1
|
Hua T, Robitaille M, Roberts-Thomson SJ, Monteith GR. The intersection between cysteine proteases, Ca 2+ signalling and cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119532. [PMID: 37393017 DOI: 10.1016/j.bbamcr.2023.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.
Collapse
Affiliation(s)
- Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Identification of key genes in the tumor microenvironment of lung adenocarcinoma. Med Oncol 2021; 38:83. [PMID: 34117948 DOI: 10.1007/s12032-021-01529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
The tumor microenvironment plays an important role in tumor development and progression, but the role of immune and stromal cells in this environment has not been sufficiently studied. In this study, we aimed to identify key genes associated with the microenvironment of lung adenocarcinoma (LUAD). Raw data for stromal and immune cells in malignant tumors were downloaded from The Cancer Genome Atlas (TCGA). These expression data were used to identify the differentially expressed genes (DEGs) in tissue samples of LUAD with high and low immune scores. A protein-protein interaction (PPI) network based on genes with significant differential expression was constructed. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to functionally annotate putative hub genes. These genes were assessed via Kaplan Meier analysis to determine their correlation with overall survival. In total, we identified 216 DEGs which were correlated with immune and stromal scores, including 30 hub genes which were identified based on the PPI network. Further analysis suggested that the expression levels of 10 of these genes were significantly correlated with overall survival of LUAD patients. These key hub genes included CCR2, CCR5, CD53, CYBB, HCK, IRF8, LCP2, PLEK, PTPRC, and TLR7. Moreover, the expression level of CCR2 was found to have strong prognostic value for LUAD patients. Additionally, high expression of CYBB was also correlated with better survival of patients with LUAD. The results of this study open several new avenues to explore in the treatment of LUAD.
Collapse
|
3
|
An Immune-Related Prognostic Classifier Is Associated with Diffuse Large B Cell Lymphoma Microenvironment. J Immunol Res 2021; 2021:5564568. [PMID: 34212052 PMCID: PMC8205595 DOI: 10.1155/2021/5564568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is a life-threatening malignant tumor characterized by heterogeneous clinical, phenotypic, and molecular manifestations. Given the association between immunity and tumors, identifying a suitable immune biomarker could improve DLBCL diagnosis. Methods We systematically searched for DLBCL gene expression microarray datasets from the GEO database. Immune-related genes (IRGs) were obtained from the ImmPort database, and 318 transcription factor (TF) targets in cancer were retrieved from the Cistrome Cancer database. An immune-related classifier for DLBCL prognosis was constructed using Cox regression and LASSO analysis. To assess differences in overall survival between the low- and high-risk groups, we analyzed the tumor microenvironment (TME) and immune infiltration in DLBCL using the ESTIMATE and CIBERSORT algorithms. WGCNA was applied to study the molecular mechanisms explaining the clinical significance of our immune-related classifier and TFs. Results Eighteen IRGs were selected to construct the classifier. The multi-IRG classifier showed powerful predictive ability. Patients with a high-risk score had poor survival. Based on the AUC for three- and five-year survival, the classifier exhibited better predictive power than clinical data. Discrepancies in overall survival between the low- and high-risk score groups might be explained by differences in immune infiltration, TME, and transcriptional regulation. Conclusions Our study describes a novel prognostic IRG classifier with strong predictive power in DLBCL. Our findings provide valuable guidance for further analysis of DLBCL pathogenesis and clinical treatment.
Collapse
|
4
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
5
|
Yang Y, Liu XR, Greenberg ZJ, Zhou F, He P, Fan L, Liu S, Shen G, Egawa T, Gross ML, Schuettpelz LG, Li W. Open conformation of tetraspanins shapes interaction partner networks on cell membranes. EMBO J 2020; 39:e105246. [PMID: 32974937 PMCID: PMC7507038 DOI: 10.15252/embj.2020105246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.
Collapse
Affiliation(s)
- Yihu Yang
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Zev J Greenberg
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Fengbo Zhou
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Peng He
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Lingling Fan
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Shixuan Liu
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Guomin Shen
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | - Takeshi Egawa
- Department of Pediatrics Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
| | | | - Laura G Schuettpelz
- Division of Hematology and OncologyDepartment of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Weikai Li
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
6
|
Dunlock VE. Tetraspanin CD53: an overlooked regulator of immune cell function. Med Microbiol Immunol 2020; 209:545-552. [PMID: 32440787 PMCID: PMC7395052 DOI: 10.1007/s00430-020-00677-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022]
Abstract
Tetraspanins are membrane organizing proteins that play a role in organizing the cell surface through the formation of subcellular domains consisting of tetraspanins and their partner proteins. These complexes are referred to as tetraspanin enriched microdomains (TEMs) or the tetraspanin web. The formation of TEMs allows for the regulation of a variety of cellular processes such as adhesion, migration, signaling, and cell fusion. Tetraspanin CD53 is a member of the tetraspanin superfamily expressed exclusively within the immune compartment. Amongst others, B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and natural killer cells have all been found to express high levels of this protein on their surface. Almost three decades ago it was reported that patients who lacked CD53 suffered from an increased susceptibility to pathogens resulting in the clinical manifestation of recurrent viral, bacterial, and fungal infections. This clearly suggests a vital and non-redundant role for CD53 in immune function. Yet, despite this striking finding, the specific functional roles of CD53 within the immune system have remained elusive. This review aims to provide a concise overview of the published literature concerning CD53 and reflect on the underappreciated role of this protein in immune cell regulation and function.
Collapse
Affiliation(s)
- V E Dunlock
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
8
|
|
9
|
Pfaff F, Hägglund S, Zoli M, Blaise-Boisseau S, Laloy E, Koethe S, Zühlke D, Riedel K, Zientara S, Bakkali-Kassimi L, Valarcher JF, Höper D, Beer M, Eschbaumer M. Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses 2019; 11:E53. [PMID: 30642035 PMCID: PMC6356718 DOI: 10.3390/v11010053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
Foot-and-mouth disease (FMD) is the most devastating disease of cloven-hoofed livestock, with a crippling economic burden in endemic areas and immense costs associated with outbreaks in free countries. Foot-and-mouth disease virus (FMDV), a picornavirus, will spread rapidly in naïve populations, reaching morbidity rates of up to 100% in cattle. Even after recovery, over 50% of cattle remain subclinically infected and infectious virus can be recovered from the nasopharynx. The pathogen and host factors that contribute to FMDV persistence are currently not understood. Using for the first time primary bovine soft palate multilayers in combination with proteogenomics, we analyzed the transcriptional responses during acute and persistent FMDV infection. During the acute phase viral RNA and protein was detectable in large quantities and in response hundreds of interferon-stimulated genes (ISG) were overexpressed, mediating antiviral activity and apoptosis. Although the number of pro-apoptotic ISGs and the extent of their regulation decreased during persistence, some ISGs with antiviral activity were still highly expressed at that stage. This indicates a long-lasting but ultimately ineffective stimulation of ISGs during FMDV persistence. Furthermore, downregulation of relevant genes suggests an interference with the extracellular matrix that may contribute to the skewed virus-host equilibrium in soft palate epithelial cells.
Collapse
Affiliation(s)
- Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Sara Hägglund
- Swedish University of Agricultural Sciences, Host-pathogen interaction group, Division of Ruminant Medicine, 75007 Uppsala, Sweden.
| | - Martina Zoli
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Sandra Blaise-Boisseau
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Eve Laloy
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
- Biopôle EnvA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Daniela Zühlke
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany.
| | - Katharina Riedel
- Institute of Microbiology, Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany.
| | - Stephan Zientara
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Labib Bakkali-Kassimi
- Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - Jean-François Valarcher
- Swedish University of Agricultural Sciences, Host-pathogen interaction group, Division of Ruminant Medicine, 75007 Uppsala, Sweden.
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany.
| |
Collapse
|
10
|
Wang Z, Dong C. Gluconeogenesis in Cancer: Function and Regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 2018; 5:30-45. [PMID: 30616754 DOI: 10.1016/j.trecan.2018.11.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023]
Abstract
Cancer cells display a high rate of glycolysis in the presence of oxygen to promote proliferation. Gluconeogenesis, the reverse pathway of glycolysis, can antagonize aerobic glycolysis in cancer via three key enzymes - phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), and glucose-6-phosphatase (G6Pase). Recent studies have revealed that, in addition to metabolic regulation, these enzymes also play a role in signaling, proliferation, and the cancer stem cell (CSC) tumor phenotype. Multifaceted regulation of PEPCK, FBPase, and G6Pase through transcription, epigenetics, post-translational modification, and enzymatic activity is observed in different cancers. We review here the function and regulation of key gluconeogenic enzymes and new therapeutic opportunities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (Breast Center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (Breast Center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
11
|
Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget 2017; 7:21469-83. [PMID: 26894978 PMCID: PMC5008299 DOI: 10.18632/oncotarget.7412] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
It has been more than 60 years since the discovery of the oxygen effect that empirically demonstrates the direct association between cell radiosensitivity and oxygen tension, important parameters in radiotherapy. Yet the mechanisms underlying this principal tenet of radiobiology are poorly understood. Better understanding of the oxygen effect may explain difficulty in eliminating hypoxic tumor cells, a major cause of regrowth after therapy. Our analysis utilizes the Howard-Flanders and Alper formula, which describes the relationship of radiosensitivity with oxygen tension. Here, we assign and qualitatively assess the relative contributions of two important mechanisms. The first mechanism involves the emission of reactive oxygen species from the mitochondrial electron transport chain, which increases with oxygen tension. The second mechanism is related to an energy and repair deficit, which increases with hypoxia. Following a radiation exposure, the uncoupling of the oxidative phosphorylation system (proton leak) in mitochondria lowers the emission of reactive oxygen species which has implications for fractionated radiotherapy, particularly of hypoxic tumors. Our analysis shows that, in oxygenated tumor and normal cells, mitochondria, rather than the nucleus, are the primary loci of radiotherapy effects, especially for low linear energy transfer radiation. Therefore, the oxygen effect can be explained by radiation-induced effects in mitochondria that generate reactive oxygen species, which in turn indirectly target nuclear DNA.
Collapse
|
12
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
13
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
14
|
Shoshan-Barmatz V, De S, Meir A. The Mitochondrial Voltage-Dependent Anion Channel 1, Ca 2+ Transport, Apoptosis, and Their Regulation. Front Oncol 2017; 7:60. [PMID: 28443244 PMCID: PMC5385329 DOI: 10.3389/fonc.2017.00060] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 01/08/2023] Open
Abstract
In the outer mitochondrial membrane, the voltage-dependent anion channel 1 (VDAC1) functions in cellular Ca2+ homeostasis by mediating the transport of Ca2+ in and out of mitochondria. VDAC1 is highly Ca2+-permeable and modulates Ca2+ access to the mitochondrial intermembrane space. Intramitochondrial Ca2+ controls energy metabolism by enhancing the rate of NADH production via modulating critical enzymes in the tricarboxylic acid cycle and fatty acid oxidation. Mitochondrial [Ca2+] is regarded as an important determinant of cell sensitivity to apoptotic stimuli and was proposed to act as a "priming signal," sensitizing the organelle and promoting the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ ([Ca2+]i) mediates apoptosis is not known. Here, we review the roles of VDAC1 in mitochondrial Ca2+ homeostasis and in apoptosis. Accumulated evidence shows that apoptosis-inducing agents act by increasing [Ca2+]i and that this, in turn, augments VDAC1 expression levels. Thus, a new concept of how increased [Ca2+]i activates apoptosis is postulated. Specifically, increased [Ca2+]i enhances VDAC1 expression levels, followed by VDAC1 oligomerization, cytochrome c release, and subsequently apoptosis. Evidence supporting this new model suggesting that upregulation of VDAC1 expression constitutes a major mechanism by which apoptotic stimuli induce apoptosis with VDAC1 oligomerization being a molecular focal point in apoptosis regulation is presented. A new proposed mechanism of pro-apoptotic drug action, namely Ca2+-dependent enhancement of VDAC1 expression, provides a platform for developing a new class of anticancer drugs modulating VDAC1 levels via the promoter and for overcoming the resistance of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Soumasree De
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Meir
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Cunha M, Testa E, Komova OV, Nasonova EA, Mel'nikova LA, Shmakova NL, Beuve M. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:31-40. [PMID: 26708100 DOI: 10.1007/s00411-015-0622-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.
Collapse
Affiliation(s)
- Micaela Cunha
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Etienne Testa
- Université de Lyon, 69622, Lyon, France
- Université de Lyon 1, Villeurbanne, France
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Olga V Komova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Elena A Nasonova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Larisa A Mel'nikova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Nina L Shmakova
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - Michaël Beuve
- Université de Lyon, 69622, Lyon, France.
- Université de Lyon 1, Villeurbanne, France.
- CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France.
| |
Collapse
|
16
|
Sung DK, Chang YS, Sung SI, Yoo HS, Ahn SY, Park WS. Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling. Cell Microbiol 2015; 18:424-36. [PMID: 26350435 PMCID: PMC5057339 DOI: 10.1111/cmi.12522] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/15/2022]
Abstract
Recently, we demonstrated that intratracheal transplantation of human umbilical cord blood‐ derived mesenchymal stem cells (MSCs) attenuates Escherichia (E) coli‐ induced acute lung injury primarily by down‐ modulating inflammation and enhancing bacterial clearance iQn mice. This study was performed to elucidate the mechanism underlying the antibacterial effects of MSCs. The growth of E. coli in vitro was significantly inhibited only by MSCs or their conditioned medium with bacterial preconditioning, but not by fibroblasts or their conditioned medium. Microarray analysis identified significant up‐ regulation of toll‐ like receptors (TLR)‐ 2 and TLR‐ 4, and β‐ defensin 2 (BD2) in MSCs compared with fibroblasts after E. coli exposure. The increased BD2 level and the in vitro antibacterial effects of MSCs were abolished by specific antagonist or by siRNA‐ mediated knockdown of TLR‐ 4, but not TLR‐ 2, and restored by BD2 supplementation. The in vivo down‐ modulation of the inflammatory response and enhanced bacterial clearance, increased BD2 secretion and the resultant protection against E. coli‐ induced pneumonia observed only with MSCs, but not fibroblasts, transplantation in mice, were abolished by knockdown of TLR‐ 4 with siRNA transfection. Our data indicate that BD2 secreted by the MSCs via the TLR‐ 4 signalling pathway is one of the critical paracrine factors mediating their microbicidal effects against E. coli, both in vitro and in vivo. Furthermore, TLR‐ 4 from the transplanted MSCs plays a seminal role in attenuating in vivo E. coli‐ induced pneumonia and the ensuing acute lung injury through both its anti‐ inflammatory and antibacterial effects.
Collapse
Affiliation(s)
- Dong Kyung Sung
- Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135- 710, Korea.,Samsung Biomedical Research Institute, Seoul, 136- 701, Korea
| |
Collapse
|
17
|
Huber SM, Butz L, Stegen B, Klumpp L, Klumpp D, Eckert F. Role of ion channels in ionizing radiation-induced cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2657-64. [DOI: 10.1016/j.bbamem.2014.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 02/05/2023]
|
18
|
Altered Traffic of Cardiolipin during Apoptosis: Exposure on the Cell Surface as a Trigger for "Antiphospholipid Antibodies". J Immunol Res 2015; 2015:847985. [PMID: 26491702 PMCID: PMC4603604 DOI: 10.1155/2015/847985] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023] Open
Abstract
Apoptosis has been reported to induce changes in the remodelling of membrane lipids; after death receptor engagement, specific changes of lipid composition occur not only at the plasma membrane, but also in intracellular membranes. This paper focuses on one important aspect of apoptotic changes in cellular lipids, namely, the redistribution of the mitochondria-specific phospholipid, cardiolipin (CL). CL predominantly resides in the inner mitochondrial membrane, even if the rapid remodelling of its acyl chains and the subsequent degradation occur in other membrane organelles. After death receptor stimulation, CL appears to concentrate into mitochondrial “raft-like” microdomains at contact sites between inner and outer mitochondrial membranes, leading to local oligomerization of proapoptotic proteins, including Bid. Clustering of Bid in CL-enriched contacts sites is interconnected with pathways of CL remodelling that intersect membrane traffic routes dependent upon actin. In addition, CL association with cytoskeleton protein vimentin was observed. Such novel association also indicated that CL molecules may be expressed at the cell surface following apoptotic stimuli. This observation adds a novel implication of biomedical relevance. The association of CL with vimentin at the cell surface may represent a “new” target antigen in the context of the apoptotic origin of anti-vimentin/CL autoantibodies in Antiphospholipid Syndrome.
Collapse
|
19
|
Korzeneva IB, Kostuyk SV, Ershova LS, Osipov AN, Zhuravleva VF, Pankratova GV, Porokhovnik LN, Veiko NN. Human circulating plasma DNA significantly decreases while lymphocyte DNA damage increases under chronic occupational exposure to low-dose gamma-neutron and tritium β-radiation. Mutat Res 2015; 779:1-15. [PMID: 26113293 DOI: 10.1016/j.mrfmmm.2015.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 06/04/2023]
Abstract
The blood plasma of healthy people contains cell-fee (circulating) DNA (cfDNA). Apoptotic cells are the main source of the cfDNA. The cfDNA concentration increases in case of the organism's cell death rate increase, for example in case of exposure to high-dose ionizing radiation (IR). The objects of the present research are the blood plasma and blood lymphocytes of people, who contacted occupationally with the sources of external gamma/neutron radiation or internal β-radiation of tritium N = 176). As the controls (references), blood samples of people, who had never been occupationally subjected to the IR sources, were used (N = 109). With respect to the plasma samples of each donor there were defined: the cfDNA concentration (the cfDNA index), DNase1 activity (the DNase1 index) and titre of antibodies to DNA (the Ab DNA index). The general DNA damage in the cells was defined (using the Comet assay, the tail moment (TM) index). A chronic effect of the low-dose ionizing radiation on a human being is accompanied by the enhancement of the DNA damage in lymphocytes along with a considerable cfDNA content reduction, while the DNase1 content and concentration of antibodies to DNA (Ab DNA) increase. All the aforementioned changes were also observed in people, who had not worked with the IR sources for more than a year. The ratio cfDNA/(DNase1×Ab DNA × TM) is proposed to be used as a marker of the chronic exposure of a person to the external low-dose IR. It was formulated the assumption that the joint analysis of the cfDNA, DNase1, Ab DNA and TM values may provide the information about the human organism's cell resistivity to chronic exposure to the low-dose IR and about the development of the adaptive response in the organism that is aimed, firstly, at the effective cfDNA elimination from the blood circulation, and, secondly - at survival of the cells, including the cells with the damaged DNA.
Collapse
Affiliation(s)
- Inna B Korzeneva
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia.
| | - Svetlana V Kostuyk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Liza S Ershova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Andrian N Osipov
- Federal Medial and Biological Center named after Burnazyan of the Federal Medical and Biological Agency (FMBTz named after Burnazyan of FMBA), Moscow, Russia; State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Zhivopisnaya, 46, Moscow, 123098, Russia
| | - Veronika F Zhuravleva
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia
| | - Galina V Pankratova
- Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 607190, Sarov, 37 Mira ave., Nizhniy Novgorod Region, Russia
| | - Lev N Porokhovnik
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| | - Natalia N Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, 115478 Moscow, 1 Moskvorechye str., Russia
| |
Collapse
|
20
|
UCP-3 uncoupling protein confers hypoxia resistance to renal epithelial cells and is upregulated in renal cell carcinoma. Sci Rep 2015; 5:13450. [PMID: 26304588 PMCID: PMC4548255 DOI: 10.1038/srep13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/01/2015] [Indexed: 01/17/2023] Open
Abstract
Tumor cells can adapt to a hostile environment with reduced oxygen supply. The present study aimed to identify mechanisms that confer hypoxia resistance. Partially hypoxia/reoxygenation (H/R)-resistant proximal tubular (PT) cells were selected by exposing PT cultures to repetitive cycles of H/R. Thereafter, H/R-induced changes in mRNA and protein expression, inner mitochondrial membrane potential (ΔΨm), formation of superoxide, and cell death were compared between H/R-adapted and control PT cultures. As a result, H/R-adapted PT cells exhibited lower H/R-induced hyperpolarization of ΔΨm and produced less superoxide than the control cultures. Consequently, H/R triggered ΔΨm break-down and DNA degradation in a lower percentage of H/R-adapted than control PT cells. Moreover, H/R induced upregulation of mitochondrial uncoupling protein-3 (UCP-3) in H/R-adapted PT but not in control cultures. In addition, ionizing radiation killed a lower percentage of H/R-adapted as compared to control cells suggestive of an H/R-radiation cross-resistance developed by the selection procedure. Knockdown of UCP-3 decreased H/R- and radioresitance of the H/R-adapted cells. Finally, UCP-3 protein abundance of PT-derived clear cell renal cell carcinoma and normal renal tissue was compared in human specimens indicating upregulation of UCP-3 during tumor development. Combined, our data suggest functional significance of UCP-3 for H/R resistance.
Collapse
|
21
|
Huang L, Han J, Ben-Hail D, He L, Li B, Chen Z, Wang Y, Yang Y, Liu L, Zhu Y, Shoshan-Barmatz V, Liu H, Chen Q. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells. J Biol Chem 2015; 290:23563-78. [PMID: 26253170 DOI: 10.1074/jbc.m115.648774] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/26/2023] Open
Abstract
The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.
Collapse
Affiliation(s)
- Li Huang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danya Ben-Hail
- the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Luwei He
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baowei Li
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ziheng Chen
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yueying Wang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlei Yang
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yushan Zhu
- the Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 30071, China
| | - Varda Shoshan-Barmatz
- the Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel, and
| | - Hongwei Liu
- the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,
| | - Quan Chen
- From the State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100049, China,
| |
Collapse
|
22
|
Rodríguez-Hernández E, Mosqueda J, León-Ávila G, Castañeda-Ortiz EJ, Álvarez-Sánchez ME, Camacho AD, Ramos A, Camacho-Nuez M. BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina. Vet Parasitol 2015; 212:368-74. [PMID: 26141408 DOI: 10.1016/j.vetpar.2015.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms involved during the infection of Rhipicephalus microplus midgut cells by Babesia bigemina are of great relevance and currently unknown. In a previous study, we found a voltage-dependent anion channel (VDAC)-like protein (BmVDAC) that may participate during parasite invasion of midgut cells. In this work, we investigated BmVDAC expression at both mRNA and protein levels and examined BmVDAC localization in midgut cells of ticks infected with B. bigemina at different times post-repletion. Based on the RT-PCR results, Bmvdac expression levels were significantly higher in infected ticks compared to uninfected ones, reaching their highest values at 24h post-repletion (p<0.0001). Similar results were obtained at the protein level (p<0.0001). Interestingly, BmVDAC immunolocalization showed that there was an important differential expression and redistribution of BmVDAC protein between the midgut cells of infected and uninfected ticks, which was more evident 24h post-repletion of infected ticks. This is the first report of BmVDAC upregulation and immunolocalization in R. microplus midgut cells during B. bigemina infection. Further studies regarding the function of BmVDAC during the infection may provide new insights into the molecular mechanisms between B. bigemina and its tick vector and could result in its use as an anti-tick and transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de las Ciencias s/n, Juriquilla Querétaro, C.P. 76230, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Elizabeth J Castañeda-Ortiz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - María Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Alejandro D Camacho
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Alberto Ramos
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carretera Federal Cuernavaca-Cuautla Núm. 8534, Colonia Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico.
| |
Collapse
|
23
|
Cota-Ruiz K, Peregrino-Uriarte AB, Felix-Portillo M, Martínez-Quintana JA, Yepiz-Plascencia G. Expression of fructose 1,6-bisphosphatase and phosphofructokinase is induced in hepatopancreas of the white shrimp Litopenaeus vannamei by hypoxia. MARINE ENVIRONMENTAL RESEARCH 2015; 106:1-9. [PMID: 25725474 DOI: 10.1016/j.marenvres.2015.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Marine organisms are exposed to hypoxia in natural ecosystems and during farming. In these circumstances marine shrimp survive and synthesize ATP by anaerobic metabolism. Phosphofructokinase (PFK) and fructose 1,6-bisphosphatase (FBP) are key enzymes in carbohydrate metabolism. Here we report the cDNA of FBP from the shrimp Litopenaeus vannamei hepatopancreas and expression of PFK and FBP under normoxia and hypoxia. Hypoxia induces PFK and FBP expression in hepatopancreas but not in gills and muscle. Induction in hepatopancreas of the glycolytic and gluconeogenic key enzymes, PFK and FBP, suggests that PFK could be a key factor for increasing anaerobic rate, while FBP is probably involved in the activation of gluconeogenesis or the pentose-phosphates pathway during hypoxia in the highly active metabolism of hepatopancreas.
Collapse
Affiliation(s)
- Keni Cota-Ruiz
- Centro de Investigación en Alimentación y Desarrollo, A.C., P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C., P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Monserrath Felix-Portillo
- Centro de Investigación en Alimentación y Desarrollo, A.C., P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - José A Martínez-Quintana
- Centro de Investigación en Alimentación y Desarrollo, A.C., P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C., P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6 Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
24
|
Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front Physiol 2015; 6:91. [PMID: 25852576 PMCID: PMC4369647 DOI: 10.3389/fphys.2015.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Tetraspanins belong to a family of transmembrane proteins which play a major role in the organization of the plasma membrane. While all immune cells express tetraspanins, most of these are present in a variety of other cell types. There are a select few, such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins associate with numerous partners involved in a diverse set of biological processes, including cell activation, survival, proliferation, adhesion, and migration. The historical view has assigned them a scaffolding role, but recent discoveries suggest some tetraspanins can directly participate in signaling through interactions with cytoplasmic proteins. Given their potential roles in supporting tumor survival and immune evasion, an improved understanding of tetraspanin activity could prove clinically valuable. This review will focus on emerging data in the study of tetraspanins, advances in the clinical development of anti-CD37 therapeutics, and the future prospects of targeting tetraspanins in hematological malignancy.
Collapse
Affiliation(s)
- Kyle A Beckwith
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University Columbus, OH, USA ; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Columbus, OH, USA
| |
Collapse
|
25
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
26
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2547-75. [PMID: 25448878 DOI: 10.1016/j.bbamem.2014.10.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Danya Ben-Hail
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lee Admoni
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Kolawole AO, Kolawole AN. Insecticides and Bio-insecticides Modulate the Glutathione-related Antioxidant Defense System of Cowpea Storage Bruchid ( Callosobruchus maculatus). INTERNATIONAL JOURNAL OF INSECT SCIENCE 2014; 6:10.4137_IJIS.S18029. [PMID: 35241959 DOI: 10.1177/ijis.s18029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 05/28/2023]
Abstract
The possible cellular involvements of cowpea storage bruchid (Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae]) glutathione and its related enzymes system in the cellular defense against insecticides (Cypermethrin and λ-cyhalothrin) and bio-insecticides (ethanolic extract of Tithonia diversifolia, Cyperus rotundus, Hyptis suavolens leaves, and Jatropha curcas seed) were investigated. The results showed that the effect of insecticides and bio-insecticides on the C. maculatus is a function of oxidative and nitrosative stresses generated in vivo. A significant (p < 0.05) increase in carbonyl protein (CP) and lipid peroxidation (LPO) contents in bio-insecticides and insecticides exposed groups compared to the control indicates the extent of vital organs damage. These stresses caused similar and significant increase of glutathione peroxidase and glutathione synthetase in response to insecticides and bio-insecticide exposure in a dose-dependent manner. There was no post-translational modification of glutathione transferases expression induced. The alterations of the insect glutathione-dependent antioxidant enzyme activities reflect the presence of a functional defense mechanism against the oxidative and nitrosative stress and are related firmly to the glutathione demands and metabolism but appear inadequate by the significant reduction in glutathione reductase (GR) activity to prevent the damages. Exogenous application of reduced glutathione (GSH), to complement the in vivo demand, could not protect against the onslaught.
Collapse
Affiliation(s)
- Ayodele O Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Adejoke N Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
28
|
Lok HC, Sahni S, Richardson V, Kalinowski DS, Kovacevic Z, Lane DJR, Richardson DR. Glutathione S-transferase and MRP1 form an integrated system involved in the storage and transport of dinitrosyl-dithiolato iron complexes in cells. Free Radic Biol Med 2014; 75:14-29. [PMID: 25035074 DOI: 10.1016/j.freeradbiomed.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Nitrogen monoxide (NO) is vital for many essential biological processes as a messenger and effector molecule. The physiological importance of NO is the result of its high affinity for iron in the active sites of proteins such as guanylate cyclase. Indeed, NO possesses a rich coordination chemistry with iron and the formation of dinitrosyl-dithiolato iron complexes (DNICs) is well documented. In mammals, NO generated by cytotoxic activated macrophages has been reported to play a role as a cytotoxic effector against tumor cells by binding and releasing intracellular iron. Studies from our laboratory have shown that two proteins traditionally involved in drug resistance, namely multidrug-resistance protein 1 and glutathione S-transferase, play critical roles in intracellular NO transport and storage through their interaction with DNICs (R.N. Watts et al., Proc. Natl. Acad. Sci. USA 103:7670-7675, 2006; H. Lok et al., J. Biol. Chem. 287:607-618, 2012). Notably, DNICs are present at high concentrations in cells and are biologically available. These complexes have a markedly longer half-life than free NO, making them an ideal "common currency" for this messenger molecule. Considering the many critical roles NO plays in health and disease, a better understanding of its intracellular trafficking mechanisms will be vital for the development of new therapeutics.
Collapse
Affiliation(s)
- H C Lok
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - S Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - V Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - D S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Z Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - D J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Zou YX, Shen WZ, Liao ST, Liu F, Zheng SQ, Blumberg JB, Chen CYO. Mulberry leaf phenolics ameliorate hyperglycemia-induced oxidative stress and stabilize mitochondrial membrane potential in HepG2 cells. Int J Food Sci Nutr 2014; 65:960-6. [PMID: 25026091 DOI: 10.3109/09637486.2014.940285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To investigate the effect of phenolics in mulberry leaves (mulberry leaf phenolics; MLP) on hyperglycemia-induced oxidative stress and mitochondrial membrane potential (ΔΨm) in HepG2 cells; we treated HepG2 with glucose [5.5 (N-Glc) or 50 mmol/L (Hi-Glc)] with or without MLP at 10 or 100 µmol/L gallic acid equivalents and assessed level of reactive oxidant species (ROS), ΔΨm, malondialdehyde (MDA) and nuclear factor-kappaB (NF-κB) activation. Hi-Glc-induced oxidative damage was demonstrated by a series of increase in superoxides (560%, 0.5 h), MDA (400%, 24 h), NF-κB activation (474%, 4 h) and a wild fluctuation of ΔΨm relative to the control cells (p ≤ 0.05). MLP treatments ameliorate Hi-Glc-induced negative effects by a 40% reduction in ROS production, 34-44% reduction in MDA production, over 35% inhibition of NF-κB activation, as well as exert protective effect on HepG2 cells from change in ΔΨm. Our data show that MLP in vitro can protect hepatoctyes from hyperglycemia-induced oxidative damages.
Collapse
Affiliation(s)
- Yu-Xiao Zou
- Sericulture & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou , PR China and
| | | | | | | | | | | | | |
Collapse
|
30
|
Weisthal S, Keinan N, Ben-Hail D, Arif T, Shoshan-Barmatz V. Ca(2+)-mediated regulation of VDAC1 expression levels is associated with cell death induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2270-81. [PMID: 24704533 DOI: 10.1016/j.bbamcr.2014.03.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/07/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
VDAC1, an outer mitochondrial membrane (OMM) protein, is crucial for regulating mitochondrial metabolic and energetic functions and acts as a convergence point for various cell survival and death signals. VDAC1 is also a key player in apoptosis, involved in cytochrome c (Cyto c) release and interactions with anti-apoptotic proteins. Recently, we demonstrated that various pro-apoptotic agents induce VDAC1 oligomerization and proposed that a channel formed by VDAC1 oligomers mediates cytochrome c release. As VDAC1 transports Ca(2+) across the OMM and because Ca(2+) has been implicated in apoptosis induction, we addressed the relationship between cytosolic Ca(2+) levels ([Ca(2)(+)]i), VDAC1 oligomerization and apoptosis induction. We demonstrate that different apoptosis inducers elevate cytosolic Ca(2+) and induce VDAC1 over-expression. Direct elevation of [Ca(2+)]i by the Ca(2+)-mobilizing agents A23187, ionomycin and thapsigargin also resulted in VDAC1 over-expression, VDAC1 oligomerization and apoptosis. In contrast, decreasing [Ca(2+)]i using the cell-permeable Ca(2+)-chelating reagent BAPTA-AM inhibited VDAC1 over-expression, VDAC1 oligomerization and apoptosis. Correlation between the increase in VDAC1 levels and oligomerization, [Ca(2+)]i levels and apoptosis induction, as induced by H2O2 or As2O3, was also obtained. On the other hand, cells transfected to overexpress VDAC1 presented Ca(2+)-independent VDAC1 oligomerization, cytochrome c release and apoptosis, suggesting that [Ca(2+)]i elevation is not a pre-requisite for apoptosis induction when VDAC1 is over-expressed. The results suggest that Ca(2+) promotes VDAC1 over-expression by an as yet unknown signaling pathway, leading to VDAC1 oligomerization, ultimately resulting in apoptosis. These findings provide a new insight into the mechanism of action of existing anti-cancer drugs involving induction of VDAC1 over-expression as a mechanism for inducing apoptosis. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Shira Weisthal
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nurit Keinan
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Danya Ben-Hail
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tasleem Arif
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
31
|
Tonni G, Leoncini S, Signorini C, Ciccoli L, De Felice C. Pathology of perinatal brain damage: background and oxidative stress markers. Arch Gynecol Obstet 2014; 290:13-20. [PMID: 24643805 DOI: 10.1007/s00404-014-3208-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/03/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE To review historical scientific background and new perspective on the pathology of perinatal brain damage. The relationship between birth asphyxia and subsequent cerebral palsy has been extensively investigated. The role of new and promising clinical markers of oxidative stress (OS) is presented. METHODS Electronic search of PubMed-Medline/EMBASE database has been performed. Laboratory and clinical data involving case series from the research group are reported. RESULTS The neuropathology of birth asphyxia and subsequent perinatal brain damage as well as the role of electronic fetal monitoring are reported following a review of the medical literature. CONCLUSIONS This review focuses on OS mechanisms underlying the neonatal brain damage and provides different perspective on the most reliable OS markers during the perinatal period. In particular, prior research work on neurodevelopmental diseases, such as Rett syndrome, suggests the measurement of oxidized fatty acid molecules (i.e., F4-Neuroprostanes and F2-Dihomo-Isoprostanes) closely related to brain white and gray matter oxidative damage.
Collapse
Affiliation(s)
- Gabriele Tonni
- Prenatal Diagnostic Service, Guastalla Civil Hospital, AUSL Reggio Emilia, Via Donatori Sangue, 1, 42016, Guastalla, Reggio Emilia, Italy,
| | | | | | | | | |
Collapse
|
32
|
Tohge T, Fernie AR. Lignin, mitochondrial family, and photorespiratory transporter classification as case studies in using co-expression, co-response, and protein locations to aid in identifying transport functions. FRONTIERS IN PLANT SCIENCE 2014; 5:75. [PMID: 24672529 PMCID: PMC3955873 DOI: 10.3389/fpls.2014.00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Whole genome sequencing and the relative ease of transcript profiling have facilitated the collection and data warehousing of immense quantities of expression data. However, a substantial proportion of genes are not yet functionally annotated a problem which is particularly acute for transport proteins. In Arabidopsis, for example, only a minor fraction of the estimated 700 intracellular transporters have been identified at the molecular genetic level. Furthermore it is only within the last couple of years that critical genes such as those encoding the final transport step required for the long distance transport of sucrose and the first transporter of the core photorespiratory pathway have been identified. Here we will describe how transcriptional coordination between genes of known function and non-annotated genes allows the identification of putative transporters on the premise that such co-expressed genes tend to be functionally related. We will additionally extend this to include the expansion of this approach to include phenotypic information from other levels of cellular organization such as proteomic and metabolomic data and provide case studies wherein this approach has successfully been used to fill knowledge gaps in important metabolic pathways and physiological processes.
Collapse
Affiliation(s)
- Takayuki Tohge
- *Correspondence: Takayuki Tohge, Department 1 (Willmitzer), Central Metabolism, Max Planck Institute for Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany e-mail:
| | | |
Collapse
|
33
|
Kolawole AO, Kolawole AN. Insecticides and Bio-insecticides Modulate the Glutathione-related Antioxidant Defense System of Cowpea Storage Bruchid ( Callosobruchus maculatus). INTERNATIONAL JOURNAL OF INSECT SCIENCE 2014; 6:10.4137_IJIS.S18029. [PMID: 35241959 PMCID: PMC8848080 DOI: 10.4137/ijis.s18029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 05/12/2023]
Abstract
The possible cellular involvements of cowpea storage bruchid (Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae]) glutathione and its related enzymes system in the cellular defense against insecticides (Cypermethrin and λ-cyhalothrin) and bio-insecticides (ethanolic extract of Tithonia diversifolia, Cyperus rotundus, Hyptis suavolens leaves, and Jatropha curcas seed) were investigated. The results showed that the effect of insecticides and bio-insecticides on the C. maculatus is a function of oxidative and nitrosative stresses generated in vivo. A significant (p < 0.05) increase in carbonyl protein (CP) and lipid peroxidation (LPO) contents in bio-insecticides and insecticides exposed groups compared to the control indicates the extent of vital organs damage. These stresses caused similar and significant increase of glutathione peroxidase and glutathione synthetase in response to insecticides and bio-insecticide exposure in a dose-dependent manner. There was no post-translational modification of glutathione transferases expression induced. The alterations of the insect glutathione-dependent antioxidant enzyme activities reflect the presence of a functional defense mechanism against the oxidative and nitrosative stress and are related firmly to the glutathione demands and metabolism but appear inadequate by the significant reduction in glutathione reductase (GR) activity to prevent the damages. Exogenous application of reduced glutathione (GSH), to complement the in vivo demand, could not protect against the onslaught.
Collapse
Affiliation(s)
- Ayodele O. Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
- ;
| | - Adejoke N. Kolawole
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
34
|
Badave KD, Patil SS, Khan AA, Srinivas D, Butcher RJ, Gonnade RG, Puranik VG, Pinjari RV, Gejji SP, Rane SY. Cu( ii) conjugation along the transformation of a vitamin K 3derivative to a dinaphthoquinone methide radical. NEW J CHEM 2014. [DOI: 10.1039/c3nj00783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Palanisamy AP, Cheng G, Sutter AG, Evans ZP, Polito CC, Jin L, Liu J, Schmidt MG, Chavin KD. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death. Metab Syndr Relat Disord 2013; 12:132-42. [PMID: 24320727 DOI: 10.1089/met.2013.0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.
Collapse
Affiliation(s)
- Arun P Palanisamy
- 1 Department of Transplant Surgery, Medical University of South Carolina , Charleston, South Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fu X, Sun Y, Wang J, Xing Q, Zou J, Li R, Wang Z, Wang S, Hu X, Zhang L, Bao Z. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri. Mol Ecol Resour 2013; 14:184-98. [PMID: 24128079 DOI: 10.1111/1755-0998.12169] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 12/14/2022]
Abstract
Marine organisms are commonly exposed to variable environmental conditions, and many of them are under threat from increased sea temperatures caused by global climate change. Generating transcriptomic resources under different stress conditions are crucial for understanding molecular mechanisms underlying thermal adaptation. In this study, we conducted transcriptome-wide gene expression profiling of the scallop Chlamys farreri challenged by acute and chronic heat stress. Of the 13 953 unique tags, more than 850 were significantly differentially expressed at each time point after acute heat stress, which was more than the number of tags differentially expressed (320-350) under chronic heat stress. To obtain a systemic view of gene expression alterations during thermal stress, a weighted gene coexpression network was constructed. Six modules were identified as acute heat stress-responsive modules. Among them, four modules involved in apoptosis regulation, mRNA binding, mitochondrial envelope formation and oxidation reduction were downregulated. The remaining two modules were upregulated. One was enriched with chaperone and the other with microsatellite sequences, whose coexpression may originate from a transcription factor binding site. These results indicated that C. farreri triggered several cellular processes to acclimate to elevated temperature. No modules responded to chronic heat stress, suggesting that the scallops might have acclimated to elevated temperature within 3 days. This study represents the first sequencing-based gene network analysis in a nonmodel aquatic species and provides valuable gene resources for the study of thermal adaptation, which should assist in the development of heat-tolerant scallop lines for aquaculture.
Collapse
Affiliation(s)
- X Fu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tompkins VS, Han SS, Olivier A, Syrbu S, Bair T, Button A, Jacobus L, Wang Z, Lifton S, Raychaudhuri P, Morse HC, Weiner G, Link B, Smith BJ, Janz S. Identification of candidate B-lymphoma genes by cross-species gene expression profiling. PLoS One 2013; 8:e76889. [PMID: 24130802 PMCID: PMC3793908 DOI: 10.1371/journal.pone.0076889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the "mouse filter" for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists.
Collapse
Affiliation(s)
- Van S. Tompkins
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seong-Su Han
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alicia Olivier
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sergei Syrbu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Bair
- Bioinformatics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Anna Button
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
| | - Laura Jacobus
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Samuel Lifton
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Statistics & Actuarial Science, University of Iowa College of Liberal Arts & Sciences, Iowa City, Iowa, United States of America
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States of America
| | - Herbert C. Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - George Weiner
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian Link
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Brian J. Smith
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Siegfried Janz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
38
|
Huber SM, Butz L, Stegen B, Klumpp D, Braun N, Ruth P, Eckert F. Ionizing radiation, ion transports, and radioresistance of cancer cells. Front Physiol 2013; 4:212. [PMID: 23966948 PMCID: PMC3743404 DOI: 10.3389/fphys.2013.00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Radiation Oncology, University of Tübingen Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Graw JA, von Haefen C, Poyraz D, Möbius N, Sifringer M, Spies CD. Chronic alcohol consumption increases the expression of uncoupling protein-2 and -4 in the brain. Alcohol Clin Exp Res 2013; 37:1650-6. [PMID: 23800309 DOI: 10.1111/acer.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/07/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chronic alcohol consumption leads to oxidative stress in a variety of cells, especially in brain cells because they have a reduced oxidative metabolism of alcohol. Uncoupling proteins (UCPs) are anion channels of the inner mitochondrial membrane, which can decouple internal respiration. "Mild uncoupling" of the mitochondrial respiratory chain leads to a reduced production of free radicals (reactive oxygen species) and a reduction in oxidative cell stress. The extent to which chronic alcohol consumption regulates UCP-2 and -4 in the brain is still unknown. METHODS We examined the effects of a 12-week 5% alcohol diet in the brain of male Wistar rats (n = 34). Cerebral gene and protein expression of UCP-2, -4, as well as Bcl-2, and the release of cytochrome c out of the mitochondria were detected by real-time polymerase chain reaction and Western blot analysis. The percentage of degenerated cells was determined by Fluoro-Jade B staining of brain slices. RESULTS Brains of rats with a chronic alcohol diet showed an increased gene and protein expression of UCP-2 and -4. The expression of the antiapoptotic protein Bcl-2 in the brain of the alcohol-treated animals was decreased significantly, whereas cytochrome c release from mitochondria was increased. In addition increased neurodegeneration could be demonstrated in the alcohol-treated animals. CONCLUSIONS Chronic alcohol consumption leads to a cerebral induction of UCP-2 and -4 with a simultaneous decrease in the antiapoptotic protein Bcl-2, cytochrome c release from mitochondria and increased neurodegeneration. This study reveals a compensatory effect of UCP-2 and -4 in the brain during chronic alcohol consumption.
Collapse
Affiliation(s)
- Jan A Graw
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Keinan N, Pahima H, Ben-Hail D, Shoshan-Barmatz V. The role of calcium in VDAC1 oligomerization and mitochondria-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1745-54. [PMID: 23542128 DOI: 10.1016/j.bbamcr.2013.03.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/17/2022]
Abstract
The voltage-dependent anion channel (VDAC), located at the outer mitochondria membrane (OMM), mediates interactions between mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca(2+), and metabolites. Substantial evidence points to VDAC1 as being a key player in apoptosis, regulating the release of apoptogenic proteins from mitochondria, such as cytochrome c, and interacting with anti-apoptotic proteins. Recently, we demonstrated that VDAC1 oligomerization is a general mechanism common to numerous apoptogens acting via different initiating cascades and proposed that a protein-conducting channel formed within a VDAC1 homo/hetero oligomer mediates cytochrome c release. However, the molecular mechanism responsible for VDAC1 oligomerization remains unclear. Several studies have shown that mitochondrial Ca(2+) is involved in apoptosis induction and that VDAC1 possesses Ca(2+)-binding sites and mediates Ca(2+) transport across the OMM. Here, the relationship between the cellular Ca(2+) level, [Ca(2+)]i, VDAC1 oligomerization and apoptosis was studied. Decreasing [Ca(2+)]i using the cell-permeable Ca(2+) chelating reagent BAPTA-AM was found to inhibit VDAC1 oligomerization and apoptosis, while increasing [Ca(2+)]i using Ca(2+) ionophore resulted in VDAC1 oligomerization and apoptosis induction in the absence of apoptotic stimuli. Moreover, induction of apoptosis elevated [Ca(2+)]i, concomitantly with VDAC1 oligomerization. AzRu-mediated inhibition of mitochondrial Ca(2+) transport decreased VDAC1 oligomerization, suggesting that mitochondrial Ca(2+) is required for VDAC1 oligomerization. In addition, increased [Ca(2+)]i levels up-regulate VDAC1 expression. These results suggest that Ca(2+) promotes VDAC1 oligomerization via activation of a yet unknown signaling pathway or by increasing VDAC1 expression, leading to apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Nurit Keinan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
41
|
Christensen BO, Overgaard J, Vorum H, Honore B, Damsgaard TE. A proteomic analysis of the effect of radiation therapy on wound healing in women reconstructed with the TRAM flap. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.411134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Shoshan-Barmatz V, Mizrachi D, Keinan N. Oligomerization of the Mitochondrial Protein VDAC1. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:303-34. [DOI: 10.1016/b978-0-12-386931-9.00011-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Shoshan-Barmatz V, Mizrachi D. VDAC1: from structure to cancer therapy. Front Oncol 2012; 2:164. [PMID: 23233904 PMCID: PMC3516065 DOI: 10.3389/fonc.2012.00164] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/24/2012] [Indexed: 12/14/2022] Open
Abstract
Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to cancer. Found at the outer mitochondrial membrane, VDAC1 assumes a crucial position in the cell, controlling the metabolic cross-talk between mitochondria and the rest of the cell. Moreover, its location at the boundary between the mitochondria and the cytosol enables VDAC1 to interact with proteins that mediate and regulate the integration of mitochondrial functions with other cellular activities. As a metabolite transporter, VDAC1 contributes to the metabolic phenotype of cancer cells. This is reflected by VDAC1 over-expression in many cancer types, and by inhibition of tumor development upon silencing VDAC1 expression. Along with regulating cellular energy production and metabolism, VDAC1 is also a key protein in mitochondria-mediated apoptosis, participating in the release of apoptotic proteins and interacting with anti-apoptotic proteins. The involvement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space is discussed, as is VDAC1 oligomerization as an important step in apoptosis induction. VDAC also serves as an anchor point for mitochondria-interacting proteins, some of which are also highly expressed in many cancers, such as hexokinase (HK), Bcl2, and Bcl-xL. By binding to VDAC, HK provides both metabolic benefit and apoptosis-suppressive capacity that offers the cell a proliferative advantage and increases its resistance to chemotherapy. VDAC1-based peptides that bind specifically to HK, Bcl2, or Bcl-xL abolished the cell’s abilities to bypass the apoptotic pathway. Moreover, these peptides promote cell death in a panel of genetically characterized cell lines derived from different human cancers. These and other functions point to VDAC1 as a rational target for the development of a new generation of therapeutics.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel ; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | |
Collapse
|
44
|
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong ANT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther 2012; 137:153-71. [PMID: 23041058 DOI: 10.1016/j.pharmthera.2012.09.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/17/2012] [Indexed: 02/06/2023]
Abstract
Reactive metabolites from carcinogens and oxidative stress can drive genetic mutations, genomic instability, neoplastic transformation, and ultimately carcinogenesis. Numerous dietary phytochemicals in vegetables/fruits have been shown to possess cancer chemopreventive effects in both preclinical animal models and human epidemiological studies. These phytochemicals could prevent the initiation of carcinogenesis via either direct scavenging of reactive oxygen species/reactive nitrogen species (ROS/RNS) or, more importantly, the induction of cellular defense detoxifying/antioxidant enzymes. These defense enzymes mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against ROS/RNS and reactive metabolites of carcinogens. In addition, these compounds would kill initiated/transformed cancer cells in vitro and in in vivo xenografts via diverse anti-cancer mechanisms. These mechanisms include the activation of signaling kinases (e.g., JNK), caspases and the mitochondria damage/cytochrome c pathways. Phytochemicals may also have anti-cancer effects by inhibiting the IKK/NF-κB pathway, inhibiting STAT3, and causing cell cycle arrest. In addition, other mechanisms may include epigenetic alterations (e.g., inhibition of HDACs, miRNAs, and the modification of the CpG methylation of cancer-related genes). In this review, we will discuss: the current advances in the study of Nrf2 signaling; Nrf2-deficient tumor mouse models; the epigenetic control of Nrf2 in tumorigenesis and chemoprevention; Nrf2-mediated cancer chemoprevention by naturally occurring dietary phytochemicals; and the mutation or hyper-expression of the Nrf2-Keap1 signaling pathway in advanced tumor cells. The future development of dietary phytochemicals for chemoprevention must integrate in vitro signaling mechanisms, relevant biomarkers of human diseases, and combinations of different phytochemicals and/or non-toxic therapeutic drugs, including NSAIDs.
Collapse
Affiliation(s)
- Jong Hun Lee
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
45
|
Gnanalingham M, Hyatt M, Bispham J, Mostyn A, Clarke L, Budge H, Symonds M, Stephenson T. Maternal dexamethasone administration and the maturation of perirenal adipose tissue of the neonatal sheep. Organogenesis 2012; 4:188-94. [PMID: 19279732 DOI: 10.4161/org.4.3.6506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022] Open
Abstract
Maternal dexamethasone administration promotes fetal maturation such that thermoregulation is improved following premature delivery and is thus comparable with a full term birth. In the present study we determined the impact of dexamethasone on both the mothers' metabolic status together with adipose tissue function in the newborn. Glucocorticoid action, adipokine gene expression and mitochondrial protein abundance were measured in perirenal adipose tissue of neonatal sheep that were born into either a warm (30 degrees C) or cool (15 degrees C) ambient temperature at 140 days of gestation (dGA; term approximately 147 dGA), either two days after maternal dexamethasone administration, or at 146 dGA for controls. Dexamethasone administration resulted in a reduction in maternal food intake in conjunction with raised plasma cortisol and free triiodothyronine. In offspring of dexamethasone administered mothers, plasma cortisol was lower and non-esterified fatty acids (NEFA) higher than controls. Glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase (11beta-HSD1), interleukin-6 and uncoupling protein (UCP)1 and 2 mRNA together with voltage dependent anion channel, cytochrome c protein and UCP1 abundance were all increased by dexamethasone administration and being born into a cool ambient temperature. Gene expression of tumor necrosis factor alpha, adiponectin and peroxisome proliferator-activated receptor transcription factor gamma were unaffected by dexamethasone. The abundance of mRNA for the GR, 11beta-HSD1, UCP1 and 2 mRNA together with each protein were positively correlated to plasma NEFA and negatively correlated to plasma cortisol. In conclusion, despite reduced maternal food intake dexamethasone promotes maturation of glucocorticoid action and mitochondrial protein abundance in the newborn, an adaptation dependent on delivery temperature.
Collapse
Affiliation(s)
- Mg Gnanalingham
- Centre for Reproduction and Early Life; Institute of Clinical Research; University of Nottingham; Nottingham UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mostyn A, Bos PM, Litten JC, Laws J, Symonds ME, Clarke L. Differential effects of thyroid hormone manipulation and beta adrenoceptor agonist administration on uncoupling protein mRNA abundance in adipose tissue and thermoregulation in neonatal pigs. Organogenesis 2012; 4:182-7. [PMID: 19279731 DOI: 10.4161/org.4.3.6505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/31/2008] [Indexed: 01/28/2023] Open
Abstract
We have shown that there is significant disparity in the expression of uncoupling proteins (UCP) 2 and 3 between modern-commercial and ancient-Meishan porcine genotypes, commercial pigs also have higher plasma triiodothyronine (T(3)) in on the first day of life. T(3) and the sympathetic nervous system are both known to regulate UCPs in rodents and humans; their role in regulating these proteins in the pig is unknown. This study examined whether thyroid hormone manipulation or administration of a selective beta3 adrenoceptor agonist (ZD) influenced plasma hormones, colonic temperature and UCP expression in adipose tissue of two breeds of pig. To mimic the differences observed in thyroid hormone status, piglets from Meishan and commercial litters were randomly assigned to control (1 ml/kg water), T(3) (10 mg/kg) (Meishan only), methimazole (a commonly used antithyroid drug) (50 mg/kg) (commercial only) or ZD (10 mg/kg) oral administration for the first 4 days of postnatal life. Adipose tissue UCP2/3 mRNA abundance was measured on day 4 using PCR. T(3) administration raised plasma T(3) concentrations and increased colonic temperature on day 4. UCP3 mRNA abundance was higher in Meishan, than commercial piglets (p = 0.042) and was downregulated following T(3) administration (p = 0.014). Irrespective of genotype, ZD increased UCP2 mRNA abundance (Meishan p = 0.05, commercial p = 0.03). Expression of neither UCP2 nor 3 was related to colonic temperature, regardless of treatment. In conclusion, we have demonstrated a dissociation between thyroid hormones and the sympathetic nervous system in the regulation of UCPs in porcine adipose tissue. We have also suggested that expression of adipose tissue UCP2 and 3 are not related to body temperature in piglets.
Collapse
Affiliation(s)
- Alison Mostyn
- Centre for Reproduction and Early Life; Institute of Clinical Research; University Hospital; Nottingham United Kingdom
| | | | | | | | | | | |
Collapse
|
47
|
Wang LS, Xia L, Shen SM, Zheng Y, Yu Y, Chen GQ. Dissecting cell death with proteomic scalpels. Proteomics 2012; 12:597-606. [DOI: 10.1002/pmic.201100353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
|
48
|
Shoshan-Barmatz V, Ben-Hail D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 2012; 12:24-34. [DOI: 10.1016/j.mito.2011.04.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/16/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
|
49
|
Gizak A, Pirog M, Rakus D. Muscle FBPase binds to cardiomyocyte mitochondria under glycogen synthase kinase-3 inhibition or elevation of cellular Ca2+ level. FEBS Lett 2011; 586:13-9. [PMID: 22154964 DOI: 10.1016/j.febslet.2011.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that fructose 1,6-bisphosphatase (FBPase) might be involved in regulation of cell mortality/survival. However, the precise role of FBPase in the process remains unknown. Here, we show for the first time that in HL-1 cardiomyocytes, inhibition of glycogen synthase kinase-3 results in translocation of FBPase to mitochondria. In vitro experiments demonstrate that FBPase reduces the rate of calcium-induced mitochondrial swelling, affects ATP synthesis and interacts with mitochondrial proteins involved in regulation of volume and energy homeostasis. We suggest that FBPase might be engaged in a regulation of cell survival by influencing mitochondrial function.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Poland
| | | | | |
Collapse
|
50
|
Abstract
Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca(2+) loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca(2+) signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP(3) receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca(2+) signals to mitochondria in apoptosis.
Collapse
|