1
|
Moolhuijzen P, Sanglard LMVP, Paterson DJ, Gray S, Khambatta K, Hackett MJ, Zerihun A, Gibberd MR, Naim F. Spatiotemporal patterns of wheat response to Pyrenophora tritici-repentis in asymptomatic regions revealed by transcriptomic and X-ray fluorescence microscopy analyses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4707-4720. [PMID: 37201950 PMCID: PMC10433925 DOI: 10.1093/jxb/erad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Lilian M V P Sanglard
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Sean Gray
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Karina Khambatta
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Ishikawa H, Yasuzawa M, Koike N, Sanjaya A, Moriyama S, Nishizawa A, Matsuoka K, Sasaki S, Kazama Y, Hayashi Y, Abe T, Fujiwara MT, Itoh RD. Arabidopsis PARC6 Is Critical for Plastid Morphogenesis in Pavement, Trichome, and Guard Cells in Leaf Epidermis. FRONTIERS IN PLANT SCIENCE 2019; 10:1665. [PMID: 32010156 PMCID: PMC6974557 DOI: 10.3389/fpls.2019.01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/26/2019] [Indexed: 05/20/2023]
Abstract
Recently, a recessive Arabidopsis thaliana mutant with abundant stromules in leaf epidermal pavement cells was visually screened and isolated. The gene responsible for this mutant phenotype was identified as PARC6, a chloroplast division site regulator gene. The mutant allele parc6-5 carried two point mutations (G62R and W700stop) at the N- and C-terminal ends of the coding sequence, respectively. Here, we further characterized parc6-5 and other parc6 mutant alleles, and showed that PARC6 plays a critical role in plastid morphogenesis in all cell types of the leaf epidermis: pavement cells, trichome cells, and guard cells. Transient expression of PARC6 transit peptide (TP) fused to the green fluorescent protein (GFP) in plant cells showed that the G62R mutation has no or little effect on the TP activity of the PARC6 N-terminal region. Then, plastid morphology was microscopically analyzed in the leaf epidermis of wild-type (WT) and parc6 mutants (parc6-1, parc6-3, parc6-4 and parc6-5) with the aid of stroma-targeted fluorescent proteins. In parc6 pavement cells, plastids often assumed aberrant grape-like morphology, similar to those in severe plastid division mutants, atminE1, and arc6. In parc6 trichome cells, plastids exhibited extreme grape-like aggregations, without the production of giant plastids (>6 µm diameter), as a general phenotype. In parc6 guard cells, plastids exhibited a variety of abnormal phenotypes, including reduced number, enlarged size, and activated stromules, similar to those in atminE1 and arc6 guard cells. Nevertheless, unlike atminE1 and arc6, parc6 exhibited a low number of mini-chloroplasts (< 2 µm diameter) and rarely produced chloroplast-deficient guard cells. Importantly, unlike parc6, the chloroplast division site mutant arc11 exhibited WT-like plastid phenotypes in trichome and guard cells. Finally, observation of parc6 complementation lines expressing a functional PARC6-GFP protein indicated that PARC6-GFP formed a ring-like structure in both constricting and non-constricting chloroplasts, and that PARC6 dynamically changes its configuration during the process of chloroplast division.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Nana Koike
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shota Moriyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Aya Nishizawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Kanae Matsuoka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Yusuke Kazama
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Yoriko Hayashi
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- *Correspondence: Ryuuichi D. Itoh,
| |
Collapse
|
3
|
Facella P, Carbone F, Placido A, Perrotta G. Cryptochrome 2 extensively regulates transcription of the chloroplast genome in tomato. FEBS Open Bio 2017; 7:456-471. [PMID: 28396831 PMCID: PMC5377390 DOI: 10.1002/2211-5463.12082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 11/07/2022] Open
Abstract
Light plays a key role in the regulation of many physiological processes required for plant and chloroplast development. Plant cryptochromes (crys) play an important role in monitoring, capturing, and transmitting the light stimuli. In this study, we analyzed the effects of CRY2 overexpression on transcription of tomato chloroplast genome by a tiling array, containing about 90 000 overlapping probes (5‐nucleotide resolution). We profiled transcription in leaves of wild‐type and CRY2‐overexpressing plants grown in a diurnal cycle, to generate a comprehensive map of chloroplast transcription and to monitor potential specific modulations of the chloroplast transcriptome induced by the overexpression of CRY2. Our results demonstrate that CRY2 is a master gene of transcriptional regulation in the tomato chloroplast. In fact, it modulates the day/night mRNA abundance of about 58% of the 114 ORFs. The effect of CRY2 includes a differential extension of some transcripts at their 5′‐end, according to the period of the day. We observed that the influence of CRY2 on chloroplast transcription is not limited to coding RNA; a great number of putative noncoding micro RNA also showed differential accumulation pattern. To our knowledge, this is the first study that highlights how a photoreceptor affects the day/night transcription of the chloroplast genome.
Collapse
Affiliation(s)
| | - Fabrizio Carbone
- Council for Agricultural Research and Economics The Olive Growing and Olive Product Industry Research Centre Rende (CS) Italy
| | | | | |
Collapse
|
4
|
Zhou K, Ren Y, Zhou F, Wang Y, Zhang L, Lyu J, Wang Y, Zhao S, Ma W, Zhang H, Wang L, Wang C, Wu F, Zhang X, Guo X, Cheng Z, Wang J, Lei C, Jiang L, Li Z, Wan J. Young Seedling Stripe1 encodes a chloroplast nucleoid-associated protein required for chloroplast development in rice seedlings. PLANTA 2017; 245:45-60. [PMID: 27578095 DOI: 10.1007/s00425-016-2590-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Young Seedling Stripe1 (YSS1) was characterized as an important regulator of plastid-encoded plastid RNA polymerase (PEP) activity essential for chloroplast development at rice seedling stage. Chloroplast development is coordinately regulated by plastid- and nuclear-encoding genes. Although a few regulators have been reported to be involved in chloroplast development, new factors remain to be identified, given the complexity of this process. Here, we report the characterization of a temperature-sensitive young seedling stripe1 (yss1) rice mutant, which develops striated leaves at the seedling stage, particularly in leaf 3, but produces wild-type leaves in leaf 5 and onwards. The chlorotic leaves have decreased chlorophyll (Chls) accumulation and impaired chloroplast structure. Positional cloning combined with sequencing demonstrated that aberrant splicing of the 8th intron in YSS1 gene, due to a single nucleotide deletion around splicing donor site, leads to decreased expression of YSS1 and accumulation of an 8th intron-retained yss1 transcript. Furthermore, complementation test revealed that downregulation of YSS1 but not accumulation of yss1 transcript confers yss1 mutant phenotype. YSS1 encodes a chloroplast nucleoid-localized protein belonging to the DUF3727 superfamily. Expression analysis showed that YSS1 gene is more expressed in newly expanded leaves, and distinctly up-regulated as temperatures increase and by light stimulus. PEP- and nuclear-encoded phage-type RNA polymerase (NEP)-dependent genes are separately down-regulated and up-regulated in yss1 mutant, indicating that PEP activity may be impaired. Furthermore, levels of chloroplast proteins are mostly reduced in yss1 seedlings. Together, our findings identify YSS1 as a novel regulator of PEP activity essential for chloroplast development at rice seedling stage.
Collapse
Affiliation(s)
- Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Feng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Long Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jia Lyu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yihua Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaolu Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liwei Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiupin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zefu Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Hu F, Zhu Y, Wu W, Xie Y, Huang J. Leaf Variegation of Thylakoid Formation1 Is Suppressed by Mutations of Specific σ-Factors in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:1066-75. [PMID: 25999408 PMCID: PMC4741321 DOI: 10.1104/pp.15.00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 05/04/2023]
Abstract
Thylakoid Formation1 (THF1) has been shown to play roles in chloroplast development, resistance to excessive light, and chlorophyll degradation in Arabidopsis (Arabidopsis thaliana). To elucidate mechanisms underlying THF1-regulated chloroplast development, we mutagenized thf1 seeds with ethyl methanesulfonate and screened second-site recessive mutations that suppress its leaf variegation phenotype. Here, we characterized a unique suppressor line, 42-6, which displays a leaf virescent phenotype. Map-based cloning and genetic complementation results showed that thf1 variegation was suppressed by a mutation in σ-FACTOR6 (SIG6), which is a plastid transcription factor specifically controlling gene expression through the plastid-encoded RNA polymerase. Northern-blot analysis revealed that plastid gene expression was down-regulated in not only 42-6 and sig6 but also, thf1 at the early stage of chloroplast development. Interestingly, mutations in SIG2 but not in other σ-factors also suppressed thf1 leaf variegation. Furthermore, we found that leaf variegation of thf1 and var2 could be suppressed by several virescent mutations, including yellow seedling1, brz-insensitive-pale green2, and nitric oxide-associated protein1, indicating that virescent mutations suppress leaf variegation. Taken together, our results provide unique insights into thf1-mediated leaf variegation, which might be triggered by defects in plastid gene transcription.
Collapse
Affiliation(s)
- Fenhong Hu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Zhu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Ahmad A, Niwa Y, Goto S, Kobayashi K, Shimizu M, Ito S, Usui Y, Nakayama T, Kobayashi H. Genome-wide screening of salt tolerant genes by activation-tagging using dedifferentiated calli of Arabidopsis and its application to finding gene for Myo-inositol-1-p-synthase. PLoS One 2015; 10:e0115502. [PMID: 25978457 PMCID: PMC4433338 DOI: 10.1371/journal.pone.0115502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/23/2014] [Indexed: 11/19/2022] Open
Abstract
Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis.
Collapse
Affiliation(s)
- Aftab Ahmad
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Shingo Goto
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Kyoko Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Masanori Shimizu
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Sohei Ito
- Laboratory of Protein Engineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yumiko Usui
- Laboratory of Molecular Fooineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Tsutomu Nakayama
- Laboratory of Molecular Fooineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
7
|
Ahmad A, Niwa Y, Goto S, Ogawa T, Shimizu M, Suzuki A, Kobayashi K, Kobayashi H. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis. PLoS One 2015; 10:e0126872. [PMID: 25978450 PMCID: PMC4433118 DOI: 10.1371/journal.pone.0126872] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.
Collapse
Affiliation(s)
- Aftab Ahmad
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Shingo Goto
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Takeshi Ogawa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Masanori Shimizu
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Akane Suzuki
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Kyoko Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
8
|
Chi W, He B, Mao J, Jiang J, Zhang L. Plastid sigma factors: Their individual functions and regulation in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:770-8. [PMID: 25596450 DOI: 10.1016/j.bbabio.2015.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 11/18/2022]
Abstract
Sigma factors are the predominant factors involved in transcription regulation in bacteria. These factors can recruit the core RNA polymerase to promoters with specific DNA sequences and initiate gene transcription. The plastids of higher plants originating from an ancestral cyanobacterial endosymbiont also contain sigma factors that are encoded by a small family of nuclear genes. Although all plastid sigma factors contain sequences conserved in bacterial sigma factors, a considerable number of distinct traits have been acquired during evolution. The present review summarises recent advances concerning the regulation of the structure, function and activity of plastid sigma factors since their discovery nearly 40 years ago. We highlight the specialised roles and overlapping redundant functions of plastid sigma factors according to their promoter selectivity. We also focus on the mechanisms that modulate the activity of sigma factors to optimise plastid function in response to developmental cues and environmental signals. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Sager R, Lee JY. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6337-58. [PMID: 25262225 PMCID: PMC4303807 DOI: 10.1093/jxb/eru365] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To survive as sedentary organisms built of immobile cells, plants require an effective intercellular communication system, both locally between neighbouring cells within each tissue and systemically across distantly located organs. Such a system enables cells to coordinate their intracellular activities and produce concerted responses to internal and external stimuli. Plasmodesmata, membrane-lined intercellular channels, are essential for direct cell-to-cell communication involving exchange of diffusible factors, including signalling and information molecules. Recent advances corroborate that plasmodesmata are not passive but rather highly dynamic channels, in that their density in the cell walls and gating activities are tightly linked to developmental and physiological processes. Moreover, it is becoming clear that specific hormonal signalling pathways play crucial roles in relaying primary cellular signals to plasmodesmata. In this review, we examine a number of studies in which plasmodesmal structure, occurrence, and/or permeability responses are found to be altered upon given cellular or environmental signals, and discuss common themes illustrating how plasmodesmal regulation is integrated into specific cellular signalling pathways.
Collapse
Affiliation(s)
- Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
10
|
Nagashima A, Hanaoka M, Motohashi R, Seki M, Shinozaki K, Kanamaru K, Takahashi H, Tanaka K. DNA Microarray Analysis of Plastid Gene Expression in anArabidopsisMutant Deficient in a Plastid Transcription Factor Sigma, SIG2. Biosci Biotechnol Biochem 2014; 68:694-704. [PMID: 15056905 DOI: 10.1271/bbb.68.694] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The plastid genome of higher plants contains more than one hundred genes for photosynthesis, gene expression, and other processes. Plastid transcription is done by two types of RNA polymerase, PEP and NEP. PEP is a eubacteria-type RNA polymerase that is essential for chloroplast development. In Arabidopsis thaliana, six sigma factors (SIG1-6) are encoded by the nuclear genome, and postulated to determine the transcription specificity of PEP. In this study, we constructed a DNA microarray for all of the plastid protein-coding genes, and analyzed the effects of the sig2 lesion on the global plastid gene expression. Of the 79 plastid protein genes, it was found that only the psaJ transcript was decreased in the mutant, whereas transcripts of 47 genes were rather increased. Since many of the up-regulated genes are under the control of NEP, it was suggested that the NEP activity was increased in the sig2-1 mutant.
Collapse
Affiliation(s)
- Akitomo Nagashima
- Laboratory of Molecular Genetics, Department of Molecular Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ueda M, Takami T, Peng L, Ishizaki K, Kohchi T, Shikanai T, Nishimura Y. Subfunctionalization of sigma factors during the evolution of land plants based on mutant analysis of liverwort (Marchantia polymorpha L.) MpSIG1. Genome Biol Evol 2014; 5:1836-48. [PMID: 24025801 PMCID: PMC3814195 DOI: 10.1093/gbe/evt137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sigma factor is a subunit of plastid-encoded RNA polymerase that regulates the transcription of plastid-encoded genes by recognizing a set of promoters. Sigma factors have increased in copy number and have diversified during the evolution of land plants, but details of this process remain unknown. Liverworts represent the basal group of embryophytes and are expected to retain the ancestral features of land plants. In liverwort (Marchantia polymorpha L.), we isolated and characterized a T-DNA-tagged mutant (Mpsig1) of sigma factor 1 (MpSIG1). The mutant did not show any visible phenotypes, implying that MpSIG1 function is redundant with that of other sigma factors. However, quantitative reverse-transcription polymerase chain reaction and RNA gel blot analysis revealed that genes related to photosynthesis were downregulated, resulting in the minor reduction of some protein complexes. The transcript levels of genes clustered in the petL, psaA, psbB, psbK, and psbE operons of liverwort were lower than those in the wild type, a result similar to that in the SIG1 defective mutant in rice (Oryza sativa). Overexpression analysis revealed primitive functional divergence between the SIG1 and SIG2 proteins in bryophytes, whereas these proteins still retain functional redundancy. We also discovered that the predominant sigma factor for ndhF mRNA expression has been diversified in liverwort, Arabidopsis (Arabidopsis thaliana), and rice. Our study shows the ancestral function of SIG1 and the process of functional partitioning (subfunctionalization) of sigma factors during the evolution of land plants.
Collapse
Affiliation(s)
- Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Oh S, Montgomery BL. Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis. FRONTIERS IN PLANT SCIENCE 2014; 5:171. [PMID: 24817873 PMCID: PMC4012200 DOI: 10.3389/fpls.2014.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/10/2014] [Indexed: 05/04/2023]
Abstract
Light perception by photoreceptors impacts plastid transcription, development, and differentiation. This photoreceptor-dependent activity suggests a mechanism for photoregulation of gene expression in the nucleus and plastid that serves to coordinate expression of critical genes of these two organelles. This coordinate expression is required for proper stoichiometric accumulation of components needed for assembly of plastids, photosynthetic light-harvesting complexes and components such as phytochromes. Chloroplast-targeted sigma factors, which function together with the plastid-encoded RNA polymerase to regulate expression of plastid-encoded genes, and nuclear-encoded plastid development factors, such as GLK1 and GLK2, are targets of phytochrome regulation. Such phytochrome-dependent functions are hypothesized to allow light-dependent regulation, and feasibly tuning, of plastid components and function in response to changes in the external environment, which directly affects photosynthesis and the potential for light-induced damage. When the size and protein composition of the light-harvesting complexes are not tuned to the external environment, imbalances in electron transport can impact the cellular redox state and cause cellular damage. We show that phytochromes specifically regulate the expression of multiple factors that function to modulate plastid transcription and, thus, provide a paradigm for coordinate expression of the nuclear and plastid genomes in response to changes in external light conditions. As phytochromes respond to changes in the prevalent wavelengths of light and light intensity, we propose that specific phytochrome-dependent molecular mechanisms are used during light-dependent signaling between the nucleus and chloroplast during photomorphogenesis to coordinate chloroplast development with plant developmental stage and the external environment.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy—Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Beronda L. Montgomery, MSU-DOE Plant Research Laboratory, Plant Biology Laboratories, Michigan State University, 612 Wilson Road, Rm. 106, East Lansing, MI 48824-1312, USA e-mail:
| |
Collapse
|
13
|
Bock S, Ortelt J, Link G. AtSIG6 and other members of the sigma gene family jointly but differentially determine plastid target gene expression in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:667. [PMID: 25505479 PMCID: PMC4243499 DOI: 10.3389/fpls.2014.00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/09/2014] [Indexed: 05/18/2023]
Abstract
Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the "bacterial-type" organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the "division of labor" among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) "basal state" seems to be reached, if 2-3 of the 6 Arabidopsis sigma genes are functionally compromised.
Collapse
Affiliation(s)
| | | | - Gerhard Link
- *Correspondence: Gerhard Link, Department of Biology and Biotechnology, University of Bochum, Universitaetsstr. 150, D-44780 Bochum, Germany e-mail:
| |
Collapse
|
14
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Oh S, Montgomery BL. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5457-72. [PMID: 24078666 PMCID: PMC3871806 DOI: 10.1093/jxb/ert308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast-localized sigma factor (SIG) proteins promote specificity of the plastid-encoded RNA polymerase. SIG2 function appears to be necessary for light-grown Arabidopsis thaliana plants. Specific photoreceptors or light-dependent factors that impact the light-induced accumulation of SIG2 have not been reported. A molecular link between phytochromes and nuclear-encoded SIG2, which impacts photomorphogenesis specifically under red (R) and far-red (FR) light, is described here. Both phyA and phyB promote SIG2 transcript accumulation. Disruption of SIG2 results in R- and FR-specific defects in the inhibition of hypocotyl elongation and cotyledon expansion, although no impairments in these responses are detected for sig2 mutants under blue (B) or white (W) light. SIG2 also impacts root elongation under W and R, and the R-dependent expression of PIF4, encoding a phytochrome-interacting factor, and HY2, which encodes a phytochrome chromophore biosynthetic enzyme. Whereas SIG2 apparently impacts the accumulation of the phytochromobilin (PΦB) phytochrome chromophore, sig2 mutants differ significantly from PΦB mutants, primarily due to wavelength-specific defects in photomorphogenesis and disruption of a distinct subset of phytochrome-dependent responses. The molecular link between phytochromes and SIG2 is likely to be an important part of the co-ordination of gene expression to maintain stoichiometry between the nuclear-encoded phytochrome apoprotein and plastid-derived PΦB, which combine to form photoactive phytochromes, and/or light-dependent SIG2 accumulation is involved in an inductive light signalling pathway co-ordinating components between nucleus and plastids.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Finster S, Eggert E, Zoschke R, Weihe A, Schmitz-Linneweber C. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:849-60. [PMID: 24118403 DOI: 10.1111/tpj.12339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/25/2013] [Indexed: 05/04/2023]
Abstract
Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process.
Collapse
Affiliation(s)
- Sabrina Finster
- Institut für Biologie, Humboldt-Universität Berlin, Chausseestraße 117, 10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Kanazawa T, Ishizaki K, Kohchi T, Hanaoka M, Tanaka K. Characterization of Four Nuclear-Encoded Plastid RNA Polymerase Sigma Factor Genes in the Liverwort Marchantia polymorpha: Blue-Light- and Multiple Stress-Responsive SIG5 was Acquired Early in the Emergence of Terrestrial Plants. ACTA ACUST UNITED AC 2013; 54:1736-48. [DOI: 10.1093/pcp/pct119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
SIG1, a sigma factor for the chloroplast RNA polymerase, differently associates with multiple DNA regions in the chloroplast chromosomes in vivo. Int J Mol Sci 2012. [PMID: 23202891 PMCID: PMC3497265 DOI: 10.3390/ijms131012182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chloroplasts have their own DNA and gene expression systems. Transcription in chloroplasts is regulated by two types of RNA polymerase, nuclear-encoded plastid RNA polymerase (NEP) and plastid-encoded plastid RNA polymerase (PEP), and multiple sigma factors for PEP. To study transcriptional regulation in chloroplasts, a molecular genetic approach has extensively been used. However, this method may include indirect effects, and it cannot be applied to the analysis of factors essential to survival. These limitations make understanding specific regulation by transcription factors difficult. Chromatin immunoprecipitation (ChIP) is a powerful and useful tool for obtaining information on transcription-factor binding sites; it can directly detect dynamic changes in their interaction patterns in vivo. To further understand transcriptional regulation in chloroplasts, we here established a ChIP-based method in Arabidopsis thaliana and analyzed the binding pattern of a chloroplast sigma factor, SIG1. We found that SIG1 specifically binds to newly identified target promoters as well as to a set of promoters of genes whose mRNA expression is dependent on OsSIG1 in rice and that this binding changed in response to high-light stress. These results suggested that the ChIP-based approach is very useful in understanding transcriptional regulation of chloroplast genes and can overcome several problems posed by conventional methods.
Collapse
|
19
|
Cardi T, Giegé P, Kahlau S, Scotti N. Expression Profiling of Organellar Genes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
21
|
Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry. Proc Natl Acad Sci U S A 2010; 107:10760-4. [PMID: 20498041 DOI: 10.1073/pnas.0911692107] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An imbalance in photosynthetic electron transfer is thought to be redressed by photosynthetic control of the rate of expression of genes encoding apoproteins of photosystem (PS)-I and PS-II in response to the redox state of plastoquinone (PQ), which is a connecting electron carrier. PS stoichiometry is then adjusted to enhance photosynthetic efficiency. In prokaryotes, sigma factors are well known for their participation in the control of RNA polymerase activity in transcription, whereas there have been no reports concerning their association with redox regulation. We have found that the phosphorylation of SIG1, the major sigma factor (SIG), is regulated by redox signals and selectively inhibits the transcription of the psaA gene, which encodes a PS-I protein. We produced transgenic Arabidopsis plants with or without the putative phosphorylation sites for SIG1 and demonstrated through in vivo labeling that Thr-170 was involved in the phosphorylation. We analyzed the in vivo and in vitro transcriptional responses of the transgenic Arabidopsis plants to the redox status in regard to involvement of the phosphorylation site. We revealed an enhanced phosphorylation of SIG1 under oxidative conditions of PQ in a form associated with the molecular mass of the holoenzyme. Phosphorylation of SIG1 proved crucial through a change in the promoter specificity for sustaining balanced expression of components in PS-I and PS-II and was responsible for harmonious electron flow to maintain photosynthetic efficiency.
Collapse
|
22
|
|
23
|
Schweer J, Türkeri H, Link B, Link G. AtSIG6, a plastid sigma factor from Arabidopsis, reveals functional impact of cpCK2 phosphorylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:192-202. [PMID: 20088902 PMCID: PMC2988416 DOI: 10.1111/j.1365-313x.2010.04138.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/23/2009] [Indexed: 05/17/2023]
Abstract
Plastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation. Despite the physical and functional similarity shared with their prokaryotic counterparts, the plant sigma factors have distinguishing features: most notably the existence of a variable extra sequence comprising their N-terminal portions. This distinct architecture is reflected by functional differences, including phosphorylation control by organellar protein kinase(s) closely related to nucleocytosolic, rather than bacterial-type, enzymes. In particular, cpCK2, a nuclear-coded plastid-targeted casein kinase 2, has been implicated as a key component in plant sigma factor phosphorylation and transcriptional regulation (Eur. J. Biochem. 269, 2002, 3329; Planta, 219, 2004, 298). Although this notion is based mainly on biochemical evidence and in vitro systems, the recent availability of Arabidopsis sigma knock-out lines for complementation by intact and mutant sigma cDNAs has opened up new strategies for the study of transcription regulatory mechanisms in vivo. Using Arabidopsis sigma factor 6 (AtSIG6) as a paradigm, we present data suggesting that: (i) this factor is a substrate for regulatory phosphorylation by cpCK2 both in vitro and in vivo; (ii) cpCK2 phosphorylation of SIG6 occurs at multiple sites, which can widely differ in their effect on the visual and/or molecular phenotype; (iii) in vivo usage of the perhaps most critical cpCK2 site defined by Ser174 requires (pre-)phosphorylation at the n + 3 serine residue Ser177, pointing to 'pathfinder' kinase activity capable of generating a functional cpCK2 substrate site.
Collapse
Affiliation(s)
| | | | | | - Gerhard Link
- *For correspondence (fax: +49 234 321 4188; e-mail )
| |
Collapse
|
24
|
Kaczka P, Polkowska-Nowakowska A, Bolewska K, Zhukov I, Poznański J, Wierzchowski KL. Backbone dynamics of TFE-induced native-like fold of region 4 of Escherichia coli RNA polymerase sigma70 subunit. Proteins 2010; 78:754-68. [PMID: 19847776 DOI: 10.1002/prot.22607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Folding of a recombinant protein rECsigma(70) (4) comprising domain 4 of E. coli RNA polymerase sigma(70) subunit, upon addition of 2,2,2-trifluoroethanol (TFE) to its aqueous solution, was monitored by heteronuclear NMR spectroscopy. The TFE-induced migration of resonance signals in a series of (15)N-HSQC spectra displayed sequence-dependent heterogeneity. A common trend of uniform upfield shift in both (1)H and (15)N dimensions, indicative of generation of helical structures, breaks down for some residues almost cooperatively at 10-15% TFE (v/v), pointing to the buildup of non-helical regions separating the initially induced helices. The preferences of residues to assume either helical or non-helical conformation are correlated with the location in the sequence rather than with their type. CSI descriptors and (15)N relaxation data obtained for the protein at 10% TFE allowed characterization of the stability of the pre-folded state of rECsigma(70) (4). By all the criteria applied, three highly populated alpha-helical regions separated by much more flexible residues forming a loop and a turn in the DNA-binding HLHTH motif were identified. The location of the secondary structure elements along the protein sequence coincides with those found in homologous proteins, and with the helix nucleation regions determined in unfolded rECsigma(70) (4) at low pH. The bimodal distribution of the (15)N relaxation parameters enabled identification of residues forming a framework of the folded protein strictly corresponding to the HLHTH motif, bracketed by unfolded terminal regions. Thus, in respect to rECsigma(70) (4) in aqueous solution TFE acts not only as a strong helix inducer, but also as a folding agent.
Collapse
Affiliation(s)
- Piotr Kaczka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Schweer J, Geimer S, Meurer J, Link G. Arabidopsis mutants carrying chimeric sigma factor genes reveal regulatory determinants for plastid gene expression. PLANT & CELL PHYSIOLOGY 2009; 50:1382-6. [PMID: 19439445 DOI: 10.1093/pcp/pcp069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Like bacteria, plastids contain sigma factors for promoter binding and transcription initiation. Accumulating evidence suggests that members of the plant sigma factor family can have specialized non-redundant roles in terms of promoter preference in various developmental and environmental situations. To specify regulatory determinants, we have chosen pairwise exchange of portions of Arabidopsis sigma coding regions, followed by transformation of the chimeric constructs into a sigma 6 knockout line. The resulting phenotypes and plastid RNA patterns point to an important though not exclusive role for the highly variable N-terminal portion of plant sigma proteins.
Collapse
|
26
|
Coll NS, Danon A, Meurer J, Cho WK, Apel K. Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings. PLANT & CELL PHYSIOLOGY 2009; 50:707-18. [PMID: 19273469 DOI: 10.1093/pcp/pcp036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The flu mutant of Arabidopsis thaliana overaccumulates in the dark the immediate precursor of chlorophyllide, protochlorophyllide (Pchlide), a potent photosensitizer, that upon illumination generates singlet oxygen ((1)O2). Once (1)O2 has been released in plastids of the flu mutant, mature plants stop growing, while seedlings die. Several suppressor mutations, dubbed singlet oxygen-linked death activator (soldat), were identified that specifically abrogate (1)O2-mediated stress responses in young flu seedlings without grossly affecting (1)O2-mediated stress responses of mature flu plants. One of the soldat mutations, soldat8, was shown to impair a gene encoding the SIGMA6 factor of the plastid RNA polymerase. Reintroduction of a wild-type copy of the SOLDAT8 gene into the soldat8/flu mutant restored the phenotype of the flu parental line. In contrast to flu, seedlings of soldat8/flu did not bleach when grown under non-permissive dark/light conditions, despite their continuous overaccumulation of the photosensitizer Pchlide in the dark. The activity of SIGMA6 is confined primarily to the very early stage of seedling development. Inactivation of SIGMA6 in soldat8 mutants disturbed plastid homeostasis, drastically reduced the non-photochemical quenching capacity and enhanced the light sensitivity of young soldat8 seedlings. Surprisingly, after being grown under very low light, soldat8 seedlings showed an enhanced resistance against a subsequent severe light stress that was significantly higher than in wild-type seedlings. In order to reach a similar enhanced stress resistance, wild-type seedlings had to be exposed to a brief higher light treatment that triggered an acclimatory response. Such a mild pre-stress treatment did not further enhance the stress resistance of soldat8 seedlings. Suppression of (1)O2-mediated cell death in young flu/soldat8 seedlings seems to be due to a transiently enhanced acclimation at the beginning of seedling development caused by the initial disturbance of plastid homeostasis.
Collapse
Affiliation(s)
- Núria S Coll
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology (ETH), Zurich CH-8092, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Onda Y, Yagi Y, Saito Y, Takenaka N, Toyoshima Y. Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:968-78. [PMID: 18532976 DOI: 10.1111/j.1365-313x.2008.03567.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In higher plants, multiple nuclear-encoded sigma factors activate select subsets of plastid gene promoters in a partially redundant manner. We analysed the light induction profiles of transcripts from six Arabidopsis sigma factor (AtSIG) genes in mature leaves, focusing on the effects of wavelength and intensity. Red-light illumination (660 nm) of dark-adapted plants strongly induced AtSIG1 transcripts, while blue-light illumination (470 nm) caused strong and rapid induction of AtSIG1 and AtSIG5 transcripts. The fluence response differed in blue-light-responsive rapid induction in AtSIG1 and AtSIG5. AtSIG1 transcripts increased to plateau with a threshold of 2 micromol m(-2) sec(-1) under all fluences examined (1-50 micromol m(-2) sec(-1)), and AtSIG5 transcripts were induced with a distinct two-phase profile, with the lower-fluence induction similar to that of AtSIG1 and further enhancement with increasing fluences greater than 10 micromol m(-2) sec(-1). Blue-light-receptor mutational analysis revealed that AtSIG5-specific two-phase induction is mediated through cryptochrome 1 and cryptochrome 2 at lower fluences and more significantly through cryptochrome 1 at higher fluences. In mature chloroplasts, the promoters of psbA and psbD are predominantly recognized by AtSIG5 among six sigma factors. Using a protoplast transient expression assay with AtSIG5-AtSIG1 chimeric genes, we present evidence that AtSIG5 contains determinants for activating the psbD blue-light-responsive promoter (BLRP) in region 4.2 rather than region 2.4. Amino acid scanning within AtSIG5 region 4.2 revealed that Asn484, but not Arg493, functions as a key residue for psbD BLRP activation. Arginine 493 may be involved in psbA promoter recognition.
Collapse
Affiliation(s)
- Yayoi Onda
- Department of Bioscience and Nano-biotechnology Research Centre, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | | | | | | | | |
Collapse
|
28
|
Maier UG, Bozarth A, Funk HT, Zauner S, Rensing SA, Schmitz-Linneweber C, Börner T, Tillich M. Complex chloroplast RNA metabolism: just debugging the genetic programme? BMC Biol 2008; 6:36. [PMID: 18755031 PMCID: PMC2553071 DOI: 10.1186/1741-7007-6-36] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/28/2008] [Indexed: 11/18/2022] Open
Abstract
Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.
Collapse
Affiliation(s)
- Uwe G Maier
- Philipps University Marburg, Cell Biology, Karl-von-Frisch Str, D-35032, Marbur, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sakamoto W, Miyagishima SY, Jarvis P. Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. THE ARABIDOPSIS BOOK 2008; 6:e0110. [PMID: 22303235 PMCID: PMC3243408 DOI: 10.1199/tab.0110] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast is a multi-copy cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids and phytohormones. The plastid also responds to environmental stimuli such as gravitropism. Biogenesis of chloroplasts is initiated from proplastids in shoot meristems, and involves a series of important events. In the last decade, considerable progress has been made towards understanding various aspects of chloroplast biogenesis at the molecular level, via studies in model systems such as Arabidopsis. This review focuses on two important aspects of chloroplast biogenesis, synthesis/assembly and division/transmission. Chloroplasts originated through endosymbiosis from an ancestor of extant cyanobacteria, and thus contain their own genomes. DNA in chloroplasts is organized into complexes with proteins, and these are called nucleoids. The synthesis of chloroplast proteins is regulated at various steps. However, a majority of proteins are synthesized in the cytosol, and their proper import into chloroplast compartments is a prerequisite for chloroplast development. Fundamental aspects of plastid gene expression/regulation and chloroplast protein transport are described, together with recent proteome analyses of the organelle. Chloroplasts are not de novo synthesized, but instead are propagated from pre-existing plastids. In addition, plastids are transmitted from generation to generation with a unique mode of inheritance. Our current knowledge on the division machinery and the inheritance of plastids is described.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Address correspondence to
| | | | - Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
30
|
Redox Regulation of Chloroplast Gene Expression. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Tozawa Y, Teraishi M, Sasaki T, Sonoike K, Nishiyama Y, Itaya M, Miyao A, Hirochika H. The plastid sigma factor SIG1 maintains photosystem I activity via regulated expression of the psaA operon in rice chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:124-32. [PMID: 17651366 DOI: 10.1111/j.1365-313x.2007.03216.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sigma factors encoded by the nucleus of plants confer promoter specificity on the bacterial-type RNA polymerase in chloroplasts. We previously showed that transcripts of OsSIG1, which encodes one such sigma factor in rice, accumulate relatively late during leaf development. We have now isolated and characterized two allelic mutants of OsSIG1, in which OsSIG1 is disrupted by insertion of the retrotransposon Tos17, in order to characterize the functions of OsSIG1. The OsSIG1-/- plants were found to be fertile but they manifested an approximately one-third reduction in the chlorophyll content of mature leaves. Quantitative RT-PCR and northern blot analyses of chloroplast gene expression revealed that the abundance of transcripts derived from the psaA operon was markedly reduced in OsSIG1-/- plants compared with that in wild-type homozygotes. This effect was accompanied by a reduction in the abundance of the core protein complex (PsaA-PsaB) of photosystem I. Analysis of chlorophyll fluorescence also revealed a substantial reduction in the rate of electron transfer from photosystem II to photosystem I in the OsSIG1 mutants. Our results thus indicate that OsSIG1 plays an important role in the maintenance of photosynthetic activity in mature chloroplasts of rice by regulating expression of chloroplast genes for components of photosystem I.
Collapse
Affiliation(s)
- Yuzuru Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama 790-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lysenko EA. Plant sigma factors and their role in plastid transcription. PLANT CELL REPORTS 2007; 26:845-59. [PMID: 17356883 DOI: 10.1007/s00299-007-0318-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/13/2007] [Accepted: 02/09/2007] [Indexed: 05/08/2023]
Abstract
Plant sigma factors determine the promoter specificity of the major RNA polymerase of plastids and thus regulate the first level of plastome gene expression. In plants, sigma factors are encoded by a small family of nuclear genes, and it is not yet clear if the family members are functionally redundant or each paralog plays a particular role. The review presents the analysis of the information on plant sigma factors obtained since their discovery a decade ago and focuses on similarities and differences in structure and functions of various paralogs. Special attention is paid to their interaction with promoters, the regulation of their expression, and their role in the development of a whole plant. The analysis suggests that though plant sigma factors are basically similar, at least some of them perform distinct functions. Finally, the work presents the scheme of this gene family evolution in higher plants.
Collapse
Affiliation(s)
- Eugene A Lysenko
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, 127276 Moscow, Russia.
| |
Collapse
|
33
|
Kubota Y, Miyao A, Hirochika H, Tozawa Y, Yasuda H, Tsunoyama Y, Niwa Y, Imamura S, Shirai M, Asayama M. Two Novel Nuclear Genes, OsSIG5 and OsSIG6 , Encoding Potential Plastid Sigma Factors of RNA Polymerase in Rice: Tissue-Specific and Light-Responsive Gene Expression. ACTA ACUST UNITED AC 2007; 48:186-92. [PMID: 17148693 DOI: 10.1093/pcp/pcl050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Two novel nuclear genes, OsSIG5 and OsSIG6, encoding potential plastid sigma factors of RNA polymerase (RNAP) were identified in Oryza sativa. The deduced amino acid sequences contain conserved regions, regions 1.2-4.2, and a novel region A/B at the N-terminus. Tissue-specific and light-responsive transcripts of OsSIG5 and OsSIG6 were observed. The N-terminal region of OsSig5 conferred import of green fluorescent protein into the chloroplast. Specific transcripts of rice psbA were synthesized in vitro by reconstituted OsSig5-RNAP holoenzymes. These results indicated that OsSig5 is a plastid sigma factor. This is the first report of the Sig5-type sigma factor in crops.
Collapse
Affiliation(s)
- Yoshiki Kubota
- Laboratory of Molecular Genetics, Collage of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S. Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res 2006; 35:455-64. [PMID: 17175536 PMCID: PMC1802608 DOI: 10.1093/nar/gkl1067] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated the function of one of the six plastid sigma-like transcription factors, sigma 3 (SIG3), by analysing two different Arabidopsis T-DNA insertion lines having disrupted SIG3 genes. Hybridization of wild-type and sig3 plant RNA to a plastid specific microarray revealed a strong reduction of the plastid psbN mRNA. The microarray result has been confirmed by northern blot analysis. The SIG3-specific promoter region has been localized on the DNA by primer extension and mRNA capping experiments. Results suggest tight regulation of psbN gene expression by a SIG3-PEP holoenzyme. The psbN gene is localized on the opposite strand of the psbB operon, between the psbT and psbH genes, and the SIG3-dependent psbN transcription produces antisense RNA to the psbT-psbH intergenic region. We show that this antisense RNA is not limited to the intergenic region, i.e. it does not terminate at the end of the psbN gene but extends as antisense transcript to cover the whole psbT coding region. Thus, by specific transcription initiation at the psbN gene promoter, SIG3-PEP holoenzyme could also influence the expression of the psbB operon by producing psbT antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | - Silva Lerbs-Mache
- To whom correspondence should be addressed. Tel: +33 0 4 76 63 57 44; Fax: +33 0 4 76 63 55 86;
| |
Collapse
|
36
|
Schweer J, Loschelder H, Link G. A promoter switch that can rescue a plant sigma factor mutant. FEBS Lett 2006; 580:6617-22. [PMID: 17118361 DOI: 10.1016/j.febslet.2006.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/13/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Chloroplasts sigma factors act in concert with PEP, the bacterial-type plastid RNA polymerase. Using a sigma knockout line from Arabidopsis thaliana, we investigated mutant-specific changes in plastid gene expression at RNA level. One characteristic feature was the appearance of a long transcript that spans the atpB-E operon and extends considerably into the far-upstream region of atpB. This region reveals a cluster of typical promoter elements for NEP, the second (phage-type) plastid RNA polymerase. The NEP promoter cluster can help maintain RNA synthesis in situations where no functional sigma factor is available for PEP.
Collapse
Affiliation(s)
- Jennifer Schweer
- Plant Cell Physiology and Molecular Biology, ND 2/72, University of Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | |
Collapse
|
37
|
Loschelder H, Schweer J, Link B, Link G. Dual temporal role of plastid sigma factor 6 in Arabidopsis development. PLANT PHYSIOLOGY 2006; 142:642-50. [PMID: 16905663 PMCID: PMC1586057 DOI: 10.1104/pp.106.085878] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants contain nuclear-coded sigma factors for initiation of chloroplast transcription. The in vivo function of individual members of the sigma gene family has become increasingly accessible by knockout and complementation strategies. Here we have investigated plastid gene expression in an Arabidopsis (Arabidopsis thaliana) mutant with a defective gene for sigma factor 6. RNA gel-blot hybridization and real-time reverse transcription polymerase chain reaction together indicate that this factor has a dual developmental role, with both early and persistent (long-term) activities. The early role is evident from the sharp decrease of certain plastid transcripts only in young mutant seedlings. The second (persistent) role is reflected by the up- and down-regulation of other transcripts at the time of primary leaf formation and subsequent vegetative development. We conclude that sigma 6 does not represent a general factor, but seems to have specialized roles in developmental stage- and gene-specific plastid transcription. The possibility that plastid DNA copy number might be responsible for the altered transcript patterns in mutant versus wild type was excluded by the results of DNA gel-blot hybridization. Retransformation of the knockout line with the full-length sigma 6 cDNA further established a causal relationship between the functional sigma gene and the resulting phenotype.
Collapse
Affiliation(s)
- Heike Loschelder
- Plant Cell Physiology, University of Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
38
|
Huerta AM, Francino MP, Morett E, Collado-Vides J. Selection for unequal densities of sigma70 promoter-like signals in different regions of large bacterial genomes. PLoS Genet 2006; 2:e185. [PMID: 17096598 PMCID: PMC1635534 DOI: 10.1371/journal.pgen.0020185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 09/12/2006] [Indexed: 11/18/2022] Open
Abstract
The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that could be recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to see the generality of this pattern, we have analyzed 43 additional genomes belonging to most established bacterial phyla. Differential densities between regulatory and nonregulatory regions are detectable in most of the analyzed genomes, with the exception of those that have evolved toward extreme genome reduction. Thus, presence of this pattern follows that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is an outcome of the process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential distribution of promoter-like signals between regulatory and nonregulatory regions detected in large bacterial genomes confers a significant, although small, fitness advantage. This study paves the way for further identification of the specific types of selective constraints that affect the organization of regulatory regions and the overall distribution of promoter-like signals through more detailed comparative analyses among closely related bacterial genomes. The most important step in the regulation of genetic expression is the initiation of transcription. This process is accomplished by the association or specific binding of RNA polymerase to particular sequence segments present in the DNA, the promoters. Promoters are located in the upstream regions of the transcribed genes. The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. For a long time, the canonical picture of a σ70 promoter has been a 60 base pair region defined by the transcription start-point (+1) and two conserved hexanucleotide sequences centered 10 and 35 base pairs upstream from the +1. The authors have shown that in Escherichia coli, promoters exist in clusters, as a series of overlapping potentially competing RNAP interaction sites. The E. coli regulatory regions contain high densities of these promoter-like signals, in contrast to coding regions and regions located between convergently transcribed genes. They report that the differential densities between regulatory and nonregulatory regions are detectable in most eubacterial genomes, with the exception of those that have experienced severe genome degradation and size reduction. This suggests that the presence of this pattern in large bacterial genomes confers a significant, although small, fitness advantage.
Collapse
Affiliation(s)
- Araceli M Huerta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México.
| | | | | | | |
Collapse
|
39
|
Hricová A, Quesada V, Micol JL. The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:942-56. [PMID: 16698900 PMCID: PMC1489898 DOI: 10.1104/pp.106.080069] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 05/09/2023]
Abstract
In many plant species, a subset of the genes of the chloroplast genome is transcribed by RpoTp, a nuclear-encoded plastid-targeted RNA polymerase. Here, we describe the positional cloning of the SCABRA3 (SCA3) gene, which was found to encode RpoTp in Arabidopsis (Arabidopsis thaliana). We studied one weak (sca3-1) and two strong (sca3-2 and sca3-3) alleles of the SCA3 gene, the latter two showing severely impaired plant growth and reduced pigmentation of the cotyledons, leaves, stem, and sepals, all of which were pale green. The leaf surface was extremely crumpled in the sca3 mutants, although epidermal cell size and morphology were not perturbed, whereas the mesophyll cells were less densely packed and more irregular in shape than in the wild type. A significant reduction in the size, morphology, and number of chloroplasts was observed in homozygous sca3-2 individuals whose photoautotrophic growth was consequently perturbed. Microarray analysis showed that several hundred nuclear genes were differentially expressed in sca3-2 and the wild type, about one-fourth of which encoded chloroplast-targeted proteins. Quantitative reverse transcription-PCR analyses showed that the sca3-2 mutation alters the expression of the rpoB, rpoC1, clpP, and accD plastid genes and the SCA3 paralogs RpoTm and RpoTmp, which respectively encode nuclear-encoded mitochondrion or dually targeted RNA polymerases. Double-mutant analysis indicated that RpoTmp and SCA3 play redundant functions in plant development. Our findings support a role for plastids in leaf morphogenesis and indicate that RpoTp is required for mesophyll cell proliferation.
Collapse
Affiliation(s)
- Andrea Hricová
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | | |
Collapse
|
40
|
Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:805-22. [PMID: 16709196 DOI: 10.1111/j.1365-313x.2006.02738.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Physiologically dormant seeds, like those of Arabidopsis, will cycle through dormant states as seasons change until the environment is favourable for seedling establishment. This phenomenon is widespread in the plant kingdom, but has not been studied at the molecular level. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana (accession Cvi) seeds in a range of dormant and dry after-ripened states during cycling. Principal component analysis of the expression patterns observed showed that they differed in newly imbibed primary dormant seeds, as commonly used in experimental studies, compared with those in the maintained primary and secondary dormant states that exist during cycling. Dormant and after-ripened seeds appear to have equally active although distinct gene expression programmes, dormant seeds having greatly reduced gene expression associated with protein synthesis, potentially controlling the completion of germination. A core set of 442 genes were identified that had higher expression in all dormant states compared with after-ripened states. Abscisic acid (ABA) responsive elements were significantly over-represented in this set of genes the expression of which was enhanced when multiple copies of the elements were present. ABA regulation of dormancy was further supported by expression patterns of key genes in ABA synthesis/catabolism, and dormancy loss in the presence of fluridone. The data support an ABA-gibberelic acid hormone balance mechanism controlling cycling through dormant states that depends on synthetic and catabolic pathways of both hormones. Many of the most highly expressed genes in dormant states were stress-related even in the absence of abiotic stress, indicating that ABA, stress and dormancy responses overlap significantly at the transcriptome level.
Collapse
|
41
|
Buhot L, Horvàth E, Medgyesy P, Lerbs-Mache S. Hybrid transcription system for controlled plastid transgene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:700-7. [PMID: 16640605 DOI: 10.1111/j.1365-313x.2006.02718.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastid transformation technologies have developed rapidly over the last few years, reflecting their value in the study of the principal mechanisms of plastid gene expression and commercial interest in using plastids as bioreactors. Application of this technology is still limited by the difficulty of obtaining regulated, selective expression of plastid transgenes. The plastid genome is transcribed by two different types of RNA polymerase. One of them is of the eubacterial type of polymerase, and its subunits are encoded in the plastid genome [plastid-encoded RNA polymerase (PEP)]. The other one is of the phage type and nucleus-encoded [nucleus-encoded RNA polymerase (NEP)]. To obtain selective transgene expression, we have made use of the similarities and differences between the eubacterial and the plastid eubacterial type transcription systems. We created a hybrid transcription system in which the transgene is placed under the control of a eubacterial promoter which does not exist in the plastid genome and which is not recognized by the plastid endogenous transcriptional machinery. Selective transcription of the transgene is achieved by the supply of a chimeric transcription factor that interacts with PEP and directs it specifically to the foreign eubacterial-type transgene promoter. This hybrid transcription system could be used for biotechnological and fundamental research applications as well as in the characterization of the evolutionary differences between the eubacterial and the plastid eubacterial-type transcription systems.
Collapse
Affiliation(s)
- Laurence Buhot
- Laboratoire Plastes et Differenciation cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, BP 53, F-38041 Grenoble, France
| | | | | | | |
Collapse
|
42
|
Niwa Y, Goto S, Nakano T, Sakaiya M, Hirano T, Tsukaya H, Komeda Y, Kobayashi H. Arabidopsis Mutants by Activation Tagging in which Photosynthesis Genes are Expressed in Dedifferentiated Calli. ACTA ACUST UNITED AC 2006; 47:319-31. [PMID: 16597626 DOI: 10.1093/pcp/pci242] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In an effort to delineate the precise mechanisms underlying the organ-specific expression of photosynthesis genes, Arabidopsis lines homozygous for each transgene construct made with the gene for hygromycin B phosphotransferase or beta-glucuronidase (GUS) placed under control of the promoter of the nuclear gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCS-3B) were constructed. Furthermore, activation tagging with T-DNA possessing quadruply repeated enhancers derived from the cauliflower mosaic virus 35S promoter was applied to a transgenic line of Arabidopsis. Mutants resistant to hygromycin B during the growth of calli generated from non-green roots on callus-inducing medium resulted from the expression of hygromycin B phosphotransferase driven by the RBCS-3B promoter. Three mutant lines, ces101 to ces103 (callus expression of RBCS), were obtained from approximately 4,000 calli resistant to a selectable marker for transformation. The active transcription driven by the RBCS-3B promoter in all the calli of ces mutants was confirmed by expression of both the GUS reporter gene and endogenous RBCS-3B. Chlorophyll and carotenoids, as well as light-dependent O(2) evolution, have been detected in the calli of all ces mutants. The loci where T-DNA was integrated in the ces101 line were determined by thermal asymmetric interlaced (TAIL)-PCR. The introduction of a DNA fragment harboring the gene for receptor-like kinase placed under the influence of enhancers into the parental line reproduced the phenotype of ces mutants. We have thus concluded that CES101 is a receptor-like kinase. The strategy presented in this investigation may promise to select a greater number of ces mutants.
Collapse
Affiliation(s)
- Yasuo Niwa
- Laboratory of Plant Cell Technology and COE Program in the 21st Century, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bohne AV, Irihimovitch V, Weihe A, Stern DB. Chlamydomonas reinhardtii encodes a single sigma70-like factor which likely functions in chloroplast transcription. Curr Genet 2006; 49:333-40. [PMID: 16453112 DOI: 10.1007/s00294-006-0060-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/30/2022]
Abstract
Chlamydomonas reinhardtii EST clones encoding a protein highly similar to prokaryotic sigma factors and plant sigma-like factors (SLFs) were used to isolate a BAC clone containing the full-length gene CrRpoD. The gene is likely to be single-copy, in contrast to small gene families encoding SLFs in plants. The CrRpoD mRNA comprises 3,033 nt with an open reading frame of 2,256 nt, encoding a putative protein of 752 amino acids with a molecular mass of 80.2 kDa. The sequence contains conserved regions 2-4 typically found in sigma factors, and an unusually long amino terminal extension, which by in silico analysis has properties of a chloroplast transit peptide. Expression of CrRpoD was confirmed by immunodetection of a 85 kDa polypeptide in a preparation enriched for chloroplast proteins. To demonstrate functionality in transcription initiation, a recombinant CrRpoD-thioredoxin fusion protein was reconstituted with E. coli RNA polymerase core enzyme and tested in vitro. This chimeric holoenzyme specifically bound the spinach psbA and Chlamydomonas rrn16 promoters in gel mobility shift assays and exhibited specific transcription initiation from the same two promoters, providing evidence for the role of CrRpoD as a functional transcription factor.
Collapse
Affiliation(s)
- Alexandra-V Bohne
- Institut für Biologie, Humboldt-Universität, Chausseestr. 117, 10115, Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay JG, Lerbs-Mache S. Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res 2005; 33:5991-9. [PMID: 16243785 PMCID: PMC1266065 DOI: 10.1093/nar/gki908] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The complexity of the plastid transcriptional apparatus (two or three different RNA polymerases and numerous regulatory proteins) makes it very difficult to attribute specific function(s) to its individual components. We have characterized an Arabidopsis T-DNA insertion line disrupting the nuclear gene coding for one of the six plastid sigma factors (SIG4) that regulate the activity of the plastid-encoded RNA polymerase PEP. This mutant shows a specific diminution of transcription of the plastid ndhF gene, coding for a subunit of the plastid NDH [NAD(P)H dehydrogenase] complex. The absence of another NDH subunit, i.e. NDHH, and the absence of a chlorophyll fluorescence transient previously attributed to the activity of the plastid NDH complex indicate a strong down-regulation of NDH activity in the mutant plants. Results suggest that plastid NDH activity is regulated on the transcriptional level by an ndhF-specific plastid sigma factor, SIG4.
Collapse
Affiliation(s)
- Jean-Jacques Favory
- Laboratoire Plastes et différenciation cellulaire, Université Joseph Fourier and Centre National de la Recherche Scientifique, B.P. 53, 38041 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Minoda A, Nagasawa K, Hanaoka M, Horiuchi M, Takahashi H, Tanaka K. Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. PLANT MOLECULAR BIOLOGY 2005; 59:375-85. [PMID: 16235106 DOI: 10.1007/s11103-005-0182-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 06/23/2005] [Indexed: 05/04/2023]
Abstract
Plastid genomes of red algae contain more genes than those of green plant lineages, and it is of special interest that four transcription factors derived from ancestral cyanobacteria are encoded therein. However, little is known about transcriptional regulation of the red algal plastid genome. In this study, we constructed a red algal plastid DNA microarray of Cyanidioschyzon merolae covering almost all protein coding genes, and found that plastid genes are differentially activated by illumination. Run-on transcription assays using isolated plastids confirmed that activation takes place at the transcriptional level. In bacteria and plants, sigma factors determine the genes that are to be transcribed, and four plastid sigma factors (Cm_SIG1-4) encoded in the nuclear genome of C. merolae may be responsible for differential gene expression of the plastid genome. We found that transcripts for all Cm_SIG genes accumulated transiently after a shift from dark to light, whereas only the Cm_SIG2 transcript was increased after a shift from low to high light, suggesting that Cm_SIG2 is a sigma factor that responds to high light. Phylogenetic analysis of plastid sigma factors suggested that sigma factors of red and green algal plastids and the group 1 sigma factors of cyanobacteria form a monophyletic group.
Collapse
Affiliation(s)
- Ayumi Minoda
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, 113-0032, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K. Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 2005; 6:545-50. [PMID: 15877080 PMCID: PMC1369087 DOI: 10.1038/sj.embor.7400411] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/08/2022] Open
Abstract
Chloroplast genes of higher plants are transcribed by two types of RNA polymerase that are encoded by nuclear (NEP (nuclear-encoded plastid RNA polymerase)) or plastid (PEP (plastid-encoded plastid RNA polymerase)) genomes. NEP is largely responsible for the transcription of housekeeping genes during early chloroplast development. Subsequent light-dependent chloroplast maturation is accompanied by repression of NEP activity and activation of PEP. Here, we show that the plastid-encoded transfer RNA for glutamate, the expression of which is dependent on PEP, directly binds to and inhibits the transcriptional activity of NEP in vitro. The plastid tRNA(Glu) thus seems to mediate the switch in RNA polymerase usage from NEP to PEP during chloroplast development.
Collapse
Affiliation(s)
- Mitsumasa Hanaoka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kengo Kanamaru
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Faculty of Agriculture, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Makoto Fujiwara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideo Takahashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kan Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Tel: +81 3 5841 7825; Fax: +81 3 5841 8476; E-mail:
| |
Collapse
|
47
|
Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T. A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:133-44. [PMID: 15807777 DOI: 10.1111/j.1365-313x.2005.02362.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eubacterial-type multi-subunit plastid RNA polymerase (PEP) is responsible for the principal transcription activity in chloroplasts. PEP is composed of plastid-encoded core subunits and one of multiple nuclear-encoded sigma factors that confer promoter specificity on PEP. Thus, the replacement of sigma factors associated with PEP has been assumed to be a major mechanism for the switching of transcription patterns during chloroplast development. The null mutant (sig6-1) of plastid sigma factor gene AtSIG6 exhibited a cotyledon-specific pale green phenotype. Light-dependent chloroplast development was significantly delayed in the sig6-1 mutant. Genetic complementation of the mutant phenotype by the AtSIG6 cDNA demonstrated that AtSIG6 plays a key role in light-dependent chloroplast development. Northern and array-based global analyses for plastid transcripts revealed that the transcript levels of most PEP-dependent genes were greatly reduced in the sig6-1 mutant, but that the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts generally increased. As the PEP alpha subunit and PEP-dependent trnV accumulated at normal levels in the sig6-1 mutant, the AtSIG6 knockout mutant probably retained functional PEP, and the transcriptional defects are likely to have been directly caused by AtSIG6 deficiency. Most of the AtSIG6-dependent genes are preceded by sigma70-type promoters comprised of conserved -35/-10 elements. Thus, AtSIG6 may act as a major general sigma factor in chloroplasts during early plant development. On the other hand, the mutant phenotype was restored in older seedlings. Arabidopsis probably contains another late general sigma factor, the promoter specificity of which widely overlaps with that of AtSIG6.
Collapse
Affiliation(s)
- Yoko Ishizaki
- Faculty of Human Environment, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
49
|
Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 2004; 433:527-31. [PMID: 15616514 DOI: 10.1038/nature03237] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 11/29/2004] [Indexed: 11/09/2022]
Abstract
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.
Collapse
Affiliation(s)
- Haruko Imaizumi-Anraku
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P. Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:164-72. [PMID: 15361150 DOI: 10.1111/j.1365-313x.2004.02195.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We affinity-purified the tobacco plastid-encoded plastid RNA polymerase (PEP) complex by the alpha subunit containing a C-terminal 12 x histidine tag using heparin and Ni(2+) chromatography. The composition of the complex was determined by mass spectrometry after separating the proteins of the >900 kDa complex in blue native and SDS polyacrylamide gels. The purified PEP contained the core alpha, beta, beta', beta" subunits and five major associated proteins of unknown function, but lacked sigma factors required for promoter recognition. The holoenzyme efficiently recognized a plastid psbA promoter when it was reconstituted from the purified PEP and recombinant plastid sigma factors. Reconstitution of a plastid holoenzyme with individual sigma factors will facilitate identification of sigma factor-specific promoter elements.
Collapse
Affiliation(s)
- Jon Y Suzuki
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|