1
|
Lee SM. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep 2024; 57:135-142. [PMID: 38449301 PMCID: PMC10979348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk Univeristy, Seoul 05029, Korea
| |
Collapse
|
2
|
Ghosh K, Zhou JJ, Shao JY, Chen SR, Pan HL. DNA demethylation in the hypothalamus promotes transcription of Agtr1a and Slc12a2 and hypertension development. J Biol Chem 2024; 300:105597. [PMID: 38160798 PMCID: PMC10830874 DOI: 10.1016/j.jbc.2023.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Increased expression of angiotensin II AT1A receptor (encoded by Agtr1a) and Na+-K+-Cl- cotransporter-1 (NKCC1, encoded by Slc12a2) in the hypothalamic paraventricular nucleus (PVN) contributes to hypertension development. However, little is known about their transcriptional control in the PVN in hypertension. DNA methylation is a critical epigenetic mechanism that regulates gene expression. Here, we determined whether transcriptional activation of Agtr1a and Slc12a2 results from altered DNA methylation in spontaneously hypertensive rats (SHR). Methylated DNA immunoprecipitation and bisulfite sequencing-PCR showed that CpG methylation at Agtr1a and Slc12a2 promoters in the PVN was progressively diminished in SHR compared with normotensive Wistar-Kyoto rats (WKY). Chromatin immunoprecipitation-quantitative PCR revealed that enrichment of DNA methyltransferases (DNMT1 and DNMT3A) and methyl-CpG binding protein 2, a DNA methylation reader protein, at Agtr1a and Slc12a2 promoters in the PVN was profoundly reduced in SHR compared with WKY. By contrast, the abundance of ten-eleven translocation enzymes (TET1-3) at Agtr1a and Slc12a2 promoters in the PVN was much greater in SHR than in WKY. Furthermore, microinjecting of RG108, a selective DNMT inhibitor, into the PVN of WKY increased arterial blood pressure and correspondingly potentiated Agtr1a and Slc12a2 mRNA levels in the PVN. Conversely, microinjection of C35, a specific TET inhibitor, into the PVN of SHR markedly reduced arterial blood pressure, accompanied by a decrease in Agtr1a and Slc12a2 mRNA levels in the PVN. Collectively, our findings suggest that DNA hypomethylation resulting from the DNMT/TET switch at gene promoters in the PVN promotes transcription of Agtr1a and Slc12a2 and hypertension development.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
3
|
Yang W, Zhuang J, Li C, Cheng GJ. Unveiling the Methyl Transfer Mechanisms in the Epigenetic Machinery DNMT3A-3L: A Comprehensive Study Integrating Assembly Dynamics with Catalytic Reactions. Comput Struct Biotechnol J 2023; 21:2086-2099. [PMID: 36968013 PMCID: PMC10034213 DOI: 10.1016/j.csbj.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
In epigenetic mechanisms, DNA methyltransferase 3 alpha (DNMT3A) acts as an initiator for DNA methylation and prevents the downstream genes from expressing. Perturbations of DNMT3A functions may cause uncontrolled gene expression, resulting in pathogenic consequences such as cancers. It is, therefore, vitally important to understand the catalytic process of DNMT3A in its biological macromolecule assembly, viz., heterotetramer: (DNMT3A-3 L)dimer. In this study, we utilized molecular dynamics (MD) simulations, Markov State Models (MSM), and quantum mechanics/molecular mechanics simulations (QM/MM) to investigate the de novo methyl transfer process. We identified the dynamics of the key residues relevant to the insertion of the target cytosine (dC) into the catalytic domain of DNMT3A, and the detailed potential energy surface of the seven-step reaction referring to methyl transfer. Our calculated potential energy barrier (22.51 kcal/mol) approximates the former experimental data (23.12 kcal/mol). The conformational change of the 5-methyl-cytosine (5mC) intermediate was found necessary in forming a four-water chain for the elimination step, which is unique to the other DNMTs. The biological assembly facilitates the creation of such a water chain, and the elimination occurs in an asynchronized mechanism in the two catalytic pockets. We anticipate the findings can enable a better understanding of the general mechanisms of the de novo methyl transfer for fulfilling the key enzymatic functions in epigenetics. And the unique elimination of DNMT3A might ignite novel methods for designing anti-cancer and tumor inhibitors of DNMTs.
Collapse
Affiliation(s)
- Wei Yang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Biotechnology, University of Science and Technology of China, Hefei 230026, China
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Key Laboratory of Steroid Drug Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Corresponding author at: Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
4
|
Stillson NJ, Anderson KE, Reich NO. In silico study of selective inhibition mechanism of S-adenosyl-L-methionine analogs for human DNA methyltransferase 3A. Comput Biol Chem 2023; 102:107796. [PMID: 36495748 DOI: 10.1016/j.compbiolchem.2022.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Epigenetic mechanisms leading to transcriptional regulation, including DNA methylation, are frequently dysregulated in diverse cancers. Interfering with aberrant DNA methylation performed by DNA cytosine methyltransferases (DNMTs) is a clinically validated approach. In particular, the selective inhibition of the de novo DNMT3A and DNMT3B enzymes, whose expression is limited to early embryogenesis, adult stem cells, and in cancers, is particularly attractive; such selectivity is likely to attenuate the dose limiting toxicity shown by current, non-selective DNMT inhibitors. We use molecular dynamics (MD) based computational analysis to study known small molecule binders of DNMT3A, then propose reversible, tight binding, and selective inhibitors that exploit the Asn1192/Arg688 difference between the maintenance DNMT1 and DNMT3A near the active site. A similar strategy exploiting the presence of a unique active site cysteine Cys666 is used to propose DNMT3A-selective irreversible inhibitors. We report our results of relative binding energies of the known and proposed compounds estimated using MM/GBSA and umbrella sampling (US) techniques, and our evaluation of other end-point binding free energy calculation methods for these receptors. These calculations offer insight into the potential for small molecules to selectively target the active site of DNMT3A.
Collapse
Affiliation(s)
- Nathaniel J Stillson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Kyle E Anderson
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA
| | - Norbert O Reich
- The Department of Chemistry and Biochemistry University of California, Santa Barbara 93106-9510, USA.
| |
Collapse
|
5
|
Yao D, Mu Y, Lu Y, Li L, Shao S, Zhou J, Li J, Chen S, Zhang D, Zhang Y, Zhu Z, Li H. Hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring rats. J Psychiatr Res 2022; 151:17-24. [PMID: 35427874 DOI: 10.1016/j.jpsychires.2022.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Numerous studies have shown that prenatal stress (PS) induces learning and memory deficits in offspring, yet the specific mechanisms and effective interventions remain limited. Chewing has been known as one of the active coping strategies to suppress stress, but its effects during PS on learning and memory are unknown. The purpose of this study was to investigate the role of hippocampal AMPA receptors in the adverse effects of PS on spatial learning and memory, and whether chewing during PS could prevent these effects in prenatally stressed adult offspring rats. Prenatal restraint stress with or without chewing to dams during the day 11-20 of pregnancy was used to analyze the impact of different treatments for offspring. The spatial learning and memory were tested by the Morris water maze. The mRNA and protein expression of AMPA receptors in the hippocampus were measured by qRT-PCR and Western blot, respectively. The methylation of AMPA receptors was detected by bisulfite sequencing PCR. Our results revealed that PS impaired spatial learning acquisition and memory retrieval in adult offspring rats, but chewing could relieve this effect. Hippocampal GluA1-4 expression was significantly reduced in prenatally stressed offspring, while there were no changes in the methylation level of GluA2 and GluA4 promoters. Moreover, chewing increased PS-induced suppression of AMPA receptors in the hippocampus. In short, hippocampal AMPA receptors mediate the impairment of spatial learning and memory in prenatally stressed offspring, whereas chewing during PS could ameliorate PS-induced memory deficits.
Collapse
Affiliation(s)
- Dan Yao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yingjun Mu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Yong Lu
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Li Li
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Shuya Shao
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Jiahao Zhou
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Jing Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Shengquan Chen
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Dan Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifan Zhang
- Central Laboratory, Heze Medical College, 1750 University Road, Heze, Shandong, 274009, China
| | - Zhongliang Zhu
- Maternal and Infant Health Research Institute, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
6
|
Evaluation of the Properties of the DNA Methyltransferase from Aeropyrum pernix K1. Microbiol Spectr 2021; 9:e0018621. [PMID: 34585946 PMCID: PMC8557920 DOI: 10.1128/spectrum.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known regarding the DNA methyltransferases (MTases) in hyperthermophilic archaea. In this study, we focus on an MTase from Aeropyrum pernix K1, a hyperthermophilic archaeon that is found in hydrothermal vents and whose optimum growth temperature is 90°C to 95°C. From genomic sequence analysis, A. pernix K1 has been predicted to have a restriction-modification system (R-M system). The restriction endonuclease from A. pernix K1 (known as ApeKI from New England BioLabs Inc. [catalog code R06435]) has been described previously, but the properties of the MTase from A. pernix K1 (M.ApeKI) have not yet been clarified. Thus, we demonstrated the properties of M.ApeKI. In this study, M.ApeKI was expressed in Escherichia coli strain JM109 and affinity purified using its His tag. The recognition sequence of M.ApeKI was determined by methylation activity and bisulfite sequencing (BS-seq). High-performance liquid chromatography (HPLC) was used to detect the position of the methyl group in methylated cytosine. As a result, it was clarified that M.ApeKI adds the methyl group at the C-5 position of the second cytosine in 5'-GCWGC-3'. Moreover, we also determined that the MTase optimum temperature was over 70°C and that it is strongly tolerant to high temperatures. M.ApeKI is the first highly thermostable DNA (cytosine-5)-methyltransferase to be evaluated by experimental evidence. IMPORTANCE In general, thermophilic bacteria with optimum growth temperatures over or equal to 60°C have been predicted to include only N4-methylcytosine or N6-methyladenine as methylated bases in their DNA, because 5-methylcytosine is susceptible to deamination by heat. However, from this study, A. pernix K1, with an optimum growth temperature at 95°C, was demonstrated to produce a DNA (cytosine-5)-methyltransferase. Thus, A. pernix K1 presumably has 5-methylcytosine in its DNA and may produce an original repair system for the expected C-to-T mutations. M.ApeKI was demonstrated to be tolerant to high temperatures; thus, we expect that M.ApeKI may be valuable for the development of a novel analysis system or epigenetic editing tool.
Collapse
|
7
|
Ruiz de la Cruz M, de la Cruz Montoya AH, Rojas Jiménez EA, Martínez Gregorio H, Díaz Velásquez CE, Paredes de la Vega J, de la Cruz Hernández-Hernández F, Vaca Paniagua F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers (Basel) 2021; 13:cancers13194807. [PMID: 34638292 PMCID: PMC8508567 DOI: 10.3390/cancers13194807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
Collapse
Affiliation(s)
- Miguel Ruiz de la Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Ernesto Arturo Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
| | - Jimena Paredes de la Vega
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Fidel de la Cruz Hernández-Hernández
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333 (ext. 39788)
| |
Collapse
|
8
|
Stojković L, Zec M, Zivkovic M, Bundalo M, Bošković M, Glibetić M, Stankovic A. Polyphenol-Rich Aronia melanocarpa Juice Consumption Affects LINE-1 DNA Methylation in Peripheral Blood Leukocytes in Dyslipidemic Women. Front Nutr 2021; 8:689055. [PMID: 34222308 PMCID: PMC8247759 DOI: 10.3389/fnut.2021.689055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease (CVD) is associated with alterations in DNA methylation and polyunsaturated fatty acid (PUFA) profile, both modulated by dietary polyphenols. The present parallel, placebo-controlled study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to determine the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice (AMJ) treatment on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes and on plasma PUFAs, in subjects (n = 54, age range of 40.2 ± 6.7 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure, and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation (folate intake levels, MTHFR C677T gene variant, anthropometric and metabolic parameters) modulated the LINE-1 methylation levels upon the consumption of polyphenol-rich aronia juice. Experimental analysis of LINE-1 methylation was done by MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction–restriction fragment length polymorphism method, and folate intake was assessed by processing the data from the food frequency questionnaire. PUFAs were measured by gas–liquid chromatography, and serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using Statistica software package. In the comparison after vs. before the treatment period, in dyslipidemic women (n = 22), we observed significant decreases in LINE-1 methylation levels (97.54 ± 1.50 vs. 98.39 ± 0.86%, respectively; P = 0.01) and arachidonic acid/eicosapentaenoic acid ratio [29.17 ± 15.21 vs. 38.42 (25.96–89.58), respectively; P = 0.02]. The change (after vs. before treatment) in LINE-1 methylation directly correlated with the presence of MTHFR 677T allele, average daily folate intake, and the change in serum low-density lipoprotein cholesterol but inversely correlated with the change in serum triacylglycerols (R = 0.72, R2 = 0.52, adjusted R2 = 0.36, P = 0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich aronia juice consumption achieved through the modifications of DNA methylation pattern and PUFAs in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of both DNA methylation and PUFA profile may become targets for new approaches in the prevention of CVD.
Collapse
Affiliation(s)
- Ljiljana Stojković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manja Zec
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Bundalo
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Maja Bošković
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Glibetić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environmental Research, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
10
|
A novel class of selective non-nucleoside inhibitors of human DNA methyltransferase 3A. Bioorg Med Chem Lett 2021; 40:127908. [PMID: 33705897 DOI: 10.1016/j.bmcl.2021.127908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
Screening of a small chemical library (Medicines for Malaria Venture Pathogen Box) identified two structurally related pyrazolone (inhibitor 1) and pyridazine (inhibitor 2) DNMT3A inhibitors with low micromolar inhibition constants. The uncompetitive and mixed type inhibition patterns with DNA and AdoMet suggest these molecules act through an allosteric mechanism, and thus are unlikely to bind to the enzyme's active site. Unlike the clinically used mechanism based DNMT inhibitors such as decitabine or azacitidine that act via the enzyme active site, the inhibitors described here could lead to the development of more selective drugs. Both inhibitors show promising selectivity for DNMT3A in comparison to DNMT1 and bacterial DNA cytosine methyltransferases. With further study, this could form the basis of preferential targeting of de novo DNA methylation over maintenance DNA methylation.
Collapse
|
11
|
Mao SQ, Cuesta SM, Tannahill D, Balasubramanian S. Genome-wide DNA Methylation Signatures Are Determined by DNMT3A/B Sequence Preferences. Biochemistry 2020; 59:2541-2550. [PMID: 32543182 PMCID: PMC7364778 DOI: 10.1021/acs.biochem.0c00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Indexed: 12/24/2022]
Abstract
Cytosine methylation is an important epigenetic mark, but how the distinctive patterns of DNA methylation arise remains elusive. For the first time, we systematically investigated how these patterns can be imparted by the inherent enzymatic preferences of mammalian de novo DNA methyltransferases in vitro and the extent to which this applies in cells. In a biochemical experiment, we subjected a wide variety of DNA sequences to methylation by DNMT3A or DNMT3B and then applied deep bisulfite sequencing to quantitatively determine the sequence preferences for methylation. The data show that DNMT3A prefers CpG and non-CpG sites followed by a 3'-pyrimidine, whereas DNMT3B favors a 3'-purine. Overall, we show that DNMT3A has a sequence preference for a TNC[G/A]CC context, while DNMT3B prefers TAC[G/A]GC. We extended our finding using publicly available data from mouse Dnmt1/3a/3b triple-knockout cells in which reintroduction of either DNMT3A or DNMT3B expression results in the acquisition of the same enzyme specific signature sequences observed in vitro. Furthermore, loss of DNMT3A or DNMT3B in human embryonic stem cells leads to a loss of methylation at the corresponding enzyme specific signatures. Therefore, the global DNA methylation landscape of the mammalian genome can be fundamentally determined by the inherent sequence preference of de novo methyltransferases.
Collapse
Affiliation(s)
- Shi-Qing Mao
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, U.K.
| | - Sergio Martínez Cuesta
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - David Tannahill
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, U.K.
| | - Shankar Balasubramanian
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| |
Collapse
|
12
|
Busto-Moner L, Morival J, Ren H, Fahim A, Reitz Z, Downing TL, Read EL. Stochastic modeling reveals kinetic heterogeneity in post-replication DNA methylation. PLoS Comput Biol 2020; 16:e1007195. [PMID: 32275652 PMCID: PMC7176288 DOI: 10.1371/journal.pcbi.1007195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 04/22/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
DNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.
Collapse
Affiliation(s)
- Luis Busto-Moner
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
- Dept. of Chemical & Biomolecular Engineering, University of California, Irvine, California, United States of America
| | - Julien Morival
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
| | - Arjang Fahim
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Read
- Dept. of Chemical & Biomolecular Engineering, University of California, Irvine, California, United States of America
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
13
|
Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry M, Denoual F, Peterlongo P, Nadaradjane A, Briand J, Akcha F, Heymann D, Vallette FM, Mosser J, Ory B, Cartron PF. Cytosine methylation of mature microRNAs inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer 2020; 19:36. [PMID: 32098627 PMCID: PMC7041276 DOI: 10.1186/s12943-020-01155-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). Methods RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3’UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. Results Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. Conclusion Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mathilde Cheray
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Present address: Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), R8:03, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Camille Jacques
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France
| | - Romain Pacaud
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Marc Aubry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France
| | - Florent Denoual
- CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France
| | - Pierre Peterlongo
- IRISA Inria Rennes Bretagne Atlantique, équipe GenScale, Campus de Beaulieu, 35042, Rennes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Farida Akcha
- EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France.,Ifremer, Laboratoire d'Ecotoxicologie, Rue de l'Ile d'Yeu, BP21105, cedex 03 44311, . Nantes, France
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Faculté de Médecine, Université de Nantes, Nantes, France.,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, F-35043, Rennes, France.,Plate-forme Génomique Environnementale et Humaine Biosit, Université Rennes1, F-35043, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, F-35033, Rennes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, équipe labellisée ligue 2012, 1 Rue Gaston Veil, 44035, Nantes, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France. .,Faculté de Médecine, Université de Nantes, Nantes, France. .,LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France. .,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France. .,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France. .,EpiSAVMEN, Epigenetic consortium Pays de la Loire, Nantes, France. .,Institut de Cancérologie de l'Ouest, CRCINA INSERM U1232, Equipe 9 -Apoptose et Progression tumorale, LaBCT, Boulevard du Pr J Monod, 44805, Saint-Herblain, France.
| |
Collapse
|
14
|
Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, Vallette FM, Lelièvre SA, Cartron PF. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front Genet 2019; 10:885. [PMID: 31611907 PMCID: PMC6777643 DOI: 10.3389/fgene.2019.00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 01/11/2023] Open
Abstract
The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Christophe Olivier
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Service de toxicologie, Faculté de pharmacie de Nantes, Nantes, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| |
Collapse
|
15
|
Khatami F, Larijani B, Heshmat R, Nasiri S, Saffar H, Shafiee G, Mossafa A, Tavangar SM. Promoter Methylation of Four Tumor Suppressor Genes in Human Papillary Thyroid Carcinoma. IRANIAN JOURNAL OF PATHOLOGY 2019; 14:290-298. [PMID: 31754358 PMCID: PMC6824767 DOI: 10.30699/ijp.2019.94401.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/27/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND & OBJECTIVE Papillary thyroid cancer (PTC) is considered to be the most common type of thyroid malignancies. Epigenetic alteration, in which the chromatin conformation and gene expression change without changing the sequence of DNA, can occur in some tumor suppressor genes and oncogenes. Methylation is the most common type of epigenetic alterations that can be an excellent indicator of PTC invasive behavior. METHODS In this research, we determined the promoter methylation status of four tumor suppressor genes (SLC5A8, RASSF1, MGMT, and DNMT1) and compared the results of 55 PTC cases with 40 goiter patients. For methylation, we used the methylation-sensitive high resolution melting (MS-HRM) assay technique. The resulting graphs of each run were compared with those of 0%, 50%, and 100% methylated controls. RESULTS Our data showed that the promoter methylation of SLC5A8, Ras association domain family member 1(RASSF1), and MGMT were significantly different between PTC tissue and goiter with P-value less than 0.05. The most significant differences were observed in RASSF1; 77.2% of hyper-methylated PTC patients versus 15.6% hyper-methylated goiter samples (P<0.001). CONCLUSION RASSF1 promoter methylation can be a PTC genetic marker. RASSF1 promoter methylation is under the impact of the methyltransferase genes (DNMT1 and MGMT), protein expression, and promoter methylation.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Mossafa
- Department of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Khatami F, Teimoori-Toolabi L, Heshmat R, Nasiri S, Saffar H, Mohammadamoli M, Aghdam MH, Larijani B, Tavangar SM. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J Cell Biochem 2019; 120:17422-17437. [PMID: 31127647 DOI: 10.1002/jcb.29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of cancer among thyroid malignancies. Tumor-related methylation of circulating tumor DNA (ctDNA) in plasma could represent tumor specific alterations can be considered as good biomarkers in circulating tumor cells. In this study, we studied the methylation status of seven promoter regions of two DNA methyl Transferases (MGMT and DNMT1) genes as the methylated ctDNA in plasma and tissue samples of patients with PTC and goiter patients as noncancerous controls. METHODS Both ctDNA and tissue genomic DNA of 57 PTC and 45 Goiter samples were isolated. After bisulfite modification, the methylation status was studied by Methylation-Sensitive High Resolution Melting (MS-HRM) assay technique. Four promoter regions of O6-methylguanine-DNA methyltransferase (MGMT) and three promoter regions of DNA methyltransferase 1 (DNMT1) were assessed. RESULTS From seven candidate promoter regions of two methyltrasferase coding genes, the methylation status of ctDNA within MGMT (a), MGMT (c), MGMT (d), and DNMT1 (b) were meaningfully different between PTC cases and controls. However, the most significant differences were seen in circulating ctDNA MGMT (c) which was hypermethylated in 25 (43.9 %) of patients with PTC vs 2 (4. 4 %) of goiter samples. Between two selected DNA methyl transferase, the methylation of MGMT as the maintenance methyltransferase was significantly higher in PTC cases than goiter controls (P-value < .001). The resulting areas under the receiver operating characteristic (ROC) curve were 0.78 for MGMT (d) for PTC versus goiter samples that can represent the overall ability of MGMT (d) methylation status to discriminate between PTC and goiter patients. CONCLUSION Among seven candidate regions of ctDNA the MGMT (c) and MGMT (d) showed higher sensitivity and specificity for PTC as a suitable candidates as biomarkers of PTC.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hiva Saffar
- Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammadamoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Departments of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Prasad Y, Kumar R, Chaudhary AK, Dhanaraju R, Majumdar S, Rao DN. Kinetic and catalytic properties of M.HpyAXVII, a phase-variable DNA methyltransferase from Helicobacter pylori. J Biol Chem 2018; 294:1019-1034. [PMID: 30478171 DOI: 10.1074/jbc.ra118.003769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/10/2018] [Indexed: 01/26/2023] Open
Abstract
The bacterium Helicobacter pylori is one of the most common infectious agents found in the human stomach. H. pylori has an unusually large number of DNA methyltransferases (MTases), prompting speculation that they may be involved in the cancerization of epithelial cells. The mod-4a/4b locus, consisting of the hp1369 and hp1370 ORFs, encodes for a truncated and inactive MTase in H. pylori strain 26695. However, slipped-strand synthesis within the phase-variable polyguanine tract in hp1369 results in expression of an active HP1369-1370 fusion N 6-adenine methyltransferase, designated M.HpyAXVII. Sequence analysis of the mod-4a/4b locus across 74 H. pylori strain genomes has provided insights into the regulation of M.HpyAXVII expression. To better understand the role of M.HpyAXVII in the H. pylori biology, here we cloned and overexpressed the hp1369-70 fusion construct in Escherichia coli BL21(DE3) cells. Results from size-exclusion chromatography and multi-angle light scattering (MALS) analyses suggested that M.HpyAXVII exists as a dimer in solution. Kinetic studies, including product and substrate inhibition analyses, initial velocity dependence between substrates, and isotope partitioning, suggested that M.HpyAXVII catalyzes DNA methylation in an ordered Bi Bi mechanism in which the AdoMet binding precedes DNA binding and AdoMet's methyl group is then transferred to an adenine within the DNA recognition sequence. Altering the highly conserved catalytic motif (DPP(Y/F)) as well as the AdoMet-binding motif (FXGXG) by site-directed mutagenesis abolished the catalytic activity of M.HpyAXVII. These results provide insights into the enzyme kinetic mechanism of M.HpyAXVII. We propose that AdoMet binding conformationally "primes" the enzyme for DNA binding.
Collapse
Affiliation(s)
- Yedu Prasad
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Ritesh Kumar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Awanish Kumar Chaudhary
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Rajkumar Dhanaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Soneya Majumdar
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, Uttar Pradesh, India
| | - Desirazu N Rao
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| |
Collapse
|
18
|
Maternal high fat diet alters offspring epigenetic regulators, amygdala glutamatergic profile and anxiety. Psychoneuroendocrinology 2018; 96:132-141. [PMID: 29940426 DOI: 10.1016/j.psyneuen.2018.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/12/2018] [Accepted: 06/18/2018] [Indexed: 12/31/2022]
Abstract
Maternal obesity during pregnancy can impact long-term health, predisposition to disease, and risk of neurological disorders in offspring. This may arise from disruption to epigenetic processes during offspring brain development. Using a maternal high fat diet (mHFD) mouse model, we investigated the expression of genes encoding epigenetic regulators in the brains of gestational day (GD) 17.5 mHFD offspring. We found significant, regionally unique changes in expression of epigenetic regulators in the developing brain of mHFD offspring compared to controls, with Gadd45b downregulated in medial prefrontal cortex, Mecp2 downregulated in amygdala, and sex-specific downregulation of Crebbp, Dnmt3b, and Mecp2 in male mHFD hippocampus. Decreased Mecp2 in the amygdala was associated with significant upregulation of the Mecp2-repressed gene, Tbr1, and an increased number of TBR1+ glutamatergic neurons in the basomedial nucleus of the amygdala. Tbr1 upregulation in amygdala was also observed in postnatal day 8 (P8) mHFD offspring, and levels of glutamate receptor gene Grin2b, and Fos, a marker for neuronal activity, were increased. Indications of heightened excitatory drive in mHFD offspring amygdala were associated with an anxiety-like phenotype, with mHFD offspring displaying altered ultrasonic vocalization characteristics at P8, and adult female mHFD offspring spending decreased time on the open arm of the Elevated Plus Maze. Together, this data provides insight into sex-specific offspring vulnerability to perinatal mHFD programming of anxiety-like behaviors.
Collapse
|
19
|
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837:8-24. [PMID: 30125562 DOI: 10.1016/j.ejphar.2018.08.021] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023]
Abstract
Addition of chemical tags on the DNA and modification of histone proteins impart a distinct feature on chromatin architecture. With the advancement in scientific research, the key players underlying these changes have been identified as epigenetic modifiers of the chromatin. Indeed, the plethora of enzymes catalyzing these modifications, portray the diversity of epigenetic space and the intricacy in regulating gene expression. These epigenetic players are categorized as writers: that introduce various chemical modifications on DNA and histones, readers: the specialized domain containing proteins that identify and interpret those modifications and erasers: the dedicated group of enzymes proficient in removing these chemical tags. Research over the past few decades has established that these epigenetic tools are associated with numerous disease conditions especially cancer. Besides, with the involvement of epigenetics in cancer, these enzymes and protein domains provide new targets for cancer drug development. This is certain from the volume of epigenetic research conducted in universities and R&D sector of pharmaceutical industry. Here we have highlighted the different types of epigenetic enzymes and protein domains with an emphasis on methylation and acetylation. This review also deals with the recent developments in small molecule inhibitors as potential anti-cancer drugs targeting the epigenetic space.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
20
|
Paduano F, Gaudio E, Mensah AA, Pinton S, Bertoni F, Trapasso F. T-Cell Leukemia/Lymphoma 1 (TCL1): An Oncogene Regulating Multiple Signaling Pathways. Front Oncol 2018; 8:317. [PMID: 30151355 PMCID: PMC6099186 DOI: 10.3389/fonc.2018.00317] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023] Open
Abstract
Almost 30 years ago, Carlo Croce's group discovered the T-Cell Leukemia/Lymphoma 1A oncogene (TCL1A or TCL1). TCL1 protein is normally expressed in fetal tissues and early developmental stage lymphocytes. Its expression is deregulated in chronic lymphocytic leukemia (B-CLL) and most lymphomas. TCL1 plays a central role in lymphomagenesis as a co-activator of AKT kinases and other recently elucidated interacting protein partners. These include ATM, HSP70 and TP63, which were all confirmed as binding partners of TCL1 from co-immunoprecipitation experiments utilizing endogenously expressed proteins. The nature of these interactions highlighted the role of TCL1 in enhancing multiple signaling pathways, including PI3K and NF-κB. Based on its role in the aforementioned pathways and, despite the lack of a well-defined enzymatic activity, TCL1 is considered a potential therapeutic target for TCL1-positive hematological malignancies. This perspective will provide an overview of TCL1A and its interacting partners.
Collapse
Affiliation(s)
- Francesco Paduano
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Catanzaro, Italy.,Biomedical Section, Tecnologica Research Institute, Crotone, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Afua A Mensah
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sandra Pinton
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
21
|
Sergeev AV, Kirsanova OV, Loiko AG, Nomerotskaya EI, Gromova ES. Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases. Mol Biol 2018. [DOI: 10.1134/s0026893318020139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Silencing of peroxiredoxin II by promoter methylation is necessary for the survival and migration of gastric cancer cells. Exp Mol Med 2018; 50:e443. [PMID: 29422545 PMCID: PMC5903821 DOI: 10.1038/emm.2017.267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxin (Prx), a family of ubiquitous thiol peroxidases, functions as a redox signaling regulator that controls cellular H2O2 in mammalian cells and has recently received attention for being overexpressed in various cancer types. In this study, we show that Prx type II (PrxII) is rather silenced in gastric cancer cells. PrxII expression is severely downregulated in 9 out of the 28 gastric cancer cell lines. Strikingly, PrxII expression is completely lost in three cell lines, MKN28, MKN74 and SNU484. Loss of PrxII expression is due to DNA methyltransferase 1-dependent methylation at the promoter region of the PrxII gene. Restoration of PrxII expression using a retroviral system markedly reduces the colony-forming ability and migratory activity of both MKN28 and SNU484 cells by inhibiting Src kinase. Mechanistically, PrxII peroxidase activity is essential for regulating gastric cancer cell migration. Bioinformatics analysis from The Cancer Genome Atlas stomach cancer data (STAD) revealed significantly low PrxII expression in gastric cancer patients and a negative correlation between PrxII expression and methylation levels. More importantly, low PrxII expression also strongly correlates with poor survival in cancer patients. Thus our study suggests that PrxII may be the first thiol peroxidase that simultaneously regulates both survival and metastasis in gastric cancer cells with high clinical relevance.
Collapse
|
23
|
Congras A, Caillet N, Torossian N, Quelen C, Daugrois C, Brousset P, Lamant L, Meggetto F, Hoareau-Aveilla C. Doxorubicin-induced loss of DNA topoisomerase II and DNMT1- dependent suppression of MiR-125b induces chemoresistance in ALK-positive cells. Oncotarget 2018; 9:14539-14551. [PMID: 29581862 PMCID: PMC5865688 DOI: 10.18632/oncotarget.24465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 12/04/2022] Open
Abstract
Systemic anaplastic large-cell lymphoma (ALCL) is a childhood T cell neoplasm defined by the presence or absence of translocations that lead to the ectopic expression of anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Polychemotherapy involving doxorubicin is the standard first-line treatment but for the 25 to 35% of patients who relapse and develop resistance the prognosis remains poor. We studied the potential role of the microRNA miR-125b in the development of resistance to doxorubicin in NPM-ALK(+) ALCL. Our results show that miR-125b expression is repressed in NPM-ALK(+) cell lines and patient samples through hypermethylation of its promoter. NPM-ALK activity, in cooperation with DNA topoisomerase II (Topo II) and DNA methyltransferase 1 (DNMT1), is responsible for miR-125b repression through DNA hypermethylation. MiR-125b repression was reversed by the inhibition of DNMTs with decitabine or the inhibition of DNA topoisomerase II with either doxorubicin or etoposide. In NPM-ALK(+) cell lines, doxorubicin treatment led to an increase in miR-125b levels by inhibiting the binding of DNMT1 to the MIR125B1 promoter and downregulating the pro-apoptotic miR-125b target BAK1. Reversal of miR-125b silencing, increased miR-125b levels and reduced BAK1 expression also led to a lower efficacy of doxorubicin, suggestive of a pharmacoresistance mechanism. In line with this, miR-125b repression and increased BAK1 expression correlated with early relapse in human NPM-ALK(+) ALCL primary biopsies. Collectively our findings suggest that miR-125b could be used to predict therapeutic outcome in NPM-ALK(+) ALCL.
Collapse
Affiliation(s)
- Annabelle Congras
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Nina Caillet
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Nouritza Torossian
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Cathy Quelen
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| | - Camille Daugrois
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Pierre Brousset
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Laurence Lamant
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Fabienne Meggetto
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, 31024, Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, 31024, Toulouse, France.,European Research Initiative on ALK-related malignancies (ERIA) (http://www.erialcl.net/).,Equipe Labelisée LIGUE 2017
| | - Coralie Hoareau-Aveilla
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Equipe Labelisée LIGUE 2017
| |
Collapse
|
24
|
Lee HO, Wang L, Kuo YM, Andrews AJ, Gupta S, Kruger WD. S-adenosylhomocysteine hydrolase over-expression does not alter S-adenosylmethionine or S-adenosylhomocysteine levels in CBS deficient mice. Mol Genet Metab Rep 2018; 15:15-21. [PMID: 30023284 PMCID: PMC6047060 DOI: 10.1016/j.ymgmr.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Elevated plasma total homocysteine (tHcy) is associated with a number of human diseases including coronary artery disease, stroke, osteoporosis and dementia. It is highly correlated with intracellular S-adenosylhomocysteine (SAH). Since SAH is a strong inhibitor of methyl-transfer reactions involving the methyl-donor S-adenosylmethionine (SAM), elevation in SAH could be an explanation for the wide association of tHcy and human disease. Here, we have created a transgenic mouse (Tg-hAHCY) that expresses human S-adenosylhomocysteine hydrolase (AHCY) from a zinc-inducible promoter in the liver and kidney. Protein analysis shows that human AHCY is expressed well in both liver and kidney, but elevated AHCY enzyme activity (131% increase) is only detected in the kidney due to the high levels of endogenous mouse AHCY expression in liver. Tg-hAHCY mice were crossed with mice lacking cystathionine β-synthase activity (Tg-I278T Cbs−/−) to explore the effect to AHCY overexpression in the context of elevated serum tHcy and elevated tissue SAM and SAH. Overexpression of AHCY had no significant effect on the phenotypes of Tg-I278T Cbs−/− mice or any effect on the steady state concentrations of methionine, total homocysteine, SAM, SAH, and SAM/SAH ratio in the liver and kidney. Furthermore, enhanced AHCY activity did not lower serum and tissue tHcy or methionine levels. Our data suggests that enhancing AHCY activity does not alter the distribution of methionine recycling metabolites, even when they are greatly elevated by Cbs mutations.
Collapse
Key Words
- AHCY, S-adenosylhomocysteine hydrolase
- CBS, cystathionine beta synthase
- CMC, carboxymethylcellulose
- Cbs−, CBS knockout allele
- HA, hemagglutinin
- HHcy, hyperhomocysteinemia
- Hcy, homocysteine
- Met, methionine
- Metabolism
- Methionine
- SAH, S-adenosyl homocysteine
- SAM, S-adenosyl methionine
- Tg-I278T, transgene human CBS containing the I278T mutation
- Transgenic
- Zn, zinc water
- tHcy, total homocysteine
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yin-Ming Kuo
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Andrew J Andrews
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
25
|
Lee CC, Peng SH, Shen L, Lee CF, Du TH, Kang ML, Xu GL, Upadhyay AK, Cheng X, Yan YT, Zhang Y, Juan LJ. The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting. Mol Cell 2017; 68:89-103.e7. [PMID: 28943313 DOI: 10.1016/j.molcel.2017.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.
Collapse
Affiliation(s)
- Chen-Cheng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shih-Huan Peng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan, ROC
| | - Li Shen
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chung-Fan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ting-Huei Du
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ming-Lun Kang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC.
| |
Collapse
|
26
|
Abstract
DNA methylation is an epigenetic process involved in development, aging, and cancer. Although the advent of new molecular techniques has enhanced our knowledge of how DNA methylation alters chromatin and subsequently affects gene expression, a direct link between epigenetic marks and tumorigenesis has not been established. DNMT3A is a de novo DNA methyltransferase that has recently gained relevance because of its frequent mutation in a large variety of immature and mature hematologic neoplasms. DNMT3A mutations are early events during cancer development and seem to confer poor prognosis to acute myeloid leukemia (AML) patients making this gene an attractive target for new therapies. Here, we discuss the biology of DNMT3A and its role in controlling hematopoietic stem cell fate decisions. In addition, we review how mutant DNMT3A may contribute to leukemogenesis and the clinical relevance of DNMT3A mutations in hematologic cancers.
Collapse
Affiliation(s)
- Lorenzo Brunetti
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,CREO, University of Perugia, 06123 Perugia, Italy
| | - Michael C Gundry
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030.,CREO, University of Perugia, 06123 Perugia, Italy.,Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas 77030
| |
Collapse
|
27
|
Sanchez OF, Lee J, Yu King Hing N, Kim SE, Freeman JL, Yuan C. Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression. Metallomics 2017; 9:149-160. [DOI: 10.1039/c6mt00198j] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Lee HO, Wang L, Kuo YM, Gupta S, Slifker MJ, Li YS, Andrews AJ, Kruger WD. Lack of global epigenetic methylation defects in CBS deficient mice. J Inherit Metab Dis 2017; 40:113-120. [PMID: 27444757 PMCID: PMC5300059 DOI: 10.1007/s10545-016-9958-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 11/27/2022]
Abstract
Cystathionine β-synthase (CBS) deficiency is a recessive inborn error of metabolism in which patients have extremely elevated plasma total homocysteine and have clinical manifestations in the vascular, visual, skeletal, and nervous systems. Homocysteine is an intermediary metabolite produced from the hydrolysis of S-adenosylhomocysteine (SAH), which is a by-product of methylation reactions involving the methyl-donor S-adenosylmethionine (SAM). Here, we have measured SAM, SAH, DNA and histone methylation status in an inducible mouse model of CBS deficiency to test the hypothesis that homocysteine-related phenotypes are caused by inhibition of methylation due to elevated SAH and reduced SAM/SAH ratio. We found that mice lacking CBS have elevated cellular SAH and reduced SAM/SAH ratios in both liver and kidney, but this was not associated with alterations in the level of 5-methylcytosine or various histone modifications. Using methylated DNA immunoprecipitation in combination with microarray, we found that of the 241 most differentially methylated promoter probes, 89 % were actually hypermethylated in CBS deficient mice. In addition, we did not find that changes in DNA methylation correlated well with changes in RNA expression in the livers of induced and uninduced CBS mice. Our data indicates that reduction in the SAM/SAH ratio, due to loss of CBS activity, does not result in overall hypomethylation of either DNA or histones.
Collapse
Affiliation(s)
- Hyung-Ok Lee
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Liqun Wang
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Yin-Ming Kuo
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Sapna Gupta
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Michael J Slifker
- Biostatisitics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yue-Sheng Li
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Andrew J Andrews
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Warren D Kruger
- Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
29
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Treatment of cardiovascular pathology with epigenetically active agents: Focus on natural and synthetic inhibitors of DNA methylation and histone deacetylation. Int J Cardiol 2016; 227:66-82. [PMID: 27852009 DOI: 10.1016/j.ijcard.2016.11.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) retains a leadership as a major cause of human death worldwide. Although a substantial progress was attained in the development of cardioprotective and vasculoprotective drugs, a search for new efficient therapeutic strategies and promising targets is under way. Modulation of epigenetic CVD mechanisms through administration epigenetically active agents is one of such new approaches. Epigenetic mechanisms involve heritable changes in gene expression that are not linked to the alteration of DNA sequence. Pathogenesis of CVDs is associated with global genome-wide changes in DNA methylation and histone modifications. Epigenetically active compounds that influence activity of epigenetic modulators such as DNA methyltransferases (DNMTs), histone acetyltransferases, histone deacetylases (HDACs), etc. may correct these pathogenic changes in the epigenome and therefore be used for CVD therapy. To date, many epigenetically active natural substances (such as polyphenols and flavonoids) and synthetic compounds such as DNMT inhibitors or HDAC inhibitors are known. Both native and chemical DNMT and HDAC inhibitors possess a wide range of cytoprotective activities such as anti-inflammatory, antioxidant, anti-apoptotic, anti-anfibrotic, and anti-hypertrophic properties, which are beneficial of treatment of a variety of CVDs. However, so far, only synthetic DNMT inhibitors enter clinical trials while synthetic HDAC inhibitors are still under evaluation in preclinical studies. In this review, we consider epigenetic mechanisms such as DNA methylation and histone modifications in cardiovascular pathology and the epigenetics-based therapeutic approaches focused on the implementation of DNMT and HDAC inhibitors.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow, 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, 121609, Russia; National Research Center for Preventive Medicine, Moscow, 101000, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
30
|
Shabbir MAB, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z. Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications. Front Immunol 2016; 7:375. [PMID: 27725818 PMCID: PMC5035730 DOI: 10.3389/fimmu.2016.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022] Open
Abstract
Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory at University of Veterinary and Animal Sciences Lahore , Pakistan
| | - Hafiz Iftikhar Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Saeed Ahmed
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Mujahid Iqbal
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University , Wuhan , China
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, China; MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Rebuzzini P, Zuccotti M, Redi CA, Garagna S. Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cell Mol Life Sci 2016; 73:2453-66. [PMID: 26961132 PMCID: PMC11108315 DOI: 10.1007/s00018-016-2171-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Pluripotent stem cells differentiate into almost any specialized adult cell type of an organism. PSCs can be derived either from the inner cell mass of a blastocyst-giving rise to embryonic stem cells-or after reprogramming of somatic terminally differentiated cells to obtain ES-like cells, named induced pluripotent stem cells. The potential use of these cells in the clinic, for investigating in vitro early embryonic development or for screening the effects of new drugs or xenobiotics, depends on capability to maintain their genome integrity during prolonged culture and differentiation. Both human and mouse PSCs are prone to genomic and (epi)genetic instability during in vitro culture, a feature that seriously limits their real potential use. Culture-induced variations of specific chromosomes or genes, are almost all unpredictable and, as a whole, differ among independent cell lines. They may arise at different culture passages, suggesting the absence of a safe passage number maintaining genome integrity and rendering the control of genomic stability mandatory since the very early culture passages. The present review highlights the urgency for further studies on the mechanisms involved in determining (epi)genetic and chromosome instability, exploiting the knowledge acquired earlier on other cell types.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| | - Maurizio Zuccotti
- Unita' di Anatomia, Istologia ed Embriologia, Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali (S.BI.BI.T.), Università degli Studi di Parma, Via Volturno 39, 43100, Parma, Italy.
| | - Carlo Alberto Redi
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Piazzale Golgi, 19, 27100, Pavia, Italy
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy.
- Center for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy.
| |
Collapse
|
32
|
Paluch BE, Naqash AR, Brumberger Z, Nemeth MJ, Griffiths EA. Epigenetics: A primer for clinicians. Blood Rev 2016; 30:285-95. [PMID: 26969414 DOI: 10.1016/j.blre.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
With recent advances in cellular biology, we now appreciate that modifications to DNA and histones can have a profound impact on transcription and function, even in the absence of changes to DNA sequence. These modifications, now commonly referred to as "epigenetic" alterations, have changed how we understand cell behavior, reprogramming and differentiation and have provided significant insight into the mechanisms underlying carcinogenesis. Epigenetic alterations, to this point, are largely identified by changes in DNA methylation and hydroxymethylation as well as methylation, acetylation, and phosphorylation of histone tails. These modifications enable significant flexibility in gene expression, rather than just turning genes "ON" or "OFF." Herein we describe the epigenetic landscape in the regulation of gene expression with a particular focus on interrogating DNA methylation in myeloid malignancy.
Collapse
Affiliation(s)
- Benjamin E Paluch
- Department of Pharmacology, Center for Pharmacology and Genetics Building (CGP), Roswell Park Cancer Institute (RPCI), Elm and Carlton Street, 14263 Buffalo, NY, USA.
| | - Abdul R Naqash
- Catholic Health, State University of New York at Buffalo (SUNY), 2157 Main Street, 14214 Buffalo, NY, USA.
| | - Zachary Brumberger
- University at Buffalo State University of New York, School of Medicine and Biomedical Sciences, 3435 Main Street, 14260 Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Medicine, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA
| | - Elizabeth A Griffiths
- Department of Pharmacology, Center for Pharmacology and Genetics Building (CGP), Roswell Park Cancer Institute (RPCI), Elm and Carlton Street, 14263 Buffalo, NY, USA; Department of Medicine, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA; Leukemia Division, RPCI, Elm and Carlton Street, 14263 Buffalo, NY, USA.
| |
Collapse
|
33
|
Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, Grimaldi G, Muter J, Brighton PJ, Moore JD, Patel G, Chan JKY, Takeda S, Lam EWF, Quenby S, Ott S, Brosens JJ. Loss of Endometrial Plasticity in Recurrent Pregnancy Loss. Stem Cells 2015; 34:346-56. [PMID: 26418742 DOI: 10.1002/stem.2222] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
Menstruation drives cyclic activation of endometrial progenitor cells, tissue regeneration, and maturation of stromal cells, which differentiate into specialized decidual cells prior to and during pregnancy. Aberrant responsiveness of human endometrial stromal cells (HESCs) to deciduogenic cues is strongly associated with recurrent pregnancy loss (RPL), suggesting a defect in cellular maturation. MeDIP-seq analysis of HESCs did not reveal gross perturbations in CpG methylation in RPL cultures, although quantitative differences were observed in or near genes that are frequently deregulated in vivo. However, RPL was associated with a marked reduction in methylation of defined CA-rich motifs located throughout the genome but enriched near telomeres. Non-CpG methylation is a hallmark of cellular multipotency. Congruently, we demonstrate that RPL is associated with a deficiency in endometrial clonogenic cell populations. Loss of epigenetic stemness features also correlated with intragenic CpG hypomethylation and reduced expression of HMGB2, coding high mobility group protein 2. We show that knockdown of this sequence-independent chromatin protein in HESCs promotes senescence and impairs decidualization, exemplified by blunted time-dependent secretome changes. Our findings indicate that stem cell deficiency and accelerated stromal senescence limit the differentiation capacity of the endometrium and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Emma S Lucas
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Keisuke Murakami
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Yie Hou Lee
- Interdisciplinary Research Groups of BioSystems and Micromechanics, and Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Yi-Wah Chan
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Giulia Grimaldi
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Joanne Muter
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Paul J Brighton
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Gnyaneshwari Patel
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Siobhan Quenby
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Jan J Brosens
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| |
Collapse
|
34
|
Ma H, Howitz KT, Horiuchi KY, Wang Y. Histone Methyltransferase Activity Assays. EPIGENETICS FOR DRUG DISCOVERY 2015. [DOI: 10.1039/9781782628484-00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Histone methyltransferases (HMTs) methylate either the lysine or arginine residues on histones and other proteins and play a crucial role in epigenetic regulation. Over 70 HMTs are encoded by the human genome, and many have been implicated in the aetiology of cancer, inflammatory diseases, neurodegenerative diseases and other conditions. There are currently about a dozen HMT activity assays available, and many of these assay formats are applicable to other epigenetic factors, such as histone acetyltransferases, histone deacetylases, and histone and DNA demethylases. Many factors need to be considered in selecting an HMT assay for drug discovery studies, including cost, adaptability to high-throughput screening, and rates of false positives and false negatives. This chapter describes the mechanisms of the major assay platforms available for HMT screening and profiling and presents the advantages and limitations associated with each.
Collapse
Affiliation(s)
- Haiching Ma
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Konrad T. Howitz
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Kurumi Y. Horiuchi
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| | - Yuren Wang
- Reaction Biology Corporation One Great Valley Parkway, Suite 2 Malvern PA 19355 USA
| |
Collapse
|
35
|
Yao S, He Z, Chen C. CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Hum Gene Ther 2015; 26:463-71. [PMID: 26075804 DOI: 10.1089/hum.2015.067] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Shaohua Yao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| | - Zhiyao He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| | - Chong Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
36
|
Abstract
Most of what is known about the pathogenesis of inflammatory bowel disease (IBD) pertains to complex interplay between host genetics, immunity, and environmental factors. Epigenetic modifications play pivotal roles in intestinal immunity and mucosal homeostasis as well as mediating gene-environment interactions. In this article, we provide a historical account of epigenetic research either directly related or pertinent to the pathogenesis and management of IBD. We further collate emerging evidence supporting roles for epigenetic mechanisms in relevant aspects of IBD biology, including deregulated immunity, host-pathogen recognition and mucosal integrity. Finally, we highlight key epigenetic mechanisms that link chronic inflammation to specific IBD comorbidities, including colitis-associated cancer and discuss their potential utility as novel biomarkers or pharmacologic targets in IBD therapy.
Collapse
|
37
|
Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol 2014; 15:R81. [PMID: 24958354 PMCID: PMC4197818 DOI: 10.1186/gb-2014-15-6-r81] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022] Open
Abstract
Background The TET family of dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), but their involvement in establishing normal 5mC patterns during mammalian development and their contributions to aberrant control of 5mC during cellular transformation remain largely unknown. We depleted TET1, TET2, and TET3 in a pluripotent embryonic carcinoma cell model and examined the impact on genome-wide 5mC, 5hmC, and transcriptional patterns. Results TET1 depletion yields widespread reduction of 5hmC, while depletion of TET2 and TET3 reduces 5hmC at a subset of TET1 targets suggesting functional co-dependence. TET2 or TET3 depletion also causes increased 5hmC, suggesting these proteins play a major role in 5hmC removal. All TETs prevent hypermethylation throughout the genome, a finding dramatically illustrated in CpG island shores, where TET depletion results in prolific hypermethylation. Surprisingly, TETs also promote methylation, as hypomethylation was associated with 5hmC reduction. TET function is highly specific to chromatin environment: 5hmC maintenance by all TETs occurs at polycomb-marked chromatin and genes expressed at moderate levels; 5hmC removal by TET2 is associated with highly transcribed genes enriched for H3K4me3 and H3K36me3. Importantly, genes prone to hypermethylation in cancer become depleted of 5hmC with TET deficiency, suggesting that TETs normally promote 5hmC at these loci. Finally, all three TETs, but especially TET2, are required for 5hmC enrichment at enhancers, a condition necessary for expression of adjacent genes. Conclusions These results provide novel insight into the division of labor among TET proteins and reveal important connections between TET activity, the chromatin landscape, and gene expression.
Collapse
|
38
|
Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014; 66:240-56. [PMID: 24706538 DOI: 10.1002/iub.1264] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
The mammalian genome is packaged into chromatin that is further compacted into three-dimensional structures consisting of distinct functional domains. The higher order structure of chromatin is in part dictated by enzymatic DNA methylation and histone modifications to establish epigenetic layers controlling gene expression and cellular functions, without altering the underlying DNA sequences. Apart from DNA and histone modifications, non-coding RNAs can also regulate the dynamics of the mammalian gene expression and various physiological functions including cell division, differentiation, and apoptosis. Aberrant epigenetic signatures are associated with abnormal developmental processes and diseases such as cancer. In this review, we will discuss the different layers of epigenetic regulation, including writer enzymes for DNA methylation, histone modifications, non-coding RNA, and chromatin conformation. We will highlight the combinatorial role of these structural and chemical modifications along with their partners in various cellular processes in mammalian cells. We will also address the cis and trans interacting "reader" proteins that recognize these modifications and "eraser" enzymes that remove these marks. Furthermore, an attempt will be made to discuss the interplay between various epigenetic writers, readers, and erasures in the establishment of mammalian epigenetic mechanisms.
Collapse
|
39
|
Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 2014; 17:215-22. [PMID: 24362762 PMCID: PMC3970219 DOI: 10.1038/nn.3607] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
DNA methylation has critical roles in the nervous system and has been traditionally considered to be restricted to CpG dinucleotides in metazoan genomes. Here we show that the single base-resolution DNA methylome from adult mouse dentate neurons consists of both CpG (~75%) and CpH (~25%) methylation (H = A/C/T). Neuronal CpH methylation is conserved in human brains, enriched in regions of low CpG density, depleted at protein-DNA interaction sites and anticorrelated with gene expression. Functionally, both methylated CpGs (mCpGs) and mCpHs can repress transcription in vitro and are recognized by methyl-CpG binding protein 2 (MeCP2) in neurons in vivo. Unlike most CpG methylation, CpH methylation is established de novo during neuronal maturation and requires DNA methyltransferase 3A (DNMT3A) for active maintenance in postmitotic neurons. These characteristics of CpH methylation suggest that a substantially expanded proportion of the neuronal genome is under cytosine methylation regulation and provide a new foundation for understanding the role of this key epigenetic modification in the nervous system.
Collapse
Affiliation(s)
- Junjie U. Guo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijing Su
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jaehoon Shin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongda Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Bin Xie
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chun Zhong
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thuc Le
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuan Gao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Ratovitski EA. Phospho-ΔNp63α/microRNA network modulates epigenetic regulatory enzymes in squamous cell carcinomas. Cell Cycle 2014; 13:749-61. [PMID: 24394434 DOI: 10.4161/cc.27676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor protein (TP) p63/microRNAs functional network may play a key role in supporting the response of squamous cell carcinomas (SCC) to chemotherapy. We show that the cisplatin exposure of SCC-11 cells led to upregulation of miR-297, miR-92b-3p, and miR-485-5p through a phosphorylated ΔNp63α-dependent mechanism that subsequently modulated the expression of the protein targets implicated in DNA methylation (DNMT3A), histone deacetylation (HDAC9), and demethylation (KDM4C). Further studies showed that mimics for miR-297, miR-92b-3p, or miR-485-5p, along with siRNA against and inhibitors of DNMT3A, HDAC9, and KDM4C modulated the expression of DAPK1, SMARCA2, and MDM2 genes assessed by the quantitative PCR, promoter luciferase reporter, and chromatin immunoprecipitation assays. Finally, the above-mentioned treatments affecting epigenetic enzymes also modulated the response of SCC cells to chemotherapeutic drugs, rendering the resistant SCC cells more sensitive to cisplatin exposure, thereby providing the groundwork for novel chemotherapeutic venues in treating patients with SCC.
Collapse
Affiliation(s)
- Edward A Ratovitski
- Head and Neck Cancer Research Division; Department of Otolaryngology/Head and Neck Surgery; The Johns Hopkins School of Medicine; Baltimore, MD USA
| |
Collapse
|
41
|
Rachdaoui N, Sarkar DK. Transgenerational epigenetics and brain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:51-73. [PMID: 25131542 DOI: 10.1016/b978-0-12-801311-3.00002-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurobehavioral and psychiatric disorders are complex diseases with a strong heritable component; however, to date, genome-wide association studies failed to identify the genetic loci involved in the etiology of these brain disorders. Recently, transgenerational epigenetic inheritance has emerged as an important factor playing a pivotal role in the inheritance of brain disorders. This field of research provides evidence that environmentally induced epigenetic changes in the germline during embryonic development can be transmitted for multiple generations and may contribute to the etiology of brain disease heritability. In this review, we discuss some of the most recent findings on transgenerational epigenetic inheritance. We particularly discuss the findings on the epigenetic mechanisms involved in the heritability of alcohol-induced neurobehavioral disorders such as fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Rutgers Endocrine Research Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
42
|
|
43
|
Fagan RL, Cryderman DE, Kopelovich L, Wallrath LL, Brenner C. Laccaic acid A is a direct, DNA-competitive inhibitor of DNA methyltransferase 1. J Biol Chem 2013; 288:23858-67. [PMID: 23839987 DOI: 10.1074/jbc.m113.480517] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytosines in CpG dinucleotides is the predominant epigenetic mark on vertebrate DNA. DNA methylation is associated with transcriptional repression. The pattern of DNA methylation changes during development and with disease. Human DNA methyltransferase 1 (Dnmt1), a 1616-amino acid multidomain enzyme, is essential for maintenance of DNA methylation in proliferating cells and is considered an important cancer drug target. Using a fluorogenic, endonuclease-coupled DNA methylation assay with an activated form of Dnmt1 engineered to lack the replication foci targeting sequence domain, we discovered that laccaic acid A (LCA), a highly substituted anthraquinone natural product, is a direct inhibitor with a 310 nm Ki. LCA is competitive with the DNA substrate in in vitro methylation assays and alters the expression of methylated genes in MCF-7 breast cancer cells synergistically with 5-aza-2'-deoxycytidine. LCA represents a novel class of Dnmt-targeted molecular probes, with biochemical properties that allow it to distinguish between non DNA-bound and DNA-bound Dnmt1.
Collapse
Affiliation(s)
- Rebecca L Fagan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
44
|
Martinez-Colom A, Lasarte S, Fernández-Pineda A, Relloso M, Muñoz-Fernández MA. A new chimeric protein represses HIV-1 LTR-mediated expression by DNA methylase. Antiviral Res 2013; 98:394-400. [PMID: 23588231 DOI: 10.1016/j.antiviral.2013.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/19/2022]
Abstract
Once the human immunodeficiency virus (HIV) genome is inserted into the host genome, the virus cannot be removed, which results in latency periods and makes it difficult to eradicate. The majority of strategies to eradicate HIV have been based on preventing virus latency, thereby enabling antiretroviral drugs to act against HIV replication. Another innovative strategy is permanently silencing the integrated virus to prevent the spread of infection. Epigenetic processes are natural mechanisms that can silence viral replication. We describe a new chimeric protein (IN3b) that consists of a HIV-1 integrase domain, which recognises the HIV long terminal repeat (LTR) and the catalytic domain of DNA methyltransferase DNMT3b. Our objective was to silence HIV replication by the specific delivery of the catalytic methyltransferase domain to the LTR promoter to induce its methylation. We found that our IN3b chimeric protein was expressed in the nucleus and decreased LTR-associated HIV genome expression and HIV replication. Therefore, the IN3b chimeric protein may be an effective tool against HIV replication and maybe used in a new line of research to induce or maintain HIV latency.
Collapse
Affiliation(s)
- Alberto Martinez-Colom
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Abstract
The discovery of epigenetic processes as possible pivotal regulatory mechanisms in psychiatric diseases raised the question of how psychoactive drugs may impact the epigenetic machinery. In the present study we set out to explore the specificity and the mode of action of the reported inhibitory effect of the TCA (tricyclic antidepressant) amitriptyline on DNMT (DNA methyltransferase) activity in primary astrocytes from the rat cortex. We found that the impact on DNMT was shared by another TCA, imipramine, and by paroxetine, but not by venlafaxine or the mood stabilizers carbamazepine and valproic acid. DNMT activity in subventricular neural stem cells was refractory to the action of ADs (antidepressants). Among the established DNMTs, ADs primarily targeted DNMT1. The reduction of enzymatic DNMT1 activity was neither due to reduced DNMT1 expression nor due to direct drug interference. We tested putative DNMT1-inhibitory mechanisms and discovered that a known stimulator of DNMT1, the histone methyltransferase G9a, exhibited decreased protein levels and interactions with DNMT1 upon AD exposure. Adding recombinant G9a completely reversed the AD repressive effect on DNMT1 function. In conclusion, the present study presents a model where distinct ADs affect DNMT1 activity via G9a with important repercussions for possible novel treatment regimes.
Collapse
|
46
|
Yoo J, Kim JH, Robertson KD, Medina-Franco JL. Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure: discovery of a novel DNMT1 inhibitor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 87:219-47. [PMID: 22607757 PMCID: PMC3837394 DOI: 10.1016/b978-0-12-398312-1.00008-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methyltransferases (DNMTs) are promising epigenetic targets for the development of novel anticancer drugs and other diseases. Molecular modeling and experimental approaches are being used to identify and develop inhibitors of human DNMTs. Most of the computational efforts conducted so far with DNMT1 employ homology models of the enzyme. Recently, a crystallographic structure of the methyltransferase domain of human DNMT1 bound to unmethylated DNA was published. Following on our previous computational and experimental studies with DNMTs, we herein present molecular dynamics of the crystal structure of human DNMT1. Docking studies of established DNMT1 inhibitors with the crystal structure gave rise to a structure-based pharmacophore model that suggests key interactions of the inhibitors with the catalytic binding site. Results had a good agreement with the docking and pharmacophore models previously developed using a homology model of the catalytic domain of DNMT1. The docking protocol was able to distinguish active DNMT1 inhibitors from, for example, experimentally known inactive DNMT1 inhibitors. As part of our efforts to identify novel inhibitors of DNMT1, we conducted the experimental characterization of aurintricarboxylic acid (ATA) that in preliminary docking studies showed promising activity. ATA had a submicromolar inhibition (IC50 = 0.68 μM) against DNMT1. ATA was also evaluated for Dnmt3a inhibition showing an IC50 = 1.4 μM. This chapter illustrates the synergy from integrating molecular modeling and experimental methods to further advance the discovery of novel candidates for epigenetic therapies.
Collapse
Affiliation(s)
- Jakyung Yoo
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida, USA
| | | | | | | |
Collapse
|
47
|
Thomas X. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences. Expert Opin Drug Discov 2012; 7:1039-51. [PMID: 22950862 DOI: 10.1517/17460441.2012.722618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION DNA methylation is an epigenetic change mediated by DNA methyltranferases (DNMTs), which are promising epigenetic targets for the treatment of acute myeloid leukemia (AML). This is evidenced by the two DNMT inhibitors (azacitidine and decitabine) approved by the Food and Drug Administration of the United States for the treatment of high-risk myelodysplastic syndromes and the first clinical data available in AML. AREAS COVERED This paper reviews data from the international literature regarding the design, sites of impact and pharmacodynamic characteristics of DNMT inhibitors, and their first clinical experiences in AML. EXPERT OPINION The strongest advances in epigenetic therapy have been in the treatment of AML. There are now an increasing number of DNMT inhibitors. These agents may be potentially administered at different times of leukemia therapy: before or instead of chemotherapy, as maintenance therapy, prior to allogeneic stem cell transplant (SCT) or after relapse following SCT.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service d'Hématologie Clinique, Pierre Bénite, France.
| |
Collapse
|
48
|
Lim JWE, Mathias RA, Kapp EA, Layton MJ, Faux MC, Burgess AW, Ji H, Simpson RJ. Restoration of full-length APC protein in SW480 colon cancer cells induces exosome-mediated secretion of DKK-4. Electrophoresis 2012; 33:1873-80. [PMID: 22740476 DOI: 10.1002/elps.201100687] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Eugene A. Kapp
- Bioinformatics Group, The Walter and Eliza Hall Institute of Medical Research; Parkville; Victoria; Australia
| | - Meredith J. Layton
- Department of Biochemistry and Molecular Biology; Monash University; Clayton; Victoria; Australia
| | - Maree C. Faux
- Epithelial Biochemistry Laboratory, Ludwig Institute for Cancer Research; Parkville; Victoria; Australia
| | - Antony W. Burgess
- Epithelial Biochemistry Laboratory, Ludwig Institute for Cancer Research; Parkville; Victoria; Australia
| | | | | |
Collapse
|
49
|
Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol Cell Endocrinol 2012; 354:3-8. [PMID: 22020198 PMCID: PMC3312615 DOI: 10.1016/j.mce.2011.10.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
Environmental epigenetics has an important role in regulating phenotype formation or disease etiology. The ability of environmental factors and exposures early in life to alter somatic cell epigenomes and subsequent development is a critical factor in how environment affects biology. Environmental epigenetics provides a molecular mechanism to explain long term effects of environment on the development of altered phenotypes and "emergent" properties, which the "genetic determinism" paradigm cannot. When environmental factors permanently alter the germ line epigenome, then epigenetic transgenerational inheritance of these environmentally altered phenotypes and diseases can occur. This environmental epigenetic transgenerational inheritance of phenotype and disease is reviewed with a systems biology perspective.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
50
|
Liep J, Rabien A, Jung K. Feedback networks between microRNAs and epigenetic modifications in urological tumors. Epigenetics 2012; 7:315-25. [PMID: 22414795 DOI: 10.4161/epi.19464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications and microRNAs are known to play key roles in human cancer. For urological tumors, changes in epigenetic modifications and aberrant microRNA profiles have been reported. However, the mechanisms of epigenetic and microRNA regulation are not entirely separable. Increasingly, recent research in these fields overlaps. There seems to be a complicated feedback interrelationship between epigenetic and microRNA regulation that must be highly controlled. Disruptions of this feedback network can have serious consequences for various biological processes and can result in cellular transformation. Investigation of the network between microRNAs and epigenetics could lead to a better understanding of the processes involved in development and progression of urological tumors. This understanding could provide new approaches for the development of novel individualized therapies, which are adjusted to the molecular pattern of a tumor. In this review, we present an overview of microRNA-epigenetic circuits acting in urological tumors.
Collapse
Affiliation(s)
- Julia Liep
- Department of Urology, University Hospital Charité, Berlin, Germany
| | | | | |
Collapse
|