1
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
2
|
Magbanua E, Zivkovic T, Hansen B, Beschorner N, Meyer C, Lorenzen I, Grötzinger J, Hauber J, Torda AE, Mayer G, Rose-John S, Hahn U. d(GGGT) 4 and r(GGGU) 4 are both HIV-1 inhibitors and interleukin-6 receptor aptamers. RNA Biol 2013; 10:216-27. [PMID: 23235494 PMCID: PMC3594281 DOI: 10.4161/rna.22951] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aptamers are oligonucleotides that bind targets with high specificity and affinity. They have become important tools for biosensing, target detection, drug delivery and therapy. We selected the quadruplex-forming 16-mer DNA aptamer AID-1 [d(GGGT) 4] with affinity for the interleukin-6 receptor (IL-6R) and identified single nucleotide variants that showed no significant loss of binding ability. The RNA counterpart of AID-1 [r(GGGU) 4] also bound IL-6R as quadruplex structure. AID-1 is identical to the well-known HIV inhibitor T30923, which inhibits both HIV infection and HIV-1 integrase. We also demonstrated that IL-6R specific RNA aptamers not only bind HIV-1 integrase and inhibit its 3' processing activity in vitro, but also are capable of preventing HIV de novo infection with the same efficacy as the established inhibitor T30175. All these aptamer target interactions are highly dependent on formation of quadruplex structure.
Collapse
Affiliation(s)
- Eileen Magbanua
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Tijana Zivkovic
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Björn Hansen
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Niklas Beschorner
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Cindy Meyer
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
| | - Inken Lorenzen
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Joachim Hauber
- Heinrich Pette Institute; Leibnitz Institute for Experimental Virology; Hamburg, Germany
| | - Andrew E. Torda
- Centre for Bioinformatics; Hamburg University; Hamburg, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute; University of Bonn; Bonn, Germany
| | - Stefan Rose-John
- Institute of Biochemistry; Medical Faculty; Christian-Albrechts-University; Kiel, Germany
| | - Ulrich Hahn
- Institute for Biochemistry and Molecular Biology; Chemistry Department; MIN-Faculty; Hamburg University; Hamburg, Germany
- Correspondence to: Ulrich Hahn,
| |
Collapse
|
3
|
McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, Christ F, Debyser Z. In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011; 410:811-30. [PMID: 21763490 DOI: 10.1016/j.jmb.2011.03.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 12/21/2022]
Abstract
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.
Collapse
Affiliation(s)
- Melissa McNeely
- Laboratory for Molecular Virology and Gene Therapy, Molecular Medicine, KULeuven and IRC Kulak, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Avidan O, Hizi A. Expression and characterization of the integrase of bovine immunodeficiency virus. Virology 2008; 371:309-21. [DOI: 10.1016/j.virol.2007.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/21/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
|
5
|
Miao ZW, Fu H, Tu GZ, Zhao YF. ONE POT SYNTHESIS OF ARYL THIOPHOSPHORAMIDATE DERIVATIVES OF AZT. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-120014036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Li H, Song T, Xu W, Yu Y, Xin X, Hui D. Effect of 3`-Azido-3`-Deoxythymidine (AZT) on Telomerase Activity and Proliferation of HO-8910 Cell Line of Ovarian Cancer. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2006; 2:34-40. [PMID: 23674964 PMCID: PMC3614573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To study the effect of 3`-azido-3`-deoxythymidine (AZT) on telomerase activity and the proliferation of ovarian cancer cells in vitro. METHODS Telomerase activity was detected by enzyme linked immunosorbent assay (ELISA) in treated and untreated HO-8910 cells by AZT. The detection of cell viability was performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-Diphenyl tetrazolium bromide (MTT) assay and the ultrastructure of the cells was observed by electron microscopy. The apoptotic rate of the cells was measured by flow cytometry. RESULTS AZT significantly inhibited telomerase activity of HO-8910 cells, and the effect was both time- and dose-dependent. The HO-8910 cells treated at different concentrations of AZT showed a significant reduction of cell viability and morphological changes of apoptosis. The apoptotic peak was detected in the AZT treated cells and the apoptotic rate was 14.2%. CONCLUSION AZT can effectively inhibit both telomerase activity and proliferation of human ovarian cancer HO-8910 cells in vitro, suggesting that AZT may be used in the clinic treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hongmei Li
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, School of Medicine, Xi’an Jiaotong University, Xi’an, China;
| | - Tianbao Song
- Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, School of Medicine, Xi’an Jiaotong University, Xi’an, China;
| | - Weizhong Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yuecheng Yu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoyan Xin
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Du Hui
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Liu T, Hu B, Chung MJ, Ullenbruch M, Jin H, Phan SH. Telomerase regulation of myofibroblast differentiation. Am J Respir Cell Mol Biol 2006; 34:625-33. [PMID: 16424384 PMCID: PMC2644224 DOI: 10.1165/rcmb.2005-0252oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Telomerase activity, which has wide expression in cancerous cells, is induced in lung proliferating fibroblasts. It is preferentially expressed in fibroblasts versus myofibroblasts. It is unknown whether regulation of telomerase expression is related to the process of fibroblast differentiation into myofibroblasts. The objective of this study was to clarify such a potential link between telomerase expression and myofibroblast differentiation. Telomerase inhibitor, 3'-azido-2',3'-dideoxythymidine, or antisense oligonucleotide to the telomerase RNA component was used to inhibit the induced fibroblast telomerase activity. The results showed that inhibition of induced telomerase increased alpha-smooth muscle actin expression, an indicator of myofibroblast differentiation. In contrast, induction of telomerase by basic fibroblast growth factor inhibited alpha-smooth muscle actin expression. These findings suggest that the loss of telomerase activity is closely associated with myofibroblast differentiation and possibly functions as a trigger for myofibroblast differentiation. Conversely, expression of telomerase suppresses myofibroblast differentiation.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
8
|
Johnston JS, Johnson A, Gan Y, Wientjes MG, Au JLS. Synergy between 3'-azido-3'-deoxythymidine and paclitaxel in human pharynx FaDu cells. Pharm Res 2003; 20:957-61. [PMID: 12880279 DOI: 10.1023/a:1024431218327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE We recently demonstrated simultaneous targeting of telomere and telomerase as a novel cancer therapeutic approach, and that telomerase inhibitors such as 3'-azido-3'-deoxythymidine (AZT) significantly enhanced the antitumor activity of paclitaxel, which causes telomere erosion, in telomerase-positive human pharynx FaDu tumors in vitro and in vivo. The present study evaluated the synergy between AZT and paclitaxel to identify optimal combinations for future clinical evaluation. METHODS FaDu cells were incubated with or without AZT for 24 h and then treated with AZT with or without paclitaxel for an additional 48 h. Under these conditions, single agent paclitaxel produced a 60% maximum reduction of cell number (IC50) was 7.3 nM), and single agent AZT produced a 97% reduction (IC50 was 5.6 microM). Synergy was evaluated using fixed-concentration and fixed-ratio methods, and data were analyzed by the combination index method. RESULTS The results indicate a concentration-dependent synergy between the two drugs; the synergy was higher for combinations containing greater paclitaxel-to-AZT concentration ratios and increased with the level of drug effect. For example, in combinations containing 1 microM AZT, synergy was 1.3-fold at the 20% effect level and 3.1-fold at the 60% effect level. Because the major antitumor activity, determined by comparing the posttreatment cell number to the pretreatment cell number, was antiproliferation at the 20% effect level and cell kill at the 60% effect level, our results suggest that AZT mainly enhances the cell kill effect of paclitaxel. CONCLUSION In summary, the present study demonstrates a synergistic interaction between paclitaxel and AZT and supports a combination using a low and nontoxic AZT dose in combination with a therapeutically active dose of paclitaxel.
Collapse
Affiliation(s)
- Jeffrey S Johnston
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
One of the three key enzymes encoded by the pol gene of HIV is a M(r) 32 000 protein called HIV integrase. This viral enzyme is involved in the integration of HIV DNA into host chromosomal DNA. There appears to be no functional equivalent of the enzyme in human cells. The biochemical mechanism of integration of HIV DNA into the host cell genome involves a carefully defined sequence of DNA tailoring (3'-processing) and coupling (joining or integration) reactions. In spite of some effort in this area targeted at the discovery of therapeutically useful inhibitors of this viral enzyme, there are no drugs for HIV/AIDS in clinical use where the mechanism of action is inhibition of HIV integrase. Thus, new knowledge on inhibitors of this enzyme is of critical importance in the anti-HIV drug discovery area. The focus of this review will be on several classes of compounds, including nucleotides, dinucleotides, oligonucleotides and miscellaneous small molecules such as heterocyclic systems, natural products, diketo acids and sulfones, that have been discovered as inhibitors of HIV integrase. Special emphasis in the review will be placed on discoveries from my laboratory on HIV integrase inhibitors that are non-natural, nuclease-resistant dinucleotides. Comments on future directions and the prospects for developing integrase inhibitors as therapeutic antiviral agents are discussed.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Chemistry, The University of Iowa, Iowa City 52242, USA.
| |
Collapse
|
10
|
Oz I, Avidan O, Hizi A. Inhibition of the integrases of human immunodeficiency viruses type 1 and type 2 by reverse transcriptases. Biochem J 2002; 361:557-66. [PMID: 11802785 PMCID: PMC1222338 DOI: 10.1042/0264-6021:3610557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present evidence that the integrases (INs) of HIV types 1 and 2 are inhibited in vitro by the reverse transcriptases (RTs) of HIV-1, HIV-2 and murine leukaemia virus. Both 3'-end processing and 3'-end joining (strand transfer) activities of IN were affected by the RTs. Full inhibitions were accomplished with most RT and IN combinations tested at around equimolar RT/IN ratios. The disintegration activity of IN was also inhibited by RTs. Neither DNA synthesis nor the ribonuclease H (RNase H) domain of RT were involved in IN inhibition, since specific DNA polymerase inhibitors did not affect the level of IN inhibition, and the p51 isoform of HIV-1 RT (which lacks the RNase H domain) is as effective in inhibiting IN as the heterodimeric p66/p51 isoform. On the other hand, the catalytic activities of HIV RTs were not affected by the INs, showing that RTs can inhibit IN activities, whereas INs do not inhibit RTs. We postulate that sequences and/or three-dimensional protein structures common to RTs interact with INs and inhibit their activities. We show evidence for this hypothesis and discuss the possible sites of IN involved in this interaction.
Collapse
Affiliation(s)
- Iris Oz
- Department of Cell Biology and Histology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | | | | |
Collapse
|
11
|
Taktakishvili M, Neamati N, Pommier Y, Nair V. Discovery of a nuclease-resistant, non-natural dinucleotide that inhibits HIV-1 integrase. Bioorg Med Chem Lett 2001; 11:1433-5. [PMID: 11378371 DOI: 10.1016/s0960-894x(01)00231-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Integration of HIV viral DNA into human chromosomal DNA catalyzed by HIV integrase is essential for the replication of HIV. Discovery of novel inhibitors of HIV integrase is of considerable significance in approaches to the development of therapeutic agents against AIDS. We have synthesized a new dinucleotide 1 with an internucleotide phosphate bond that is unusually resistant to exonucleases. This compound exhibits potent anti-HIV-1 integrase activity.
Collapse
Affiliation(s)
- M Taktakishvili
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
13
|
Brodin P, Pinskaya M, Parsch U, Bischerour J, Leh H, Romanova E, Engels JW, Gottikh M, Mouscadet JF. 6-oxocytidine containing oligonucleotides inhibit the HIV-1 integrase in vitro. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:481-6. [PMID: 11563063 DOI: 10.1081/ncn-100002322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Integration of the proviral DNA into the genome of infected cells is a key step of HIV-1 replication. Integration is catalyzed by the viral enzyme integrase (IN). 6-oxocytidine-containing oligonucleotides were found to be efficient inhibitors of integrase in vitro. The inhibitory effect is sequence-specific and strictly requires the presence of the 6-oxocytidine base. It is due to the impairment of the integrase binding to its substrate and does not involve an auto-structure of the oligonucleotide.
Collapse
Affiliation(s)
- P Brodin
- UMR 8532, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pilon AA, Marchand C, Kavlick MF, Bajaj K, Owen J, Mitsuya H, Pommier Y. Mutations in the HIV type 1 integrase of patients receiving long-term dideoxynucleoside therapy do not confer resistance to zidovudine. AIDS Res Hum Retroviruses 2000; 16:1417-22. [PMID: 11018861 DOI: 10.1089/08892220050140964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolites of AZT can inhibit HIV-1 integrase in vitro (Mazumder A, et al., Proc Natl Acad Sci USA 1994;91:5771-5775). To determine if long-term dideoxynucleoside therapy can lead to the emergence of HIV-1 AZT-resistant variants containing mutations in the integrase, we have sequenced the proviral DNA encoding the HIV-1 integrase of nine HIV-1-infected patients at different time points during treatment. Four of the nine patients developed mutations during the course of treatment. Although most mutations occurred at nonconserved amino acids, one patient developed a mutation at codon (R166T), a residue that is conserved among all integrases from known HIV-1 isolates. This mutation was introduced in the recombinant HIV-1 integrase protein to determine if it could confer resistance to AZT in vitro. We show that the R166T integrase mutant is still proficient at carrying 3'-processing and 3' end-joining but that the enzyme is not resistant to AZT-TP. Our results suggest that it is unlikely that integrase inhibition contributes to the antiviral activity of AZT.
Collapse
Affiliation(s)
- A A Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- K Mokbel
- St Bartholomew's Hospital, London, UK
| |
Collapse
|
16
|
Taktakishvili M, Neamati N, Pommier Y, Pal S, Nair V. Recognition and Inhibition of HIV Integrase by Novel Dinucleotides. J Am Chem Soc 2000. [DOI: 10.1021/ja992528d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Taktakishvili
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Nouri Neamati
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Yves Pommier
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Suresh Pal
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| | - Vasu Nair
- Contribution from the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, and Laboratory of Pharmacology, National Cancer Institute, NIH, Bethesda, Maryland 20892
| |
Collapse
|
17
|
Taktakishvili M, Neamati N, Pommier Y, Nair V. Recognition and inhibition of HIV integrase by a novel dinucleotide. Bioorg Med Chem Lett 2000; 10:249-51. [PMID: 10698446 DOI: 10.1016/s0960-894x(99)00677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The viral enzyme, HIV integrase, is involved in the integration of viral DNA into host cell DNA. In the quest for a small nucleotide system with nuclease stability of the internucleotide phosphate bond and critical structural features for recognition and inhibition of HIV-1 integrase, we have discovered a conceptually novel dinucleotide, pIsodApdC, which is a potent inhibitor of this key viral enzyme.
Collapse
Affiliation(s)
- M Taktakishvili
- Department of Chemistry, The University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Currently available anti-HIV drugs can be classified into three categories: nucleoside analogue reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and protease inhibitors. Knowledge of these anti-HIV drugs in various physiological or pharmacokinetic compartments is essential for design and development of drug delivery systems for the treatment of HIV infection. The input and output of anti-HIV drugs in the biological systems are described by their transport and metabolism/elimination in this review. Transport mechanisms of anti-HIV agents across various biological barriers, i.e., gastrointestinal wall, skin, mucosa, blood cerebrospinal barrier, blood-brain barrier, placenta, and cellular membranes, are discussed. Their fates during and after systemic absorption and their metabolism-related drug interactions are reviewed. Many anti-HIV drugs presently marketed in the US bear some significant drawbacks such as relatively short half-life, low bioavailability, poor penetration into the central nervous system, and undesirable side effects. Efforts have been made to design drug delivery systems for the anti-HIV agents to: (1) reduce the dosing frequency; (2) increase the bioavailability and decrease the degradation/metabolism in the gastrointestinal tract; (3) improve the CNS penetration and inhibit the CNS efflux; and (4) deliver them to target cells selectively with minimal side effects. We hope to stimulate further interests in the area of controlled delivery of anti-HIV agents by providing current status of transport and metabolism/elimination of these agents.
Collapse
Affiliation(s)
- X Li
- Department of Pharmaceutics and Medicinal Chemistry, School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA
| | | |
Collapse
|
19
|
Abstract
The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and "leads" which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.
Collapse
Affiliation(s)
- M M Cowan
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA.
| |
Collapse
|
20
|
Abstract
Integration of the viral DNA into a host cell chromosome is an essential step for HIV replication and maintenance of persistent infection. Two viral factors are essential for integration: the viral DNA termini (the att sites) and IN. Accruing knowledge of the IN structure, catalytic mechanisms, and interactions with other proteins can be used to design strategies to block integration. A large number of inhibitors have been identified that can be used as leads for the development of potent and selective anti-IN drugs with antiviral activity.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
21
|
Reddy MV, Rao MR, Rhodes D, Hansen MS, Rubins K, Bushman FD, Venkateswarlu Y, Faulkner DJ. Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J Med Chem 1999; 42:1901-7. [PMID: 10354398 DOI: 10.1021/jm9806650] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase is an attractive target for anti-retroviral chemotherapy, but to date no clinically useful inhibitors have been developed. We have screened diverse marine natural products for compounds active against integrase in vitro and found a series of ascidian alkaloids, the lamellarins, that show selective inhibition. A new member of the family named lamellarin alpha 20-sulfate (1), the structure of which was determined from spectroscopic data, displayed the most favorable therapeutic index. The site of action of lamellarin alpha 20-sulfate on the integrase protein was mapped by testing activity against deletion mutants of integrase. Inhibition of isolated catalytic domain was detectable though weaker than inhibition of full length integrase; possibly lamellarin alpha 20-sulfate binds a site composed of multiple integrase domains. Lamellarin alpha 20-sulfate also inhibited integration in vitro by authentic HIV-1 replication intermediates isolated from infected cells. Lamellarin alpha 20-sulfate was tested against wild type HIV using the MAGI indicator cell assay and found to inhibit early steps of HIV replication. To clarify the inhibitor target, we tested inhibition against an HIV-based retroviral vector bearing a different viral envelope. Inhibition was observed, indicating that the HIV envelope cannot be the sole target of lamellarin alpha 20-sulfate in cell culture. In addition, these single round tests rule out action against viral assembly or budding. These findings provide a new class of compounds for potential development of clinically useful integrase inhibitors.
Collapse
Affiliation(s)
- M V Reddy
- Organic Chemistry Division-I, Natural Products Laboratory, Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abu Sheika G, Tramontano E, Loi AG, Franchetti P, Grifantini M, La Colla P. Effect of acyclic nucleoside phosphonates on the HIV-1 integrase in vitro. NUCLEOSIDES & NUCLEOTIDES 1999; 18:849-51. [PMID: 10432692 DOI: 10.1080/15257779908041579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Integrase (IN) is an essential enzyme in the human immunodeficiency virus type-1 (HIV-1) replication cycle and, thus, a potential target for chemotherapeutic agents. Because various nucleotide analogues have been reported to inhibit IN in vitro, we investigated the effect of acyclic nucleoside phosphonates. Both unphosphorylated and diphosphorylated derivatives were inhibitory to IN at concentrations ranging between 60 and 800 microM, with diphosphorylated derivatives being 5- to 8-fold more potent than unphosphorylated counterparts.
Collapse
Affiliation(s)
- G Abu Sheika
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In the search for inhibitors of HIV integrase, the enzyme involved in the integration of viral DNA into host DNA, we have synthesized and studied a number of analogs of the heterocyclic molecule, chloroquine.
Collapse
Affiliation(s)
- C Mathé
- Department of Chemistry, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
24
|
Maroun RG, Krebs D, Roshani M, Porumb H, Auclair C, Troalen F, Fermandjian S. Conformational aspects of HIV-1 integrase inhibition by a peptide derived from the enzyme central domain and by antibodies raised against this peptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:145-55. [PMID: 10091594 DOI: 10.1046/j.1432-1327.1999.00130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monospecific antibodies were raised against a synthetic peptide K159 (SQGVVESMNKELKKIIGQVRDQAEHLKTA) reproducing the segment 147-175 of HIV-1 integrase (IN). Synthesis of substituted and truncated analogs of K159 led us to identify the functional epitope reacting with antibodies within the C-terminal portion 163-175 of K159. Conformational studies combining secondary structure predictions, CD and NMR spectroscopy together with ELISA assays, showed that the greater is the propensity of the epitope for helix formation the higher is the recognition by anti-K159. Both the antibodies and the antigenic peptide K159 exhibited inhibitory activities against IN. In contrast, neither P159, a Pro-containing analog of K159 that presents a kink around proline but with intact epitope conformation, nor the truncated analogs encompassing the epitope, were inhibitors of IN. While the activity of antibodies is restricted to recognition of the sole epitope portion, that of the antigenic K159 likely requires interactions of the peptide with the whole 147-175 segment in the protein [Sourgen F., Maroun, R.G., Frère, V., Bouziane, A., Auclair, C., Troalen, F. & Fermandjian, S. (1996) Eur. J. Biochem. 240, 765-773]. Actually, of all tested peptides only K159 was found to fulfill condition of minimal number of helical heptads to achieve the formation of a stable coiled-coil structure with the IN 147-175 segment. The binding of antibodies and of the antigenic peptide to this segment of IN hampers the binding of IN to its DNA substrates in filter-binding assays. This appears to be the main effect leading to inhibition of integration. Quantitative analysis of filter-binding assay curves indicates that two antibody molecules react with IN implying that the enzyme is dimeric within these experimental conditions. Together, present data provide an insight into the structure-function relationship for the 147-175 peptide domain of the enzyme. They also strongly suggest that the functional enzyme is dimeric. Results could help to assess models for binding of peptide fragments to IN and to develop stronger inhibitors. Moreover, K159 antibodies when expressed in vivo might exhibit useful inhibitory properties.
Collapse
Affiliation(s)
- R G Maroun
- Département de Biologie et Pharmacologie Structurales, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Jing N, Hogan ME. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem 1998; 273:34992-9. [PMID: 9857031 DOI: 10.1074/jbc.273.52.34992] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we have described the design and characterization of oligonucleotides containing only G and T bases, i.e. T30695 and T30177, that are potent inhibitors of human immunodeficiency virus type 1 (HIV-1) replication in culture (Jing, N., Rando, R. F., Pommier, Y., and Hogan, M. E. (1997) Biochemistry 36, 12498-12505). To understand that observation and to rationalize the generally high thermal stability of oligonucleotide folding for these compounds, we have used NMR methods, coupled to molecular modeling, to obtain a high resolution structure model for T30695, which is the most potent of the integrase inhibitors that have been identified thus far. Modeling and NMR data obtained in the presence of Li+ ions show that T30695 assumes an intramolecular fold with a distorted G-octet core and a set of three open, partially disordered loops. This is referred to as Li+-form structure. The NMR-based model suggests that, upon coordination with three K+ equivalents, the central G-octet becomes more regular and that the loop domains become orderly and compact. This is referred to as K+-form structure. Based upon the assay of inhibition of HIV-1 integrase, T30695 demonstrated a strong inhibition of HIV-1 integrase activity as the K+-form structure, but a poor inhibition of HIV-1 integrase activity as the Li+-form structure. The structure/activity analysis suggests that the K+-induced conformation transition of the tetrad-forming oligonucleotides, such as T30695 and T30177, plays a key role in inhibition of HIV-1 integrase activity.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
26
|
Farnet CM, Wang B, Hansen M, Lipford JR, Zalkow L, Robinson WE, Siegel J, Bushman F. Human immunodeficiency virus type 1 cDNA integration: new aromatic hydroxylated inhibitors and studies of the inhibition mechanism. Antimicrob Agents Chemother 1998; 42:2245-53. [PMID: 9736543 PMCID: PMC105796 DOI: 10.1128/aac.42.9.2245] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA is a required step for viral replication. Integrase, the virus-encoded enzyme important for integration, has not yet been exploited as a target for clinically useful inhibitors. Here we report on the identification of new polyhydroxylated aromatic inhibitors of integrase including ellagic acid, purpurogallin, 4,8, 12-trioxatricornan, and hypericin, the last of which is known to inhibit viral replication. These compounds and others were characterized in assays with subviral preintegration complexes (PICs) isolated from HIV-1-infected cells. Hypericin was found to inhibit PIC assays, while the other compounds tested were inactive. Counterscreening of these and other integrase inhibitors against additional DNA-modifying enzymes revealed that none of the polyhydroxylated aromatic compounds are active against enzymes that do not require metals (methylases, a pox virus topoisomerase). However, all were cross-reactive with metal-requiring enzymes (restriction enzymes, a reverse transcriptase), implicating metal atoms in the inhibitory mechanism. In mechanistic studies, we localized binding of some inhibitors to the catalytic domain of integrase by assaying competition of binding by labeled nucleotides. These findings help elucidate the mechanism of action of the polyhydroxylated aromatic inhibitors and provide practical guidance for further inhibitor development.
Collapse
Affiliation(s)
- C M Farnet
- Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Robinson WE. L-chicoric acid, an inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase, improves on the in vitro anti-HIV-1 effect of Zidovudine plus a protease inhibitor (AG1350). Antiviral Res 1998; 39:101-11. [PMID: 9806487 DOI: 10.1016/s0166-3542(98)00037-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Combinations of anti-human immunodeficiency virus (HIV) drugs, including reverse transcriptase inhibitors and protease inhibitors, have proven immensely potent in the therapy of acquired immune deficiency syndrome (AIDS). To determine whether HIV integrase is a suitable target for combination therapy, the ability of an HIV integrase inhibitor, L-chicoric acid, to work in combination with a protease inhibitor and Zidovudine was tested in vitro. The addition of L-chicoric acid to either Zidovudine or protease inhibitor improved upon the observed anti-HIV activity of either compound alone. When all three drugs were combined, the anti-HIV activity was substantially better than either of the three compounds alone or any combination of two inhibitors. Doses of both Zidovudine and protease inhibitor could be reduced by more than 33% for an equivalent anti-HIV effect if L-chicoric acid was added. The improved anti-HIV activity was observed with a tissue culture adapted strain of HIV (HIV(LAI)) and with limited passage clinical isolates of HIV (HIV(R19) and HIV(R45)). These data demonstrate that a first generation HIV integrase inhibitor, L-chicoric acid, is at least additive in combination with existing multi-drug regimens and suggest that HIV integrase will be an excellent target for combination therapy of HIV infection.
Collapse
Affiliation(s)
- W E Robinson
- Department of Pathology, University of California, Irvine, 92697-4800, USA.
| |
Collapse
|
28
|
Hansen MS, Carteau S, Hoffmann C, Li L, Bushman F. Retroviral cDNA integration: mechanism, applications and inhibition. GENETIC ENGINEERING 1998; 20:41-61. [PMID: 9666555 DOI: 10.1007/978-1-4899-1739-3_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M S Hansen
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Drake RR, Neamati N, Hong H, Pilon AA, Sunthankar P, Hume SD, Milne GW, Pommier Y. Identification of a nucleotide binding site in HIV-1 integrase. Proc Natl Acad Sci U S A 1998; 95:4170-5. [PMID: 9539708 PMCID: PMC22460 DOI: 10.1073/pnas.95.8.4170] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 integrase is essential for viral replication and can be inhibited by antiviral nucleotides. Photoaffinity labeling with the 3'-azido-3'-deoxythymidine (AZT) analog 3',5-diazido-2', 3'-dideoxyuridine 5'-monophosphate (5N3-AZTMP) and proteolytic mapping identified the amino acid 153-167 region of integrase as the site of photocrosslinking. Docking of 5N3-AZTMP revealed the possibility for strong hydrogen bonds between the inhibitor and lysines 156, 159, and 160 of the enzyme. Mutation of these residues reduced photocrosslinking selectively. This report elucidates the binding site of a nucleotide inhibitor of HIV-1 integrase, and possibly a component of the enzyme polynucleotide binding site.
Collapse
Affiliation(s)
- R R Drake
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Acel A, Udashkin BE, Wainberg MA, Faust EA. Efficient gap repair catalyzed in vitro by an intrinsic DNA polymerase activity of human immunodeficiency virus type 1 integrase. J Virol 1998; 72:2062-71. [PMID: 9499061 PMCID: PMC109500 DOI: 10.1128/jvi.72.3.2062-2071.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cleavage and DNA joining reactions, carried out by human immunodeficiency virus type 1 (HIV-1) integrase, are necessary to effect the covalent insertion of HIV-1 DNA into the host genome. For the integration of HIV-1 DNA into the cellular genome to be completed, short gaps flanking the integrated proviral DNA must be repaired. It has been widely assumed that host cell DNA repair enzymes are involved. Here we report that HIV-1 integrase multimers possess an intrinsic DNA-dependent DNA polymerase activity. The activity was characterized by its dependence on Mg2+, resistance to N-ethylmaleimide, and inhibition by 3'-azido-2',3'-dideoxythymidine-5'-triphosphate, coumermycin A1, and pyridoxal 5'-phosphate. The enzyme efficiently utilized poly(dA)-oligo(dT) or self-annealing oligonucleotides as a template primer but displayed relatively low activity with gapped calf thymus DNA and no activity with poly(dA) or poly(rA)-oligo(dT). A monoclonal antibody binding specifically to an epitope comprised of amino acids 264 to 273 near the C terminus of HIV-1 integrase severely inhibited the DNA polymerase activity. A deletion of 50 amino acids at the C terminus of integrase drastically altered the gel filtration properties of the DNA polymerase, although the level of activity was unaffected by this mutation. The DNA polymerase efficiently extended a hairpin DNA primer up to 19 nucleotides on a T20 DNA template, although addition of the last nucleotide occurred infrequently or not at all. The ability of integrase to repair gaps in DNA was also investigated. We designed a series of gapped molecules containing a single-stranded region flanked by a duplex U5 viral arm on one side and by a duplex nonviral arm on the other side. Molecules varied structurally depending on the size of the gap (one, two, five, or seven nucleotides), their content of T's or C's in the single-stranded region, whether the CA dinucleotide in the viral arm had been replaced with a nonviral sequence, or whether they contained 5' AC dinucleotides as unpaired tails. The results indicated that the integrase DNA polymerase is specifically designed to repair gaps efficiently and completely, regardless of gap size, base composition, or structural features such as the internal CA dinucleotide or unpaired 5'-terminal AC dinucleotides. When the U5 arm of the gapped DNA substrate was removed, leaving a nongapped DNA template-primer, the integrase DNA polymerase failed to repair the last nucleotide in the DNA template effectively. A post-gap repair reaction did depend on the CA dinucleotide. This secondary reaction was highly regulated. Only two nucleotides beyond the gap were synthesized, and these were complementary to and dependent for their synthesis on the CA dinucleotide. We were also able to identify a specific requirement for the C terminus of integrase in the post-gap repair reaction. The results are consistent with a direct role for a heretofore unsuspected DNA polymerase function of HIV-1 integrase in the repair of short gaps flanking proviral DNA integration intermediates that arise during virus infection.
Collapse
Affiliation(s)
- A Acel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital and McGill AIDS Center, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
31
|
Abstract
The integrase protein of retroviruses catalyzes the insertion of the viral DNA into the genomes of the cells that they infect. Integrase is necessary and sufficient for this recombination reaction in vitro; however, the enzyme's activity appears to be modulated in vivo by viral and cellular components included in the nucleoprotein pre-integration complex. In addition to integrase, cis-acting sequences at the ends of the viral DNA are important for integration. Solution of the structures of the isolated N- and C-terminal domains of HIV-1 integrase by nuclear magnetic resonance (NMR) and the available crystal structures of the catalytic core domains from human immunodeficiency virus type-1 (HIV-1) and avian sarcoma virus (ASV) integrases are providing a structural basis for understanding some aspects of the integration reaction. The role of the evolutionarily conserved acidic amino acids in the D,D(35)E motif as metal-coordinating residues that are critical for catalysis, has been confirmed by the metal-integrase (core domain) complexes of ASV integrase. The central role that integrase plays in the life cycle of the virus makes it an attractive target for the design of drugs against retroviral diseases such as AIDS. To this end, several compounds have been screened for inhibitory effects against HIV-1 integrase. These include DNA intercalators, peptides, RNA ligands, and small organic compounds such as bis-catechols, flavones, and hydroxylated arylamides. Although the published inhibitors are not very potent, they serve as valuable leads for the development of the next generation of tight-binding analogues that are more specific to integrase. In addition, new approaches are being developed, exemplified by intracellular immunization studies with conformation-sensitive inhibitory monoclonal antibodies against HIV-1 integrase. Increased knowledge of the mechanism of retroviral DNA integration should provide new strategies for the design of effective antivirals that inhibit integrase in the future.
Collapse
Affiliation(s)
- E Asante-Appiah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
32
|
Cherepanov P, Esté JA, Rando RF, Ojwang JO, Reekmans G, Steinfeld R, David G, De Clercq E, Debyser Z. Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1. Mol Pharmacol 1997; 52:771-80. [PMID: 9351967 DOI: 10.1124/mol.52.5.771] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oligonucleotides that can form a highly stable intramolecular four-stranded DNA structure containing two stacked guanosine-quartets (G-quartets) have been reported to inhibit the replication of the human immunodeficiency virus type 1 (HIV-1) in cell culture. Two possible mechanisms for the observed antiviral activity have been proposed: interference with virus adsorption to the cell and/or inhibition of HIV-1 integrase. We investigated the molecular interaction of G-quartet-containing oligonucleotides with HIV-1 integrase in comparison with random oligonucleotides and dextran sulfate. The prototypical G-quartet-containing oligonucleotide, T30177 (Zintevir), inhibited the overall integration reaction with an IC50 value of 80 nM. A random oligonucleotide was 10-fold less potent, but dextran sulfate was more potent, with an IC50 value of 7 nM. We developed novel kinetic assays to dissect the overall integration reaction in three steps: the formation of the initial stable complex (ISC), the 3'-processing reaction, and the DNA strand-transfer step. We then analyzed the kinetics of the ISC formation and 3'-processing. The rate constant determined for the conversion of ISC into the cleaved product was 0.08 +/- 0.01 min-1. T30177 did not inhibit 3'-processing or DNA strand transfer, whereas dextran sulfate inhibited DNA strand transfer to some extent. Binding studies using surface plasmon resonance technology revealed that both T30177 and dextran sulfate were capable of preventing the binding of integrase to specific DNA. We propose a model in which the interaction of HIV-1 integrase with G-quartets results in the inhibition of the formation of the ISC between integrase and substrate DNA. Finally, we selected for an HIV-1 strain that was resistant to T30177 in cell culture. DNA sequence analysis revealed mutations in the envelope glycoprotein gp120 but not in the integrase gene. Although gp120 seems to be the main target for the antiviral activity in cell culture of G-quartets, the study of their specific inhibition of HIV-1 integrase may lead to the development of effective integrase inhibitors.
Collapse
Affiliation(s)
- P Cherepanov
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McIntee EJ, Remmel RP, Schinazi RF, Abraham TW, Wagner CR. Probing the mechanism of action and decomposition of amino acid phosphomonoester amidates of antiviral nucleoside prodrugs. J Med Chem 1997; 40:3323-31. [PMID: 9341906 DOI: 10.1021/jm960694f] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decomposition pathways in peripheral blood mononuclear cells (PBMCs) and the in vitro anti-HIV-1 activity of the structurally similar 3'-azido-3'-deoxythymidine (AZT) phosphoramidates 1-6 and 3'-fluoro-3'-deoxythymidine (FLT) phosphoramidates 7-10 are reported. The AZT phosphoramidates exhibited no cytotoxicity toward CEM cells at concentrations as high as 100 microM, whereas the FLT phosphoramidates 9 and 10 had CC50 values of 95.6 and 35.1 microM, respectively. All 10 compounds exhibited no cytotoxicity toward PBMCs at concentrations as high as 100 microM and were effective at inhibiting viral replication. In particular, the AZT phosphomonoester amidate 4 displayed comparable antiviral activity to the parent nucleoside analog AZT. Mechanistic studies on the amino acid carbomethoxy ester phosphomonoester amidates revealed that their decomposition pathway differs from that of amino acid carbomethoxy ester aryl phosphodiester amidates of nucleotide prodrugs. AZT phosphomonoester amidates are internalized by lymphocytes to the same extent as AZT by a nonsaturable process. In lymphocytes, the amino acid carbomethoxy ester phosphomonoester amidates of AZT are not significantly metabolized to either AZT or the mono-, di-, or triphosphate of AZT. The amount of active anabolite, AZT-5'-triphosphate, formed in PBMCs incubated with the AZT phosphomonoester amidates 3 and 4 was 2- and 3-fold less than that observed after treatment with AZT, respectively. In contrast, FLT phosphomonoester amidates are rapidly converted to FLT-5'-monophosphate by a process that is antagonized by the corresponding AZT derivative 4. These results suggest that the metabolism of aromatic amino acid carbomethoxy ester phosphomonoester amidate nucleotide prodrugs by PBMCs does not require prior conversion to the corresponding carboxylic acid before proceeding to P-N bond cleavage.
Collapse
Affiliation(s)
- E J McIntee
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
34
|
Hazuda DJ, Felock PJ, Hastings JC, Pramanik B, Wolfe AL. Differential divalent cation requirements uncouple the assembly and catalytic reactions of human immunodeficiency virus type 1 integrase. J Virol 1997; 71:7005-11. [PMID: 9261430 PMCID: PMC191986 DOI: 10.1128/jvi.71.9.7005-7011.1997] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous in vitro analyses have shown that the human immunodeficiency virus type 1 (HIV-1) integrase uses either manganese or magnesium to assemble as a stable complex on the donor substrate and to catalyze strand transfer. We now demonstrate that subsequent to assembly, catalysis of both 3' end processing and strand transfer requires a divalent cation cofactor and that the divalent cation requirements for assembly and catalysis can be functionally distinguished based on the ability to utilize calcium and cobalt, respectively. The different divalent cation requirements manifest by these processes are exploited to uncouple assembly and catalysis, thus staging the reaction. Staged 3' end processing and strand transfer assays are then used in conjunction with exonuclease III protection analysis to investigate the effects of integrase inhibitors on each step in the reaction. Analysis of a series of related inhibitors demonstrates that these types of compounds affect assembly and not either catalytic process, therefore reconciling the apparent disparate results obtained for such inhibitors in assays using isolated preintegration complexes. These studies provide evidence for a distinct role of the divalent cation cofactor in assembly and catalysis and have implications for both the identification and characterization of integrase inhibitors.
Collapse
Affiliation(s)
- D J Hazuda
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | |
Collapse
|
35
|
Prakash O, Teng S, Ali M, Zhu X, Coleman R, Dabdoub RA, Chambers R, Aw TY, Flores SC, Joshi BH. The human immunodeficiency virus type 1 Tat protein potentiates zidovudine-induced cellular toxicity in transgenic mice. Arch Biochem Biophys 1997; 343:173-80. [PMID: 9224727 DOI: 10.1006/abbi.1997.0168] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
3'-Azido-2',3'-dideoxythymidine (AZT, zidovudine) is the principal antiretroviral agent in the treatment of AIDS. Although beneficial, AZT remains restricted for human usage because of its severe toxic effects. We examined the AZT sensitivity in transgenic mice expressing HIV-1 one-exon-encoded 72 amino acid Tat (Tat72) and full-length 86 amino acid Tat (Tat86) proteins. Administration of AZT (1 mg/ml) in drinking water for 1 week resulted in a three- to fourfold decrease in hematopoietic progenitors from bone marrow in Tat mice compared to AZT-treated nontransgenic controls as determined by erythroid and granulocyte/macrophage colony-forming unit assays. In liver and thymus, two of the tissues examined, AZT treatment of Tat mice resulted in as much as 80-90% suppression of Mn-superoxide dismutase (Mn-SOD) activity. Other parameters associated with loss of Mn-SOD such as increase in carbonyl proteins and decrease of sulfhydryl content were also significantly enhanced by AZT in Tat mice. Our in vivo study suggests that AZT therapy is associated with oxidative damage affecting cellular functions in several tissues and that Tat is one of the contributory factors in AZT-induced toxicities. The findings of AZT-induced oxidative damage may help to improve the therapeutic index of AZT and other related drugs in AIDS patients.
Collapse
Affiliation(s)
- O Prakash
- Laboratory of Molecular Oncology, Alton Ochsner Medical Foundation, New Orleans, Louisiana 70121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mazumder A, Uchida H, Neamati N, Sunder S, Jaworska-Maslanka M, Wickstrom E, Zeng F, Jones RA, Mandes RF, Chenault HK, Pommier Y. Probing interactions between viral DNA and human immunodeficiency virus type 1 integrase using dinucleotides. Mol Pharmacol 1997; 51:567-75. [PMID: 9106620 DOI: 10.1124/mol.51.4.567] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retroviral integrases are essential for viral replication and represent an attractive chemotherapeutic target. In the current study, we demonstrated the activity of micromolar concentrations of dinucleotides against human immunodeficiency virus type 1 (HIV-1), HIV type 2 (HIV-2), simian immunodeficiency virus, and feline immunodeficiency virus integrases. The structure-activity relationship indicates that 5'-phosphorylation enhances potency and that phosphodiester and sugar modifications affect the inhibition of HIV-1 integrase. Base sequence selectivity was observed: pAC, pAT, and pCT were the most potent inhibitors, whereas pAA, pGA, and pGC showed low activity at 100 microM. The inhibition by pAC is consistent with the interaction of the enzyme with the 5' end of the noncleaved strand (5'-AC-3'). The linear and cyclic dinucleotides released by the 3'-processing reaction did not affect enzymatic activity at physiological concentrations. An increase in the length to trinucleotides or tetranucleotides enhanced potency by only 2-3-fold, suggesting that two neighboring bases may be sufficient for significant interactions. Inhibition of a truncated (50-212) integrase mutant and global inhibition of all nucleophiles in the 3'-processing reaction suggest that dinucleotides bind in the catalytic core. All of the active dinucleotides inhibited enzyme/DNA binding in their respective IC50 range. Although the dinucleotides tested showed no antiviral activity, these observations demonstrate the usefulness of dinucleotides in elucidating enzyme mechanisms and as potential ligands for cocrystallization and as lead structures for development of antivirals.
Collapse
Affiliation(s)
- A Mazumder
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hong H, Neamati N, Wang S, Nicklaus MC, Mazumder A, Zhao H, Burke TR, Pommier Y, Milne GW. Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem 1997; 40:930-6. [PMID: 9083481 DOI: 10.1021/jm960754h] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Based upon a class of known HIV-1 integrase inhibitors, several pharmacophore models were proposed from molecular modeling studies and validated using a 3D database of 152, compounds for which integrase assay data are known. Using the most probable pharmacophore model as the query, the NCI 3D database of 206,876 compounds was searched, and 340 compounds that contain the pharmacophore query were identified. Twenty-nine of these compounds were selected and tested in the HIV-1 integrase assay. This led to the discovery of 10 novel, structurally diverse HIV-1 integrase inhibitors, four of which have an IC50 value less than 30 microM and are promising lead compounds for further HIV-1 integrase inhibitor development.
Collapse
Affiliation(s)
- H Hong
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nicklaus MC, Neamati N, Hong H, Mazumder A, Sunder S, Chen J, Milne GW, Pommier Y. HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. J Med Chem 1997; 40:920-9. [PMID: 9083480 DOI: 10.1021/jm960596u] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Starting from a known inhibitor of human immunodeficiency virus type 1 (HIV-1) integrase (IN); caffeic acid phenethyl ester (CAPE), a putative three-point pharmacophore for binding of inhibitors to IN was derived. This pharmacophore was used to search the National Cancer Institute three-dimensional (3D) structural database. Out of the open, nonproprietary part of this database, comprising approximately 200000 compounds, 267 structures were found to match the pharmacophore in at least one conformation, and 60 of those were tested in an in vitro assay against HIV-1 IN. Out of these, 19 were found to inhibit both the 3'-processing and strand transfer of IN at micromolar concentrations. In order to test the validity of this pharmacophore, a small 3D database of 152 published IN inhibitors was built. A search in this database yielded a statistically significant correlation of the presence of this pharmacophore and the potency of the compounds. An automated pharmacophore identification procedure performed on this set of compounds provided additional support for the importance of this pharmacophore for binding of inhibitors to IN and hinted at a possible second pharmacophore. The role of aromatic moieties in the binding of ligands to HIV-1 IN through interactions with divalent metal cations, which are known to be necessary for activity of the enzyme, was explored in ab initio calculations.
Collapse
Affiliation(s)
- M C Nicklaus
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Palmer S, Cox S. Increased activation of the combination of 3'-azido-3'-deoxythymidine and 2'-deoxy-3'-thiacytidine in the presence of hydroxyurea. Antimicrob Agents Chemother 1997; 41:460-4. [PMID: 9021208 PMCID: PMC163730 DOI: 10.1128/aac.41.2.460] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intracellular phosphorylation of 3'-azido-3'-deoxythymidine and 2'-deoxy-3'-thiacytidine was increased two- to threefold by the addition of hydroxyurea (HU) to the single drugs or to the two drugs in combination. The ratios of drug triphosphate to competing cellular deoxynucleoside triphosphate were increased two- to threefold for both 3'-azido-3'-deoxythymidine and 2'-deoxy-3'-thiacytidine in the presence of HU. These HU-induced increases in 3'-azido-3'-deoxythymidine and 2'-deoxy-3'-thiacytidine metabolism may further enhance the anti-human immunodeficiency virus activity of these two drugs.
Collapse
Affiliation(s)
- S Palmer
- Virology Department, Swedish Institute for Infectious Disease Control, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
40
|
Hazuda D, Felock P, Hastings J, Pramanik B, Wolfe A, Goodarzi G, Vora A, Brackmann K, Grandgenett D. Equivalent inhibition of half-site and full-site retroviral strand transfer reactions by structurally diverse compounds. J Virol 1997; 71:807-11. [PMID: 8985421 PMCID: PMC191122 DOI: 10.1128/jvi.71.1.807-811.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vitro assay systems which use recombinant retroviral integrase (IN) and short DNA oligonucleotides fail to recapitulate the full-site integration reaction as it is known to occur in vivo. The relevance of using such circumscribed in vitro assays to define inhibitors of retroviral integration has not been formerly demonstrated. Therefore, we analyzed a series of structurally diverse inhibitors with respect to inhibition of both half-site and full-site strand transfer reactions with either recombinant or virion-produced IN. Half-site and full-site reactions catalyzed by avian myeloblastosis virus and human immunodeficiency virus type 1 (HIV-1) IN from virions are shown to be equivalently sensitive to inhibition by compounds which inhibit half-site reactions catalyzed by the recombinant HIV-1 IN. These studies therefore support the utility of using in vitro assays employing either recombinant or virion-derived IN to identify inhibitors of integration.
Collapse
Affiliation(s)
- D Hazuda
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Levy-Mintz P, Duan L, Zhang H, Hu B, Dornadula G, Zhu M, Kulkosky J, Bizub-Bender D, Skalka AM, Pomerantz RJ. Intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle by targeting human immunodeficiency virus type 1 integrase. J Virol 1996; 70:8821-32. [PMID: 8971011 PMCID: PMC190979 DOI: 10.1128/jvi.70.12.8821-8832.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integration of viral DNA into a chromosome of the infected host cell is required for efficient replication of a retroviral genome, and this reaction is mediated by the virus-encoded enzyme integrase (IN). As IN plays a pivotal role in establishing infection during the early stages of the retroviral life cycle, it is an attractive target for therapeutic intervention. However, the lack of effective antiviral drug therapy against this enzyme has led to the testing of other novel approaches towards its inhibition. In these studies, a panel of anti-human immunodeficiency virus type 1 (anti-HIV-1) IN hybridomas has been used in the construction of single-chain variable antibody fragments (SFvs). The monoclonal antibodies produced by these hybridomas, and derived SFvs, bind to different domains within IN. We now demonstrate that intracellular expression of SFvs which bind to IN catalytic and carboxy-terminal domains results in resistance to productive HIV-1 infection. This inhibition of HIV-1 replication is observed with SFvs localized in either the cytoplasmic or nuclear compartment of the cell. The expression of anti-IN SFvs in human T-lymphocytic cells and peripheral blood mononuclear cells appears to specifically neutralize IN activity prior to integration and, thus, has an effect on the integration process itself. These data support our previous studies with an anti-HIV-1 reverse transcriptase SFv and demonstrate further that intracellularly expressed SFvs can gain access to viral proteins of the HIV-1 preintegration complex. This panel of anti-HIV-1 IN SFvs also provides the tools with which to dissect the molecular mechanism(s) directly involved in integration within HIV-1-infected cells.
Collapse
Affiliation(s)
- P Levy-Mintz
- Division of Infectious Diseases, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Farnet CM, Wang B, Lipford JR, Bushman FD. Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proc Natl Acad Sci U S A 1996; 93:9742-7. [PMID: 8790401 PMCID: PMC38499 DOI: 10.1073/pnas.93.18.9742] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To replicate, HIV-1 must integrate a cDNA copy of the viral RNA genome into a chromosome of the host. The integration system is a promising target for antiretroviral agents, but to date no clinically useful integration inhibitors have been identified. Previous screens for integrase inhibitors have assayed inhibition of reactions containing HIV-1 integrase purified from an Escherichia coli expression system. Here we compare action of inhibitors in vitro on purified integrase and on subviral preintegration complexes (PICs) isolated from lymphoid cells infected with HIV-1. We find that many inhibitors active against purified integrase are inactive against PICs. Using PIC assays as a primary screen, we have identified three new anthraquinone inhibitors active against PICs and also against purified integrase. We propose that PIC assays are the closest in vitro match to integration in vivo and, as such, are particularly appropriate for identifying promising integration inhibitors.
Collapse
Affiliation(s)
- C M Farnet
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
43
|
Mazumder A, Wang S, Neamati N, Nicklaus M, Sunder S, Chen J, Milne GW, Rice WG, Burke TR, Pommier Y. Antiretroviral agents as inhibitors of both human immunodeficiency virus type 1 integrase and protease. J Med Chem 1996; 39:2472-81. [PMID: 8691444 DOI: 10.1021/jm960074e] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human immunodeficiency virus type one integrase (HIV-1 integrase) is required for integration of a double-stranded DNA copy of the viral RNA genome into a host chromosome and for HIV replication. We have previously reported that phenolic moieties in compounds such as flavones, caffeic acid phenethyl ester (CAPE), tyrphostins, and curcumin confer inhibitory activity against HIV-1 integrase. We have investigated the actions of several recently described protease inhibitors, possessing novel structural features, on HIV-1 integrase. NSC 158393, which contains four 4-hydroxycoumarin residues, was found to exhibit antiviral, antiprotease, and antiintegrase activity. Both the DNA binding and catalytic activities (3'-processing and strand transfer) of integrase were inhibited at micromolar concentrations. Disintegration catalyzed by an integrase mutant containing only the central catalytic domain was also inhibited, indicating that the binding site for these compounds resides in the central 50-212 amino acids of HIV-1 integrase. Binding at or near the integrase catalytic site was also suggested by a global inhibition of the choice of attacking nucleophile in the 3'-processing reaction. NSC 158393 inhibited HIV-2, feline, and simian immunodeficiency virus integrases while eukaryotic topoisomerase I was inhibited at higher concentrations, suggesting selective inhibition of retroviral integrases. Molecular modeling studies revealed that the two hydroxyls and two carbonyl moieties in NSC 158393 may represent essential elements of the pharmacophore. Antiviral efficacy was observed with NSC 158393 derivatives that inhibited both HIV protease and integrase, and the most potent integrase inhibitors also inhibited HIV protease. Hydroxycoumarins may provide lead compounds for development of novel antiviral agents based upon the concurrent inhibition of two viral targets, HIV-1 integrase and protease.
Collapse
Affiliation(s)
- A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Caumont AB, Jamieson GA, Pichuantes S, Nguyen AT, Litvak S, Dupont C. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening. Curr Genet 1996; 29:503-10. [PMID: 8662188 DOI: 10.1007/bf02426953] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The integrase of the human immunodeficiency virus type 1 (HIV-1) has been expressed in yeast in order to investigate its potential lethal effect mediated by DNA damage. To this end, we have constructed an expression plasmid containing the retroviral integrase gene under the control of the inducible promotor ADH2/GAPDH which is regulated by the glucose concentration of the medium. Haploid yeast strain W303-1A did not appear to be clearly sensitive to HIV-1 integrase expression. However, disruption of the RAD 52 gene, which is involved in the repair of double-strand DNA breaks, strongly increased the deleterious effects of the retroviral enzyme in this yeast strain. The diploid strain constructed with W303-1A and an isogenic strain of the opposite mating type also showed a strong sensitivity to the HIV-1 integrase. Under yeast culture conditions allowing moderate integrase synthesis, the deleterious effect was totally abolished by missense integrase mutations, which are known to abolish HIV-1 integrase activities in vitro. We conclude that the lethal phenotype due to HIV-1 integrase expression in yeast may be closely related to the HIV-1 integration reaction in infected human cells, and that yeast may be a useful tool to study the HIV-1 integration process and to screen drugs capable of inhibiting HIV-1 integration in vivo.
Collapse
Affiliation(s)
- A B Caumont
- IBGC-CNRS, Laboratoire de Réplication et Expression des Génomes Eucaryotes et Rétroviraux, 1 rue Camille St Saëns, F-33077 Bordeaux-Cedex, France
| | | | | | | | | | | |
Collapse
|
45
|
Eich E, Pertz H, Kaloga M, Schulz J, Fesen MR, Mazumder A, Pommier Y. (-)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 1996; 39:86-95. [PMID: 8568830 DOI: 10.1021/jm950387u] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The natural dibenzylbutyrolactone type lignanolide (-)-arctigenin (2), an inhibitor of human immunodeficiency virus type-1 (HIV-1) replication in infected human cell systems, was found to suppress the integration of proviral DNA into the cellular DNA genome. In the present study 2 was tested with purified HIV-1 integrase and found to be inactive in the cleavage (3'-processing) and integration (strand transfer) assays. However, the semisynthetic 3-O-demethylated congener 9 characterized by a catechol substructure exhibited remarkable activities in both assays. Structure-activity relationship studies with 30 natural (1-6), semisynthetic (7-21), and synthetic (37-43, 45, 46) lignans revealed that (1) the lactone moiety is crucial since compounds with a butane-1,4-diol or tetrahydrofuran substructure and also lignanamide analogues lacked activity and (2) the number and arrangement of phenolic hydroxyl groups is important for the activity of lignanolides. The congener with two catechol substructures (7) was found to be the most active compound in this study. 7 was also a potent inhibitor of the "disintegration" reaction which models the reversal of the strand transfer reaction. The inhibitory activity of 7 with the core enzyme fragment consisting of amino acids 50-212 suggests that the binding site of 7 resides in the catalytic domain.
Collapse
Affiliation(s)
- E Eich
- Institut für Pharmazeutische Biologie, Freie Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Clayette P, Moczar E, Mabondzo A, Martin M, Toutain B, Marcé D, Dormont D. Inhibition of human immunodeficiency virus infection by heparin derivatives. AIDS Res Hum Retroviruses 1996; 12:63-9. [PMID: 8825620 DOI: 10.1089/aid.1996.12.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heparin (Hep) and sulfated polysaccharides (SPs) have been reported to inhibit HIV infection in vitro. In vivo, anticoagulant activity and reduced bioavailability were found to limit the antiviral effects of Hep. In this investigation, three nonanticoagulant N-acylated Hep conjugates [OI1:3Hep, Pal1:5Hep, and Pal1:5Hep(SO4)] were compared to Hep for their ability to interact with HIV replication in CD4-positive cell lines and PBMCs. Resulfated palmitoyl-Hep [Pal1:5Hep(SO4)] exhibited the strongest anti-HIV effects. For instance, no provirus HIV DNA was detected in the genome of HIV-1-LAI-infected PBMCs treated with this heparin derivative. Cell-to-cell fusion and RT activity were explored to explain these differences. Hep and Pal1:5Hep(SO4) derivative exerted identical effects on cell-to-cell fusion. On the other hand, Pal1:5Hep(SO4) displayed the strongest inhibitory effects in the acellular RT inhibition assay. This suggests that RT might be a second target for N-acylated Hep, even though SP uptake and the preferential effects of SPs on RT as opposed to DNA polymerase have not yet been demonstrated. Nevertheless, considering the anticoagulant, antiviral, and antiinflammatory effects of N-acylated Hep, the N-acylated Hep derivatives might be excellent candidates as new anti-HIV pharmacological tools.
Collapse
Affiliation(s)
- P Clayette
- Commissariat à l'Energie Atomique, Centre de Recherches du Service de Santé des Armées, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Gu Z, Quan Y, Li Z, Arts EJ, Wainberg MA. Effects of non-nucleoside inhibitors of human immunodeficiency virus type 1 in cell-free recombinant reverse transcriptase assays. J Biol Chem 1995; 270:31046-51. [PMID: 8537362 DOI: 10.1074/jbc.270.52.31046] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have employed a cell-free human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) assay to study the effects of non-nucleoside inhibitors of RT (NNRTI) by directly monitoring specific HIV DNA products using a HIV-1 genome-derived template and an oligodeoxynucleotide primer. As previously shown by ourselves and others, nucleoside analog triphosphates, e.g. 3'-azido-3'-deoxythymidine triphosphate and 2',3'-dideoxyadenosine triphosphate, could directly inhibit HIV RT RNA-dependent DNA polymerase activity by causing chain termination, as visualized in a RT reaction that yields specific DNA products. In contrast, each of two NNRTIs, nevirapine and delavirdine, directly inhibited RT activity without causing chain termination effects. We also analyzed interactions between nucleoside analogs and NNRTIs or among NNRTIs by chain elongation/dNTP incorporation and/or steady-state kinetic assays. Combinations of nevirapine with the triphosphates of either the (-)-strand of 2',3'-dideoxy-3'-thiacytidine or 2',3'-dideoxyadenosine yielded additive/synergistic effects on RT activity. However, only an additive effect was observed when combinations of nevirapine and 3'-azido-3'-deoxythymidine triphosphate were employed. Combinations of nevirapine and delavirdine had an antagonistic effect on the inhibition of HIV-1 RT activity.
Collapse
Affiliation(s)
- Z Gu
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
48
|
Puras Lutzke RA, Eppens NA, Weber PA, Houghten RA, Plasterk RH. Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Proc Natl Acad Sci U S A 1995; 92:11456-60. [PMID: 8524782 PMCID: PMC40420 DOI: 10.1073/pnas.92.25.11456] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Integration of human immunodeficiency virus (HIV) DNA into the human genome requires the virus-encoded integrase (IN) protein, and therefore the IN protein is a suitable target for antiviral strategies. To find a potent HIV IN inhibitor, we screened a "synthetic peptide combinatorial library." We identified a hexapeptide with the sequence HCKFWW that inhibits IN-mediated 3'-processing and integration with an IC50 of 2 microM. The peptide is active on IN proteins from other retroviruses such as HIV-2, feline immunodeficiency virus, and Moloney murine leukemia virus, supporting the notion that a conserved region of IN is targeted. The hexapeptide was also tested in the disintegration reaction. This phosphoryl-transfer reaction can be carried out by the catalytic core of IN alone, and the peptide HCKFWW was found to inhibit this reaction, suggesting that the hexapeptide acts at or near the catalytic site of IN. Identification of an IN hexapeptide inhibitor provides proof of concept for the approach, and, moreover, this peptide may be useful for structure-function analysis of IN.
Collapse
Affiliation(s)
- R A Puras Lutzke
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Ojwang JO, Buckheit RW, Pommier Y, Mazumder A, De Vreese K, Esté JA, Reymen D, Pallansch LA, Lackman-Smith C, Wallace TL. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1995; 39:2426-35. [PMID: 8585721 PMCID: PMC162960 DOI: 10.1128/aac.39.11.2426] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
T30177, an oligonucleotide composed of only deoxyguanosine and thymidine, is 17 nucleotides in length and contains single phosphorothioate internucleoside linkages at its 5' and 3' ends for stability. This oligonucleotide does not share significant primary sequence homology with or possess any complementary (antisense) sequence motifs to the human immunodeficiency virus type 1 (HIV-1) genome. T30177 inhibited replication of multiple laboratory strains of HIV-1 in human T-cell lines, peripheral blood lymphocytes, and macrophages. T30177 was also found to be capable of inhibiting multiple clinical isolates of HIV-1 and preventing the cytopathic effect of HIV-1 in primary CD4+ T lymphocytes. In assays with human peripheral blood lymphocytes there was no observable toxicity associated with T30177 at the highest concentration tested (100 microM), while the median inhibitory concentration was determined to be in the range of 0.1 to 1.0 microM for the clinical isolates tested, resulting in a high therapeutic index for this drug. In temporal studies, the kinetics of addition of T30177 to infected cell cultures indicated that, like the known viral adsorption blocking agents dextran sulfate and Chicago sky blue, T30177 needed to be added to cells during or very soon after viral infection. However, analysis of nucleic acids extracted at 12 h postinfection from cells treated with T30177 at the time of virus infection established the presence of unintegrated viral cDNA, including circular proviral DNA, in the treated cells. In vitro analysis of viral enzymes revealed that T30177 was a potent inhibitor of HIV-1 integrase, reducing enzymatic activity by 50% at concentrations in the range of 0.050 to 0.09 microM. T30177 was also able to inhibit viral reverse transcriptase activity; however, the 50% inhibitory value obtained was in the range of 1 to 10 microM, depending on the template used in the enzymatic assay. No observable inhibition of viral protease was detected at the highest concentration of T30177 used (10 microM). In experiments in which T30177 was removed from infected cell cultures at 4 days post-HIV-1 infection, total suppression of virus production was observed for more than 27 days. PCR analysis of DNA extracted from cells treated in this fashion was unable to detect the presence of viral DNA 11 days after removal of the drug from the infected cell cultures. The ability of T30177 to inhibit both laboratory and clinical isolates of HIV-1 and the experimental data which suggest that T30177 represents a novel class of integrase inhibitors indicate that this compound is a viable candidate for evaluation as a therapeutic agent against HIV-1 in humans.
Collapse
Affiliation(s)
- J O Ojwang
- Triplex Pharmaceutical Corporation, The Woodlands, Texas 77380, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stretcher BN. Pharmacokinetic optimisation of antiretroviral therapy in patients with HIV infection. Clin Pharmacokinet 1995; 29:46-65. [PMID: 7586898 DOI: 10.2165/00003088-199529010-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than 7 years after the introduction of zidovudine for treatment of HIV infection, little use has been made of the pharmacokinetic properties of this or any of the subsequently approved antiretroviral agents to optimise therapy. This is partly because of the limits of technologies developed to measure clinically relevant forms and concentrations of these drugs, and partly because the clinical community has been slow to recognise the potential benefits of pharmacokinetic optimisation of nucleoside analogue therapy in any disease. Nonetheless, for some of these agents, progress in understanding the relationship between pharmacokinetics and pharmacodynamics has been made. With zidovudine, for example, even though plasma concentrations have little clinical utility, evidence suggests that concentrations of active phosphorylated forms of zidovudine inside target cells are related to disease progression and toxicity. Furthermore, a decreased ability to phosphorylate zidovudine might be a prerequisite for the emergence of zidovudine-resistant HIV strains. Measurements of phosphorylated zidovudine inside cells similarly suggest that 100 mg of oral zidovudine every 8 hours approximates the optimal initial dosage regimen in asymptomatic patients. Increased plasma didanosine concentrations have been associated with several measures of clinical improvement in patients, and may be associated with an increased risk of toxicity as well. For zalcitabine and stavudine, however, the picture is much less clear. Their pharmacokinetic and pharmacodynamic relationships have not been studied in patients. Furthermore, there is insufficient data on the effects of age, gender, race and concurrent underlying conditions on the pharmacokinetics of all of these agents. Mounting evidence suggests that monitoring of these compounds could lead to individually optimised intervention strategies. Given the marginal benefits of therapy with these agents, their proven toxic effects and the lack of proven alternatives, it is critical that the clinical community strive to make the most effective use of these agents in the treatment of their patients.
Collapse
Affiliation(s)
- B N Stretcher
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Ohio, USA
| |
Collapse
|