1
|
Noronha MA, D'Angelo NA, Pérez-Sánchez G, Severino P, Ann Foglio M, Greaves TL, F. B. Pereira J, Lopes AM. Self-assembling micelles of lipopolysaccharides (LPS) for loading hydrophobic (bio)molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Yu Y, Song G. Lipopolysaccharide-Binding Protein and Bactericidal/Permeability-Increasing Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:27-35. [PMID: 32705592 DOI: 10.1007/978-981-15-6082-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI) are the main members of BPI-like family based on the similar protein structure and conserved gene homology. Both LBP and BPI participate in lipid metabolism and thereby involve in pathogenesis of certain cardiovascular diseases. This chapter describes four aspects: (1) the loci of BPI and LBP in genome, (2) the characteristics of the cDNAs and expression patterns of LBP and BPI, (3) the structures and functions of LBP and BPI, and (4) the LBP and BPI in lipid metabolism and cardiovascular research.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Atherosclerosis, Shandong First Medical University, Shandong, China.
| | - Guohua Song
- Institute of Atherosclerosis, Shandong First Medical University, Shandong, China
| |
Collapse
|
3
|
Cochet F, Peri F. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. Int J Mol Sci 2017; 18:E2318. [PMID: 29099761 PMCID: PMC5713287 DOI: 10.3390/ijms18112318] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal's immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)₂, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.
Collapse
Affiliation(s)
- Florent Cochet
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
4
|
Hoppe Parr KA, Hađina S, Kilburg-Basnyat B, Wang Y, Chavez D, Thorne PS, Weiss JP. Modification of sample processing for the Limulus amebocyte lysate assay enhances detection of inflammogenic endotoxin in intact bacteria and organic dust. Innate Immun 2017; 23:307-318. [PMID: 28359219 PMCID: PMC5814115 DOI: 10.1177/1753425917694084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pro-inflammatory potency and causal relationship with asthma of inhaled endotoxins have underscored the importance of accurately assessing the endotoxin content of organic dusts. The Limulus amebocyte lysate (LAL) assay has emerged as the preferred assay, but its ability to measure endotoxin in intact bacteria and organic dusts with similar sensitivity as purified endotoxin is unknown. We used metabolically radiolabeled Neisseria meningitidis and both rough and smooth Escherichia coli to compare dose-dependent activation in the LAL with purified endotoxin from these bacteria and shed outer membrane (OM) blebs. Labeled [14C]-3-OH-fatty acids were used to quantify the endotoxin content of the samples. Purified meningococcal and E. coli endotoxins and OM blebs displayed similar specific activity in the LAL assay to the purified LPS standard. In contrast, intact bacteria exhibited fivefold lower specific activity in the LAL assay but showed similar MD-2-dependent potency as purified endotoxin in inducing acute airway inflammation in mice. Pre-treatment of intact bacteria and organic dusts with 0.1 M Tris-HCl/10 mM EDTA increased by fivefold the release of endotoxin. These findings demonstrate that house dust and other organic dusts should be extracted with Tris/EDTA to more accurately assess the endotoxin content and pro-inflammatory potential of these environmental samples.
Collapse
Affiliation(s)
- Kimberly A. Hoppe Parr
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Suzana Hađina
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Brita Kilburg-Basnyat
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Yifang Wang
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Dulce Chavez
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Peter S. Thorne
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA
| | - Jerrold P. Weiss
- Departments of Internal Medicine and Microbiology and Inflammation Program, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Wacker MA, Teghanemt A, Weiss JP, Barker JH. High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun 2017; 23:336-344. [PMID: 28409545 DOI: 10.1177/1753425917695446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Caspases of the non-canonical inflammasome (caspases -4, -5, and -11) directly bind endotoxin (LOS/LPS) and can be activated in the absence of any co-factors. Models of LPS-induced caspase activation have postulated that 1:1 binding of endotoxin monomers to caspase trigger caspase oligomerization and activation, analogous to that established for endotoxin-induced activation of MD-2/TLR4. However, using metabolically radiolabeled LOS and LPS, we now show high affinity and selective binding of caspase-4 to high molecular mass aggregates of purified endotoxin and to endotoxin-rich outer membrane vesicles without formation of 1:1 endotoxin:caspase complexes. Thus, our findings demonstrate markedly different endotoxin recognition properties of caspase-4 from that of MD-2/TLR4 and strongly suggest that activation of caspase-4 (and presumably caspase-5 and caspase-11) are mediated by interactions with activating endotoxin-rich membrane interfaces rather than by endotoxin monomers.
Collapse
Affiliation(s)
- Mark A Wacker
- 1 Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
| | - Athmane Teghanemt
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| | - Jerrold P Weiss
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,4 Department of Microbiology, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| | - Jason H Barker
- 2 Inflammation Program, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,3 Department of Internal Medicine, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA.,4 Department of Microbiology, University of Iowa, and Iowa City VA Health Care System, Iowa City, IA, USA
| |
Collapse
|
6
|
Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB, Kierulf P. Invited review: Neisseria meningitidis lipopolysaccharides in human pathology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070060401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neisseria meningitidis causes meningitis, fulminant septicemia or mild meningococcemia attacking mainly children and young adults. Lipopolysaccharides (LPS) consist of a symmetrical hexa-acyl lipid A and a short oligosaccharide chain and are classified in 11 immunotypes. Lipid A is the primary toxic component of N. meningitidis . LPS levels in plasma and cerebrospinal fluid as determined by Limulus amebocyte lysate (LAL) assay are quantitatively closely associated with inflammatory mediators, clinical symptoms, and outcome. Patients with persistent septic shock, multiple organ failure, and severe coagulopathy reveal extraordinarily high levels of LPS in plasma. The cytokine production is compartmentalized to either the circulation or to the subarachnoid space. Mortality related to shock increases from 0% to > 80% with a 10-fold increase of plasma LPS from 10 to 100 endotoxin units/ml. Hemorrhagic skin lesions and thrombosis are caused by up-regulation of tissue factor which induces coagulation, and by inhibition of fibrinolysis by plasminogen activator inhibitor 1 (PAI-1). Effective antibiotic treatment results in a rapid decline of plasma LPS (half-life 1—3 h) and cytokines, and reduced generation of thrombin, and PAI-1. Early antibiotic treatment is mandatory. Three intervention trials to block lipid A have not significantly reduced the mortality of meningococcal septicemia.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway,
| | - Anna Bjerre
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway, Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Berit Brusletto
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Gun Britt Joø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Peter Kierulf
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Gioannini T, Teghanemt A, Zhang D, Levis E, Weiss J. Monomeric endotoxin:protein complexes are essential for TLR4-dependent cell activation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020801] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potent TLR4-dependent cell activation by Gram-negative bacterial endotoxin depends on sequential endotoxin—protein and protein—protein interactions with LBP, CD14, MD-2 and TLR4. LBP and CD14 combine, in an albumin-dependent fashion, to extract single endotoxin molecules from purified endotoxin aggregates (Eagg) or the bacterial outer membrane and form monomeric endotoxin:CD14 complexes that are the preferred presentation of endotoxin for transfer to MD-2. Endotoxin in endotoxin:CD14 is readily transferred to MD-2, again in an albumin-dependent manner, to form monomeric endotoxin:MD-2 complex. This monomeric endotoxin:protein complex (endotoxin:MD-2) activates TLR4 at picomolar concentrations, independently of albumin, and is, therefore, the apparent ligand in endotoxin-dependent TLR4 activation. Tetra-, penta-, and hexa-acylated forms of meningococcal endotoxin (LOS) react similarly with LBP, CD14, and MD-2 to form endotoxin:MD-2 complexes. However, tetra- and penta-acylated LOS:MD-2 complexes are less potent TLR4 agonists than hexa-acylated LOS:MD-2. This is mirrored in the reduced activity of tetra-, penta- versus hexa-acylated LOS aggregates (LOSagg) + LBP toward cells containing mCD14, MD-2, and TLR4. Therefore, changes in agonist potency of under-acylated meninigococcal LOS are determined by differences in properties of monomeric endotoxin:MD-2.
Collapse
Affiliation(s)
- T.L. Gioannini
- Department of Internal Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA, Department of Biochemistry, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA,
| | - A. Teghanemt
- Department of Internal Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA
| | - DeS. Zhang
- Department of Internal Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA
| | - E.N. Levis
- Department of Internal Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA
| | - J.P. Weiss
- Department of Internal Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA, Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa and the Veterans' Administration Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Gioannini TL, Teghanemt A, Zarember KA, Weiss JP. Regulation of interactions of endotoxin with host cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090060301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Potent Toll-like receptor 4 (TLR4)-dependent cell activation by endotoxin requires lipopolysaccharide-binding protein (LBP) and CD14-dependent delivery of endotoxin to cells containing MD-2 and TLR4. We have used metabolically labeled [14C] meningococcal lipooligosaccharide (LOS), purified recombinant endotoxin-binding proteins, and cultured endothelial cells to better define protein: endotoxin intermediates key in cell activation in the absence of functional membrane (m) CD14. Protein:endotoxin complexes or aggregates ( agg) were purified by gel sieving and characterized by immunocapture and bio-assays. Cell activation closely correlated with LBP, albumin and soluble (s) CD14-dependent conversion of endotoxin agg (Mr≥ 20 × 106) to monomeric (M ~55 × 103) endotoxin:sCD14 complexes. Ordered interaction of LBP (+ albumin) and sCD14 withrLOS agg was required for the efficient formation of a bioactive endotoxin:sCD14 complex and potent cell activation. Increasing the ratio of LBP/sCD14 or addition of bactericidal/permeability-increasing protein (BPI) reduced accumulation of endotoxin:sCD14 complexes and instead yielded aggregates of endotoxin (Mr~1—20 × 106) containing LBP or BPI that were taken up by cells in a CD14- and TLR4-independent manner without inducing pro-inflammatory responses. These findings strongly suggest that host machinery linked to TLR4-dependent cellular activation or TLR4-independent cellular clearance of endotoxin selectively recognizes different protein:endotoxin complexes. At the outset of infection, the low concentrations of LBP present and absence of extracellular BPI favor formation of pro-inflammatory endotoxin:CD14 complexes. The mobilization of LBP and BPI that is triggered by inflammation directs endotoxin for clearance and hence resolution of endotoxin-triggered inflammation.
Collapse
Affiliation(s)
- Theresa L. Gioannini
- Departments of Internal Medicine, Division of Infectious Diseases and The Inflammation Program, University of Iowa, Iowa City, Iowa, Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Athmane Teghanemt
- Departments of Internal Medicine, Division of Infectious Diseases and The Inflammation Program, University of Iowa, Iowa City, Iowa
| | - Kol A. Zarember
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | - Jerrold P. Weiss
- Departments of Internal Medicine, Division of Infectious Diseases and The Inflammation Program, University of Iowa, Iowa City, Iowa, , Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, Iowa City Veterans' Administration Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Barker JH, Kaufman JW, Apicella MA, Weiss JP. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A. PLoS One 2016; 11:e0157842. [PMID: 27326857 PMCID: PMC4915664 DOI: 10.1371/journal.pone.0157842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023] Open
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0) than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.
Collapse
Affiliation(s)
- Jason H. Barker
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| | - Justin W. Kaufman
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Michael A. Apicella
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Jerrold P. Weiss
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
10
|
Vašl J, Oblak A, Peternelj TT, Klett J, Martín-Santamaría S, Gioannini TL, Weiss JP, Jerala R. Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2: Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2. THE JOURNAL OF IMMUNOLOGY 2016; 196:2309-18. [PMID: 26826249 DOI: 10.4049/jimmunol.1502074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/26/2015] [Indexed: 11/19/2022]
Abstract
Myeloid differentiation factor 2 (MD-2) is an extracellular protein, associated with the ectodomain of TLR4, that plays a critical role in the recognition of bacterial LPS. Despite high overall structural and functional similarity, human (h) and murine (m) MD-2 exhibit several species-related differences. hMD-2 is capable of binding LPS in the absence of TLR4, whereas mMD-2 supports LPS responsiveness only when mMD-2 and mTLR4 are coexpressed in the same cell. Previously, charged residues at the edge of the LPS binding pocket have been attributed to this difference. In this study, site-directed mutagenesis was used to explore the hydrophobic residues within the MD-2 binding pocket as the source of functional differences between hMD-2 and mMD-2. Whereas decreased hydrophobicity of residues 61 and 63 in the hMD-2 binding pocket retained the characteristics of wild-type hMD-2, a relatively minor change of valine to alanine at position 135 completely abolished the binding of LPS to the hMD-2 mutant. The mutant, however, retained the LPS binding in complex with TLR4 and also cell activation, resulting in a murine-like phenotype. These results were supported by the molecular dynamics simulation. We propose that the residue at position 135 of MD-2 governs the dynamics of the binding pocket and its ability to accommodate lipid A, which is allosterically affected by bound TLR4.
Collapse
Affiliation(s)
- Jožica Vašl
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Alja Oblak
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Tina T Peternelj
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Javier Klett
- Center for Biological Research, Superior Council for Scientific Research, 28040 Madrid, Spain
| | | | - Theresa L Gioannini
- Inflammation Program, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52241; Veterans Affairs Medical Center, Iowa City, IA 52246; and
| | - Jerrold P Weiss
- Inflammation Program, Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52241
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Excellent Nuclear Magnetic Resonance-Future Innovation for Sustainable Technologies Center of Excellence, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein. mBio 2015; 6:e01193-15. [PMID: 26463160 PMCID: PMC4620459 DOI: 10.1128/mbio.01193-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian lipopolysaccharide (LPS) binding proteins (LBPs) occur mainly in extracellular fluids and promote LPS delivery to specific host cell receptors. The function of LBPs has been studied principally in the context of host defense; the possible role of LBPs in nonpathogenic host-microbe interactions has not been well characterized. Using the Euprymna scolopes-Vibrio fischeri model, we analyzed the structure and function of an LBP family protein, E. scolopes LBP1 (EsLBP1), and provide evidence for its role in triggering a symbiont-induced host developmental program. Previous studies showed that, during initial host colonization, the LPS of V. fischeri synergizes with peptidoglycan (PGN) monomer to induce morphogenesis of epithelial tissues of the host animal. Computationally modeled EsLBP1 shares some but not all structural features of mammalian LBPs that are thought important for LPS binding. Similar to human LBP, recombinant EsLBP1 expressed in insect cells bound V. fischeri LPS and Neisseria meningitidis lipooligosaccharide (LOS) with nanomolar or greater affinity but bound Francisella tularensis LPS only weakly and did not bind PGN monomer. Unlike human LBP, EsLBP1 did not bind N. meningitidis LOS:CD14 complexes. The eslbp1 transcript was upregulated ~22-fold by V. fischeri at 24 h postinoculation. Surprisingly, this upregulation was not induced by exposure to LPS but, rather, to the PGN monomer alone. Hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) and immunocytochemistry (ICC) localized eslbp1 transcript and protein in crypt epithelia, where V. fischeri induces morphogenesis. The data presented here provide a window into the evolution of LBPs and the scope of their roles in animal symbioses. Mammalian lipopolysaccharide (LPS)-binding protein (LBP) is implicated in conveying LPS to host cells and potentiating its signaling activity. In certain disease states, such as obesity, the overproduction of this protein has been a reliable biomarker of chronic inflammation. Here, we describe a symbiosis-induced invertebrate LBP whose tertiary structure and LPS-binding characteristics are similar to those of mammalian LBPs; however, the primary structure of this distantly related squid protein (EsLBP1) differs in key residues previously believed to be essential for LPS binding, suggesting that an alternative strategy exists. Surprisingly, symbiotic expression of eslbp1 is induced by peptidoglycan derivatives, not LPS, a pattern converse to that of RegIIIγ, an important mammalian immunity protein that binds peptidoglycan but whose gene expression is induced by LPS. Finally, EsLBP1 occurs along the apical surfaces of all the host’s epithelia, suggesting that it was recruited from a general defensive role to one that mediates specific interactions with its symbiont.
Collapse
|
12
|
Gioannini TL, Teghanemt A, Zhang D, Esparza G, Yu L, Weiss J. Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins. Immunol Res 2015; 59:3-11. [PMID: 24895101 DOI: 10.1007/s12026-014-8543-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.
Collapse
Affiliation(s)
- Theresa L Gioannini
- The Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 2501 Crosspark Rd, Coralville, IA, 52241, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tan Y, Kagan JC. A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell 2014; 54:212-23. [PMID: 24766885 DOI: 10.1016/j.molcel.2014.03.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The study of innate immunity to bacteria has focused heavily on the mechanisms by which mammalian cells detect lipopolysaccharide (LPS), the conserved surface component of Gram-negative bacteria. While Toll-like receptor 4 (TLR4) is responsible for all the host transcriptional responses to LPS, recent discoveries have revealed the existence of several TLR4-independent responses to LPS. These discoveries not only broaden our view of the means by which mammalian cells interact with bacteria, but they also highlight new selective pressures that may have promoted the evolution of bacterial immune evasion strategies. In this review, we highlight past and recent discoveries on host LPS sensing mechanisms and discuss bacterial countermeasures that promote infection. By looking at both sides of the host-pathogen interaction equation, we hope to provide comprehensive insights into host defense mechanisms and bacterial pathogenesis.
Collapse
Affiliation(s)
- Yunhao Tan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Resman N, Oblak A, Gioannini TL, Weiss JP, Jerala R. Tetraacylated lipid A and paclitaxel-selective activation of TLR4/MD-2 conferred through hydrophobic interactions. THE JOURNAL OF IMMUNOLOGY 2014; 192:1887-95. [PMID: 24420921 DOI: 10.4049/jimmunol.1302119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS exerts potent immunostimulatory effects through activation of the TLR4/MD-2 receptor complex. The hexaacylated lipid A is an agonist of mouse (mTLR4) and human TLR4/MD-2, whereas the tetraacylated lipid IVa and paclitaxel activate only mTLR4/MD-2 and antagonize activation of the human receptor complex. Hydrophobic mutants of TLR4 or MD-2 were used to investigate activation of human embryonic kidney 293 cells by different TLR4 agonists. We show that each of the hydrophobic residues F438 and F461, which are located on the convex face of leucine-rich repeats 16 and 17 of the mTLR4 ectodomain, are essential for activation of with lipid IVa and paclitaxel, which, although not a structural analog of LPS, activates cells expressing mTLR4/MD-2. Both TLR4 mutants were inactive when stimulated with lipid IVa or paclitaxel, but retained significant activation when stimulated with LPS or hexaacylated lipid A. We show that the phenylalanine residue at position 126 of mouse MD-2 is indispensable only for activation with paclitaxel. Its replacement with leucine or valine completely abolished activation with paclitaxel while preserving the responsiveness to lipid IVa and lipid A. This suggests specific interaction of paclitaxel with F126 because its replacement with leucine even augmented activation by lipid A. These results provide an insight into the molecular mechanism of TLR4 activation by two structurally very different agonists.
Collapse
Affiliation(s)
- Nusa Resman
- Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
15
|
Guinan EC, Palmer CD, Mancuso CJ, Brennan L, Stoler-Barak L, Kalish LA, Suter EE, Gallington LC, Huhtelin DP, Mansilla M, Schumann RR, Murray JC, Weiss J, Levy O. Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun 2013; 20:697-711. [PMID: 24107515 DOI: 10.1177/1753425913505122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hematopoietic cell transplant (HCT) is a life-saving therapy for many malignant and non-malignant bone marrow diseases. Associated morbidities are often due to transplant-related toxicities and infections, exacerbated by regimen-induced immune suppression and systemic incursion of bacterial products. Patients undergoing myeloablative conditioning for HCT become endotoxemic and display blood/plasma changes consistent with lipopolysaccharide (LPS)-induced systemic innate immune activation. Herein, we addressed whether patients scheduled for HCT display differences in recognition/response to LPS ex vivo traceable to specific single nucleotide polymorphisms (SNPs). Two SNPs of LPS binding protein (LBP) were associated with changes in plasma LBP levels, with one LBP SNP also associating with differences in efficiency of extraction and transfer of endotoxin to myeloid differentiation factor-2 (MD-2), a step needed for activation of TLR4. None of the examined SNPs of CD14, bactericidal/permeability-increasing protein (BPI), TLR4 or MD-2 were associated with corresponding protein plasma levels or endotoxin delivery to MD-2, but CD14 and BPI SNPs significantly associated with differences in LPS-induced TNF-α release ex vivo and infection frequency, respectively. These findings suggest that specific LBP, CD14 and BPI SNPs might be contributory assessments in studies where clinical outcome may be affected by host response to endotoxin and bacterial infection.
Collapse
Affiliation(s)
- Eva C Guinan
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine D Palmer
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Boston, MA, USA
| | | | | | | | - Leslie A Kalish
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| | | | | | - David P Huhtelin
- University of Iowa and Veterans' Administration Medical Center, Coralville, Iowa City, IA, USA
| | - Maria Mansilla
- Department of Pediatrics, University of Iowa, IA, Iowa City, USA
| | - Ralf R Schumann
- Institute for Microbiology, Charité-University Medical Center, Berlin, Germany
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, IA, Iowa City, USA
| | - Jerrold Weiss
- University of Iowa and Veterans' Administration Medical Center, Coralville, Iowa City, IA, USA
| | - Ofer Levy
- Boston Children's Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Barker JH, Kaufman JW, Zhang DS, Weiss JP. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun 2013; 20:88-103. [PMID: 23729477 DOI: 10.1177/1753425913485308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Francisella tularensis, a highly virulent Gram-negative bacterium, is an unusual LPS that possesses both structural heterogeneity and characteristics that may contribute to innate immune evasion. However, none of the methods yet employed has been sufficient to determine the overall LPS composition of Francisella. We now demonstrate that metabolic labeling of francisellae with [(14)C]acetate, combined with fractionation of [(14)C]acetate-labeled lipids by ethanol precipitation rather than hot phenol-water extraction, permits a more sensitive and quantitative appraisal of overall compositional heterogeneity in lipid A and LPS. The majority of lipid A of different francisellae strains grown in diverse bacteriologic media and within human phagocytes accumulated as very hydrophobic species, including free lipid A, with <10% of the lipid A molecules substituted with O-Ag polysaccharides. The spectrum of lipid A and LPS species varied in a medium- and strain-dependent fashion, and growth in THP-1 cells yielded lipid A species that were not present in the same bacteria grown in brain heart infusion broth. In summary, metabolic labeling with [(14)C]acetate greatly facilitates assessment of the effect of genotypic and/or environmental variables on the synthesis and accumulation of lipid A and LPS by Francisella, including during growth within the cytosol of infected host cells.
Collapse
Affiliation(s)
- Jason H Barker
- 1Inflammation Program and Department of Medicine, University of Iowa and Veterans Affairs Medical Center, IA, USA
| | | | | | | |
Collapse
|
17
|
Teghanemt A, Weiss JP, Gioannini TL. Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4. Innate Immun 2013; 19:545-60. [PMID: 23439691 DOI: 10.1177/1753425913475688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A purified complex of metabolically labeled [(3)H]lipooligosaccharide (LOS) and recombinant human myeloid differentiation factor 2 (MD-2), [(3)H]LOS·MD-2, has been used to demonstrate pM affinity binding interactions with soluble TLR4 ectodomain (TLR4ecd). For measurement of the binding parameters of membrane-bound TLR4, we took advantage of the stability of endotoxin·MD-2 and tyrosine(s) present on the surface of MD-2 to radioiodinate LOS·MD-2. Radioiodinated LOS·MD-2 generated a reagent with an estimated 1:1 molar ratio of [(125)I] to sMD-2 with 20-fold higher specific radioactivity and TLR4-activating properties comparable to metabolically-labeled LOS·MD-2. LOS·MD-2[(125)I] and [(3)H]LOS·MD-2 have similar affinities for soluble (FLAG) TLR4ecd and for membrane-bound TLR4 in HEK293T/TLR4 cells. In a similar dose-dependent manner, sMD-2 and LOS·MD-2 inhibit LOS·MD-2[(125)I] binding to TLR4 indicating the pM affinity binding of LOS·MD-2[(125)I] is agonist-independent. LOS·MD-2[(125)I] allowed measurement of low levels of cell-surface human or murine TLR4 expressed by stable cell lines (2000-3000 sites/cell) and quantitatively measures low levels of 'MD-2-free' TLR4 (est. 250 molecules/cell) in cells co-expressing TLR4 and MD-2. Occupation of 50-100 TLR4/cell by LOS·MD-2 is sufficient to trigger measurable TLR4-dependent cell activation. LOS·MD-2[(125)I] provides a powerful reagent to measure quantitatively functional human and murine cell-surface TLR4, including in cells where surface TLR4 is potentially functionally significant but not detectable by other methods.
Collapse
Affiliation(s)
- Athmane Teghanemt
- 1Inflammation Program, Department of Internal Medicine, Roy A. and Lucille J. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
18
|
Yu L, Phillips RL, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. NMR studies of hexaacylated endotoxin bound to wild-type and F126A mutant MD-2 and MD-2·TLR4 ectodomain complexes. J Biol Chem 2012; 287:16346-55. [PMID: 22433852 DOI: 10.1074/jbc.m112.343467] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Host response to invasion by many gram-negative bacteria depends upon activation of Toll-like receptor 4 (TLR4) by endotoxin presented as a monomer bound to myeloid differentiation factor 2 (MD-2). Metabolic labeling of hexaacylated endotoxin (LOS) from Neisseria meningitidis with [(13)C]acetate allowed the use of NMR to examine structural properties of the fatty acyl chains of LOS present in TLR4-agonistic and -antagonistic binary and ternary complexes with, respectively, wild-type or mutant (F126A) MD-2 ± TLR4 ectodomain. Chemical shift perturbation indicates that Phe(126) affects the environment and/or position of each of the bound fatty acyl chains both in the binary LOS·MD-2 complex and in the ternary LOS·MD-2·TLR4 ectodomain complex. In both wild-type and mutant LOS·MD-2 complexes, one of the six fatty acyl chains of LOS is more susceptible to paramagnetic attenuation, suggesting protrusion of that fatty acyl chain from the hydrophobic pocket of MD-2, independent of association with TLR4. These findings indicate that re-orientation of the aromatic side chain of Phe(126) is induced by binding of hexaacylated E, preceding interaction with TLR4. This re-arrangement of Phe(126) may act as a "hydrophobic switch," driving agonist-dependent contacts needed for TLR4 dimerization and activation.
Collapse
Affiliation(s)
- Liping Yu
- NMR Core Facility, Roy A. and Lucille J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52241, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yang D, Postnikov YV, Li Y, Tewary P, de la Rosa G, Wei F, Klinman D, Gioannini T, Weiss JP, Furusawa T, Bustin M, Oppenheim JJ. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J Exp Med 2012; 209:157-71. [PMID: 22184635 PMCID: PMC3260868 DOI: 10.1084/jem.20101354] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/15/2011] [Indexed: 01/08/2023] Open
Abstract
Alarmins are endogenous mediators capable of promoting the recruitment and activation of antigen-presenting cells (APCs), including dendritic cells (DCs), that can potentially alert host defense against danger signals. However, the relevance of alarmins to the induction of adaptive immune responses remains to be demonstrated. In this study, we report the identification of HMGN1 (high-mobility group nucleosome-binding protein 1) as a novel alarmin and demonstrate that it contributes to the induction of antigen-specific immune responses. HMGN1 induced DC maturation via TLR4 (Toll-like receptor 4), recruitment of APCs at sites of injection, and activation of NF-κB and multiple mitogen-activated protein kinases in DCs. HMGN1 promoted antigen-specific immune response upon co-administration with antigens, and Hmgn1(-/-) mice developed greatly reduced antigen-specific antibody and T cell responses when immunized with antigens in the presence of lipopolysaccharide (LPS). The impaired ability of Hmgn1(-/-) mice to mount antigen-specific immune responses was accompanied by both deficient DC recruitment at sites of immunization and reduced production of inflammatory cytokines. Bone marrow chimera experiments revealed that HMGN1 derived from nonleukocytes was critical for the induction of antigen-specific antibody and T cell responses. Thus, extracellular HMGN1 acts as a novel alarmin critical for LPS-induced development of innate and adaptive immune responses.
Collapse
Affiliation(s)
- De Yang
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Yuri V. Postnikov
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yana Li
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Poonam Tewary
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Gonzalo de la Rosa
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Feng Wei
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Dennis Klinman
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| | - Theresa Gioannini
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jerrold P. Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Takashi Furusawa
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael Bustin
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joost J. Oppenheim
- Basic Research Program, Scientific Application and International Corporation–Frederick, Inc.; and Laboratory of Molecular Immunoregulation and Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research; National Cancer Institute at Frederick, Frederick, MD 21702
| |
Collapse
|
20
|
Esparza GA, Teghanemt A, Zhang D, Gioannini TL, Weiss JP. Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immun 2011; 18:478-91. [PMID: 21994253 DOI: 10.1177/1753425911422723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Response to Gram-negative bacteria (GNB) is partially mediated by the recognition of GNB-derived endotoxin by host cells. Potent host response to endotoxin depends on the sequential interaction of endotoxin with lipopolysaccharide binding protein (LBP), CD14, MD-2 and TLR4. While CD14 facilitates the efficient transfer of endotoxin monomers to MD-2 and MD-2·TLR4, activation of MD-2·TLR4 can occur in the absence of CD14 through an unknown mechanism. Here, we show that incubation of purified endotoxin (E) aggregates (E(agg), M ( r ) ≥ 20 million) in PBS with ≥ 0.1% albumin in the absence of divalent cations Ca(2+) and Mg(2+), yields E·albumin complexes (M ( r ) ∼70,000). E·albumin transfers E monomers to sMD-2 or sMD-2·TLR4 ectodomain (TLR4(ecd)) with a 'K (d)' of ∼4 nM and induces MD-2·TLR4-dependent, CD14-independent cell activation with a potency only 10-fold less than that of monomeric E·CD14 complexes. Our findings demonstrate, for the first time, a mechanistic basis for delivery of endotoxin monomers to MD-2 and for activation of TLR4 that is independent of CD14.
Collapse
Affiliation(s)
- Gregory A Esparza
- Immunology Program, University of Iowa Graduate College, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
21
|
Piazza M, Colombo M, Zanoni I, Granucci F, Tortora P, Weiss J, Gioannini T, Prosperi D, Peri F. Uniform Lipopolysaccharide (LPS)-Loaded Magnetic Nanoparticles for the Investigation of LPS-TLR4 Signaling. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Piazza M, Colombo M, Zanoni I, Granucci F, Tortora P, Weiss J, Gioannini T, Prosperi D, Peri F. Uniform lipopolysaccharide (LPS)-loaded magnetic nanoparticles for the investigation of LPS-TLR4 signaling. Angew Chem Int Ed Engl 2010; 50:622-6. [PMID: 21226138 DOI: 10.1002/anie.201004655] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Matteo Piazza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Piazza M, Damore G, Costa B, Gioannini TL, Weiss JP, Peri F. Hemin and a metabolic derivative coprohemin modulate the TLR4 pathway differently through different molecular targets. Innate Immun 2010; 17:293-301. [PMID: 20472612 DOI: 10.1177/1753425910369020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heme is a prosthetic group in a large number of essential proteins that have a pivotal role in oxygen transport, storage and electron shuttling. High amounts of free heme are associated with pathological states. Recently, it has been suggested that activation of Toll-like receptor 4 (TLR4) is one of the ways in which the 'danger signal' of free heme is detected. Here, we examine the biochemical basis of the modulation of the TLR4 pathway by hemin (iron(III)-protoporphyrin IX) and its metabolic, oxidated derivative coprohemin (iron(III)-coproporphyrin I). High concentrations of hemin (50 μM) triggered TLR4-mediated IL-8 production in the human HEK293/TLR4 cell line in the absence of the co-receptors CD14 and MD-2; the latter an essential co-receptor for TLR4 activation by endotoxin. Hemin and endotoxin have additive effects when co-administrated to HEK/TLR4 cells, suggesting that hemin and endotoxin activate TLR4 by different mechanisms. Coprohemin, in contrast to hemin, is unable to trigger TLR4-dependent activation of HEK/TLR4 cells, but instead causes dose-dependent inhibition of endotoxin-stimulated IL-8 production. The inhibitory effect of coprohemin is paralleled by reduced delivery of endotoxin to MD-2 (-TLR4) that is necessary for activation of TLR4 by endotoxin. Thus, despite their similar chemical structure, hemin and coprohemin have very different effects on the TLR4 pathway, the former acting as a mild agonist of TLR4, the latter as an antagonist selectively targeting the endotoxin-MD-2 interaction.
Collapse
Affiliation(s)
- Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Prohinar P, Rallabhandi P, Weiss JP, Gioannini TL. Expression of functional D299G.T399I polymorphic variant of TLR4 depends more on coexpression of MD-2 than does wild-type TLR4. THE JOURNAL OF IMMUNOLOGY 2010; 184:4362-7. [PMID: 20212095 DOI: 10.4049/jimmunol.0903142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two missense variants (D299G and T399I) of TLR4 are cosegregated in individuals of European descent and, in a number of test systems, result in reduced responsiveness to endotoxin. How these changes within the ectodomain (ecd) of TLR4 affect TLR4 function is unclear. For both wild-type and D299G.T399I TLR4, we used endotoxinCD14 and endotoxinMD-2 complexes of high specific radioactivity to measure: 1) interaction of recombinant MD-2TLR4 with endotoxinCD14 and TLR4 with endotoxinMD-2; 2) expression of functional MD-2TLR4 and TLR4; and 3) MD-2TLR4 and TLR4-dependent cellular endotoxin responsiveness. Both wild-type and D299G.T399I TLR4(ecd) demonstrated high affinity (K(d) approximately 200 pM) interaction of endotoxinCD14 with MD-2TLR4(ecd) and endotoxinMD-2 with TLR4(ecd). However, levels of functional TLR4 were reduced up to 2-fold when D299G.T399I TLR4 was coexpressed with MD-2 and >10-fold when expressed without MD-2, paralleling differences in cellular endotoxin responsiveness. The dramatic effect of the D299G.T399I haplotype on expression of functional TLR4 without MD-2 suggests that cells expressing TLR4 without MD-2 are most affected by these polymorphisms.
Collapse
Affiliation(s)
- Polonca Prohinar
- Department of Internal Medicine, Roy A and Lucille J Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | |
Collapse
|
25
|
Piazza M, Yu L, Teghanemt A, Gioannini T, Weiss J, Peri F. Evidence of a specific interaction between new synthetic antisepsis agents and CD14. Biochemistry 2010; 48:12337-44. [PMID: 19928913 DOI: 10.1021/bi901601b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synthetic molecules derived from natural sugars with a positively charged amino group or ammonium salt and two lipophilic chains have been shown to inhibit TLR4 activation in vitro and in vivo. To characterize the mechanism of action of this class of molecules, we investigated possible interactions with the extracellular components that bind and shuttle endotoxin [lipopolysaccharide (LPS)] to TLR4, namely, LBP, CD14, and MD-2. Molecules that inhibited TLR4 activation inhibited LBP.CD14-dependent transfer of endotoxin monomers derived from aggregates of tritiated lipooligosaccharide ([(3)H]LOS) from Neisseria meninigitidis to MD-2.TLR4, resulting in a reduced level of formation of a ([(3)H]LOS.MD-2.TLR4(ECD))(2) (M(r) approximately 190000) complex. This effect was due to inhibition of the transfer of [(3)H]LOS from aggregates in solution to sCD14 with little or no effect on [(3)H]LOS shuttling from [(3)H]LOS.sCD14 to MD-2. These compounds also inhibited transfer of the [(3)H]LOS monomer from full-length CD14 to a truncated, polyhistidine-tagged CD14. Dose-dependent inhibition of the transfer of [(3)H]LOS between the two forms of CD14 was observed with each of three different synthetic compounds that inhibited TLR4 activation but not by another structurally related analogue that lacked TLR4 antagonistic activity. Saturation transfer difference (STD) NMR data showed direct binding to CD14 by the synthetic TLR4 antagonist mediated principally through the lipid chains of the synthetic compound. Taken together, our findings strongly suggest that these compounds inhibit TLR4 activation by endotoxin by competitively occupying CD14 and thereby reducing the level of delivery of activating endotoxin to MD-2.TLR4.
Collapse
Affiliation(s)
- Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Vasl J, Oblak A, Gioannini TL, Weiss JP, Jerala R. Novel roles of lysines 122, 125, and 58 in functional differences between human and murine MD-2. THE JOURNAL OF IMMUNOLOGY 2009; 183:5138-45. [PMID: 19783674 DOI: 10.4049/jimmunol.0901544] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MD-2/TLR4 complex provides a highly robust mechanism for recognition and response of mammalian innate immunity to Gram-negative bacterial endotoxins. Despite overall close structural and functional similarity, human (h) and murine (m) MD-2 show several species-related differences, including the ability of hMD-2, but not mMD-2, to bind endotoxin (E) in the absence of TLR4. Wild-type mMD-2 can support TLR4-dependent cell activation by E only when mMD-2 and mTLR4 are coexpressed in the same cell. However, replacement of Glu122, Leu125, and/or Asn58 of mMD-2 with the corresponding residues (lysines) of hMD-2 was sufficient to yield soluble extracellular MD-2 that reacted with monomeric E . sCD14 complex to form extracellular monomeric E . MD-2 that activated cells expressing TLR4 without MD-2. Moreover, in contrast to wild-type mMD-2, double and triple mMD-2 mutants also supported E-triggered signaling in combination with human TLR4. Conversely, a K125L mutant of hMD-2 reacted with E . CD14 and activated TLR4 only when coexpressed with TLR4, and not when secreted without TLR4. These findings reveal novel roles of lysines 122, 125, and 58 in human MD-2 that contribute to the functional differences between human and murine MD-2 and, potentially, to differences in the sensitivity of humans and mice to endotoxin.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
27
|
Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009; 284:15052-60. [PMID: 19321453 DOI: 10.1074/jbc.m901429200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacterial endotoxin (i.e. lipopolysaccharide (LPS)) is one of the most potent stimulants of the innate immune system, recognized by the TLR4.MD-2 complex. Direct binding to MD-2 of LPS and LPS analogues that act as TLR4 agonists or antagonists is well established, but the role of MD-2 and TLR4 in receptor activation is much less clear. We have identified residues within the hairpin of MD-2 between strands five and six that, although not contacting acyl chains of tetraacylated lipid IVa (a TLR4 antagonist), influence activation of TLR4 by hexaacylated lipid A. We show that hydrophobic residues at positions 82, 85, and 87 of MD-2 are essential both for transfer of endotoxin from CD14 to monomeric MD-2 and for TLR4 activation. We also identified a pair of conserved hydrophobic residues (Phe-440 and Phe-463) in leucine-rich repeats 16 and 17 of the TLR4 ectodomain, which are essential for activation of TLR4 by LPS. F440A or F463A mutants of TLR4 were inactive, whereas the F440W mutant retained full activity. Charge reversal of neighboring cationic groups in the TLR4 ectodomain (Lys-388 and Lys-435), in contrast, did not affect cell activation. Our mutagenesis studies are consistent with a molecular model in which Val-82, Met-85, and Leu-87 in MD-2 and distal portions of a secondary acyl chain of hexaacylated lipid A that do not fit into the hydrophobic binding pocket of MD-2 form a hydrophobic surface that interacts with Phe-440 and Phe-463 on a neighboring TLR4.MD-2.LPS complex, driving TLR4 activation.
Collapse
Affiliation(s)
- Nusa Resman
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, and Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
28
|
Vasl J, Prohinar P, Gioannini TL, Weiss JP, Jerala R. Functional activity of MD-2 polymorphic variant is significantly different in soluble and TLR4-bound forms: decreased endotoxin binding by G56R MD-2 and its rescue by TLR4 ectodomain. THE JOURNAL OF IMMUNOLOGY 2008; 180:6107-15. [PMID: 18424732 DOI: 10.4049/jimmunol.180.9.6107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.
Collapse
Affiliation(s)
- Jozica Vasl
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
29
|
Teghanemt A, Widstrom RL, Gioannini TL, Weiss JP. Isolation of monomeric and dimeric secreted MD-2. Endotoxin.sCD14 and Toll-like receptor 4 ectodomain selectively react with the monomeric form of secreted MD-2. J Biol Chem 2008; 283:21881-9. [PMID: 18519568 DOI: 10.1074/jbc.m800672200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potent cell activation by endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). MD-2 plays an essential role by bridging endotoxin (E) recognition initiated by lipopolysaccharide-binding protein and CD14 to TLR4 activation by presenting endotoxin as a monomeric E.MD-2 complex that directly and potently activates TLR4. Secreted MD-2 (sMD-2) exists as a mixture of monomers and multimers. Published data suggest that only MD-2 monomer can interact with endotoxin and TLR4 and support cell activation, but the apparent instability of MD-2 has thwarted efforts to more fully separate and characterize the individual species of sMD-2. We have taken advantage of the much greater stability of sMD-2 in insect culture medium to fully separate sMD-2 monomer from dimer by gel sieving chromatography. At low nanomolar concentrations, the sMD-2 monomer, but not dimer, reacted with a monomeric complex of E.sCD14 to form monomeric E.MD-2 and activate HEK293/TLR4 cells. The monomer, but not dimer, also reacted with the ectodomain of TLR4 with an affinity comparable with the picomolar affinity of E.MD-2. These findings demonstrate directly that the monomeric form of sMD-2 is the active species both for reaction with E.CD14 and TLR4, as needed for potent endotoxin-induced TLR4 activation.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
30
|
Hadina S, Weiss JP, McCray PB, Kulhankova K, Thorne PS. MD-2-dependent pulmonary immune responses to inhaled lipooligosaccharides: effect of acylation state. Am J Respir Cell Mol Biol 2008; 38:647-54. [PMID: 18203970 DOI: 10.1165/rcmb.2007-0418oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endotoxins represent one of the most potent classes of microbial immunoactive components that can cause pulmonary inflammation. The aim of this study was to compare the inflammatory potency of two types of Neisseria meningitidis endotoxins (lipooligosaccharides) in lungs: wild type (hexaacylated, LOS(wt)) and mutant type (pentaacylated, LOS(msbB)), and to determine the importance of MD-2 in endotoxin responses in lungs in vivo. Endotoxin-normoresponsive mice (BALB/c) were exposed to selected doses of penta- and hexaacylated lipooligosaccharides (LOS) by nasal aspiration. Cellular and cytokine/chemokine inflammatory responses in bronchoalveolar lavage were measured at 1-, 4-, 8-, 16-, 24-, and 48-hour time points. MD-2-null mice were exposed to one dose of hexaacylated LOS and inflammatory responses were measured after 4 and 24 hours. Inhalation of hexaacylated LOS resulted in strong inflammatory responses, while pentaacylated LOS was much less potent in inducing increases of neutrophils, TNF-alpha, macrophage inflammatory protein-1 alpha, IL-6, granulocyte colony-stimulating factor, and IL-1 beta concentration in bronchoalveolar lavage. Similar kinetics of inflammatory responses in lungs were found in both types of endotoxin exposures. Inhalation of hexaacylated LOS in MD-2-null mice resulted in significantly lower numbers of neutrophils in bronchoalveolar lavage than in normoresponsive mice. Markedly lower inflammatory potency of pentaacylated LOS was observed compared with hexaacylated LOS. Hyporesponsiveness in MD-2-null mice after nasal aspiration of wild-type LOS indicate its essential role in airway responsiveness to endotoxin.
Collapse
Affiliation(s)
- Suzana Hadina
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242-5000, USA
| | | | | | | | | |
Collapse
|
31
|
Teghanemt A, Re F, Prohinar P, Widstrom R, Gioannini TL, Weiss JP. Novel roles in human MD-2 of phenylalanines 121 and 126 and tyrosine 131 in activation of Toll-like receptor 4 by endotoxin. J Biol Chem 2007; 283:1257-1266. [PMID: 17977838 DOI: 10.1074/jbc.m705994200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potent mammalian cell activation by Gram-negative bacterial endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). TLR4 activation requires simultaneous binding of MD-2 to endotoxin (E) and the ectodomain of TLR4. We now describe mutants of recombinant human MD-2 that bind TLR4 and react with E.CD14 but do not support cellular responsiveness to endotoxin. The mutants F121A/K122A MD-2 and Y131A/K132A MD-2 react with E.CD14 only when co-expressed with TLR4. Single mutants K122A and K132A each react with E.CD14 +/- TLR4 and promote TLR4-dependent cell activation by endotoxin suggesting that Phe(121) and Tyr(131) are needed for TLR4-independent transfer of endotoxin from CD14 to MD-2 and also needed for TLR4 activation by bound E.MD-2. The mutant F126A MD-2 reacts as well as wild-type MD-2 with E.CD14 +/- TLR4. E.MD-2(F126A) binds TLR4 with high affinity (K(d) approximately 200 pm) but does not activate TLR4 and instead acts as a potent TLR4 antagonist, inhibiting activation of HEK/TLR4 cells by wild-type E.MD-2. These findings reveal roles of Phe(121) and Tyr(131) in TLR4-independent interactions of human MD-2 with E.CD14 and, together with Phe(126), in activation of TLR4 by bound E.MD-2. These findings strongly suggest that the structural properties of E.MD-2, not E alone, determine agonist or antagonist effects on TLR4.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Fabio Re
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Polonca Prohinar
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Richard Widstrom
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242
| | - Theresa L Gioannini
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Veterans' Administration Medical Center, Iowa City, Iowa 52246; Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jerrold P Weiss
- Department of Internal Medicine and The Inflammation Program, Iowa City, Iowa 52242; Department of Microbiology, Iowa City, Iowa 52242.
| |
Collapse
|
32
|
Teghanemt A, Prohinar P, Gioannini TL, Weiss JP. Transfer of monomeric endotoxin from MD-2 to CD14: characterization and functional consequences. J Biol Chem 2007; 282:36250-6. [PMID: 17934216 DOI: 10.1074/jbc.m705995200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potent Toll-like receptor 4 (TLR4)-dependent cell activation by endotoxin depends on sequential transfer of monomers of endotoxin from an aggregated form to CD14 via the lipopolysaccharide-binding protein and then to MD-2. We now show that monomeric endotoxin can be transferred in reverse from MD-2 to CD14 but not to lipopolysaccharide-binding protein. Reverse transfer requires an approximately 1000-fold molar excess of CD14 to endotoxin-MD-2. Transfer of endotoxin from MD-2 to extracellular soluble CD14 reduces activation of cells expressing TLR4 without MD-2. However, transfer of endotoxin from MD-2 to membrane CD14 (mCD14) makes cells expressing MD-2.TLR4 sensitive to activation by the endotoxin-MD-2 complex. An endotoxin-mutant (F126A) MD-2 complex that does not activate cells expressing TLR4 alone potently activates cells expressing mCD14, MD-2, and TLR4 by transferring endotoxin to mCD14, which then transfers endotoxin to endogenous wild-type MD-2.TLR4. These findings describe a novel pathway of endotoxin transfer that provides an additional layer of regulation of cell activation by endotoxin.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Department of Internal Medicine and the Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
33
|
Moreland JG, Davis AP, Matsuda JJ, Hook JS, Bailey G, Nauseef WM, Lamb FS. Endotoxin priming of neutrophils requires NADPH oxidase-generated oxidants and is regulated by the anion transporter ClC-3. J Biol Chem 2007; 282:33958-67. [PMID: 17908687 DOI: 10.1074/jbc.m705289200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several soluble mediators, including endotoxin, prime neutrophils for an enhanced respiratory burst in response to subsequent stimulation. Priming of neutrophils occurs in vitro, and primed neutrophils are found in vivo. We previously localized the anion transporter ClC-3 to polymorphonuclear leukocytes (PMN) secretory vesicles and demonstrated that it is required for normal NADPH oxidase activation in response to both particulate and soluble stimuli. We now explore the contribution of the NADPH oxidase and ClC-3 to endotoxin-mediated priming. Lipooligosaccharide (LOS) from Neisseria meningitidis enhances the respiratory burst in response to formyl-Met-Leu-Phe, an effect that was impaired in PMNs lacking functional ClC-3 and under anaerobic conditions. Mobilization of receptors to the cell surface and phosphorylation of p38 MAPK by LOS were both impaired in PMN with the NADPH oxidase chemically inhibited or genetically absent and in cells lacking functional ClC-3. Furthermore, inhibition of the NADPH oxidase or ClC-3 in otherwise unstimulated cells elicited a phenotype similar to that seen after endotoxin priming, suggesting that basal oxidant production helps to maintain cellular quiescence. In summary, NADPH oxidase activation was required for LOS-mediated priming, but basal oxidants kept unstimulated cells from becoming primed. ClC-3 contributes to both of these processes.
Collapse
Affiliation(s)
- Jessica G Moreland
- Division of Critical Care, Department of Pediatrics, The Inflammation Program, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Schultz H, Hume J, Zhang DS, Gioannini TL, Weiss JP. A Novel Role for the Bactericidal/Permeability Increasing Protein in Interactions of Gram-Negative Bacterial Outer Membrane Blebs with Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2477-84. [PMID: 17675509 DOI: 10.4049/jimmunol.179.4.2477] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bactericidal/permeability-increasing protein (BPI) is thought to play an important role in killing and clearance of Gram-negative bacteria and the neutralization of endotoxin. A possible role for BPI in clearance of cell-free endotoxin has also been suggested based on studies with purified endotoxin aggregates and blood monocytes. Because the interaction of BPI with cell-free endotoxin, during infection, occurs mainly in tissue and most likely in the form of shed bacterial outer membrane vesicles ("blebs"), we examined the effect of BPI on interactions of metabolically labeled ([(14)C]-acetate) blebs purified from Neisseria meningitidis serogroup B with either human monocyte-derived macrophages or monocyte-derived dendritic cells (MDDC). BPI produced a dose-dependent increase (up to 3-fold) in delivery of (14)C-labeled blebs to MDDC, but not to monocyte-derived macrophages in the presence or absence of serum. Both, fluorescently labeled blebs and BPI were internalized by MDDC under these conditions. The closely related LPS-binding protein, in contrast to BPI, did not increase association of the blebs with MDDC. BPI-enhanced delivery of the blebs to MDDC did not increase cell activation but permitted CD14-dependent signaling by the blebs as measured by changes in MDDC morphology, surface expression of CD80, CD83, CD86, and MHC class II and secretion of IL-8, RANTES, and IP-10. These findings suggest a novel role of BPI in the interaction of bacterial outer membrane vesicles with dendritic cells that may help link innate immune recognition of endotoxin to Ag delivery and presentation.
Collapse
Affiliation(s)
- Hendrik Schultz
- Inflammation Program, University of Iowa and Iowa City Veterans Affairs Medical Center, IA, USA
| | | | | | | | | |
Collapse
|
35
|
Gioannini TL, Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res 2007; 39:249-60. [DOI: 10.1007/s12026-007-0069-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/22/2022]
|
36
|
Kocabas C, Katsenelson N, Kanswal S, Kennedy MN, Cui X, Blake MS, Segal DM, Akkoyunlu M. Neisseria meningitidis type C capsular polysaccharide inhibits lipooligosaccharide-induced cell activation by binding to CD14. Cell Microbiol 2007; 9:1297-310. [PMID: 17250593 DOI: 10.1111/j.1462-5822.2006.00872.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encapsulated Neisseria meningitidis can invade mucosal barriers and cause systemic diseases. Activation of the innate immune system by conserved meningococcal molecules such as lipooligosaccharides (LOS) is essential for the generation of an effective host immune response. Here we show that the type C capsular polysaccharide of N. meningitidis (MCPS) inhibited LOS-induced interleukin-6 and TNF-alpha secretion from monocytes, and blocked the maturation of dendritic cells induced by LOS, while the capsular polysaccharide from group B streptococcus type III and t(4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll had no such effect. MCPS also inhibited the LOS-induced NF-kappaB activation and phosphorylation of signalling molecules such as ERK1/2, p38 and Jun N-terminal kinase. In a direct binding assay, MCPS manifested a concentration-dependent binding to recombinant lipoprotein binding protein and CD14, the two members of the LOS receptor complex. In addition, the binding of LOS to CD14 and lipopolysaccharide binding protein was inhibited by MCPS. We established that MCPS binding to CD14 is responsible for the inhibition of LOS-mediated cell activation because MCPS inhibition of LOS was reversed when access amounts of CD14 were added to culture media of HEK293 cells expressing TLR4 and MD-2, and the magnitude of recovery in LOS stimulation correlated with the increase in CD14 concentration. These results suggest a new virulence property of meningococcal capsular polysaccharides.
Collapse
Affiliation(s)
- Can Kocabas
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, 1410 Rockville Pike (HFM-428), Rockville, MD 20852-1448, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gioannini TL, Teghanemt A, Zhang D, Prohinar P, Levis EN, Munford RS, Weiss JP. Endotoxin-binding Proteins Modulate the Susceptibility of Bacterial Endotoxin to Deacylation by Acyloxyacyl Hydrolase. J Biol Chem 2007; 282:7877-84. [PMID: 17227775 DOI: 10.1074/jbc.m605031200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyloxyacyl hydrolase (AOAH) is an eukaryotic lipase that partially deacylates and detoxifies Gram-negative bacterial lipopolysaccharides and lipooligosaccharides (LPSs or LOSs, endotoxin) within intact cells and inflammatory fluids. In cell lysates or as purified enzyme, in contrast, detergent is required for AOAH to act on LPS or LOS (Erwin, A. L., and Munford, R. S. (1990) J. Biol. Chem. 265, 16444-16449 and Katz, S. S., Weinrauch, Y., Munford, R. S., Elsbach, P., and Weiss, J. (1999) J. Biol. Chem. 274, 36579-36584). We speculated that the sequential interactions of endotoxin (E) with endotoxin-binding proteins (lipopolysaccharide-binding protein (LBP), CD14, and MD-2) might produce changes in endotoxin presentation that would allow AOAH greater access to its substrate, lipid A. To test this hypothesis, we measured the activity of purified AOAH against isolated, metabolically labeled meningococcal LOS and Escherichia coli LPS that were presented either as aggregates (LOSagg or LPSagg)+/-LBP or as monomeric protein (sCD14 or MD-2)-endotoxin complexes. Up to 100-fold differences in the efficiency of endotoxin deacylation by AOAH were observed, with the following rank order of susceptibility to AOAH: E:sCD14>or=endotoxin aggregates (Eagg):LBP (molar ratio of E/LBP 100:1)>>Eagg, Eagg:LBP (E/LBP approximately 1, mol/mol), or E:MD-2. AOAH treatment of LOS-sCD14 produced partially deacylated LOS still complexed with sCD14. The underacylated LOS complexed to sCD14 transferred to MD-2 and thus formed a complex capable of preventing TLR4 activation. These findings strongly suggest that LBP- and CD14-dependent extraction and transfer of endotoxin monomers are accompanied by increased exposure of fatty acyl chains within lipid A and that the acyl chains are then sequestered when LOS binds MD-2. The susceptibility of the monomeric endotoxin-CD14 complex to AOAH may help constrain endotoxin-induced TLR4 activation when endotoxin and membrane CD14 are present in excess of MD-2/TLR-4.
Collapse
Affiliation(s)
- Theresa L Gioannini
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Prohinar P, Re F, Widstrom R, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. Specific High Affinity Interactions of Monomeric Endotoxin·Protein Complexes with Toll-like Receptor 4 Ectodomain. J Biol Chem 2007; 282:1010-7. [PMID: 17121827 DOI: 10.1074/jbc.m609400200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Potent Toll-like receptor 4 (TLR4) activation by endotoxin has been intensely studied, but the molecular requirements for endotoxin interaction with TLR4 are still incompletely defined. Ligand-receptor interactions involving endotoxin and TLR4 were characterized using monomeric endotoxin.protein complexes of high specific radioactivity. The binding of endotoxin.MD-2 to the TLR4 ectodomain (TLR4ECD) and transfer of endotoxin from CD14 to MD-2/TLR4ECD were demonstrated using HEK293T-conditioned medium containing TLR4ECD+/-MD-2. These interactions are specific, of high affinity (KD<300 pm), and consistent with the molecular requirements for potent cell activation by endotoxin. Both reactions result in the formation of a Mr approximately 190,000 complex composed of endotoxin, MD-2, and TLR4ECD. CD14 facilitates transfer of endotoxin to MD-2 (TLR4) but is not a stable component of the endotoxin.MD-2/TLR4 complex. The ability to assay specific high affinity interactions of monomeric endotoxin.protein complexes with TLR4ECD should allow better definition of the structural requirements for endotoxin-induced TLR4 activation.
Collapse
Affiliation(s)
- Polonca Prohinar
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Barker JH, Weiss J, Apicella MA, Nauseef WM. Basis for the failure of Francisella tularensis lipopolysaccharide to prime human polymorphonuclear leukocytes. Infect Immun 2006; 74:3277-84. [PMID: 16714555 PMCID: PMC1479269 DOI: 10.1128/iai.02011-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the intracellular gram-negative coccobacillus that causes tularemia, and its virulence and infectiousness make it a potential agent of bioterrorism. Previous studies using mononuclear leukocytes have shown that the lipopolysaccharide (LPS) of F. tularensis is neither a typical proinflammatory endotoxin nor an endotoxin antagonist. This inertness suggests that F. tularensis LPS does not bind host LPS-sensing molecules such as LPS-binding protein (LBP). Using priming of the polymorphonuclear leukocyte (PMN) oxidase as a measure of endotoxicity, we found that F. tularensis live vaccine strain LPS did not behave like either a classic endotoxin or an endotoxin antagonist in human PMNs, even when the concentration of LBP was limiting. Furthermore, F. tularensis LPS did not compete with a radiolabeled lipooligosaccharide from Neisseria meningitidis for binding to LBP or to the closely related PMN granule protein, bactericidal/permeability-increasing protein. Our results suggest that the inertness of F. tularensis LPS and the resistance of F. tularensis to oxygen-independent PMN killing may result from the inability of F. tularensis LPS to be recognized by these important LPS-sensing molecules of the innate immune system.
Collapse
Affiliation(s)
- Jason H Barker
- Inflammation Program and Department of Medicine, University of Iowa, D160 MTF, 2501 Crosspark Road, Coralville, IA, 52241, USA
| | | | | | | |
Collapse
|
40
|
Post DMB, Zhang D, Weiss JP, Gibson BW. Stable isotope metabolic labeling of Neisseria meningitidis lipooligosaccharide. ACTA ACUST UNITED AC 2006; 12:93-8. [PMID: 16690012 DOI: 10.1177/09680519060120020501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lipooligosaccharide (LOS) of a Neisseria meningitidis acetate auxotroph was metabolically labeled with either [2-13C]-sodium acetate or [1,2-13C2]-sodium acetate. In this study, we demonstrated that this label was efficiently incorporated into both the lipid A acyl moieties and the two N-acetylglucosamines present in the oligosaccharide branch of the LOS. The development of this efficient labeling protocol should prove useful in future structural studies analyzing the interactions between LOS and host proteins.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | |
Collapse
|
41
|
Teghanemt A, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. THE JOURNAL OF IMMUNOLOGY 2005; 175:4669-76. [PMID: 16177114 DOI: 10.4049/jimmunol.175.7.4669] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Potent TLR4-dependent cell activation by gram-negative bacterial endotoxins depends on sequential endotoxin-protein and protein-protein interactions with LPS-binding protein, CD14, myeloid differentiation protein 2 (MD-2), and TLR4. Previous studies have suggested that reduced agonist potency of underacylated endotoxins (i.e., tetra- or penta- vs hexa-acylated) is determined by post-CD14 interactions. To better define the molecular basis of the differences in agonist potency of endotoxins differing in fatty acid acylation, we compared endotoxins (lipooligosaccharides (LOS)) from hexa-acylated wild-type (wt), penta-acylated mutant msbB meningococcal strains as well as tetra-acylated LOS generated by treatment of wt LOS with the deacylating enzyme, acyloxyacylhydrolase. To facilitate assay of endotoxin:protein and endotoxin:cell interactions, the endotoxins were purified after metabolic labeling with [3H]- or [14C]acetate. All LOS species tested formed monomeric complexes with MD-2 in an LPS-binding protein- and CD14-dependent manner with similar efficiency. However, msbB LOS:MD-2 and acyloxyacylhydrolase-treated LOS:MD-2 were at least 10-fold less potent in inducing TLR4-dependent cell activation than wt LOS:MD-2 and partially antagonized the action of wt LOS:MD-2. These findings suggest that underacylated endotoxins produce decreased TLR4-dependent cell activation by altering the interaction of the endotoxin:MD-2 complex with TLR4 in a way that reduces receptor activation. Differences in potency among these endotoxin species is determined not by different aggregate properties, but by different properties of monomeric endotoxin:MD-2 complexes.
Collapse
Affiliation(s)
- Athmane Teghanemt
- Inflammation Program, Department of Internal Medicine, Coralville, IA 52241, USA
| | | | | | | | | |
Collapse
|
42
|
Post DMB, Zhang D, Eastvold JS, Teghanemt A, Gibson BW, Weiss JP. Biochemical and Functional Characterization of Membrane Blebs Purified from Neisseria meningitidis Serogroup B. J Biol Chem 2005; 280:38383-94. [PMID: 16103114 DOI: 10.1074/jbc.m508063200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies with purified aggregates of endotoxin have revealed the importance of lipopolysaccharide-binding protein (LBP)-dependent extraction and transfer of individual endotoxin molecules to CD14 in Toll-like receptor 4 (TLR4)-dependent cell activation. Endotoxin is normally embedded in the outer membrane of intact Gram-negative bacteria and shed membrane vesicles ("blebs"). However, the ability of LBP and CD14 to efficiently promote TLR4-dependent cell activation by membrane-associated endotoxin has not been studied extensively. In this study, we used an acetate auxotroph of Neisseria meningitidis serogroup B to facilitate metabolic labeling of bacterial endotoxin and compared interactions of purified endotoxin aggregates and of membrane-associated endotoxin with LBP, CD14, and endotoxin-responsive cells. The endotoxin, phospholipid, and protein composition of the recovered blebs indicate that the blebs derive from the bacterial outer membrane. Proteomic analysis revealed an unusual enrichment in highly cationic (pI > 9) proteins. Both purified endotoxin aggregates and blebs activate monocytes and endothelial cells in a LBP-, CD14-, and TLR4/MD-2-dependent fashion, but the blebs were 3-10-fold less potent when normalized for the amount of endotoxin added. Differences in potency correlated with differences in efficiency of LBP-dependent delivery to and extraction of endotoxin by CD14. Both membrane phospholipids and endotoxin are extracted by LBP/soluble CD14 (sCD14) treatment, but only endotoxin.sCD14 reacts with MD-2 and activates cells. These findings indicate that the proinflammatory potency of endotoxin may be regulated not only by the intrinsic structural properties of endotoxin but also by its association with neighboring molecules in the outer membrane.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Age Research, Novato, California 94945, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lu M, Zhang M, Takashima A, Weiss J, Apicella MA, Li XH, Yuan D, Munford RS. Lipopolysaccharide deacylation by an endogenous lipase controls innate antibody responses to Gram-negative bacteria. Nat Immunol 2005; 6:989-94. [PMID: 16155573 DOI: 10.1038/ni1246] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/04/2005] [Indexed: 01/06/2023]
Abstract
T cell-independent type 1 agonists such as Gram-negative bacterial lipopolysaccharides can stimulate B lymphocytes to proliferate and produce antibodies by signaling through Toll-like receptors. This phenomenon is well established in vitro, yet polyclonal B cell responses after bacterial infection in vivo are often weak and short-lived. We show here that B cell proliferation and polyclonal antibody production in response to Gram-negative bacterial infection are modulated by acyloxyacyl hydrolase, a host enzyme that deacylates bacterial lipopolysaccharides. Deacylation of lipopolysaccharide occurred over several days, allowing lipopolysaccharide to act as an innate immune stimulant yet limiting the eventual amount of B cell proliferation and polyclonal antibody production. Control of lipopolysaccharide activation by acyloxyacyl hydrolase indicates that mammals can regulate immune responses to bacterial infection by chemical modification of a Toll-like receptor agonist.
Collapse
Affiliation(s)
- Mingfang Lu
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stoll LL, Denning GM, Li WG, Rice JB, Harrelson AL, Romig SA, Gunnlaugsson ST, Miller FJ, Weintraub NL. Regulation of endotoxin-induced proinflammatory activation in human coronary artery cells: expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1336-43. [PMID: 15240728 PMCID: PMC3976648 DOI: 10.4049/jimmunol.173.2.1336] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low-level endotoxemia has been identified as a powerful risk factor for atherosclerosis. However, little is known about the mechanisms that regulate endotoxin responsiveness in vascular cells. We conducted experiments to compare the relative responses of human coronary artery endothelial cells (HCAEC) and smooth muscle cells (HCASMC) to very low levels of endotoxin, and to elucidate the mechanisms that regulate endotoxin responsiveness in vascular cells. Endotoxin (</=1 ng/ml) caused production of chemotactic cytokines in HCAEC. Endotoxin-induced cytokine production was maximal at LPS-binding protein:soluble CD14 ratios <1, typically observed in individuals with subclinical infection; higher LPS-binding protein:soluble CD14 ratios were inhibitory. Endotoxin potently activated HCASMC, with cytokine release >10-fold higher in magnitude at >10-fold lower threshold concentrations (10-30 pg/ml) compared with HCAEC. This remarkable sensitivity of HCASMC to very low endotoxin concentrations, comparable to that found in circulating monocytes, was not due to differential expression of TLR4, which was detected in HCAEC, HCASMC, and intact coronary arteries. Surprisingly, membrane-bound CD14 was detected in seven different lines of HCASMC, conferring responsiveness to endotoxin and to lipoteichoic acid, a product of Gram-positive bacteria, in these cells. These results suggest that the low levels of endotoxin associated with increased risk for atherosclerosis are sufficient to produce inflammatory responses in coronary artery cells. Because CD14 recognizes a diverse array of inflammatory mediators and functions as a pattern recognition molecule in inflammatory cells, expression of membrane-bound CD14 in HCASMC implies a potentially broader role for these cells in transducing innate immune responses in the vasculature.
Collapse
Affiliation(s)
- Lynn L Stoll
- Division of Cardiovascular Diseases, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, McCray PB. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 2004; 287:L428-37. [PMID: 15121639 DOI: 10.1152/ajplung.00377.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of inducible antimicrobial peptides, such as human beta-defensin-2 (HBD-2) by epithelia, comprises a component of innate pulmonary defenses. We hypothesized that HBD-2 induction in airway epithelia is linked to pattern recognition receptors such as the Toll-like receptors (TLRs). We found that primary cultures of well-differentiated human airway epithelia express the mRNA for TLR-4, but little or no MD-2 mRNA, and display little HBD-2 expression in response to treatment with purified endotoxin +/- LPS binding protein (LBP) and soluble CD14. Expression of endogenous MD-2 by transduction of airway epithelial cells with an adenoviral vector encoding MD-2 or extracellular addition of recombinant MD-2 both increased the responses of airway epithelia to endotoxin + LBP and sCD14 by >100-fold, as measured by NF-kappaB-luciferase activity and HBD-2 mRNA expression. MD-2 mRNA could be induced in airway epithelia by exposure of these cells to specific bacterial or host products (e.g., killed Haemophilus influenzae, the P6 outer membrane protein from H. influenzae, or TNF-alpha + IFN-gamma). These findings suggest that MD-2, either coexpressed with TLR-4 or secreted when produced in excess of TLR-4 from neighboring cells, is required for airway epithelia to respond sensitively to endotoxin. The regulation of MD-2 expression in airway epithelia and pulmonary macrophages may serve as a means to modify endotoxin responsiveness in the airway.
Collapse
Affiliation(s)
- Hong Peng Jia
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A 2004; 101:4186-91. [PMID: 15010525 PMCID: PMC384716 DOI: 10.1073/pnas.0306906101] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 01/20/2004] [Indexed: 12/13/2022] Open
Abstract
Host proinflammatory responses to minute amounts of endotoxins derived from many Gram-negative bacteria require the interaction of lipopolysaccharide-binding protein (LBP), CD14, Toll-like receptor 4 (TLR4) and MD-2. Optimal sensitivity to endotoxin requires an ordered series of endotoxin-protein and protein-protein interactions. At substoichiometric concentrations, LBP facilitates delivery of endotoxin aggregates to soluble CD14 (sCD14) to form monomeric endotoxin-sCD14 complexes. Subsequent interactions of endotoxin-sCD14 with TLR4 and/or MD-2 have not been specifically defined. This study reports the purification of a stable, monomeric, bioactive endotoxin-MD-2 complex generated by treatment of endotoxin-sCD14 with recombinant MD-2. Efficient generation of this complex occurred at picomolar concentrations of endotoxin and nanogram per milliliter doses of MD-2 and required presentation of endotoxin to MD-2 as a monomeric endotoxin-CD14 complex. TLR4-dependent delivery of endotoxin to human embryonic kidney (HEK) cells and cell activation at picomolar concentrations of endotoxin occurred with the purified endotoxin-MD-2 complex, but not with purified endotoxin aggregates with or without LBP and/or sCD14. The presence of excess MD-2 inhibited delivery of endotoxin-MD-2 to HEK/TLR4 cells and cell activation. These findings demonstrate that TLR4-dependent activation of host cells by picomolar concentrations of endotoxin occurs by sequential interaction and transfer of endotoxin to LBP, CD14, and MD-2 and simultaneous engagement of endotoxin and TLR4 by MD-2.
Collapse
Affiliation(s)
- Theresa L Gioannini
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Brandenburg K, Andrä J, Müller M, Koch MHJ, Garidel P. Physicochemical properties of bacterial glycopolymers in relation to bioactivity. Carbohydr Res 2003; 338:2477-89. [PMID: 14670710 DOI: 10.1016/j.carres.2003.08.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An overview is given on the physicochemical properties of bacterial glycopolymers, i.e., pure oligo- and polysaccharides as well as glycolipids. Data from analysis of the chemical and physicochemical properties of various sugar polymers are summarized. Furthermore, data are presented on the thorough characterization of the most important class of bacterial glycopolymers, the lipopolysaccharides (LPS). These data comprise the chemical characterization, the gel to liquid crystalline phase transition behaviour of their acyl chains, the ultrastructural studies of their morphology, and the investigation of the types of aggregate structures present above the critical micellar concentration (CMC). Furthermore, the relevance of these data with respect to an understanding of the various biological effects elicited by LPS is discussed.
Collapse
Affiliation(s)
- Klaus Brandenburg
- Forschungszentrum Borstel, LG Biophysik, Parkallee 10, D-23845 Borstel, Germany.
| | | | | | | | | |
Collapse
|
48
|
Gioannini TL, Zhang D, Teghanemt A, Weiss JP. An essential role for albumin in the interaction of endotoxin with lipopolysaccharide-binding protein and sCD14 and resultant cell activation. J Biol Chem 2002; 277:47818-25. [PMID: 12372833 DOI: 10.1074/jbc.m206404200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Experiments utilizing endotoxin aggregates, lipooligosaccharides (LOS) isolated from metabolically labeled Neisseria meningitidis serotype group B, demonstrate that albumin is an essential component of lipopolysaccharide binding protein- (LBP) and sCD14-dependent 1) disaggregation of LOS and 2) LOS activation of human umbilical vein endothelial cells (HUVEC). Aggregates of LOS (LOS(agg)) with an apparent M(r) >or= 2 x 10(7) were isolated by gel sieving on Sephacryl HR S500 in buffered balanced salts solution plus albumin. Incubation of LOS(agg) with LBP and sCD14 promoted LOS(agg) disaggregation in an albumin-dependent fashion to complexes that contain LOS and sCD14, but no LBP, with an apparent M(r) approximately 60,000 (LOS:sCD14) as determined by Sephacryl S200 chromatography. Isolation by gel filtration of LOS(agg):protein aggregates formed by the interaction of LOS(agg) with either LBP or sCD14 alone revealed that the sequence of LOS-protein interactions as well as the step(s) at which albumin is necessary for the production of bioactive LOS:sCD14 were specific. Efficient generation of LOS:sCD14 required 1) interaction of LOS(agg) with LBP before interaction with CD14 and 2) the presence of albumin during the interaction of LBP with LOS(agg). Activation of HUVEC by LOS(agg), as measured by IL-8 production, required both LBP and sCD14 and was thirty times more potent in the presence of albumin. In contrast, LOS:sCD14 did not require additional LBP, sCD14, or albumin to activate HUVEC but depended on the presence of albumin for optimal solubility/stability once formed. The albumin effect is apparently specific, because neither ovalbumin nor gelatin substituted for albumin in facilitating LBP:sCD14-dependent disaggregation of LOS(agg) or activation of endothelial cells. These results indicate that albumin is an essential facilitator of LBP/sCD14-induced LOS disaggregation that is required for activation of endothelial cells by LOS(agg).
Collapse
Affiliation(s)
- Theresa L Gioannini
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
49
|
Brandtzaeg P, van Deuren M. Current concepts in the role of the host response in Neisseria meningitidis septic shock. Curr Opin Infect Dis 2002; 15:247-52. [PMID: 12015458 DOI: 10.1097/00001432-200206000-00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharides in the outer membrane of Neisseria meningitidis are key molecules that induce inflammation and cause meningitis and shock. Mutant strains, with altered lipid A, the toxic moiety of lipopolysaccharide, or completely lacking lipopolysaccharide, induce significantly less inflammation than wild-type strains. Polymorphism of the Fc gamma receptors and interleukin-10 gene but not of the Toll-like receptor 4 may influence the development of meningococcal infection. Mannan-binding lectin is involved in complement activation, the regulation of adhesion molecules and cytokine production induced by meningococci. The activation of protein C by the thrombomodulin protein C receptor complex on the endothelial cell surface appears to be reduced in meningococcal sepsis but is still sufficient to convert protein C to activated protein C in patients treated with concentrated protein C.
Collapse
MESH Headings
- Carrier Proteins/immunology
- Collectins
- Drosophila Proteins
- Erythrocytes/cytology
- Erythrocytes/metabolism
- Erythrocytes/microbiology
- Humans
- Leukocytes/cytology
- Leukocytes/metabolism
- Leukocytes/microbiology
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Lipopolysaccharides/toxicity
- Membrane Glycoproteins/metabolism
- Meningitis, Meningococcal/complications
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/pathology
- Meningitis, Meningococcal/physiopathology
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Protein C/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Shock, Septic/diagnosis
- Shock, Septic/etiology
- Shock, Septic/immunology
- Shock, Septic/physiopathology
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Department of Pediatrics, Ullevål University Hospital, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
50
|
Iovine N, Eastvold J, Elsbach P, Weiss JP, Gioannini TL. The carboxyl-terminal domain of closely related endotoxin-binding proteins determines the target of protein-lipopolysaccharide complexes. J Biol Chem 2002; 277:7970-8. [PMID: 11773072 DOI: 10.1074/jbc.m109622200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bactericidal/permeability increasing (BPI) and lipopolysaccharide (LPS)-binding (LBP) proteins are closely related two-domain proteins in which LPS binding is mediated by the NH(2)-terminal domain. To further define the role of the COOH-terminal domain of these proteins in delivery of LPS to specific host acceptors, we have compared interactions of LBP, BPI, LBP(N)-BPI(C) (NH(2)-terminal domain of LBP, COOH-terminal domain of BPI), and BPI(N)-LBP(C) with purified (3)H-LPS and, subsequently, with purified leukocytes and soluble (s)CD14. The COOH-terminal domain of LBP promotes delivery of LPS to CD14 on both polymorphonuclear leukocytes and monocytes resulting in cell activation. In the presence of Ca(2+) and Mg(2+), LBP and BPI each promote aggregation of LPS to protein-LPS aggregates of increased size (apparent M(r) > 20 x 10(6) Da), but only LPS associated with LBP and BPI(N)-LBP(C) is disaggregated in the presence of CD14. BPI and LBP(N)-BPI(C) promote apparently CD14-independent LPS association to monocytes without cell activation. These findings demonstrate that the carboxyl-terminal domain of these closely related endotoxin-binding proteins dictates the route and host responses to complexes they form with endotoxin.
Collapse
Affiliation(s)
- Nicole Iovine
- Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|