1
|
Smith TJ. TSHR-IGF-IR complex drives orbital fibroblast misbehavior in thyroid eye disease. Curr Opin Endocrinol Diabetes Obes 2024; 31:177-183. [PMID: 39082947 DOI: 10.1097/med.0000000000000878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
PURPOSE OF REVIEW Evolving understanding of thyroid eye disease (TED) has led to rapidly advancing therapeutic options. Most new treatments under development or recently available to patients are predicated on insights into disease mechanism. RECENT FINDINGS TED, a disfiguring process, involves inflammation and remodeling of the connective tissues around the eye. TED most frequently presents as a component of Graves' disease. Advances in our understanding of cells involved in TED and their molecular interactions have led to novel therapeutic targets. Among these cell types are orbital fibroblasts and a subset comprising monocyte progenitor cells, known as CD34 + CXCR4 + fibrocytes. Among the attributes of fibrocytes is their expression of several autoantigens associated with Graves' disease, including TSHR, thyroglobulin and thyroperoxidase. Fibrocytes also express high levels of the insulin-like growth factor-I (IGF-I) receptor, thought to mediate fibroblast activation. Therapeutically targeting the TSHR/IGF-IR receptor complex using an IGF-I receptor antagonist, teprotumumab, has resulted in substantial clinical benefit for patients with TED. The neural axon repellent, Slit2, and its cognate receptor, ROBO1, appear to modulate the inflammatory phenotype of these orbit-infiltrating fibrocytes. SUMMARY More detailed understanding of orbital fibroblasts and the distinctions between cell subsets comprising them should lead to more effective therapies with fewer side effects.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Moledina M, Damato EM, Lee V. The changing landscape of thyroid eye disease: current clinical advances and future outlook. Eye (Lond) 2024; 38:1425-1437. [PMID: 38374366 PMCID: PMC11126416 DOI: 10.1038/s41433-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
AIMS This review aims to provide an overview of the current understanding of TED and its pathophysiology. To describe the evidence base for current consensus treatment recommendations and newer biological therapies available as well as to present future therapeutic research. METHODS We reviewed and assessed the peer-reviewed literature placing particular emphasis on recent studies evaluating the pathophysiology of TED, landmark trials forming the basis of current management and recent clinical trials informing future therapeutics. Searched were made in MEDLINE Ovid, Embase Ovid, US National Institutes of Health Ongoing Trials Register and EU Clinical Trials Register. Keywords included: "Thyroid Eye Disease", "Graves Orbitopathy", "Thyroid Orbitopathy" and "Graves' Ophthalmopathy". RESULTS AND CONCLUSIONS The pathophysiology of TED involves a complex array of cellular and humoral based autoimmune dysfunction. Previous therapies have been broad-based acting as a blunt instrument on this mechanism with varying efficacy but often accompanied with a significant side effect profile. The recent development of targeted therapy, spearheaded by Teprotumumab has led to an array of treatments focusing on specific components of the molecular pathway optimising their impact whilst possibly minimising their side effect profile. Future challenges involve identifying the most effective target for each patient rather than any single agent being a panacea. Long-term safety profiles will require clarification as unintended immunological consequence downstream may become manifest as seen in other diseases. Finally, future novel therapeutics will entail significant expenditure and may lead to a divergence of available treatment modalities between healthcare systems due to funding disparities.
Collapse
Affiliation(s)
- Malik Moledina
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Erika M Damato
- Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vickie Lee
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
3
|
Abstract
CONTEXT Thyroid eye disease (TED), a vision-threatening and disfiguring autoimmune process, has thwarted our efforts to understand its pathogenesis and develop effective and safe treatments. Recent scientific advances have facilitated improved treatment options. OBJECTIVE Review historically remote and recent advances in understanding TED. DESIGN/SETTING/PARTICIPANTS PubMed was scanned using search terms including thyroid-associated ophthalmopathy, thyroid eye disease, Graves' orbitopathy, autoimmune thyroid disease, and orbital inflammation. MAIN OUTCOME MEASURES Strength of scientific evidence, size, scope, and controls of clinical trials/observations. RESULTS Glucocorticoid steroids are widely prescribed systemic medical therapy. They can lessen inflammation-related manifestations of TED but fail to reliably reduce proptosis and diplopia, 2 major causes of morbidity. Other current therapies include mycophenolate, rituximab (anti-CD20 B cell-depleting monoclonal antibody), tocilizumab (interleukin-6 receptor antagonist), and teprotumumab (IGF-I receptor inhibitor). Several new therapeutic approaches have been proposed including targeting prostaglandin receptors, vascular endothelial growth factor, mTOR, and cholesterol pathways. Of potentially greater long-term importance are attempts to restore immune tolerance. CONCLUSION Despite their current wide use, steroids may no longer enjoy first-tier status for TED as more effective and better tolerated medical options become available. Multiple current and emerging therapies, the rationales for which are rooted in theoretical and experimental science, promise better options. These include teprotumumab, rituximab, and tocilizumab. Restoration of immune tolerance could ultimately become the most effective and safe medical management for TED.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Abstract
PURPOSE Our understanding of thyroid-associated ophthalmopathy (TAO, A.K.A Graves' orbitopathy, thyroid eye disease) has advanced substantially, since one of us (TJS) wrote the 2010 update on TAO, appearing in this journal. METHODS PubMed was searched for relevant articles. RESULTS Recent insights have resulted from important studies conducted by many different laboratory groups around the World. A clearer understanding of autoimmune diseases in general and TAO specifically emerged from the use of improved research methodologies. Several key concepts have matured over the past decade. Among them, those arising from the refinement of mouse models of TAO, early stage investigation into restoring immune tolerance in Graves' disease, and a hard-won acknowledgement that the insulin-like growth factor-I receptor (IGF-IR) might play a critical role in the development of TAO, stand out as important. The therapeutic inhibition of IGF-IR has blossomed into an effective and safe medical treatment. Teprotumumab, a β-arrestin biased agonist monoclonal antibody inhibitor of IGF-IR has been studied in two multicenter, double-masked, placebo-controlled clinical trials demonstrated both effectiveness and a promising safety profile in moderate-to-severe, active TAO. Those studies led to the approval by the US FDA of teprotumumab, currently marketed as Tepezza for TAO. We have also learned far more about the putative role that CD34+ fibrocytes and their derivatives, CD34+ orbital fibroblasts, play in TAO. CONCLUSION The past decade has been filled with substantial scientific advances that should provide the necessary springboard for continually accelerating discovery over the next 10 years and beyond.
Collapse
Affiliation(s)
- E J Neag
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - T J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
5
|
Gálvez BG, Martinez-Perez C, Villa-Collar C, Alvarez-Peregrina C, Sánchez-Tena MÁ. Influence of Cytokines on Inflammatory Eye Diseases: A Citation Network Study. J Clin Med 2022; 11:jcm11030661. [PMID: 35160111 PMCID: PMC8836545 DOI: 10.3390/jcm11030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The main objective of this study was to use citation networks to analyze the relationship between different publications on the impact of cytokines at an ocular level and their authors. Furthermore, the different research areas will be identified, and the most cited publications determined. Methods: A search was performed in the Web of Science (WoS) database using the following keywords: “cytokine”, “inflammatory”, and “eye disease” for the period from 1990 to October 2021. The Citation Network Explorer and the CiteSpace software were then used to analyze the different publications. Results: 3127 publications with 8955 citations generated on the web were found. The largest number of publications on this topic emerged in 2018 and the authors with the largest number of publications addressing this area of research were Peizeng Yang (1.4%), Aize Kijlstra (1.3%), and Stephen C. Pflugfelder (1.2%). Conclusions: the citation network has provided a comprehensive and objective analysis of the main studies on the influence of cytokines in ocular inflammatory diseases.
Collapse
Affiliation(s)
- Beatriz G. Gálvez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - Clara Martinez-Perez
- ISEC LISBOA—Instituto Superior de Educação e Ciências, 1750-179 Lisbon, Portugal; (C.M.-P.); (M.Á.S.-T.)
| | - Cesar Villa-Collar
- Faculty of Biomedical and Health Science, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | - Cristina Alvarez-Peregrina
- Faculty of Biomedical and Health Science, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Correspondence:
| | - Miguel Ángel Sánchez-Tena
- ISEC LISBOA—Instituto Superior de Educação e Ciências, 1750-179 Lisbon, Portugal; (C.M.-P.); (M.Á.S.-T.)
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| |
Collapse
|
6
|
Huang Y, Fang S, Zhang S, Zhou H. Progress in the pathogenesis of thyroid-associated ophthalmopathy and new drug development. Taiwan J Ophthalmol 2020; 10:174-180. [PMID: 33110747 PMCID: PMC7585473 DOI: 10.4103/tjo.tjo_18_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most common extrathyroidal manifestation of toxic diffuse goiter (Graves' disease), also known as Graves' ophthalmopathy/orbitopathy. As an organ-specific autoimmune disease, the pathogenesis of TAO is still unclear. In recent years, great progress has been made in revealing the mechanism of TAO. Various biological and immunosuppressive agents have emerged in an endless stream, showing encouraging results. Strengthening the basic research, establishing ideal animal models, deeply understanding the pathogenesis, and developing novel targeted drugs are of great significance to guide the clinical diagnosis and management of TAO and improve the prognosis of patients.
Collapse
Affiliation(s)
- Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
7
|
Smith TJ. Teprotumumab as a Novel Therapy for Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:610337. [PMID: 33391187 PMCID: PMC7774640 DOI: 10.3389/fendo.2020.610337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) has remained a vexing and poorly managed autoimmune component of Graves' disease where the tissues surrounding the eye and in the upper face become inflamed and undergo remodeling. This leads to substantial facial disfigurement while in its most severe forms, TAO can threaten eye sight. In this brief paper, I review some of the background investigation that has led to development of teprotumumab as the first and only US FDA approved medical therapy for TAO. This novel treatment was predicated on recognition that the insulin-like growth factor I receptor plays an important role in the pathogenesis of TAO. It is possible that a similar involvement of that receptor in other autoimmune disease may lead to additional indications for this and alternative insulin-like growth factor I receptor-inhibiting strategies.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Terry J. Smith,
| |
Collapse
|
8
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
9
|
Immunological Aspects of Graves' Ophthalmopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7453260. [PMID: 31781640 PMCID: PMC6875285 DOI: 10.1155/2019/7453260] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The body's autoimmune process is involved in the development of Graves' disease (GD), which is manifested by an overactive thyroid gland. In some patients, autoreactive inflammatory reactions contribute to the development of symptoms such as thyroid ophthalmopathy, and the subsequent signs and symptoms are derived from the expansion of orbital adipose tissue and edema of extraocular muscles within the orbit. The autoimmune process, production of antibodies against self-antigens such as TSH receptor (TSHR) and IGF-1 receptor (IGF-1R), inflammatory infiltration, and accumulation of glycosaminoglycans (GAG) lead to edematous-infiltrative changes in periocular tissues. As a consequence, edema exophthalmos develops. Orbital fibroblasts seem to play a crucial role in orbital inflammation, tissue expansion, remodeling, and fibrosis because of their proliferative activity as well as their capacity to differentiate into adipocytes and myofibroblasts and production of GAG. In this paper, based on the available medical literature, the immunological mechanism of GO pathogenesis has been summarized. Particular attention was paid to the role of orbital fibroblasts and putative autoantigens. A deeper understanding of the pathomechanism of the disease and the involvement of immunological processes may give rise to the introduction of new, effective, and safe methods of treatment or monitoring of the disease activity.
Collapse
|
10
|
Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40:236-267. [PMID: 30215690 PMCID: PMC6338478 DOI: 10.1210/er.2018-00066] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a complex disease process presumed to emerge from autoimmunity occurring in the thyroid gland, most frequently in Graves disease (GD). It is disfiguring and potentially blinding, culminating in orbital tissue remodeling and disruption of function of structures adjacent to the eye. There are currently no medical therapies proven capable of altering the clinical outcome of TAO in randomized, placebo-controlled multicenter trials. The orbital fibroblast represents the central target for immune reactivity. Recent identification of fibroblasts that putatively originate in the bone marrow as monocyte progenitors provides a plausible explanation for why antigens, the expressions of which were once considered restricted to the thyroid, are detected in the TAO orbit. These cells, known as fibrocytes, express relatively high levels of functional TSH receptor (TSHR) through which they can be activated by TSH and the GD-specific pathogenic antibodies that underpin thyroid overactivity. Fibrocytes also express insulin-like growth factor I receptor (IGF-IR) with which TSHR forms a physical and functional signaling complex. Notably, inhibition of IGF-IR activity results in the attenuation of signaling initiated at either receptor. Some studies suggest that IGF-IR-activating antibodies are generated in GD, whereas others refute this concept. These observations served as the rationale for implementing a recently completed therapeutic trial of teprotumumab, a monoclonal inhibitory antibody targeting IGF-IR in TAO. Results of that trial in active, moderate to severe disease revealed dramatic and rapid reductions in disease activity and severity. The targeting of IGF-IR with specific biologic agents may represent a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
11
|
Huang Y, Fang S, Li D, Zhou H, Li B, Fan X. The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy. Eye (Lond) 2019; 33:176-182. [PMID: 30531993 PMCID: PMC6367411 DOI: 10.1038/s41433-018-0279-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid-associated ophthalmoapthy (TAO) is the most common orbital disease. As an autoimmune disorder, it is caused by self-reactive lymphocytes that escape immune tolerance, but the mechanism is not fully understood. The basic process of TAO is the infiltration of immune cells in orbital tissues, the activation of orbital fibroblasts (OFs), and the proliferation and differentiation of OFs and lymphocytes. Activated OFs secrete inflammatory regulators, growth factors, and chemokines, thereby maintaining and amplifying the immune responses. The interactions between OFs and lymphocytes lead to the expansion and the remodeling of the orbital tissues, presenting the clinical manifestations of TAO. This review will focus on the role of T cell subsets (Type 1, Type 2, Type 17 helper T cells, and regulatory T cells) in the pathogenesis of TAO. However, we still need further studies to unravel the pathogenesis, to confirm current hypotheses, and to provide novel ideas for appropriate clinical treatment of TAO.
Collapse
Grants
- This work was supported by the National High Technology Research and Development Program (863 Program) (2015AA020311), the National Natural Science Foundation of China (81761168037, 81770974, 81570883, 81600766, 31701046, 31600971, 31500714), the Shanghai Sailing Program (18YF1412300), the Research Grant of the Shanghai Science and Technology Committee (17DZ2260100, 14JC1493103, 12419A9300, 16411950600), the Shanghai Municipal Hospital Emerging Frontier Technology Joint Research Project (SHDC12012107), the Shanghai JiaoTong University School of Medicine Summit Plan, and the Shanghai JiaoTong University Medical and Engineering Cross Fund (YG2014MS03).
Collapse
Affiliation(s)
- Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 200011, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 200011, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 200011, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011, Shanghai, China.
| | - Bin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011, Shanghai, China.
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China.
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, 200025, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 200011, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200011, Shanghai, China.
| |
Collapse
|
12
|
Li H, Yuan Y, Zhang Y, He Q, Xu R, Ge F, Wu C. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity. Mol Med Rep 2016; 14:2799-806. [PMID: 27484716 DOI: 10.3892/mmr.2016.5570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Graves' disease is an autoimmune disease of the thyroid gland, which is characterized by hyperthyroidism, diffuse goiter and Graves' ophthalmopathy (GO). Although several therapeutic strategies for the treatment of GO have been developed, the effectiveness and the safety profile of these therapies remain to be fully elucidated. Therefore, examination of novel GO therapies remains an urgent requirement. Celastrol, a triterpenoid isolated from traditional Chinese medicine, is a promising drug for the treatment of various inflammatory and autoimmune diseases. CCK‑8 and apoptosis assays were performed to investigate cytotoxicity of celastrol and effect on apoptosis on orbital fibroblasts. Reverse transcription‑polymerase chain reaction, western blotting and ELISAs were performed to examine the effect of celastrol on interleukin (IL)‑1β‑induced inflammation in orbital fibroblasts from patients with GO. The results demonstrated that celastrol significantly attenuated the expression of IL‑6, IL‑8, cyclooxygenase (COX)‑2 and intercellular adhesion molecule‑1 (ICAM‑1), and inhibited IL‑1β‑induced increases in the expression of IL‑6, IL‑8, ICAM‑1 and COX‑2. The levels of prostaglandin E2 in orbital fibroblasts induced by IL‑1β were also suppressed by celastrol. Further investigation revealed that celastrol suppressed the IL‑1β‑induced inflammatory responses in orbital fibroblasts through inhibiting the activation of nuclear factor (NF)‑κB. Taken together, these results suggested that celastrol attenuated the IL‑1β‑induced pro‑inflammatory pathway in orbital fibroblasts from patients with GO, which was associated with the suppression of NF-κB activation.
Collapse
Affiliation(s)
- Hong Li
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Yuan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yali Zhang
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Qianwen He
- Longua Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Rongjuan Xu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Fangfang Ge
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chen Wu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Dik WA, Virakul S, van Steensel L. Current perspectives on the role of orbital fibroblasts in the pathogenesis of Graves' ophthalmopathy. Exp Eye Res 2016; 142:83-91. [PMID: 26675405 DOI: 10.1016/j.exer.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease (GD; Graves' hyperthyroidism) characterized by orbital tissue inflammation, expansion, remodeling and fibrosis. Although the initiating trigger of GO is still indistinct, excessive orbital fibroblast activity is at the heart of its pathogenesis. Orbital fibroblasts are activated by cellular interactions with immune cells and the soluble factors they secrete. Orbital fibroblasts, especially from GO patients, express the thyrotropin receptor (TSH-receptor; TSHR), and activation of the orbital fibroblast population by stimulatory autoantibodies directed against the TSHR may provide an important link between GD and GO. Furthermore, stimulatory autoantibodies directed against the insulin-like growth factor-1 receptor have been proposed to contribute to orbital fibroblast activation in GO. Activated orbital fibroblasts produce inflammatory mediators thereby contributing to the orbital inflammatory process in GO. Moreover, orbital fibroblasts exhibit robust proliferative activity and extracellular matrix (especially hyaluronan) synthesizing capacity and can differentiate into adipocytes and myofibroblasts with disease progression, thereby contributing to tissue expansion/remodeling and fibrosis in GO. Orbital fibroblasts, especially those from GO patients, exhibit a hyper-responsive phenotype when compared to fibroblasts from other anatomical regions, which may further contribute to GO pathogenesis. Fibrocytes have been identified as additional source of orbital fibroblasts in GO, where they may contribute to orbital tissue inflammation, adipogenesis and remodeling/fibrosis. This review addresses our current view on the role that orbital fibroblasts fulfill in GO pathogenesis and both established as well as less established not fully crystallized concepts that need future studies will be discussed.
Collapse
Affiliation(s)
- Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sita Virakul
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Leendert van Steensel
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
14
|
Khong JJ, McNab AA, Ebeling PR, Craig JE, Selva D. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol 2015; 100:142-50. [PMID: 26567024 DOI: 10.1136/bjophthalmol-2015-307399] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Orbital changes in thyroid orbitopathy (TO) result from de novo adipogenesis, hyaluronan synthesis, interstitial oedema and enlargement of extraocular muscles. Cellular immunity, with predominantly CD4+ T cells expressing Th1 cytokines, and overexpression of macrophage-derived cytokines, perpetuate orbital inflammation. Orbital fibroblasts appear to be the major effector cells. Orbital fibroblasts express both thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R) at higher levels than normal fibroblasts. TSHR expression increases in adipogenesis; TSHR agonism enhances hyaluronan production. IGF-1R stimulation leads to adipogenesis, hyaluronan synthesis and production of the chemokines, interleukin (IL)-16 and Regulated on Activation, Normal T Cell Expression and Secreted, which facilitate lymphocyte trafficking into the orbit. Immune activation uses a specific CD40:CD154 molecular bridge to activate orbital fibroblasts, which secrete pro-inflammatory cytokines including IL-1β, IL-1α, IL-6, IL-8, macrophage chemoattractant protein-1 and transforming growth factor-β, to perpetuate orbital inflammation. Molecular pathways including adenylyl cyclase/cyclic adenosine monophosphate, phophoinositide 3 kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase are involved in TO. The emergence of a TO animal model and a new generation of TSHR antibody assays increasingly point towards TSHR as the primary autoantigen for extrathyroidal orbital involvement. Oxidative stress in TO resulting from imbalances of the oxidation-reduction state provides a framework of understanding for smoking prevention, achieving euthyroidism and the use of antioxidants such as selenium. Progress has been made in the understanding of the pathogenesis of TO, which should advance development of novel therapies targeting cellular immunity, specifically the CD40:CD40 ligand interaction, antibody-producing B cells, cytokines, TSHR and IGF-1R and its signalling pathways. Further studies in signalling networks and molecular triggers leading to burnout of TO will further our understanding of TO.
Collapse
Affiliation(s)
- Jwu Jin Khong
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Austin Health, Department of Surgery, University of Melbourne, Heidelberg, Victoria, Australia
| | - Alan A McNab
- Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Centre of Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Peter R Ebeling
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Dinesh Selva
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Abstract
The pathophysiology of thyroid eye disease (TED) is complex and incompletely understood. Orbital fibroblasts (OFs) seem to be the key effector cells that are responsible for the characteristic soft tissue enlargement seen in TED. They express potentially pathogenic autoantigens, such as thyrotropin receptor and insulin-like growth factor-1 receptor. An intricate interplay between these autoantigens and the autoantibodies found in Graves disease may lead to the activation of OFs, which then leads to increased hyaluronan production, proinflammatory cytokine synthesis, and enhanced differentiation into either myofibroblasts or adipocytes. Some of the OFs in TED patients seem to be derived from infiltrating fibrocytes. These cells originate from the bone marrow and exhibit both fibroblast and myeloid phenotype. In the TED orbit, they may mediate the orbital expansion and inflammatory infiltration. Last, lymphocytes and cytokines are intimately involved in the initiation, amplification, and maintenance of the autoimmune process in TED.
Collapse
Affiliation(s)
- Shannon J C Shan
- Wilmer Eye Institute (SJCS), The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Kellogg Eye Center (RSD), University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
16
|
Li B, Smith TJ. Divergent expression of IL-1 receptor antagonists in CD34⁺ fibrocytes and orbital fibroblasts in thyroid-associated ophthalmopathy: contribution of fibrocytes to orbital inflammation. J Clin Endocrinol Metab 2013; 98:2783-90. [PMID: 23633206 PMCID: PMC3701275 DOI: 10.1210/jc.2013-1245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Thyroid-associated ophthalmopathy (TAO) manifests as inflammation of orbital connective tissue. Bone marrow-derived CD34⁺ fibrocytes infiltrate the orbit in TAO where they become CD34⁺ orbital fibroblasts. They express thyroid-specific antigens and thus may contribute to inflammation. Evidence suggests that orbital susceptibility to TAO may involve IL-1, which is modulated by IL-1 receptor antagonists, designated secreted (sIL-1RA) and intracellular (icIL-1RA). OBJECTIVE We sought to characterize the expression of sIL-1RA and icIL-1RA in TAO orbital fibroblasts compared to CD34⁺ fibrocytes. DESIGN/SETTING/PARTICIPANTS Patients with TAO and healthy donors were recruited from an academic medical center clinical practice. MAIN OUTCOME MEASURES Real-time PCR, cytokine-specific ELISA, gene promoter activities, transcriptional analysis, mRNA stability, and cytometric cell sorting were performed. RESULTS Orbital fibroblasts treated with IL-1β exhibit greater inductions of IL-1α, IL-1β, and prostaglandin endoperoxide H synthase-2 transcripts than do fibrocytes. Fibrocytes express dramatically higher basal levels of both icIL-1RA and sIL-1RA. When treated with IL-1β, icIL-1RA is induced in orbital fibroblasts but not sIL-1RA, whereas in fibrocytes, sIL-1RA is dominantly up-regulated. These inductions result from increased steady-state levels of respective mRNAs, enhanced transcript stabilities, and modestly increased gene transcription. CONCLUSIONS Robust responses of TAO orbital fibroblasts to IL-1β are a consequence of low-level sIL-1RA expression. This results in poorly opposed actions of IL-1β. In contrast, circulating fibrocytes express high levels of sIL-1RA, which are diminished as these cells transition to orbital fibroblasts. These findings identify an explanation for the inflammatory phenotype exhibited by TAO orbital fibroblasts and provide a potential target for altering disease susceptibility.
Collapse
Affiliation(s)
- Bin Li
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
17
|
Choi YH, Back KO, Kim HJ, Lee SY, Kook KH. Pirfenidone attenuates IL-1β-induced COX-2 and PGE2 production in orbital fibroblasts through suppression of NF-κB activity. Exp Eye Res 2013; 113:1-8. [PMID: 23664858 DOI: 10.1016/j.exer.2013.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 12/27/2022]
Abstract
The aim of this study was to determine the effect of pirfenidone on interleukin (IL)-1β-induced cyclooxygenase (COX)-2 and prostaglandin (PG)E2 expression in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultures of orbital fibroblasts from patients with TAO (n = 4) and non-TAO subjects (n = 4) were prepared. The level of PGE2 in orbital fibroblasts treated with IL-1β in the presence or absence of pirfenidone was measured using an enzyme-linked immunosorbent assay. The effect of pirfenidone on IL-1β-induced COX-2 expression in orbital fibroblasts from patients with TAO was evaluated by reverse transcription-polymerase chain reaction (PCR) and quantitative real-time PCR analyses, and verified by Western blot. Activation of nuclear factor-κB (NF-κB) was evaluated by immunoblotting for inhibitor of κB (IκB)α and phosphorylated IκBα, and DNA-binding activity of p50/p65 NF-κB was analyzed by electrophoretic mobility shift assay. In addition, IL-1 receptor type 1 (IL-1R1) expression was assessed by RT-PCR in IL-1β-treated cells with or without pirfenidone. Pirfenidone significantly attenuated IL-1β-induced PGE2 release in both TAO and non-TAO cells. IL-1β-induced COX-2 mRNA and protein expression decreased significantly following co-treatment with pirfenidone. IL-1β-induced IκBα phosphorylation and degradation decreased in the presence of pirfenidone and led to decreased nuclear translocation and DNA binding of the active NF-κB complex. In our system, neither IL-1β nor pirfenidone co-treatment influenced IL-1R1 expression. Our results suggest that pirfenidone attenuates the IL-1β-induced PGE2/COX-2 production in TAO orbital fibroblasts, which is related with suppression of the NF-κB activation.
Collapse
Affiliation(s)
- Youn-Hee Choi
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Smith TJ, Hegedüs L, Douglas RS. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves' orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26:291-302. [PMID: 22632366 PMCID: PMC3712747 DOI: 10.1016/j.beem.2011.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The etiology of Graves' orbitopathy (GO) remains enigmatic and thus controversy surrounds its pathogenesis. The role of the thyroid stimulating hormone receptor (TSHR) and activating antibodies directed against it in the hyperthyroidism of Graves' disease (GD) is firmly established. Less well elucidated is what part the TSHR pathway might play in the development of GO. Also uncertain is the participation of other cell surface receptors in the disease. Elevated levels of insulin-like growth factor-1 receptor (IGF-1R) have been found in orbital fibroblasts as well as B and T cells from patients with GD. These abnormal patterns of IGF-1R display are also found in rheumatoid arthritis and carry functional consequences. In addition, activating IgGs capable of displacing IGF-1 from IGF-1R have also been detected in patients with these diseases. IGF-1R forms a complex with TSHR which is necessary for at least some of the non-canonical signaling observed following TSHR activation. Functional TSHR and IGF-1R have also been found on fibrocytes, CD34⁺ bone marrow-derived cells from the monocyte lineage. Levels of TSHR on fibrocytes greatly exceed those found on orbital fibroblasts. When ligated by TSH or M22, a TSHR-activating monoclonal antibody, fibrocytes produce extremely high levels of several cytokines and chemokines. Moreover, fibrocytes infiltrate both the orbit and thyroid in GD. In sum, based on current evidence, IGF-1R and TSHR can be thought of as "partners in crime". Involvement of the former probably transcends disease boundaries, while TSHR may not.
Collapse
Affiliation(s)
- Terry J Smith
- University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
19
|
Gonzales M, Fratianni C, Mamillapali C, Khardori R. Immunotherapy in miscellaneous medical disorders Graves ophthalmopathy, asthma, and regional painful syndrome. Med Clin North Am 2012; 96:635-54, xi. [PMID: 22703859 DOI: 10.1016/j.mcna.2012.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Graves ophthalmopathy, immunotherapy is offering an opportunity of reducing bad outcomes that lead to disfigurement and impairment of vision. These therapies are not perfect; however, we now have a chance to achieve better outcomes. In asthma, immune therapy using passive immunity targeting key proinflammatory cytokine/chemokines and medications of their effects has opened an avenue of research into a safe and durable therapy. Omalizumab appears to be safe and effective in clinical use. In regional pain syndrome, immune mechanisms may be involved in sustaining long-standing pain, and IVIG may moderate pain sensitivity by reducing immune activation.
Collapse
Affiliation(s)
- Michael Gonzales
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Strelitz Center for Diabetes and Endocrine Disorders, Eastern Virginia Medical School, 855 West Brambleton Avenue, Norfolk, VA 23510, USA
| | | | | | | |
Collapse
|
20
|
Hoa N, Tsui S, Afifiyan NF, Sinha Hikim A, Li B, Douglas RS, Smith TJ. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves' disease: apparent role of ADAM17. PLoS One 2012; 7:e34173. [PMID: 22506015 PMCID: PMC3323600 DOI: 10.1371/journal.pone.0034173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/28/2012] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with 125I IGF-1, 125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Neil Hoa
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Shanli Tsui
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nikoo F. Afifiyan
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Amiya Sinha Hikim
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Bin Li
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Raymond S. Douglas
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Terry J. Smith
- Divisions of Molecular Medicine and Endocrinology, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Veterans Affairs Medical Center, Long Beach, California, United States of America
- Departments of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev 2011; 30:343-61. [DOI: 10.1007/s10555-011-9306-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Raychaudhuri N, Douglas RS, Smith TJ. PGE2 induces IL-6 in orbital fibroblasts through EP2 receptors and increased gene promoter activity: implications to thyroid-associated ophthalmopathy. PLoS One 2010; 5:e15296. [PMID: 21209948 PMCID: PMC3011019 DOI: 10.1371/journal.pone.0015296] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/05/2010] [Indexed: 11/18/2022] Open
Abstract
Background IL-6 plays an important role in the pathogenesis of Graves' disease and its orbital component, thyroid-associated ophthalmopathy (TAO). Orbital tissues become inflamed in TAO, a process in which prostanoids have been implicated. Orbital fibroblasts both generate and respond to PGE2, underlying the inflammatory phenotype of these cells. Methodology/Principal Findings Using cultured orbital and dermal fibroblasts, we characterized the effects of PGE2 on IL-6 expression. We found that the prostanoid provokes substantially greater cytokine synthesis in orbital fibroblasts, effects that are mediated through cell-surface EP2 receptors and increased steady-state IL-6 mRNA levels. The pre-translational up-regulation of IL-6 results from increased gene promoter activity and can be reproduced with the PKA agonist, Sp-cAMP and blocked by interrupting the PKA pathway. PGE2-induced production of cAMP in orbital fibroblasts was far greater than that in dermal fibroblasts, resulting from higher levels of adenylate cyclase. PGE2 provokes CREB phosphorylation, increases the pCREB/CREB ratio, and initiates nuclear localization of the pCREB/CREB binding protein/p300 complex (CBP) preferentially in orbital fibroblasts. Transfection with siRNAs targeting either CREB or CBP blunts the induction of IL-6 gene expression. PGE2 promotes the binding of pCREB to its target DNA sequence which is substantially greater in orbital fibroblasts. Conclusion/Significance These results identify the mechanism underlying the exaggerated induction of IL-6 in orbital fibroblasts and tie together two proinflammatory pathways involved in the pathogenesis of TAO. Moreover, they might therefore define an attractive therapeutic target for the treatment of TAO.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Raymond S. Douglas
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Terry J. Smith
- Department of Ophthalmology and Visual Sciences and Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Thyroid eye disease (TED) is the most common cause of proptosis in adults, and should always be a consideration in patients with unexplained diplopia, pain, or optic nerve dysfunction. At least 80% of TED is associated with Graves disease (GD), and at least 50% of patients with GD develop clinically evident symptomatic TED. The most confusing patients for doctors of all subspecialties are the patients with eye symptoms and signs that precede serum evidence of a thyroid imbalance. Management of TED may include immunosuppressive medications, radiation, or surgery. Although the prognosis for optic nerve function is excellent, the restrictive dysmotility can result in permanent disability. Orbit and eyelid reconstruction are reserved for stable, inactive patients and are the final steps in minimizing facial alterations and enhancing the patient's daily functioning.
Collapse
|
24
|
Smith TJ. Potential role for bone marrow-derived fibrocytes in the orbital fibroblast heterogeneity associated with thyroid-associated ophthalmopathy. Clin Exp Immunol 2010; 162:24-31. [PMID: 20659126 DOI: 10.1111/j.1365-2249.2010.04219.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fibroblast heterogeneity has been recognized for decades, but the basis for multiple phenotypes among these cells has been investigated only recently. More than 15 years ago, Bucalla and his colleagues described for the first time a population of fibroblast-like cells among circulating mononuclear blood cells. Subsequently these mesenchymal cells, termed fibrocytes, have been characterized and found to participate in normal and pathological tissue remodelling. In this review, I have attempted to present the evidence generated thus far suggesting that fibrocytes are participants in autoimmune diseases where tissues are injured and undergo remodelling. Aspects of their phenotype suggest that they are well suited to help orchestrate immune responses through mononuclear cell recruitment and their ability to produce inflammatory mediators and extracellular matrix molecules. These attributes also raise the possibility that they might be useful targets against which therapeutic agents might be aimed.
Collapse
Affiliation(s)
- T J Smith
- Department of Ophthalmology and Visual Sciences and Division of Metabolism and Endocrine Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
β-Adrenergic-induced CD40 overexpression on gingival fibroblasts: role of PGE2. Cell Biol Int 2010; 34:365-72. [DOI: 10.1042/cbi20090028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Abstract
Graves’ ophthalmopathy, also called Graves’ orbitopathy, is a potentially sight-threatening ocular disease that has puzzled physicians and scientists for nearly two centuries.1 –3 Generally occurring in patients with hyperthyroidism or a history of hyperthyroidism due to Graves’ disease, Graves’ ophthalmopathy is also known as thyroid-associated ophthalmopathy or thyroid eye disease, because it sometimes occurs in patients with euthyroid or hypothyroid chronic autoimmune thyroiditis. The condition has an annual adjusted incidence rate of 16 women and 3 men per 100,000 population.4 This review explores the perplexing relationship between Graves’ ophthalmopathy, hyperthyroidism, and thyroid dermopathy, the associated skin condition. I examine clinical features, histologic findings, and laboratory studies, with an emphasis on mechanisms that could be targeted in the development of new treatments for this debilitating disease.
Collapse
Affiliation(s)
- Rebecca S Bahn
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Banga JP, Nielsen CH, Gilbert JA, El Fassi D, Hegedus L. Application of new therapies in Graves' disease and thyroid-associated ophthalmopathy: animal models and translation to human clinical trials. Thyroid 2008; 18:973-81. [PMID: 18752425 DOI: 10.1089/thy.2007.0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most current approaches for treating Graves' disease are based essentially upon regimes developed nearly 50 years ago. Moreover, therapeutic approaches for complications such as thyroid-associated ophthalmopathy (TAO) and dermopathy are singularly dependent on conventional approaches of nonspecific immunosuppression. The recent development of an induced model of experimental Graves' disease, although incomplete as it lacks the extrathyroidal manifestations, provided opportunities to investigate immune intervention strategies, including influence upon the autoreactive B and T cell players in the autoimmune process. These major advances are generating new possibilities for therapeutic interventions for patients with Graves' disease and TAO.
Collapse
Affiliation(s)
- J Paul Banga
- Division of Gene and Cell Based Therapy, King's College London School of Medicine, London, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Graves' disease, an autoimmune process associated with thyroid dysfunction, can also manifest as remodeling of orbital connective tissue. Affected tissues exhibit immune responses that appear to be orchestrated by resident cells and those recruited from the bone marrow through their expression and release of cytokines and surface display of cytokine receptors. Cytokines are small molecules produced by many types of cells, including those of the "professional" immune system. Aberrant cytokine expression appears to play an important role in the pathogenesis of many human diseases, including thyroid autoimmunity. The skewed pattern of cytokine expression in the thyroid, including the T helper cell bias, may condition the response to apoptotic signals and determine the characteristics of an autoimmune reaction. Furthermore, chemoattractant cytokines, including IL16, RANTES, and CXCL10, elaborated by resident cells in the thyroid and orbit may provoke mononuclear cell infiltration. Other cytokines may drive cell activation and tissue remodeling. Thus cytokines and the signaling pathways they activate represent attractive therapeutic targets. Interruption of these might alter the natural course of Graves' disease and its orbital manifestations.
Collapse
Affiliation(s)
- Andrew G Gianoukakis
- Division of Endocrinology and Metabolism, Harbor-UCLA Medical Center, Torrance, California 90502, USA.
| | | | | |
Collapse
|
29
|
Smith TJ, Tsai CC, Shih MJ, Tsui S, Chen B, Han R, Naik V, King CS, Press C, Kamat S, Goldberg RA, Phipps RP, Douglas RS, Gianoukakis AG. Unique attributes of orbital fibroblasts and global alterations in IGF-1 receptor signaling could explain thyroid-associated ophthalmopathy. Thyroid 2008; 18:983-8. [PMID: 18788919 PMCID: PMC2574420 DOI: 10.1089/thy.2007.0404] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue remodeling associated with thyroid-associated ophthalmopathy (TAO) involves the complex interplay between resident cells (endothelium, vascular smooth muscle, extraocular muscle, and fibroblasts) and those recruited to the orbit, including members of the "professional" immune system. Inflammation early in the disease can later culminate in fibrosis and diminished extraocular muscle motility. TAO remains a poorly understood process, in large part because access to tissues early in the disease is limited and because no robust and complete animal models of Graves' disease have yet been devised. Remaining uncertainty as to the identity of a pathogenic autoantigen(s) that underlies lymphocyte trafficking to the orbit complicates matters. These limitations in our understanding of extrathyroidal Graves' disease have resulted in poorly served patients with severe TAO. Therapies have targeted symptoms rather than the underlying disease processes. Our laboratory group has focused over the last several years on defining the peculiarities of the human orbital fibroblasts as a strategy for shedding more light on the pathologies occurring in TAO. We have reasoned that unique properties of these cells might ultimately prove the basis for why the manifestations of Graves' disease occur in an anatomically selective manner. In this brief review we attempt to survey our findings. We believe that they might provide a "roadmap" for further discovery into the pathogenesis of TAO. Clearly, more questions remain than those thus far answered.
Collapse
Affiliation(s)
- Terry J. Smith
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
- Jules Stein Eye Institute, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Chieh Chih Tsai
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Mei-Ju Shih
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Shanli Tsui
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Beiling Chen
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Rui Han
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Vibha Naik
- Harbor-UCLA Medical Center, Torrance, California
| | - Chris S. King
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Chris Press
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - Shweta Kamat
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | | | - Richard P. Phipps
- Department of Environmental Medicine and the Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Raymond S. Douglas
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
- Jules Stein Eye Institute, Los Angeles, California
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andrew G. Gianoukakis
- David Geffen School of Medicine at UCLA, Los Angeles, California
- Division of Endocrinology and Metabolism, Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
30
|
Han R, Chen B, Smith TJ. Jak2 dampens the induction by IL-1beta of prostaglandin endoperoxide H synthase 2 expression in human orbital fibroblasts: evidence for divergent influence on the prostaglandin E2 biosynthetic pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:7147-56. [PMID: 17982107 DOI: 10.4049/jimmunol.179.10.7147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prostaglandin endoperoxide H synthase 2 (PGHS-2) catalyzes the rate-limiting steps in the synthesis of PGE(2). It is substantially but transiently induced in human orbital fibroblasts treated with IL-1beta. In this study, we report that the induction of PGHS-2 by IL-1beta is dramatically enhanced and prolonged when Jak2 signaling is abrogated, either with the specific inhibitor AG490 or by transiently transfecting fibroblasts with a dominant negative mutant Jak2. Attenuating Jak2 increases PGHS-2 steady-state mRNA levels, a consequence of increased gene transcription and mRNA survival in IL-1beta-treated cultures. Surprisingly, interrupting Jak2 function also blocked the expected increase in PGE(2) synthesis usually provoked by IL-1beta. This resulted from the rapid loss of IL-1beta-dependent arachidonate release and by attenuation of group IIA secreted PLA(2) (sPLA(2)) gene induction. Supplying Jak2-compromised cultures with exogenous arachidonate failed to increase PGE(2) production in response to IL-1beta until cells were mechanically disrupted. However, transiently transfecting them with wild-type sPLA(2) fully restored prostanoid production to anticipated levels. sPLA(2) expression following transfection resulted in increased IL-1beta-dependent PGHS-2 and microsomal PGE(2) synthase levels. Thus, sPLA(2) plays important roles in PGE(2) synthesis in addition to its release of arachidonate. Our findings suggest that Jak2 ordinarily dampens and limits the duration of the PGHS-2 induction by IL-1beta. Moreover, it is required for IL-1beta-dependent signaling to sPLA(2), the expression and activity of which are necessary for up-regulating PGE(2) synthesis in orbital fibroblasts.
Collapse
Affiliation(s)
- Rui Han
- Department of Medicine, Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | | | | |
Collapse
|
31
|
Nielsen CH, El Fassi D, Hasselbalch HC, Bendtzen K, Hegedüs L. B-cell depletion with rituximab in the treatment of autoimmune diseases. Expert Opin Biol Ther 2007; 7:1061-78. [PMID: 17665994 DOI: 10.1517/14712598.7.7.1061] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors summarise the clinical results obtained after therapy with rituximab in autoimmune diseases, including Graves' disease and Graves' ophthalmopathy. On the basis of qualitative and quantitative analyses of B- and T-cell subsets, and autoantibody levels obtained in other diseases before and after rituximab therapy, the authors interpret the results of the only two clinical investigations of the efficacy of rituximab in the treatment of Graves' disease and Graves' opthalmopathy reported so far. No significant effect on autoantibody levels was observed. Nonetheless, 4 out of 10 Graves' disease patients remained in remission 400 days after rituximab treatment versus none in the control group, and remarkable improvements in the eye symptoms of patients with Graves' ophthalmopathy were observed. This supports a role for B cells in the pathogenesis of Graves' ophthalmopathy, and the authors suggest that abrogation of antigen presentation by B cells accounts for the effect of rituximab. In the authors' opinion, the use of rituximab in severe Graves' ophthalmopathy could be contemplated.
Collapse
Affiliation(s)
- Claus H Nielsen
- University of Copenhagen, Department of Clinical Immunology and Blood Bank, Herlev Hospital, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
32
|
Vondrichova T, de Capretz A, Parikh H, Frenander C, Asman P, Aberg M, Groop L, Hallengren B, Lantz M. COX-2 and SCD, markers of inflammation and adipogenesis, are related to disease activity in Graves' ophthalmopathy. Thyroid 2007; 17:511-7. [PMID: 17614770 DOI: 10.1089/thy.2007.0028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CONTEXT Inflammation and adipogenesis are two parallel processes with increased activity in severe Graves' ophthalmopathy. OBJECTIVE The aim of this work was to define target genes for therapeutic intervention in adipogenesis and inflammation in Graves' ophthalmopathy. DESIGN Orbital tissue was obtained from patients with ophthalmopathy in acute or chronic phase undergoing orbital surgery to study gene expression followed by the study of potential intervention mechanisms in preadipocytes. SETTING Clinic of Endocrinology, University Hospital, Malmö, Sweden. PARTICIPANTS Patients in acute severe or in chronic phase of ophthalmopathy. INTERVENTIONS Lateral orbital decompression in acute phase and restorative surgery in chronic phase. In vitro treatment of preadipocytes with rosiglitazone and diclofenac. MAIN OUTCOME MEASURE Gene expression in intraorbital tissue or preadipocytes and differentiation of preadipocytes. RESULTS A marker of adipose tissue, stearoyl-coenzyme A desaturase (SCD), and the proinflammatory gene, cyclooxygenase-2 (COX-2), were overexpressed in patients in active phase compared to the chronic phase of ophthalmopathy. In growth-arrested preadipocytes stimulated with rosiglitazone, COX-2 expression increased temporarily within 1 hour and decreased to undetectable levels after 48 hours. In contrast, SCD and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) expression increased continuously from day 2 to day 7 during adipogenesis. Diclofenac, an inhibitor of cyclooxygenases with antagonistic effects on PPAR-gamma, reduced the number of mature adipocytes by approximately 50%. CONCLUSION We conclude that inflammation and adipogenesis decrease with a decrease in activity of ophthalmopathy and that the nonsteroidal antiinflammatory drug diclofenac inhibits adipogenesis. This may represent a putative future treatment of endocrine ophthalmopathy.
Collapse
Affiliation(s)
- Tereza Vondrichova
- Division of Diabetes and Endocrinology, Department of Clinical Sciences, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Douglas RS, Gianoukakis AG, Kamat S, Smith TJ. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves' disease may carry functional consequences for disease pathogenesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:3281-7. [PMID: 17312178 DOI: 10.4049/jimmunol.178.5.3281] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Graves' disease (GD), an autoimmune process involving thyroid and orbital tissue, is associated with lymphocyte abnormalities including expansion of memory T cells. Insulin-like growth factor receptor-1 (IGF-1R)-bearing fibroblasts overpopulate connective tissues in GD. IGF-1R on fibroblasts, when ligated with IgGs from these patients, results in the expression of the T cell chemoattractants, IL-16 and RANTES. We now report that a disproportionately large fraction of peripheral blood T cells express IGF-1R (CD3+IGF-R+). CD3+IGF-1R+ T cells comprise 48 +/- 4% (mean +/- SE; n = 33) in patients with GD compared with 15 +/- 3% (n = 21; p < 10(-8)) in controls. This increased population of IGF-1R+ T cells results, at least in part, from an expansion of CD45RO+ T cells expressing the receptor. In contrast, the fraction of CD45RA+IGF-1R+ T cells is similar in GD and controls. T cells harvested from affected orbital tissues in GD reflect similar differences in the proportion of IGF-1R+CD3+ and IGF-1R+CD4+CD3+ cells as those found in the peripheral circulation. GD-derived peripheral T cells express durable, constitutive IGF-1R expression in culture and receptor levels are further up-regulated following CD3 complex activation. IGF-1 enhanced GD-derived T cell incorporation of BrdU (p < 0.02) and inhibited Fas-mediated apoptosis (p < 0.02). These findings suggest a potential role for IGF-1R displayed by lymphocytes in supporting the expansion of memory T cells in GD.
Collapse
Affiliation(s)
- Raymond S Douglas
- Department of Medicine, Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | | | |
Collapse
|
34
|
Chen B, Tsui S, Boeglin WE, Douglas RS, Brash AR, Smith TJ. Interleukin-4 Induces 15-Lipoxygenase-1 Expression in Human Orbital Fibroblasts from Patients with Graves Disease. J Biol Chem 2006; 281:18296-306. [PMID: 16675443 DOI: 10.1074/jbc.m603484200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orbital fibroblasts orchestrate tissue remodeling in Graves disease, at least in part, because they exhibit exaggerated responses to proinflammatory cytokines. A hallmark of late stage orbital disease is vision-threatening fibrosis, the molecular basis of which remains uncertain. We report here that the Th2 cytokines, interleukin (IL)-4 and IL-13, can induce in these cells the expression of 15-lipoxygenase-1 (15-LOX-1) and in so doing up-regulate the production of 15-hydroxyeicosatetraenoic acid. IL-4 increases 15-LOX-1 protein levels through pretranslational actions. The increased steady-state 15-LOX-1 mRNA is independent of ongoing protein synthesis and involves very modestly increased gene promoter activity. Importantly, IL-4 substantially enhances 15-LOX-1 transcript stability, activity that localizes to a 293-bp sequence of the 3'-untranslated region. IL-4 activates Jak2 in orbital fibroblasts. Interrupting signaling through that pathway, either with the specific chemical inhibitor, AG490, or by transiently transfecting the cells with a Jak2 dominant negative mutant kinase, attenuates the 15-LOX-1 induction. Interferongamma, a Th1 cytokine, could block this induction by attenuating IL-4-dependent mRNA stabilization. 15-LOX-1 protein and its mRNA were undetectable in IL-4-treated dermal fibroblasts, despite comparable levels of cell surface IL-4 receptor and phosphorylated Jak2 and STAT6. Our findings suggest that orbital connective tissues may represent a site of localized 15-hydroxyeicosatetraenoic acid generation resulting from cell type-specific 15-LOX-1 mRNA stabilization by IL-4. These results may have relevance to the pathogenesis of orbital Graves disease, an inflammatory autoimmune condition that gives way to extensive fibrosis associated with a Th2 response.
Collapse
Affiliation(s)
- Beiling Chen
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | | | | | |
Collapse
|
35
|
Han R, Smith TJ. T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology 2006; 147:13-9. [PMID: 16210363 DOI: 10.1210/en.2005-1018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune component of Graves' disease characterized by intense inflammation in the setting of volume expansion. At the heart of orbital susceptibility to Graves' disease appears to be the peculiar phenotype of orbital fibroblasts that, when activated by IL-1beta and other proinflammatory cytokines, produce excess prostaglandin E2 (PGE2) and hyaluronan. T helper type 1 (Th1) cytokines predominate early in TAO, whereas Th2 cytokines are more abundant later. It is currently unknown whether this transition might promote changes in tissue reactivity associated with disease progression. We report here that interferon-gamma and IL-4, representative of these respective classes of cytokines, attenuate IL-1beta-provoked PGE2 production. This down-regulation is mediated by blocking the induction of prostaglandin endoperoxide H synthase-2 (PGHS-2), the inflammatory cyclooxygenase. The mechanism involves blockade by IL-4 and interferon-gamma of the IL-1beta-dependent activation of PGHS-2 gene promoter activity. In addition, interferon gamma inhibits IL-1beta-provoked PGHS-2 mRNA stability. The actions of interferon-gamma and IL-4 are mediated through the Janus kinase 2/signal transducer and activator of transcription signaling pathway and could be abolished by treating with AG490, a specific inhibitor of Janus kinase 2. In contrast, the up-regulation of hyaluronan synthesis by IL-1beta is enhanced by either IL-4 or interferon-gamma. The latter two cytokines enhance the induction by IL-1beta of hyaluronan synthase-2 expression. These unexpected findings indicate that the Th1-->Th2 cytokine transition exerts equivalent influence on PGE2 and hyaluronan production as TAO progresses from early to late stage.
Collapse
Affiliation(s)
- Rui Han
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | |
Collapse
|
36
|
Abstract
Traditional wisdom has considered fibroblasts as contributing to the structural integrity of tissues rather than playing a dynamic role in physiological or pathological processes. It is only recently that they have been recognized as comprising diverse populations of cells exhibiting complex patterns of biosynthetic activity. They represent determinants that react to stimuli and help define tissue remodelling through the expression of molecules imposing constraints on their cellular neighbourhood. Moreover, fibroblasts can initiate the earliest molecular events leading to inflammatory responses. Thus they must now be viewed as active participants in tissue reactivity. In this short review, I will provide an overview of contemporary thought about the contribution of fibroblasts to the pathogenesis of autoimmune processes through their expression of, and responses to, mediators of inflammation and tissue remodelling.
Collapse
Affiliation(s)
- T J Smith
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
37
|
Conway JP, Kinter M. Proteomic and transcriptomic analyses of macrophages with an increased resistance to oxidized low density lipoprotein (oxLDL)-induced cytotoxicity generated by chronic exposure to oxLDL. Mol Cell Proteomics 2005; 4:1522-40. [PMID: 16006650 DOI: 10.1074/mcp.m500111-mcp200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uptake of oxidized low density lipoprotein (oxLDL) by macrophages leads to foam cell formation and fatty streaks, which represent early sites of potential atheroma development. We developed a cell culture model of chronic oxLDL exposure to determine whether hallmark parameters of oxLDL uptake and cytotoxicity are altered during foam cell formation and to determine changes in protein and mRNA expression that distinguish acute and chronic oxLDL exposure. Although the extent of oxLDL uptake did not change, a resistance to oxLDL-induced cytotoxicity was observed in the chronically exposed cells. Macrophages that have been chronically exposed to oxLDL required a 40% higher concentration of oxLDL to achieve 50% survival in a 48-h treatment relative to macrophages subjected to a single oxLDL exposure. A main feature of the differentially expressed proteome was a series of significantly overexpressed antioxidant and antioxidant-related proteins in the oxLDL-exposed cells. A large proportion of these proteins (45%) was overexpressed in the chronically exposed cells prior to the oxLDL treatment, indicative of the unique phenotype produced by the chronic treatment. Analysis of the transcriptome also revealed a broad increase in the expression of antioxidant and antioxidant-related proteins. In addition, the transcriptome experiments found an increased inflammatory response under conditions of both acute and chronic oxLDL exposure. Overall the combined functional, proteomic, and transcriptomic experiments show that macrophages respond to oxLDL by developing an oxidative stress resistance that increases and stabilizes with chronic exposure. Furthermore this protective response and the increased foam cell survival that it supports amplifies their proatherogenic role by promoting a continued inflammatory state.
Collapse
Affiliation(s)
- James P Conway
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, and the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
38
|
Chen B, Tsui S, Smith TJ. IL-1β Induces IL-6 Expression in Human Orbital Fibroblasts: Identification of an Anatomic-Site Specific Phenotypic Attribute Relevant to Thyroid-Associated Ophthalmopathy. THE JOURNAL OF IMMUNOLOGY 2005; 175:1310-9. [PMID: 16002736 DOI: 10.4049/jimmunol.175.2.1310] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human orbital fibroblasts exhibit a unique inflammatory phenotype. In the present study, we report that these fibroblasts, when treated with IL-1beta, express high levels of IL-6, a cytokine involved in B cell activation and the regulation of adipocyte metabolism. The magnitude of this induction is considerably greater than that in dermal fibroblasts and involves up-regulation of IL-6 mRNA levels. IL-1beta activates both p38 and ERK 1/2 components of the MAPK pathways. Disrupting these could attenuate the IL-6 induction. The up-regulation involves enhanced IL-6 gene promoter activity and retardation of IL-6 mRNA decay by IL-1beta. Dexamethasone completely blocked the effect of IL-1beta on IL-6 expression. Orbital fibroblasts also express higher levels of IL-6R than do skin-derived cells. When treated with rIL-6 (10 ng/ml), STAT3 is transiently phosphorylated. Thus, the exaggerated capacity of orbital fibroblasts to express high levels of both IL-6 and its receptor in an anatomic site-selective manner could represent an important basis for immune responses localized to the orbit in Graves' disease.
Collapse
Affiliation(s)
- Beiling Chen
- Division of Molecular Medicine, Department of Medicine, Harbor-University of California at Los Angeles, Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | | | | |
Collapse
|
39
|
Honkanen T, Mustonen J, Kainulainen H, Myllymäki J, Collin P, Hurme M, Rantala I. Small bowel cyclooxygenase 2 (COX-2) expression in patients with IgA nephropathy. Kidney Int 2005; 67:2187-95. [PMID: 15882262 DOI: 10.1111/j.1523-1755.2005.00324.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Clinical manifestation of IgA nephropathy (IgAN) strikingly occurs after respiratory tract infections. An intestinal inflammation has also been described. We hypothesized that the intestinal inflammation should manifest itself as an increase in inflammatory cells and mucosal cyclooxygenase 2 (COX-2) expression. METHODS By using immunohistochemistry, we determined the phenotype and quantity of inflammatory cells in duodenal biopsy specimens from 17 IgAN patients. Control material comprised 18 patients undergoing gastroscopy because of dyspepsia. RESULTS All the biopsy specimens disclosed normal villous architecture. In IgAN, CD3(+) cells and COX-2-positive cells were significantly increased and J chain-producing plasma cells were significantly decreased. CD3(+) cells coexpressed COX-2 protein and COX-2-positive cells also expressed CD45RO antigen. The number of lymphocytes correlated significantly with serum IgA and COX-2-expression with serum IgA and the degree of hematuria. COX-2-positive subepithelial fibroblasts were a conspicuous finding in IgAN. In CD68(+) and CD15(+) cells, a significant increase was seen. Many of these cells also expressed COX-2 protein. CD15(+) positivity correlated significantly with proteinuria in IgAN. CONCLUSION Our results indicate that small bowel inflammation in IgAN shows itself as an increased number of mucosal inflammatory cells. However, polymeric IgA production is significantly decreased. An increased mucosal COX-2 expression suggests activation of the inflammatory cells and the degree of inflammation significantly correlates with serum IgA and the amount of proteinuria and hematuria. Subepithelial fibroblasts seem also to be involved in the inflammatory reaction.
Collapse
Affiliation(s)
- Teemu Honkanen
- Department of Pathology, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Han R, Smith TJ. Induction by IL-1β of Tissue Inhibitor of Metalloproteinase-1 in Human Orbital Fibroblasts: Modulation of Gene Promoter Activity by IL-4 and IFN-γ. THE JOURNAL OF IMMUNOLOGY 2005; 174:3072-9. [PMID: 15728522 DOI: 10.4049/jimmunol.174.5.3072] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune component of Graves' disease, is associated with profound connective tissue remodeling and fibrosis that appear to involve the selective activation of orbital fibroblasts. Accumulation of extracellular matrix molecules is a hallmark of this process. Here we report that orbital fibroblasts treated with IL-1beta express high levels of tissue inhibitor of metalloproteinase-1 (TIMP-1), an important modulator of matrix metalloproteinase activity. These high levels are associated with increased TIMP-1 activity. The induction is mediated at the pretranslational level and involves activating the TIMP-1 gene promoter. IL-1beta activates the ERK 1/2 pathway in these fibroblasts and interrupting this signaling either with PD98059, a chemical inhibitor of MEK, or by transfecting cells with a dominant negative ERK 1 plasmid results in the attenuation of TIMP-1 induction. Surprisingly, treatment with IL-4 or IFN-gamma could also block the IL-1beta induction by attenuating TIMP-1 gene promoter activity. These findings suggest that TIMP-1 expression in orbital fibroblasts following activation with IL-1beta could represent an important therapeutic target for modifying the proteolytic environment. This might alter the natural course of tissue remodeling in TAO.
Collapse
Affiliation(s)
- Rui Han
- Division of Molecular Medicine, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | | |
Collapse
|
41
|
Pritchard J, Tsui S, Horst N, Cruikshank WW, Smith TJ. Synovial fibroblasts from patients with rheumatoid arthritis, like fibroblasts from Graves' disease, express high levels of IL-16 when treated with Igs against insulin-like growth factor-1 receptor. THE JOURNAL OF IMMUNOLOGY 2004; 173:3564-9. [PMID: 15322222 DOI: 10.4049/jimmunol.173.5.3564] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported recently that IgG from patients with Graves' disease (GD) can induce the expression of the CD4-specific T lymphocyte chemoattractant, IL-16, and RANTES, a C-C chemokine, in their fibroblasts. This induction is mediated through the insulin-like growth factor-1 receptor (IGF-1R) pathway. We now report that Abs from individuals with active rheumatoid arthritis (RA-IgG) stimulate in their synovial fibroblasts the expression of these same cytokines. IgG from individuals without known autoimmune disease fails to elicit this chemoattractant production. Furthermore, RA-IgG fails to induce IL-16 or RANTES expression in synovial fibroblasts from donors with osteoarthritis. RA-IgG-provoked IL-16 and RANTES production also appears to involve the IGF-1R because receptor-blocking Abs prevent the response. RA fibroblasts transfected with a dominant-negative mutant IGF-1R fail to respond to RA-IgG. IGF-1 and the IGF-1R-specific analog Des(1-3) also induce cytokine production in RA fibroblasts. RA-IgG-provoked IL-16 expression is inhibited by rapamycin, a specific macrolide inhibitor of the Akt/FRAP/mammalian target of rapamycin/p70(s6k) pathway, and by dexamethasone. GD-IgG can also induce IL-16 in RA fibroblasts, and RA-IgG shows similar activity in GD fibroblasts. Thus, IgGs from patients with RA, like those associated with GD, activate IGF-1R, and in so doing provoke T cell chemoattraction expression in fibroblasts, suggesting a potential common pathway in the two diseases. Immune-competent cell trafficking to synovial tissue is integral to the pathogenesis of RA. Recognition of this novel RA-IgG/fibroblast interaction and its functional consequences may help identify therapeutic targets.
Collapse
Affiliation(s)
- Jane Pritchard
- Division of Molecular Medicine, Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Orbital fibroblasts exhibit a unique phenotype including exaggerated responses to proinflammatory cytokines. We hypothesize that the unusual susceptability of these fibroblasts to molecular cues underlies the involvement of the orbit in Graves' ophthalmopathy. A number of attributes of orbital fibroblasts are reviewed in this article. In addition, we have found IgG circulating in patients with Graves' disease that binds and activates the insulin-like growth factor-1 receptor displayed on fibroblasts from many anatomic regions. Activation of this receptor leads to the expression of T-cell chemoattractants. Thus, fibroblast activation, and the resulting T-cell trafficking to connective tissue in Graves' disease may be systemic. The consequences of lymphocyte-derived cytokine action may differ vastly in the orbit and other tissues manifesting clinically obvious disease.
Collapse
Affiliation(s)
- T J Smith
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance 90502, USA.
| |
Collapse
|
43
|
Abstract
Graves' disease (GD) is a very common autoimmune disorder of the thyroid in which stimulatory antibodies bind to the thyrotropin receptor and activate glandular function, resulting in hyperthyroidism. In addition, some patients with GD develop localized manifestations including ophthalmopathy (GO) and dermopathy. Since the cloning of the receptor cDNA, significant progress has been made in understanding the structure-function relationship of the receptor, which has been discussed in a number of earlier reviews. In this paper, we have focused our discussion on studies related to the molecular mechanisms of the disease pathogenesis and the development of animal models for GD. It has become apparent that multiple factors contribute to the etiology of GD, including host genetic as well as environmental factors. Studies in experimental animals indicate that GD is a slowly progressing disease that involves activation and recruitment of thyrotropin receptor-specific T and B cells. This activation eventually results in the production of stimulatory antibodies that can cause hyperthyroidism. Similarly, significant new insights have been gained in our understanding of GO that occurs in a subset of patients with GD. As in GD, both environmental and genetic factors play important roles in the development of GO. Although a number of putative ocular autoantigens have been identified, their role in the pathogenesis of GO awaits confirmation. Extensive analyses of orbital tissues obtained from patients with GO have provided a clearer understanding of the roles of T and B cells, cytokines and chemokines, and various ocular tissues including ocular muscles and fibroblasts. Equally impressive is the progress made in understanding why connective tissues of the orbit and the skin in GO are singled out for activation and undergo extensive remodeling. Results to date indicate that fibroblasts can act as sentinel cells and initiate lymphocyte recruitment and tissue remodeling. Moreover, these fibroblasts can be readily activated by Ig in the sera of patients with GD, suggesting a central role for them in the pathogenesis. Collectively, recent studies have led to a better understanding of the pathogenesis of GD and GO and have opened up potential new avenues for developing novel treatments for GD and GO.
Collapse
Affiliation(s)
- Bellur S Prabhakar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612-7344, USA.
| | | | | |
Collapse
|
44
|
Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of T cell chemoattractant expression in fibroblasts from patients with Graves' disease is mediated through the insulin-like growth factor I receptor pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6348-54. [PMID: 12794168 DOI: 10.4049/jimmunol.170.12.6348] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Graves' disease (GD) is associated with T cell infiltration, but the mechanism for lymphocyte trafficking has remained uncertain. We reported previously that fibroblasts from patients with GD express IL-16, a CD4-specific chemoattractant, and RANTES, a C-C chemokine, in response to GD-specific IgG (GD-IgG). We unexpectedly found that these responses result from a functional interaction between GD-IgG and the insulin-like growth factor (IGF)-I receptor (IGF-IR). IGF-I and the IGF-IR-specific IGF-I analog, des(1-3), mimic the effects of GD-IgG. Neither GD-IgG nor IGF-I activates chemoattractant expression in control fibroblasts from donors without GD. Interrupting IGF-IR function with specific receptor-blocking Abs or by transiently transfecting fibroblasts with a dominant negative mutant IGF-IR completely attenuates signaling provoked by GD-IgG. Moreover, GD-IgG displaces specific (125)I-labeled IGF-I binding to fibroblasts and attenuates IGF-IR detection by flow cytometry. These findings identify a novel disease mechanism involving a functional GD-IgG/IGF-IR bridge, which potentially explains T cell infiltration in GD. Interrupting this pathway may constitute a specific therapeutic strategy.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Autoantigens/biosynthesis
- Autoantigens/genetics
- Autoantigens/metabolism
- Autoantigens/physiology
- Cell Movement/immunology
- Cells, Cultured
- Chemokine CCL5/biosynthesis
- Chemokine CCL5/physiology
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Graves Disease/immunology
- Graves Disease/pathology
- Humans
- Immunoglobulin G/metabolism
- Immunoglobulin G/pharmacology
- Interleukin-16/biosynthesis
- Interleukin-16/physiology
- Iodine Radioisotopes/metabolism
- Protein Binding/immunology
- Receptor, IGF Type 1/biosynthesis
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, IGF Type 1/physiology
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transfection
Collapse
Affiliation(s)
- Jane Pritchard
- Division of Molecular Medicine, Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | | | | | | | | |
Collapse
|
45
|
Cao HJ, Han R, Smith TJ. Robust induction of PGHS-2 by IL-1 in orbital fibroblasts results from low levels of IL-1 receptor antagonist expression. Am J Physiol Cell Physiol 2003; 284:C1429-37. [PMID: 12519748 DOI: 10.1152/ajpcell.00354.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human orbital fibroblasts are more susceptible to some actions of proinflammatory cytokines than are fibroblasts from other anatomic regions. These cells produce high levels of PGE(2) when activated by cytokines. Here we report that they express high levels of prostaglandin-endoperoxide H synthase (PGHS)-2, the inflammatory cyclooxygenase, when treated with IL-1beta. This induction results from enhanced PGHS-2 mRNA stability and small increases in gene promoter activity. The enhanced transcript stability is a result of actions of the cytokine on the 3'-untranslated region. Orbital fibroblasts, unlike those from skin, fail to express high levels of IL-1 receptor antagonist (IL-1ra) when treated with IL-1beta, leading to loss of modulation of IL-1 action. This can be overcome by transiently transfecting cells with IL-1ra. Thus a decreased level of IL-1ra expression in orbital fibroblasts may underlie the exaggerated responses to IL-1 observed in those cells and, therefore, the susceptibility of the orbit to inflammation.
Collapse
Affiliation(s)
- H James Cao
- Division of Molecular and Cellular Medicine, Department of Medicine, Albany Medical College, Samuel S. Stratton Veterans Affairs Medical Center, Albany, New York 12208, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Rebecca S Bahn
- Division of Endocrinology, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
47
|
|
48
|
Han R, Smith TJ. Cytoplasmic prostaglandin E2 synthase is dominantly expressed in cultured KAT-50 thyrocytes, cells that express constitutive prostaglandin-endoperoxide H synthase-2. Basis for low protaglandin E2 production. J Biol Chem 2002; 277:36897-903. [PMID: 12145315 DOI: 10.1074/jbc.m206949200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent identification and cloning of two glutathione-dependent prostaglandin E(2) synthase (PGES) genes has yielded important insights into the terminal step of PGE(2) synthesis. These enzymes form efficient functional pairs with specific members of the prostaglandin-endoperoxide H synthase (PGHS) family. Microsomal PGES (mPGES) is inducible and works more efficiently with PGHS-2, the inflammatory cyclooxygenase, while the cytoplasmic isoform (cPGES) pairs functionally with PGHS-1, the cyclooxygenase that ordinarily exhibits constitutive expression. KAT-50, a well differentiated thyroid epithelial cell line, expresses high levels of PGHS-2 but surprisingly low levels of PGE(2) when compared with human orbital fibroblasts. Moreover, PGHS-1 protein cannot be detected in KAT-50. We report here that KAT-50 cells express high basal levels of cPGES but mPGES mRNA and protein are undetectable. Thus, KAT-50 cells express the inefficient PGHS-2/cPGES pair, and this results in modest PGE(2) production. The high levels of cPGES and the absence of mPGES expression result from dramatic differences in the activities of their respective gene promoters. When mPGES is expressed in KAT-50 by transiently transfecting the cells, PGE(2) production is up-regulated substantially. These observations indicate that naturally occurring cells can express a suboptimal profile of PGHS and PGES isoforms, resulting in diminished levels of PGE(2) generation.
Collapse
Affiliation(s)
- Rui Han
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | |
Collapse
|
49
|
Han R, Tsui S, Smith TJ. Up-regulation of prostaglandin E2 synthesis by interleukin-1beta in human orbital fibroblasts involves coordinate induction of prostaglandin-endoperoxide H synthase-2 and glutathione-dependent prostaglandin E2 synthase expression. J Biol Chem 2002; 277:16355-64. [PMID: 11847219 DOI: 10.1074/jbc.m111246200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prostaglandin E(2) (PGE(2)) production involves the activity of a multistep biosynthetic pathway. The terminal components of this cascade, two PGE(2) synthases (PGES), have very recently been identified as glutathione-dependent proteins. cPGES is cytoplasmic, apparently identical to the hsp90 chaperone, p23, and associates functionally with prostaglandin-endoperoxide H synthase-1 (PGHS-1), the constitutive cyclooxygenase. A second synthase, designated mPGES, is microsomal and can be regulated. Here we demonstrate that mPGES and PGHS-2 are expressed at very low levels in untreated human orbital fibroblasts. Interleukin (IL)-1beta treatment elicits high levels of PGHS-2 and mPGES expression. The induction of both enzymes occurs at the pretranslational level, is the consequence of enhanced gene promoter activities, and can be blocked by dexamethasone (10 nm). SC58125, a PGHS-2-selective inhibitor, could attenuate the induction of mPGES, suggesting a dependence of this enzyme on PGHS-2 activity. IL-1beta treatment activates p38 and ERK mitogen-activated protein kinases. Induction of both mPGES and PGHS-2 was susceptible to either chemical inhibition or molecular interruption of these pathways with dominant negative constructs. These results indicate that the induction of PGHS-2 and mPGES by IL-1beta underlies robust PGE(2) production in orbital fibroblasts.
Collapse
Affiliation(s)
- Rui Han
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | |
Collapse
|
50
|
Smith TJ. Orbital fibroblasts exhibit a novel pattern of responses to proinflammatory cytokines: potential basis for the pathogenesis of thyroid-associated ophthalmopathy. Thyroid 2002; 12:197-203. [PMID: 11952039 DOI: 10.1089/105072502753600133] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) represents a process confined to the orbit where the connective tissue becomes inflamed and accumulates the glycosaminoglycan, hyaluronan. Ultimately, the orbital tissues become extensively remodeled. Evidence points to the recruitment and activation of T cells as critical elements initiating and driving the pathogenesis of TAO. The phenotype of orbital fibroblasts appears to be distinct from that of other types of fibroblasts. These cells exhibit particularly robust responses to a number of T-cell-derived cytokines. Notable among these are the inductions of key inflammatory genes and their products. We hypothesize that exaggerated cellular responses represent the basis for the involvement of the orbit in Graves' disease.
Collapse
Affiliation(s)
- Terry J Smith
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California 90502-2006, USA.
| |
Collapse
|