene nanoribbon as the host layer further lowers the barrier and selectively promotes ethanol on Cu38- and Cu79-based alloys. This work provides new theoretical insights into designing Cu-based nanoalloy catalysts for C2 product formation on the 111 plane.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Anjana Tripathi
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
- Centre for Computational and Integrative Sciences, SRM University-AP, Amaravati 522 240, Andhra Pradesh, India
| |
Collapse
|
35
|
Clark EL, Hochfilzer D, Seger B, Chorkendorf I. Preventing Alloy Electrocatalyst Segregation in Air Using Sacrificial Passivating Overlayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:428-435. [PMID: 38229589 PMCID: PMC10789255 DOI: 10.1021/acs.jpcc.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024]
Abstract
Many alloy electrocatalysts, including intermetallics, are exceptionally sensitive to segregation in air due to the electronic dissimilarity of the constituent metals. We demonstrate that even alloys with strong cohesive energies rapidly segregate upon air exposure, completely burying the less reactive constituent metal beneath the surface. To circumvent this issue, we develop and validate a new experimental approach for bridging the pressure gap between electronic structure characterization performed under ultrahigh vacuum and electrocatalytic activity testing performed under ambient conditions. This method is based on encapsulation of the alloy surface with a sacrificial passivating overlayer of aluminum oxide. These passivating overlayers protect the underlying material from segregation in the air and can be completely and rapidly removed in an alkaline electrochemical environment under potential control. We demonstrate that alloy surfaces prepared, protected, and introduced into the electrolyte in this manner exhibit near-surface compositions consistent with those of the bulk material despite prior air exposure. We also demonstrate that this protection scheme does not alter the electrocatalytic activity of benchmark electrocatalysts. Implementation of this approach will enable reliable correlations between the electrocatalytic activity measured under ambient conditions and the near-surface electronic structure measured under ultrahigh vacuum.
Collapse
Affiliation(s)
- Ezra L. Clark
- SurfCat Section for Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Degenhart Hochfilzer
- SurfCat Section for Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Brian Seger
- SurfCat Section for Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorf
- SurfCat Section for Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Rhimi B, Zhou M, Yan Z, Cai X, Jiang Z. Cu-Based Materials for Enhanced C 2+ Product Selectivity in Photo-/Electro-Catalytic CO 2 Reduction: Challenges and Prospects. NANO-MICRO LETTERS 2024; 16:64. [PMID: 38175306 PMCID: PMC10766933 DOI: 10.1007/s40820-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO2, Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C2+ compounds through C-C coupling process. Herein, the basic principles of photocatalytic CO2 reduction reactions (PCO2RR) and electrocatalytic CO2 reduction reaction (ECO2RR) and the pathways for the generation C2+ products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO2RR and ECO2RR is emphasized. Through a review of recent studies on PCO2RR and ECO2RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C2+ products. Finally, the opportunities and challenges associated with Cu-based materials in the CO2 catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO2 reduction processes in the future.
Collapse
Affiliation(s)
- Baker Rhimi
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Min Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zaoxue Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiaoyan Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China.
| | - Zhifeng Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
37
|
Tang W, Zhao S, Huang J. Origin of Solvent Dependency of the Potential of Zero Charge. JACS AU 2023; 3:3381-3390. [PMID: 38155648 PMCID: PMC10751779 DOI: 10.1021/jacsau.3c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023]
Abstract
Fundamental properties of the Au(111)-KPF6 interface, particularly the potential of zero charge (PZC), exhibit pronounced variations among solvents, yet the origin remains largely elusive. In this study, we aim to link the solvent dependency to the microscopic phenomenon of electron spillover occurring at the metal-solution interface in heterogeneous dielectric media. Addressing the challenge of describing the solvent-modulated electron spillover under constant potential conditions, we adopt a semiclassical functional approach and parametrize it with first-principles calculations and experimental data. We unveil that the key variable governing this phenomenon is the local permittivity within the region approximately 2.5 Å above the metal edge. A higher local permittivity facilitates the electron spillover that tends to increase the PZC on the one hand and enhances the screening of the electronic charge that tends to decrease the PZC on the other. These dual effect lead to a nonmonotonic relationship between the PZC and the local permittivity. Moreover, our findings reveal that the electron spillover induces a capacitance peak at electrode potentials that are more negative than the PZC in concentrated solutions. This observation contrasts classical models predicting the peak to occur precisely at the PZC. To elucidate the contribution of electron spillover to the total capacitance, we decompose the total capacitance into a quantum capacitance of the metal Cq, a classical capacitance of electrolyte solution Cc, and a capacitance Cqc accounting for electron-ion correlations. Our calculations reveal that Cqc is negative due to the promoted electron spillover at more negative potentials. Our work not only reveals the importance of local permittivity in tuning the electron spillover but also presents a viable theoretical approach to study solvent effects on electrochemical interfaces under operating conditions.
Collapse
Affiliation(s)
- Weiqiang Tang
- State
Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shuangliang Zhao
- State
Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
38
|
Ruffman C, Steenbergen KG, Garden AL, Gaston N. Dynamic sampling of liquid metal structures for theoretical studies on catalysis. Chem Sci 2023; 15:185-194. [PMID: 38131068 PMCID: PMC10732005 DOI: 10.1039/d3sc04416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Liquid metals have recently emerged as promising catalysts that can outcompete their solid counterparts for many reactions. Although theoretical modelling is extensively used to improve solid-state catalysts, there is currently no way to capture the interactions of adsorbates with a dynamic liquid metal. We propose a new approach based on ab initio molecular dynamics sampling of an adsorbate on a liquid catalyst. Using this approach, we describe time-resolved structures for formate adsorbed on liquid Ga-In, and for all intermediates in the methanol oxidation pathway on Ga-Pt. This yields a range of accessible adsorption energies that take into account the at-temperature motion of the liquid metal. We find that a previously proposed pathway for methanol oxidation on Ga-Pt results in unstable intermediates on a dynamic liquid surface, and propose that H desorption must occur during the path. The results showcase a more accurate way to treat liquid metal catalysts in this emerging field.
Collapse
Affiliation(s)
- Charlie Ruffman
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland Private Bag 92019 Auckland New Zealand
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, School of Chemical and Physical Sciences, Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Anna L Garden
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago P.O. Box 56 Dunedin 9054 New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland Private Bag 92019 Auckland New Zealand
| |
Collapse
|
39
|
Huang L, Liu Z, Gao G, Chen C, Xue Y, Zhao J, Lei Q, Jin M, Zhu C, Han Y, Francisco JS, Lu X. Enhanced CO 2 Electroreduction Selectivity toward Ethylene on Pyrazolate-Stabilized Asymmetric Ni-Cu Hybrid Sites. J Am Chem Soc 2023; 145:26444-26451. [PMID: 37991477 DOI: 10.1021/jacs.3c10600] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Metal-organic frameworks (MOFs) possess well-defined, designable structures, holding great potential in enhancing product selectivity for electrochemical CO2 reduction (CO2R) through active site engineering. Here, we report a novel MOF catalyst featuring pyrazolate-stabilized asymmetric Ni/Cu sites, which not only maintains structural stability under harsh electrochemical conditions but also exhibits extraordinarily high ethylene (C2H4) selectivity during CO2R. At a cathode potential of -1.3 V versus RHE, our MOF catalyst, denoted as Cu1Ni-BDP, manifests a C2H4 Faradaic efficiency (FE) of 52.7% with an overall current density of 0.53 A cm-2 in 1.0 M KOH electrolyte, surpassing that on prevailing Cu-based catalysts. More remarkably, the Cu1Ni-BDP MOF exhibits a stable performance with only 4.5% reduction in C2H4 FE during 25 h of CO2 electrolysis. A suite of characterization tools─such as high-resolution transmission electron microscopy, X-ray absorption spectroscopy, operando X-ray diffraction, and infrared spectroscopy─and density functional theory calculations collectively reveal that the cubic pyrazolate-metal coordination structure and the asymmetric Ni-Cu sites in the MOF catalyst synergistically facilitate the stable formation of C2H4 from CO2.
Collapse
Affiliation(s)
- Liang Huang
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ziao Liu
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ge Gao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiwu Zhao
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Qiong Lei
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mengtian Jin
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center (AMPM), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Electron Microscopy Center, South China University of Technology, Guangzhou 510640, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
41
|
Wan M, Yang Z, Morgan H, Shi J, Shi F, Liu M, Wong HW, Gu Z, Che F. Enhanced CO 2 Reactive Capture and Conversion Using Aminothiolate Ligand-Metal Interface. J Am Chem Soc 2023; 145:26038-26051. [PMID: 37973169 DOI: 10.1021/jacs.3c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Metallic catalyst modification by organic ligands is an emerging catalyst design in enhancing the activity and selectivity of electrocatalytic carbon dioxide (CO2) reactive capture and reduction to value-added fuels. However, a lack of fundamental science on how these ligand-metal interfaces interact with CO2 and key intermediates under working conditions has resulted in a trial-and-error approach for experimental designs. With the aid of density functional theory calculations, we provided a comprehensive mechanism study of CO2 reduction to multicarbon products over aminothiolate-coated copper (Cu) catalysts. Our results indicate that the CO2 reduction performance was closely related to the alkyl chain length, ligand coverage, ligand configuration, and Cu facet. The aminothiolate ligand-Cu interface significantly promoted initial CO2 activation and lowered the activation barrier of carbon-carbon coupling through the organic (nitrogen (N)) and inorganic (Cu) interfacial active sites. Experimentally, the selectivity and partial current density of the multicarbon products over aminothiolate-coated Cu increased by 1.5-fold and 2-fold, respectively, as compared to the pristine Cu at -1.16 VRHE, consistent with our theoretical findings. This work highlights the promising strategy of designing the ligand-metal interface for CO2 reactive capture and conversion to multicarbon products.
Collapse
Affiliation(s)
- Mingyu Wan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Zhengyang Yang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Heba Morgan
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Jinquan Shi
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06520, United States
| | - Fan Shi
- National Energy Technology Laboratory, P.O. Box 10940, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Mengxia Liu
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06520, United States
| | - Hsi-Wu Wong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Zhiyong Gu
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Fanglin Che
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
42
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
43
|
Wu ZZ, Zhang XL, Yang PP, Niu ZZ, Gao FY, Zhang YC, Chi LP, Sun SP, DuanMu JW, Lu PG, Li YC, Gao MR. Gerhardtite as a Precursor to an Efficient CO-to-Acetate Electroreduction Catalyst. J Am Chem Soc 2023; 145:24338-24348. [PMID: 37880928 DOI: 10.1021/jacs.3c09255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.
Collapse
Affiliation(s)
- Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Cai Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Wen DuanMu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Gan Lu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Ye-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
44
|
Long C, Liu X, Wan K, Jiang Y, An P, Yang C, Wu G, Wang W, Guo J, Li L, Pang K, Li Q, Cui C, Liu S, Tan T, Tang Z. Regulating reconstruction of oxide-derived Cu for electrochemical CO 2 reduction toward n-propanol. SCIENCE ADVANCES 2023; 9:eadi6119. [PMID: 37889974 PMCID: PMC10610896 DOI: 10.1126/sciadv.adi6119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Oxide-derived copper (OD-Cu) is the most efficient and likely practical electrocatalyst for CO2 reduction toward multicarbon products. However, the inevitable but poorly understood reconstruction from the pristine state to the working state of OD-Cu under strong reduction conditions largely hinders the rational construction of catalysts toward multicarbon products, especially C3 products like n-propanol. Here, we simulate the reconstruction of CuO and Cu2O into their derived Cu by molecular dynamics, revealing that CuO-derived Cu (CuOD-Cu) intrinsically has a richer population of undercoordinated Cu sites and higher surficial Cu atom density than the counterpart Cu2O-derived Cu (Cu2OD-Cu) because of the vigorous oxygen removal. In situ spectroscopes disclose that the coordination number of CuOD-Cu is considerably lower than that of Cu2OD-Cu, enabling the fast kinetics of CO2 reaction and strengthened binding of *C2 intermediate(s). Benefiting from the rich undercoordinated Cu sites, CuOD-Cu achieves remarkable n-propanol faradaic efficiency up to ~17.9%, whereas the Cu2OD-Cu dominantly generates formate.
Collapse
Affiliation(s)
- Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Xiaolong Liu
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kaiwei Wan
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guoling Wu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Kanglei Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Qun Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Shaoqin Liu
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Ting Tan
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
45
|
Jin B, Hu T, Yu K, Xu S. Constrained Hybrid Monte Carlo Sampling Made Simple for Chemical Reaction Simulations. J Chem Theory Comput 2023; 19:7343-7357. [PMID: 37793028 DOI: 10.1021/acs.jctc.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Most electrochemical reactions should be studied under a grand canonical ensemble condition with a constant potential and/or a constant pH value. Free energy profiles provide key insights into understanding the reaction mechanisms. However, many molecular dynamics (MD)-based theoretical studies for electrochemical reactions did not employ an exact grand canonical ensemble sampling scheme for the free energy calculations, partially due to the issues of discontinuous trajectories induced by the particle-number variations during MD simulations. An alternative statistical sampling approach, the Monte Carlo (MC) method, is naturally appropriate for the open-system simulations if we focus on the thermodynamic properties. An advanced MC scheme, the hybrid Monte Carlo (HMC) method, which can efficiently sample the configurations of a system with large degrees of freedom, however, has limitations in the constrained-sampling applications. In this work, we propose an adjusted constrained HMC method to compute free energy profiles using the thermodynamic integration (TI) method. The key idea of the method for handling the constraint in TI is to integrate the reaction coordinate and sample the rest degrees of freedom by two types of MC schemes, the HMC scheme and the Metropolis algorithm with unbiased trials (M(RT)2-UB). We test the proposed method on three different systems involving two kinds of reaction coordinates, which are the distance between two particles and the difference of particles' distances, and compare the results to those generated by the constrained M(RT)2-UB method serving as benchmarks. We show that our proposed method has the advantages of high sampling efficiency and convenience of implementation, and the accuracy is justified as well. In addition, we show in the third test system that the proposed constrained HMC method can be combined with the path integral method to consider the nuclear quantum effects, indicating a broader application scenario of the sampling method reported in this work.
Collapse
Affiliation(s)
- Bin Jin
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Taiping Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science Institute, Beijing 100084, P. R. China
| | - Kuang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Shenzhen Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Theory and Technology for Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science Institute, Beijing 100084, P. R. China
| |
Collapse
|
46
|
Li P, Jiao Y, Huang J, Chen S. Electric Double Layer Effects in Electrocatalysis: Insights from Ab Initio Simulation and Hierarchical Continuum Modeling. JACS AU 2023; 3:2640-2659. [PMID: 37885580 PMCID: PMC10598835 DOI: 10.1021/jacsau.3c00410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Structures of the electric double layer (EDL) at electrocatalytic interfaces, which are modulated by the material properties, the electrolyte characteristics (e.g., the pH, the types and concentrations of ions), and the electrode potential, play crucial roles in the reaction kinetics. Understanding the EDL effects in electrocatalysis has attracted substantial research interest in recent years. However, the intrinsic relationships between the specific EDL structures and electrocatalytic kinetics remain poorly understood, especially on the atomic scale. In this Perspective, we briefly review the recent advances in deciphering the EDL effects mainly in hydrogen and oxygen electrocatalysis through a multiscale approach, spanning from the atomistic scale simulated by ab initio methods to the macroscale by a hierarchical approach. We highlight the importance of resolving the local reaction environment, especially the local hydrogen bond network, in understanding EDL effects. Finally, some of the remaining challenges are outlined, and an outlook for future developments in these exciting frontiers is provided.
Collapse
Affiliation(s)
- Peng Li
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuzhou Jiao
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Huang
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Theory
of Electrocatalytic Interfaces, Faculty of Georesources and Materials
Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Shengli Chen
- Hubei
Key Laboratory of Electrochemical Power Sources, College of Chemistry
and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
47
|
Hu Y, Zhu J, Chen N, Zheng X, Zhang X, Chen Z, Wu Z. Sr 2+-Doped CuO Nanoribbons with the Hydrophobic Surface Enabling CO 2 Electroreduction to Ethane. Inorg Chem 2023; 62:16986-16993. [PMID: 37773890 DOI: 10.1021/acs.inorgchem.3c02746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Electrochemical reduction of carbon dioxide to value-added multicarbon (C2+) products is a promising way to obtain renewable fuels of high energy densities and chemicals and close the carbon cycle. However, the difficulty of C-C coupling and complexity of the proton-coupled electron transfer process greatly hinder CO2 electroreduction into specific C2+ products with high selectivity. Here, we design an electrocatalyst of Sr-doped CuO nanoribbons with a hydrophobic surface for CO2 electroreduction to ethane with high selectivity. Sr doping enhances the chemical adsorption and activation of CO2 by inducing oxygen vacancies and increasing *CO coverage by stabilizing Cu2+ active sites, thus further boosting subsequent C-C coupling. The hydrophobic surface with dodecyl sulfate anions (DS-) adsorption increases the oxophilicity of the catalyst surface, enhancing the conversion of the *OCH2CH3 intermediate to ethane. As a result, the optimized Sr1.97%-CuO exhibits a Faradaic efficiency of 53.4% and a partial current density of 13.5 mA cm-2 for ethane under a potential of -0.8 V. This study provides a strategy to design a Cu-based catalyst by alkaline earth metal ions doping with the hydrophobic surface to engineer the evolution of the intermediates for a desired product during CO2RR.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Jiahui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Nannan Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Xinyue Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Xingyue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| | - Zhengcui Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University Wuhu, Anhui 241002, China
| |
Collapse
|
48
|
Clark EL, Nielsen R, Sørensen JE, Needham JL, Seger B, Chorkendorff I. Tuning Surface Reactivity and Electric Field Strength via Intermetallic Alloying. ACS ENERGY LETTERS 2023; 8:4414-4420. [PMID: 37854044 PMCID: PMC10580307 DOI: 10.1021/acsenergylett.3c01639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Many electrosynthesis reactions, such as CO2 reduction to multicarbon products, involve the formation of dipolar and polarizable transition states during the rate-determining step. Systematic and independent control over surface reactivity and electric field strength would accelerate the discovery of highly active electrocatalysts for these reactions by providing a means of reducing the transition state energy through field stabilization. Herein, we demonstrate that intermetallic alloying enables independent and systematic control over d-band energetics and work function through the variation of alloy composition and oxophilic constituent identity, respectively. We identify several intermetallic phases exhibiting properties that should collectively yield higher intrinsic activity for CO reduction compared to conventional Cu-based electrocatalysts. However, we also highlight the propensity of these alloys to segregate in air as a significant roadblock to investigating their electrocatalytic activity.
Collapse
Affiliation(s)
- Ezra L. Clark
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Nielsen
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob Ejler Sørensen
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julius Lucas Needham
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Brian Seger
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Surface
Physics and Catalysis, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Mao X, Gong W, Fu Y, Li J, Wang X, O'Mullane AP, Xiong Y, Du A. Computational Design and Experimental Validation of Enzyme Mimicking Cu-Based Metal-Organic Frameworks for the Reduction of CO 2 into C 2 Products: C-C Coupling Promoted by Ligand Modulation and the Optimal Cu-Cu Distance. J Am Chem Soc 2023; 145:21442-21453. [PMID: 37748045 DOI: 10.1021/jacs.3c07108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
While extensive research has been conducted on the conversion of CO2 to C1 products, the synthesis of C2 products still strongly depends on the Cu electrode. One main issue hindering the C2 production on Cu-based catalysts is the lack of an appropriate Cu-Cu distance to provide the ideal platform for the C-C coupling process. Herein, we identify a lab-synthesized artificial enzyme with an optimal Cu-Cu distance, named MIL-53 (Cu) (MIL= Materials of Institute Lavoisier), for CO2 conversion by using a density functional theory method. By substituting the ligands in the porous MIL-53 (Cu) nanozyme with functional groups from electron-donating NH2 to electron-withdrawing NO2, the Cu-Cu distance and charge of Cu can be significantly tuned, thus modulating the adsorption strength of CO2 that impacts the catalytic activity. MIL-53 (Cu) decorated with a COOH-ligand is found to be located at the top of a volcano-shaped plot and exhibits the highest activity and selectivity to reduce CO2 to CH3CH2OH with a limiting potential of only 0.47 eV. In addition, experiments were carried out to successfully synthesize COOH-decorated MIL-53(Cu) to prove its high catalytic performance for C2 production, which resulted in a -55.5% faradic efficiency at -1.19 V vs RHE, which is much higher than the faradic efficiency of the benchmark Cu electrode of 35.7% at -1.05 V vs RHE. Our results demonstrate that the biologically inspired enzyme engineering approach can redefine the structure-activity relationships of nanozyme catalysts and can also provide a new understanding of the catalytic mechanisms in natural enzymes toward the development of highly active and selective artificial nanozymes.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane 4001, Australia
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Fu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research, Centre of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin 300350, China
| | - Jiayi Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Anthony P O'Mullane
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane 4001, Australia
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane 4001, Australia
| |
Collapse
|
50
|
Liu G, Trinh QT, Wang H, Wu S, Arce-Ramos JM, Sullivan MB, Kraft M, Ager JW, Zhang J, Xu R. Selective and Stable CO 2 Electroreduction to CH 4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301379. [PMID: 37300346 DOI: 10.1002/smll.202301379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/12/2023]
Abstract
The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Guanyu Liu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Quang Thang Trinh
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, Queensland, 4111, Australia
| | - Haojing Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Shuyang Wu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| | - Juan Manuel Arce-Ramos
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Michael B Sullivan
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore (BEARS), 1 Create Way, Singapore, 138602, Singapore
| | - Jia Zhang
- Institute of High-Performance Computing (IHPC), A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way #16-16 Connexis, Singapore, 138632, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|