1
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Tziouvara O, Petsana M, Kourounis D, Papadaki A, Basdra E, Braliou GG, Boleti H. Characterization of the First Secreted Sorting Nexin Identified in the Leishmania Protists. Int J Mol Sci 2024; 25:4095. [PMID: 38612903 PMCID: PMC11012638 DOI: 10.3390/ijms25074095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Proteins of the sorting nexin (SNX) family present a modular structural architecture with a phox homology (PX) phosphoinositide (PI)-binding domain and additional PX structural domains, conferring to them a wide variety of vital eukaryotic cell's functions, from signal transduction to membrane deformation and cargo binding. Although SNXs are well studied in human and yeasts, they are poorly investigated in protists. Herein, is presented the characterization of the first SNX identified in Leishmania protozoan parasites encoded by the LdBPK_352470 gene. In silico secondary and tertiary structure prediction revealed a PX domain on the N-terminal half and a Bin/amphiphysin/Rvs (BAR) domain on the C-terminal half of this protein, with these features classifying it in the SNX-BAR subfamily of SNXs. We named the LdBPK_352470.1 gene product LdSNXi, as it is the first SNX identified in Leishmania (L.) donovani. Its expression was confirmed in L. donovani promastigotes under different cell cycle phases, and it was shown to be secreted in the extracellular medium. Using an in vitro lipid binding assay, it was demonstrated that recombinant (r) LdSNXi (rGST-LdSNXi) tagged with glutathione-S-transferase (GST) binds to the PtdIns3P and PtdIns4P PIs. Using a specific a-LdSNXi antibody and immunofluorescence confocal microscopy, the intracellular localization of endogenous LdSNXi was analyzed in L. donovani promastigotes and axenic amastigotes. Additionally, rLdSNXi tagged with enhanced green fluorescent protein (rLdSNXi-EGFP) was heterologously expressed in transfected HeLa cells and its localization was examined. All observed localizations suggest functions compatible with the postulated SNX identity of LdSNXi. Sequence, structure, and evolutionary analysis revealed high homology between LdSNXi and the human SNX2, while the investigation of protein-protein interactions based on STRING (v.11.5) predicted putative molecular partners of LdSNXi in Leishmania.
Collapse
Affiliation(s)
- Olympia Tziouvara
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Marina Petsana
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2–4 Papasiopoulou Str., 35131 Lamia, Greece;
| | - Drosos Kourounis
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
| | - Amalia Papadaki
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
| | - Efthimia Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 2–4 Papasiopoulou Str., 35131 Lamia, Greece;
| | - Haralabia Boleti
- Intracellular Parasitism Group, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (O.T.); (M.P.); (D.K.); (A.P.)
- Bioimaging Unit, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
3
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Chen Q, Sun M, Han X, Xu H, Liu Y. Structural determinants specific for retromer protein sorting nexin 5 in regulating subcellular retrograde membrane trafficking. J Biomed Res 2023; 37:492-506. [PMID: 37964759 PMCID: PMC10687533 DOI: 10.7555/jbr.37.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/16/2023] Open
Abstract
The endosomal trafficking of signaling membrane proteins, such as receptors, transporters and channels, is mediated by the retromer-mediated sorting machinery, composed of a cargo-selective vacuolar protein sorting trimer and a membrane-deforming subunit of sorting nexin proteins. Recent studies have shown that the isoforms, sorting nexin 5 (SNX5) and SNX6, have played distinctive regulatory roles in retrograde membrane trafficking. However, the molecular insight determined functional differences within the proteins remains unclear. We reported that SNX5 and SNX6 had distinct binding affinity to the cargo protein vesicular monoamine transporter 2 (VMAT2). SNX5, but not SNX6, specifically interacted with VMAT2 through the Phox domain, which contains an alpha-helix binding motif. Using chimeric mutagenesis, we identified that several key residues within this domain were unique in SNX5, but not SNX6, and played an auxiliary role in its binding to VMAT2. Importantly, we generated a set of mutant SNX6, in which the corresponding key residues were mutated to those in SNX5. In addition to the gain in binding affinity to VMAT2, their overexpression functionally rescued the altered retrograde trafficking of VMAT2 induced by siRNA-mediated depletion of SNX5. These data strongly suggest that SNX5 and SNX6 have different functions in retrograde membrane trafficking, which is determined by the different structural elements within the Phox domain of two proteins. Our work provides a new information on the role of SNX5 and SNX6 in the molecular regulation of retrograde membrane trafficking and vesicular membrane targeting in monoamine neurotransmission and neurological diseases.
Collapse
Affiliation(s)
- Qing Chen
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meiheng Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Neuroscience, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
6
|
Reinhart EF, Katzenell S, Andhare D, Bauer KM, Ragusa MJ. A Comparative Analysis of the Membrane Binding and Remodeling Properties of Two Related Sorting Nexin Complexes Involved in Autophagy. Biochemistry 2023; 62:657-668. [PMID: 35421303 PMCID: PMC9561124 DOI: 10.1021/acs.biochem.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The sorting nexin (SNX) proteins, Atg20 and Atg24, are involved in nonselective autophagy, are necessary for efficient selective autophagy, and are required for the cytoplasm-to-vacuole transport pathway. However, the specific roles of these proteins in autophagy are not well understood. Atg20 and Atg24 each contain a Phox homology domain that facilitates phosphoinositide binding. They also each contain an SNX-Bin/Amphiphysin/Rvs domain that forms a cup-shaped dimer, capable of binding to curved membranes and remodeling those membranes in some cases. Atg20 and Atg24 form two distinct complexes, an Atg24/Atg24 homodimer and an Atg20/Atg24 heterodimer. Despite the presence of Atg24 in both complexes, it is currently unclear if these complexes have different membrane binding and remodeling properties. Therefore, in this study, we explored the membrane binding and shaping properties of these two dimeric complexes. We found that Atg24/Atg24 and Atg20/Atg24 have distinct membrane binding preferences. Both dimers recognized membranes containing phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 3,5-bisphosphate, but Atg20/Atg24 bound to a broader array of liposomes, including those lacking phosphorylated phosphatidylinositol. In addition, we discovered that while both complexes bound to autophagosomal-like liposomes containing at least 5% PI(3)P, Atg20/Atg24 was capable of binding to autophagosomal-like liposomes lacking PI(3)P. Lastly, we observed that the Atg20/Atg24 heterodimer tubulates PI(3)P-containing and autophagosomal-like liposomes, but the Atg24/Atg24 homodimer could not tubulate these liposomes. Our findings suggest that these two dimers contain distinct membrane binding and shaping properties.
Collapse
Affiliation(s)
- Erin F. Reinhart
- Department of Chemistry, Dartmouth College, Hanover, New
Hampshire 03755, United States
| | - Sarah Katzenell
- Department of Chemistry, Dartmouth College, Hanover, New
Hampshire 03755, United States
| | - Devika Andhare
- Department of Chemistry, Dartmouth College, Hanover, New
Hampshire 03755, United States
| | - Katherine M. Bauer
- Department of Biochemistry and Cell Biology, Geisel School
of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Michael J. Ragusa
- Department of Chemistry, Dartmouth College, Hanover, New
Hampshire 03755, United States
- Department of Biochemistry and Cell Biology, Geisel School
of Medicine, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
7
|
Gopaldass N, De Leo MG, Courtellemont T, Mercier V, Bissig C, Roux A, Mayer A. Retromer oligomerization drives SNX-BAR coat assembly and membrane constriction. EMBO J 2023; 42:e112287. [PMID: 36644906 PMCID: PMC9841331 DOI: 10.15252/embj.2022112287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 01/17/2023] Open
Abstract
Proteins exit from endosomes through tubular carriers coated by retromer, a complex that impacts cellular signaling, lysosomal biogenesis and numerous diseases. The coat must overcome membrane tension to form tubules. We explored the dynamics and driving force of this process by reconstituting coat formation with yeast retromer and the BAR-domain sorting nexins Vps5 and Vps17 on oriented synthetic lipid tubules. This coat oligomerizes bidirectionally, forming a static tubular structure that does not exchange subunits. High concentrations of sorting nexins alone constrict membrane tubes to an invariant radius of 19 nm. At lower concentrations, oligomers of retromer must bind and interconnect the sorting nexins to drive constriction. Constricting less curved membranes into tubes, which requires more energy, coincides with an increased surface density of retromer on the sorting nexin layer. Retromer-mediated crosslinking of sorting nexins at variable densities may thus tune the energy that the coat can generate to deform the membrane. In line with this, genetic ablation of retromer oligomerization impairs endosomal protein exit in yeast and human cells.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | | | | | - Vincent Mercier
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
| | - Christin Bissig
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| | - Aurélien Roux
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
- Swiss National Centre for Competence in Research Program Chemical BiologyGenevaSwitzerland
| | - Andreas Mayer
- Department of ImmunobiologyUniversity of LausanneEpalingesSwitzerland
| |
Collapse
|
8
|
Castro IG, Shortill SP, Dziurdzik SK, Cadou A, Ganesan S, Valenti R, David Y, Davey M, Mattes C, Thomas FB, Avraham RE, Meyer H, Fadel A, Fenech EJ, Ernst R, Zaremberg V, Levine TP, Stefan C, Conibear E, Schuldiner M. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution. eLife 2022; 11:74602. [DOI: 10.7554/elife.74602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.
Collapse
Affiliation(s)
| | - Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Samantha Katarzyna Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Angela Cadou
- Laboratory for Molecular Cell Biology, University College London
| | | | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | - Ffion B Thomas
- Laboratory for Molecular Cell Biology, University College London
| | | | - Hadar Meyer
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | | | - Tim P Levine
- UCL Institute of Ophthalmology, University College London
| | | | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
9
|
Cabrera IE, Oza Y, Carrillo AJ, Collier LA, Wright SJ, Li L, Borkovich KA. Regulator of G Protein Signaling Proteins Control Growth, Development and Cellulase Production in Neurospora crassa. J Fungi (Basel) 2022; 8:jof8101076. [PMID: 36294641 PMCID: PMC9604755 DOI: 10.3390/jof8101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Heterotrimeric (αβγ) G protein signaling pathways are critical environmental sensing systems found in eukaryotic cells. Exchange of GDP for GTP on the Gα subunit leads to its activation. In contrast, GTP hydrolysis on the Gα is accelerated by Regulator of G protein Signaling (RGS) proteins, resulting in a return to the GDP-bound, inactive state. Here, we analyzed growth, development and extracellular cellulase production in strains with knockout mutations in the seven identified RGS genes (rgs-1 to rgs-7) in the filamentous fungus, Neurospora crassa. We compared phenotypes to those of strains with either knockout mutations or expressing predicted constitutively activated, GTPase-deficient alleles for each of the three Gα subunit genes (gna-1Q204L, gna-2Q205L or gna-3Q208L). Our data revealed that six RGS mutants have taller aerial hyphae than wild type and all seven mutants exhibit reduced asexual sporulation, phenotypes shared with strains expressing the gna-1Q204L or gna-3Q208L allele. In contrast, Δrgs-1 and Δrgs-3 were the only RGS mutants with a slower growth rate phenotype, a defect in common with gna-1Q204L strains. With respect to female sexual development, Δrgs-1 possessed defects most similar to gna-3Q208L strains, while those of Δrgs-2 mutants resembled strains expressing the gna-1Q204L allele. Finally, we observed that four of the seven RGS mutants had significantly different extracellular cellulase levels relative to wild type. Of interest, the Δrgs-2 mutant had no detectable activity, similar to the gna-3Q208L strain. In contrast, the Δrgs-1 and Δrgs-4 mutants and gna-1Q204L and gna-2Q205L strains exhibited significantly higher cellulase activity than wild type. With the exception of sexual development, our results demonstrate the greatest number of genetic interactions between rgs-1 and gna-1 and rgs-2 and gna-3 in N. crassa.
Collapse
|
10
|
Transcriptional responses in Ecklonia cava to short-term exposure to polycyclic aromatic hydrocarbons. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Shortill SP, Frier MS, Wongsangaroonsri P, Davey M, Conibear E. The VINE complex is an endosomal VPS9-domain GEF and SNX-BAR coat. eLife 2022; 11:77035. [PMID: 35938928 PMCID: PMC9507130 DOI: 10.7554/elife.77035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Membrane trafficking pathways perform important roles in establishing and maintaining the endosomal network. Retrograde protein sorting from the endosome is promoted by conserved SNX-BAR-containing coat complexes including retromer which enrich cargo at tubular microdomains and generate transport carriers. In metazoans, retromer cooperates with VARP, a conserved VPS9-domain GEF, to direct an endosomal recycling pathway. The function of the yeast VARP homolog Vrl1 has been overlooked due to an inactivating mutation found in commonly studied strains. Here, we demonstrate that Vrl1 has features of a SNX-BAR coat protein and forms an obligate complex with Vin1, the paralog of the retromer SNX-BAR protein Vps5. Unique features in the Vin1 N-terminus allow Vrl1 to distinguish it from Vps5, thereby forming a complex that we have named VINE. The VINE complex occupies endosomal tubules and redistributes a conserved mannose 6-phosphate receptor-like protein from endosomes. We also find that membrane recruitment by Vin1 is essential for Vrl1 GEF activity, suggesting that VINE is a multifunctional coat complex that regulates trafficking and signaling events at the endosome. All healthy cells have a highly organized interior: different compartments with specialized roles are in different places, and in order to do their jobs properly, proteins need to be in the right place. Endosomes are membrane-bound compartments that act as transport hubs where proteins are sorted into small vesicles and delivered to other parts of the cell. Two groups of proteins regulate this transport: the first group, known as VPS9 GEFs, switches on the enzymes that recruit the second group of proteins, called the sorting nexins. This second group is responsible for forming the transport vesicles via which proteins are distributed all over the cell. Defects in protein sorting can lead to various diseases, including neurodegenerative conditions such as Parkinson’s disease and juvenile amyotrophic lateral sclerosis. Scientists often use budding yeast cells to study protein sorting, because these cells are similar to human cells, but easier to grow in large numbers and examine in the laboratory. Previous work showed that a yeast protein called Vrl1 is equivalent to a VPS9 GEF from humans called VARP. However, Vrl1 only exists in wild forms of budding yeast, and not in laboratory strains of the organism. Therefore, researchers had not studied Vrl1 in detail, and its roles remained unclear. To learn more about Vrl1, Shortill et al. started by re-introducing the protein into laboratory strains of budding yeast and observing what happened to protein sorting in these cells. Like VARP, Vrl1 was found in the endosomes of budding yeast. However, biochemical experiments revealed that, while human VARP binds to a protein called retromer, Vrl1 does not bind to the equivalent protein in yeast. Instead, Vrl1 itself has features of both the VPS9 GEFs and the sorting nexins. Shortill et al. also found that Vrl1 interacted with a different protein in the sorting nexin family called Vin1. In the absence of Vrl1, Vin1 was found floating around the cell, but once Vrl1 was re-introduced into the budding yeast, Vin1 relocated to the endosomes. Vrl1 uses its VPS9 GEF part to move itself to the endosome membrane, and Vin1 controls this movement, highlighting the interdependence between the two proteins. Once they are at the endosome together, Vrl1 and Vin1 help redistribute proteins to other parts of the cell. This study suggests that, like VARP, Vrl1 cooperates with sorting nexins to transport proteins. Since many previous experiments about protein sorting were carried out in yeast cells lacking Vrl1, it is possible that this process was overlooked despite its potential importance. These new findings could also help other researchers investigating how endosomes and protein sorting work, or do not work, in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Mia S Frier
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
13
|
Shortill SP, Frier MS, Conibear E. You can go your own way: SNX-BAR coat complexes direct traffic at late endosomes. Curr Opin Cell Biol 2022; 76:102087. [DOI: 10.1016/j.ceb.2022.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
|
14
|
Obita T, Inaka K, Kohda D, Maita N. Crystal structure of the PX domain of Vps17p from Saccharomyces cerevisiae. Acta Crystallogr F Struct Biol Commun 2022; 78:210-216. [PMID: 35506766 PMCID: PMC9067373 DOI: 10.1107/s2053230x22004472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
The structure determination of the PX (phox homology) domain of the Saccharomyces cerevisiae Vps17p protein presented a challenging case for molecular replacement because it has noncrystallographic symmetry close to a crystallographic axis. The combination of diffraction-quality crystals grown under microgravity on the International Space Station and a highly accurate template structure predicted by AlphaFold2 provided the key to successful crystal structure determination. Although the structure of the Vps17p PX domain is seen in many PX domains, no basic residues are found around the canonical phosphatidylinositol phosphate (PtdIns-P) binding site, suggesting an inability to bind PtdIns-P molecules.
Collapse
Affiliation(s)
- Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Koji Inaka
- Maruwa Foods and Biosciences Inc., Yamatokoriyama, Nara 639-1123, Japan
| | - Daisuke Kohda
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuo Maita
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
16
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
17
|
An FYVE-Domain-Containing Protein, PsFP1, Is Involved in Vegetative Growth, Oxidative Stress Response and Virulence of Phytophthora sojae. Int J Mol Sci 2021; 22:ijms22126601. [PMID: 34202990 PMCID: PMC8233823 DOI: 10.3390/ijms22126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins that contain the FYVE zinc-finger domain are recruited to PtdIns3P-containing membranes, participating in numerous biological processes such as membrane trafficking, cytoskeletal regulation, and receptor signaling. However, the genome-wide distribution, evolution, and biological functions of FYVE-containing proteins are rarely reported for oomycetes. By genome mining of Phytophthora sojae, two proteins (PsFP1 and PsFP2) with a combination of the FYVE domain and the PX domain (a major phosphoinositide binding module) were found. To clarify the functions of PsFP1 and PsFP2, the CRISPR/Cas9-mediated gene replacement system was used to knock out the two genes respectively. Only heterozygous deletion mutants of PsFP1 were recovered, and the expression level of PsFP1 in the heterozygous knockout transformants was significantly down-regulated. These PsFP1 mutants showed a decrease in mycelial growth and pathogenicity and were more sensitive to hydrogen peroxide. These phenotypes were recovered to the level of wild-type by overexpression PsFP1 gene in the PsFP1 heterozygous knockout transformant. In contrast, deletion of PsFP2 had no significant effect on vegetative growth, asexual and sexual reproduction, pathogenicity, or oxidative stress sensitivity. PsFP1 was primarily localized in vesicle-like structures and both the FYVE and PX domains are important for its localization. Overall, our results indicate that PsFP1 plays an important role in the vegetative growth and virulence of P. sojae.
Collapse
|
18
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
19
|
Steinfeld N, Lahiri V, Morrison A, Metur SP, Klionsky DJ, Weisman LS. Elevating PI3P drives select downstream membrane trafficking pathways. Mol Biol Cell 2020; 32:143-156. [PMID: 33237833 PMCID: PMC8120694 DOI: 10.1091/mbc.e20-03-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositide signaling lipids are essential for several cellular processes. The requirement for a phosphoinositide is conventionally studied by depleting the corresponding lipid kinase. However, there are very few reports on the impact of elevating phosphoinositides. That phosphoinositides are dynamically elevated in response to stimuli suggests that, in addition to being required, phosphoinositides drive downstream pathways. To test this hypothesis, we elevated the levels of phosphatidylinositol-3-phosphate (PI3P) by generating hyperactive alleles of the yeast phosphatidylinositol 3-kinase, Vps34. We find that hyperactive Vps34 drives certain pathways, including phosphatidylinositol-3,5-bisphosphate synthesis and retrograde transport from the vacuole. This demonstrates that PI3P is rate limiting in some pathways. Interestingly, hyperactive Vps34 does not affect endosomal sorting complexes required for transport (ESCRT) function. Thus, elevating PI3P does not always increase the rate of PI3P-dependent pathways. Elevating PI3P can also delay a pathway. Elevating PI3P slowed late steps in autophagy, in part by delaying the disassembly of autophagy proteins from mature autophagosomes as well as delaying fusion of autophagosomes with the vacuole. This latter defect is likely due to a more general defect in vacuole fusion, as assessed by changes in vacuole morphology. These studies suggest that stimulus-induced elevation of phosphoinositides provides a way for these stimuli to selectively regulate downstream processes.
Collapse
Affiliation(s)
- Noah Steinfeld
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Vikramjit Lahiri
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anna Morrison
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lois S Weisman
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
20
|
Wang Q, Jiang M, Isupov MN, Chen Y, Littlechild JA, Sun L, Wu X, Wang Q, Yang W, Chen L, Li Q, Wu Y. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1215-1232. [PMID: 32369638 DOI: 10.1111/tpj.14797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+ -binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+ . These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.
Collapse
Affiliation(s)
- Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Michail N Isupov
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jennifer A Littlechild
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Qi Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| |
Collapse
|
21
|
Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. J Mol Biol 2020; 432:4750-4761. [DOI: 10.1016/j.jmb.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|
22
|
Basu S, González B, Li B, Kimble G, Kozminski KG, Cullen PJ. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Mol Biol Cell 2020; 31:491-510. [PMID: 31940256 PMCID: PMC7185891 DOI: 10.1091/mbc.e19-08-0441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras homology (Rho) GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (Σ1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared with the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. Versions of Bem1p defective for recruitment of Ste20p to the plasma membrane, intramolecular interactions, and interaction with the GEF, Cdc24p, were defective for fMAPK pathway signaling. Bem1p also regulated effector pathways in different ways. In some pathways, multiple domains of the protein were required for its function, whereas in other pathways, a single domain or function was needed. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.
Collapse
Affiliation(s)
- Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Beatriz González
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Boyang Li
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Garrett Kimble
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
23
|
Cernikova L, Faso C, Hehl AB. Phosphoinositide-binding proteins mark, shape and functionally modulate highly-diverged endocytic compartments in the parasitic protist Giardia lamblia. PLoS Pathog 2020; 16:e1008317. [PMID: 32092130 PMCID: PMC7058353 DOI: 10.1371/journal.ppat.1008317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/05/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Phosphorylated derivatives of phosphatidylinositol (PIPs) are key membrane lipid residues involved in clathrin-mediated endocytosis (CME). CME relies on PIP species PI(4,5)P2 to mark endocytic sites at the plasma membrane (PM) associated to clathrin-coated vesicle (CCV) formation. The highly diverged parasitic protist Giardia lamblia presents disordered and static clathrin assemblies at PM invaginations, contacting specialized endocytic organelles called peripheral vacuoles (PVs). The role for clathrin assemblies in fluid phase uptake and their link to internal membranes via PIP-binding adaptors is unknown. Here we provide evidence for a robust link between clathrin assemblies and fluid-phase uptake in G. lamblia mediated by proteins carrying predicted PX, FYVE and NECAP1 PIP-binding modules. We show that chemical and genetic perturbation of PIP-residue binding and turnover elicits novel uptake and organelle-morphology phenotypes. A combination of co-immunoprecipitation and in silico analysis techniques expands the initial PIP-binding network with addition of new members. Our data indicate that, despite the partial conservation of lipid markers and protein cohorts known to play important roles in dynamic endocytic events in well-characterized model systems, the Giardia lineage presents a strikingly divergent clathrin-centered network. This includes several PIP-binding modules, often associated to domains of currently unknown function that shape and modulate fluid-phase uptake at PVs. In well-characterized model eukaryotes, clathrin-mediated endocytosis is a key process for uptake of extracellular material and is regulated by more than 50 known proteins. A large number of these carry phosphoinositide (PIP)-binding domains and play a central role in the regulation of endocytosis. Here, we report on the detailed functional characterization of PIP-binding proteins in the intestinal parasitic protist Giardia lamblia. We show evidence that proteins carrying specific PIP-binding domains are directly involved in fluid-phase uptake. Furthermore, using co-immunoprecipitation assays, we confirm these proteins’ association to G. lamblia’s clathrin assemblies. In addition, using state-of-the-art imaging strategies, we demonstrate a previously unappreciated level of complexity involving PIPs and their partner proteins in marking and shaping G. lamblia’s unique endocytic compartments. Our data contribute substantially to an updated working model for G. lamblia’s host-parasite interface, demonstrating how uptake in this parasite is directly regulated by a variety of PIP residues and PIP-binding modules, which have been re-routed from conserved pathways, likely as a result of host-parasite co-evolution.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail: (CF); (AH)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (CF); (AH)
| |
Collapse
|
24
|
Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2019; 21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.
Collapse
Affiliation(s)
- Mengxiao Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Chandra M, Chin YKY, Mas C, Feathers JR, Paul B, Datta S, Chen KE, Jia X, Yang Z, Norwood SJ, Mohanty B, Bugarcic A, Teasdale RD, Henne WM, Mobli M, Collins BM. Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nat Commun 2019; 10:1528. [PMID: 30948714 PMCID: PMC6449406 DOI: 10.1038/s41467-019-09355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
Phox homology (PX) domains are membrane interacting domains that bind to phosphatidylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri-phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family.
Collapse
Affiliation(s)
- Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Caroline Mas
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Integrated Structural Biology Grenoble, Grenoble, France
| | - J Ryan Feathers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Sanchari Datta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Xinying Jia
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhe Yang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Suzanne J Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, VIC, Australia
| | - Andrea Bugarcic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mehdi Mobli
- Centre for Advanced Imaging and School of Chemistry and Molecular Biology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
26
|
Hariri H, Speer N, Bowerman J, Rogers S, Fu G, Reetz E, Datta S, Feathers JR, Ugrankar R, Nicastro D, Henne WM. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J Cell Biol 2019; 218:1319-1334. [PMID: 30808705 PMCID: PMC6446837 DOI: 10.1083/jcb.201808119] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Excess fatty acids are toxic to cells but can be sequestered as triacylglycerides in lipid droplets. Hariri et al. show that the tethering protein Mdm1 spatially regulates this process at the junction between the endoplasmic reticulum and the yeast vacuole. These findings suggest that Mdm1 can drive spatially defined lipid droplet production to maintain cell homeostasis and protect against lipotoxicity. Lipid droplets (LDs) serve as cytoplasmic reservoirs for energy-rich fatty acids (FAs) stored in the form of triacylglycerides (TAGs). During nutrient stress, yeast LDs cluster adjacent to the vacuole/lysosome, but how this LD accumulation is coordinated remains poorly understood. The ER protein Mdm1 is a molecular tether that plays a role in clustering LDs during nutrient depletion, but its mechanism of function remains unknown. Here, we show that Mdm1 associates with LDs through its hydrophobic N-terminal region, which is sufficient to demarcate sites for LD budding. Mdm1 binds FAs via its Phox-associated domain and coenriches with fatty acyl–coenzyme A ligase Faa1 at LD bud sites. Consistent with this, loss of MDM1 perturbs free FA activation and Dga1-dependent synthesis of TAGs, elevating the cellular FA level, which perturbs ER morphology and sensitizes yeast to FA-induced lipotoxicity. We propose that Mdm1 coordinates FA activation adjacent to the vacuole to promote LD production in response to stress, thus maintaining ER homeostasis.
Collapse
Affiliation(s)
- Hanaa Hariri
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Natalie Speer
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jade Bowerman
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean Rogers
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gang Fu
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Evan Reetz
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sanchari Datta
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - J Ryan Feathers
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rupali Ugrankar
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniela Nicastro
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Mike Henne
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
27
|
Seaman MNJ. Back From the Brink: Retrieval of Membrane Proteins From Terminal Compartments: Unexpected Pathways for Membrane Protein Retrieval From Vacuoles and Endolysosomes. Bioessays 2019; 41:e1800146. [PMID: 30706963 DOI: 10.1002/bies.201800146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/03/2018] [Indexed: 11/12/2022]
Abstract
It has long been believed that membrane proteins present in degradative compartments such as endolysosomes or vacuoles would be destined for destruction. Now however, it appears that mechanisms and machinery exist in simple eukaryotes such as yeast and more complex organisms such as mammals that can rescue potentially "doomed" membrane proteins by retrieving them from these "late" compartments and recycling them back to the Golgi complex. In yeast, a sorting nexin dimer containing Snx4p can recognize and retrieve the Atg27p membrane protein while in mammals, the AP5 complex (with SPG11 and SPG15) directs the recycling of Golgi-localized proteins along with the cation-independent mannose 6-phosphate receptor (CIMPR). Although the respective machinery is different, there is much commonality between yeast and mammals regarding the mechanisms of retrieval and the physiological importance of these late recycling pathways.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrookes Hospital, CB2 0XY, UK
| |
Collapse
|
28
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Meca J, Massoni-Laporte A, Martinez D, Sartorel E, Loquet A, Habenstein B, McCusker D. Avidity-driven polarity establishment via multivalent lipid-GTPase module interactions. EMBO J 2018; 38:embj.201899652. [PMID: 30559330 DOI: 10.15252/embj.201899652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
While Rho GTPases are indispensible regulators of cellular polarity, the mechanisms underlying their anisotropic activation at membranes have been elusive. Using the budding yeast Cdc42 GTPase module, which includes a guanine nucleotide exchange factor (GEF) Cdc24 and the scaffold Bem1, we find that avidity generated via multivalent anionic lipid interactions is a critical mechanistic constituent of polarity establishment. We identify basic cluster (BC) motifs in Bem1 that drive the interaction of the scaffold-GEF complex with anionic lipids at the cell pole. This interaction appears to influence lipid acyl chain ordering, thus regulating membrane rigidity and feedback between Cdc42 and the membrane environment. Sequential mutation of the Bem1 BC motifs, PX domain, and the PH domain of Cdc24 lead to a progressive loss of cellular polarity stemming from defective Cdc42 nanoclustering on the plasma membrane and perturbed signaling. Our work demonstrates the importance of avidity via multivalent anionic lipid interactions in the spatial control of GTPase activation.
Collapse
Affiliation(s)
- Julien Meca
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Aurélie Massoni-Laporte
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Elodie Sartorel
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Antoine Loquet
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Birgit Habenstein
- CNRS, UMR 5248, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| | - Derek McCusker
- CNRS, UMR 5095, European Institute of Chemistry and Biology, University of Bordeaux, Pessac, France
| |
Collapse
|
30
|
Bean BDM, Dziurdzik SK, Kolehmainen KL, Fowler CMS, Kwong WK, Grad LI, Davey M, Schluter C, Conibear E. Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. J Cell Biol 2018; 217:3593-3607. [PMID: 30018089 PMCID: PMC6168272 DOI: 10.1083/jcb.201804111] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Targeting of Vps13 to membranes is highly dynamic. Bean et al. identify Ypt35 and Mcp1 as adaptors for Vps13 at endosomes and mitochondria, respectively, and show all known Vps13 adaptors use a related motif to compete for Vps13 membrane recruitment. The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13–Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.
Collapse
Affiliation(s)
- Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Samantha K Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kathleen L Kolehmainen
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Claire M S Fowler
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Waldan K Kwong
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Leslie I Grad
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Cayetana Schluter
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
31
|
Lee TH, Hirst DJ, Kulkarni K, Del Borgo MP, Aguilar MI. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem Rev 2018; 118:5392-5487. [PMID: 29793341 DOI: 10.1021/acs.chemrev.7b00729] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Daniel J Hirst
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Clayton , VIC 3800 , Australia
| |
Collapse
|
32
|
Cytosolic proteins can exploit membrane localization to trigger functional assembly. PLoS Comput Biol 2018; 14:e1006031. [PMID: 29505559 PMCID: PMC5854442 DOI: 10.1371/journal.pcbi.1006031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/15/2018] [Accepted: 02/09/2018] [Indexed: 12/03/2022] Open
Abstract
Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. In a multitude of cellular processes, including cell division and endocytosis, proteins must bind to one another to form large multi-protein complexes. To initiate the formation of these critical multi-protein assemblies at the right time and the right place, the constituent proteins must be present at sufficient concentrations. We show here that membrane localization offers a powerful way of controlling protein concentrations by reducing the dimensionality of the protein’s search space. We present a simple and practical analytical theory that determines the significance of membrane localization for triggering protein-protein interactions. We show that protein binding partners will often form substantially more complexes when both partners can localize to surfaces, and thus localization can regulate the timing of multi-protein assembly. We collect in vitro binding data and cellular concentrations of proteins and lipids involved in pathways including clathrin-mediated endocytosis to demonstrate how cellular proteins could exploit membrane localization to regulate assembly.
Collapse
|
33
|
Abstract
The phox-homology (PX) domain is a phosphoinositide-binding domain conserved in all eukaryotes and present in 49 human proteins. Proteins containing PX domains, many of which are also known as sorting nexins (SNXs), have a large variety of functions in membrane trafficking, cell signaling, and lipid metabolism in association with membranes of the secretory and endocytic system. In this review we discuss the structural basis for both canonical lipid interactions with the endosome-enriched lipid phosphatidylinositol-3-phosphate (PtdIns3P) as well as non-canonical lipids that promote membrane association. We also describe recent advances in defining the diverse mechanisms by which PX domains interact with other proteins including the retromer trafficking complex and proteins secreted by bacterial pathogens. Like other membrane interacting domains, the attachment of PX domain proteins to specific membranes is often facilitated by additional interactions that contribute to binding avidity, and we discuss this coincidence detection for several known examples.
Collapse
|
34
|
Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum. Fungal Genet Biol 2017; 109:46-52. [PMID: 29079075 DOI: 10.1016/j.fgb.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Phospholipase D (PLD) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. However, little is known about its functions in plant pathogenic fungi. In this study, we identified three FgPLD genes in Fusarium graminearum that are homologous to the Saccharomyces cerevisiae Spo14 gene. We constructed deletion mutants of all three FgPLD genes using homologous recombination. Deletion of FgPLD1 (Δpld1), but not FgPLD2 or FgPLD3, affected hyphal growth, conidiation, and perithecium formation. The Δpld1 mutant showed reduced deoxynivalenol (DON) production and virulence in flowering wheat heads and corn silks. Furthermore, three FgPLD proteins have the same subcellular localization and localize to the cytoplasm in F. graminearum. Taken together, these results indicate that FgPLD1, but not FgPLD2 or FgPLD3, is important for hyphal growth, sexual or asexual reproduction, and plant infection.
Collapse
|
35
|
Su K, Xu T, Yu Z, Zhu J, Zhang Y, Wu M, Xiong Y, Liu J, Xu J. Structure of the PX domain of SNX25 reveals a novel phospholipid recognition model by dimerization in the PX domain. FEBS Lett 2017; 591:2011-2018. [PMID: 28542875 DOI: 10.1002/1873-3468.12688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022]
Abstract
SNX25, a regulator of GPCR signaling-phox-homology (PX) domain containing sorting nexin (SNX) member, has been proposed to be involved in the lysosomal degradation of the transforming growth factor β receptor and the development of temporal lobe epilepsy. Targeting to the endosomal membranes by the specific binding of phosphorylated phosphatidylinositols (PIPs) through the PX domain is critical for the function of SNXs. However, the mechanism for SNX25-PX targeting to the endosomes remains unclear. Here, we demonstrate that the PX domain of zebrafish SNX25 (zSNX25-PX) is capable of binding to PI3P only in its dimeric form. We also present the crystal structure of zSNX25-PX. Combined with biochemical experiments, we further identify a potential PI3P-binding region and propose a novel PI-binding model based on dimerization in the PX domain of SNXs.
Collapse
Affiliation(s)
- Kai Su
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Tingting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Zhijun Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ying Xiong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| |
Collapse
|
36
|
Jana A, Sinha A, Sarkar S. Phosphoinositide binding profiles of the PX domains of Giardia lamblia. Parasitol Int 2017; 66:606-614. [PMID: 28456494 DOI: 10.1016/j.parint.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
The membrane trafficking machinery that functions at the endomembrane system of Giardia lamblia appears to be significantly different from that present in most model eukaryotes. This machinery is important for encystation as cyst wall material is trafficked to the cell surface via encystation-specific vesicles. Since proteins containing the phosphoinositide-binding PX domains are known regulators of vesicular trafficking, BLAST search was used to identify the PX domains of G. lamblia. Six putative PX domain-containing ORFs were identified. Some of the encoded PX domains contained non-canonical amino acid residues in the highly conserved ligand binding pocket. In vitro and in vivo binding studies indicate that these domains have the ability to bind to diverse phosphoinositides. Also, coincidence detection is likely to play a significant role in ligand binding in vivo since domains that bind to the same lipid in vitro, exhibit differences in subcellular localization. Analyses of the expression of these six genes in trophozoites, encysting trophozoites and cysts showed that while the expression of four of the genes were downregulated in cysts, the other two were upregulated. The variation in ligand preference of the individual PX domains and the differential expression of most of the PX-domain encoding genes indicate that these PX domain-containing proteins are likely to perform diverse cellular functions.
Collapse
Affiliation(s)
- Ananya Jana
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Abhishek Sinha
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
37
|
Nie WC, He F, Yuan SM, Jia ZW, Wang RR, Gao XD. Roles of an N-terminal coiled-coil-containing domain in the localization and function of Bem3, a Rho GTPase-activating protein in budding yeast. Fungal Genet Biol 2017; 99:40-51. [PMID: 28064039 DOI: 10.1016/j.fgb.2016.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
GTPase-activating proteins (GAPs) play critical roles in the spatial and temporal control of small GTPases. The budding yeast Bem3 is a GAP for Cdc42, a Rho GTPase crucial for actin and septin organization. Bem3 localizes to the sites of polarized growth. However, the amino acid sequence determinants mediating recruitment of Bem3 to its physiological sites of action and those important for Bem3 function are not clear. Here, we show that Bem3's localization is guided by two distinct targeting regions-the PX-PH-domain-containing TD1 and the coiled-coil-containing TD2. TD2 localization is largely mediated by its interaction with the polarisome component Epo1 via heterotypic coiled-coil interaction. This finding reveals a novel role for the polarisome in linking Bem3 to its functional target, Cdc42. We also show that the coiled-coil domain of Bem3 interacts homotypically and this interaction is important for the regulation of Cdc42 by Bem3. Moreover, we show that overexpression of a longer version of the TD2 domain disrupts septin-ring assembly in a RhoGAP-independent manner, suggesting that TD2 may be capable of interacting with proteins implicated in septin-ring assembly. Furthermore, we show that the longer version of TD2 interacts with Kss1, a MAPK involved in filamentous growth. Kss1 is reported to localize mainly in the nucleus. We find that Kss1 also localizes to the sites of polarized growth and Bem3 interacts with Kss1 at the septin-ring assembly site. Our study provides new insights in Bem3's localization and function.
Collapse
Affiliation(s)
- Wen-Chao Nie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Si-Min Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui-Rui Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
38
|
Henne WM. Discovery and Roles of ER-Endolysosomal Contact Sites in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 997:135-147. [PMID: 28815527 DOI: 10.1007/978-981-10-4567-7_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inter-organelle membrane contact sites (MCSs) serve as unique microenvironments for the sensing and exchange of cellular metabolites and lipids. Though poorly defined, ER-endolysosomal contact sites are quickly becoming recognized as centers for inter-organelle lipid exchange and metabolic decision-making. Here, we review the discovery and current state of knowledge of ER-endolysosomal MCSs with particular focus on the molecular players that establish and/or utilize these contact sites in metabolism. We also discuss associations of ER-endolysosomal MCS-associated proteins in human disease, as well as the therapeutic promise these contact sites hold in modulating cellular physiology.
Collapse
Affiliation(s)
- William Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, 75013, USA.
| |
Collapse
|
39
|
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:108-19. [PMID: 25880818 PMCID: PMC6638462 DOI: 10.1111/mpp.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Qin Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
40
|
Abstract
Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method.
Collapse
|
41
|
Henne WM, Zhu L, Balogi Z, Stefan C, Pleiss JA, Emr SD. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J Cell Biol 2015; 210:541-51. [PMID: 26283797 PMCID: PMC4539980 DOI: 10.1083/jcb.201503088] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Mdm1 is a novel interorganelle tethering protein that localizes to yeast ER–vacuole/lysosome junctions, and Mdm1 truncations analogous to disease-associated Snx14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Although endolysosomal trafficking is well defined, how it is regulated and coordinates with cellular metabolism is unclear. To identify genes governing endolysosomal dynamics, we conducted a global fluorescence-based screen to reveal endomembrane effector genes. Screening implicated Phox (PX) domain–containing protein Mdm1 in endomembrane dynamics. Surprisingly, we demonstrate that Mdm1 is a novel interorganelle tethering protein that localizes to endoplasmic reticulum (ER)–vacuole/lysosome membrane contact sites (MCSs). We show that Mdm1 is ER anchored and contacts the vacuole surface in trans via its lipid-binding PX domain. Strikingly, overexpression of Mdm1 induced ER–vacuole hypertethering, underscoring its role as an interorganelle tether. We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER–vacuole MCSs independently of established tether Nvj1. Finally, we find that Mdm1 truncations analogous to neurological disease–associated SNX14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Our work suggests that human Mdm1 homologues may play previously unappreciated roles in interorganelle communication and lipid metabolism.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lu Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Zsolt Balogi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Christopher Stefan
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Scott D Emr
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
42
|
Vonkova I, Saliba AE, Deghou S, Anand K, Ceschia S, Doerks T, Galih A, Kugler K, Maeda K, Rybin V, van Noort V, Ellenberg J, Bork P, Gavin AC. Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains. Cell Rep 2015; 12:1519-30. [DOI: 10.1016/j.celrep.2015.07.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022] Open
|
43
|
Chi RJ, Harrison MS, Burd CG. Biogenesis of endosome-derived transport carriers. Cell Mol Life Sci 2015; 72:3441-3455. [PMID: 26022064 DOI: 10.1007/s00018-015-1935-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/29/2023]
Abstract
Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Megan S Harrison
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Clairfeuille T, Norwood SJ, Qi X, Teasdale RD, Collins BM. Structure and Membrane Binding Properties of the Endosomal Tetratricopeptide Repeat (TPR) Domain-containing Sorting Nexins SNX20 and SNX21. J Biol Chem 2015; 290:14504-17. [PMID: 25882846 DOI: 10.1074/jbc.m115.650598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Sorting nexins (SNX) orchestrate membrane trafficking and signaling events required for the proper distribution of proteins within the endosomal network. Their phox homology (PX) domain acts as a phosphoinositide (PI) recognition module that targets them to specific endocytic membrane domains. The modularity of SNX proteins confers a wide variety of functions from signaling to membrane deformation and cargo binding, and many SNXs are crucial modulators of endosome dynamics and are involved in a myriad of physiological and pathological processes such as neurodegenerative diseases, cancer, and inflammation. Here, we have studied the poorly characterized SNX20 and its paralogue SNX21, which contain an N-terminal PX domain and a C-terminal PX-associated B (PXB) domain of unknown function. The two proteins share similar PI-binding properties and are recruited to early endosomal compartments by their PX domain. The crystal structure of the SNX21 PXB domain reveals a tetratricopeptide repeat (TPR)-fold, a module that typically binds short peptide motifs, with three TPR α-helical repeats. However, the C-terminal capping helix adopts a highly unusual and potentially self-inhibitory topology. SAXS solution structures of SNX20 and SNX21 show that these proteins adopt a compact globular architecture, and membrane interaction analyses indicate the presence of overlapping PI-binding sites that may regulate their intracellular localization. This study provides the first structural analysis of this poorly characterized subfamily of SNX proteins, highlighting a likely role as endosome-associated scaffolds.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaying Qi
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
45
|
Hammond GRV, Balla T. Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:746-58. [PMID: 25732852 DOI: 10.1016/j.bbalip.2015.02.013] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 01/01/2023]
Abstract
Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Shriver Kennedy National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Bean BDM, Davey M, Snider J, Jessulat M, Deineko V, Tinney M, Stagljar I, Babu M, Conibear E. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes. Mol Biol Cell 2015; 26:1119-28. [PMID: 25609093 PMCID: PMC4357511 DOI: 10.1091/mbc.e14-08-1281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The retromer complex regulates vesicle transport at endosomes. Different members of the VPS9 domain–containing Rab5-family guanine nucleotide exchange factors interact with the yeast retromer complex and mediate its endosomal localization. The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.
Collapse
Affiliation(s)
- Bjorn D M Bean
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Matthew Jessulat
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Viktor Deineko
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Matthew Tinney
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
47
|
Priya A, Kalaidzidis IV, Kalaidzidis Y, Lambright D, Datta S. Molecular Insights into Rab7-Mediated Endosomal Recruitment of Core Retromer: Deciphering the Role of Vps26 and Vps35. Traffic 2014; 16:68-84. [DOI: 10.1111/tra.12237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Amulya Priya
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; ITI Gas Rahat Building Bhopal 462023 India
| | - Inna V Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; 108 Pfotenhauerstrasse Dresden 01307 Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; 108 Pfotenhauerstrasse Dresden 01307 Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; Moscow 119991 Russia
| | - David Lambright
- Program in Molecular Medicine; University of Massachusetts Medical School; 373 Plantation Street Worcester MA 01605 USA
| | - Sunando Datta
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; ITI Gas Rahat Building Bhopal 462023 India
| |
Collapse
|
48
|
Xu T, Xu J, Ye Y, Wang Q, Shu X, Pei D, Liu J. Structure of human SNX10 reveals insights into its role in human autosomal recessive osteopetrosis. Proteins 2014; 82:3483-9. [DOI: 10.1002/prot.24689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Yinghua Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Qi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou 510530 China
- School of Life Sciences, University of Science and Technology of China; Hefei 230026 China
| |
Collapse
|
49
|
Mas C, Norwood SJ, Bugarcic A, Kinna G, Leneva N, Kovtun O, Ghai R, Ona Yanez LE, Davis JL, Teasdale RD, Collins BM. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. J Biol Chem 2014; 289:28554-68. [PMID: 25148684 DOI: 10.1074/jbc.m114.595959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.
Collapse
Affiliation(s)
- Caroline Mas
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Genevieve Kinna
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajesh Ghai
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lorena E Ona Yanez
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jasmine L Davis
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
50
|
Jia Z, Ghai R, Collins BM, Mark AE. The recognition of membrane-bound PtdIns3P by PX domains. Proteins 2014; 82:2332-42. [PMID: 24771541 DOI: 10.1002/prot.24593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/21/2014] [Accepted: 04/08/2014] [Indexed: 12/24/2022]
Abstract
Phox-homology (PX) domains target proteins to the organelles of the secretary and endocytic systems by binding to phosphatidylinositol phospholipids (PIPs). Among all the structures of PX domains that have been solved, only three have been solved in a complex with the main physiological ligand: PtdIns3P. In this work, molecular dynamic simulations have been used to explore the structure and dynamics of the p40(phox) -PX domain and the SNX17-PX domain and their interaction with membrane-bound PtdIns3P. In the simulations, both PX domains associated spontaneously with the membrane-bound PtdIns3P and formed stable complexes. The interaction between the p40(phox) -PX domain and PtdIns3P in the membrane was found to be similar to the crystal structure of the p40(phox) -PX-PtdIns3P complex that is available. The interaction between the SNX17-PX domain and PtdIns3P was similar to that observed in the p40(phox) -PX-PtdIns3P complex; however, some residues adopted different orientations. The simulations also showed that nonspecific interactions between the β1-β2 loop and the membrane play an important role in the interaction of membrane bound PtdIns3P and different PX domains. The behaviour of unbound PtdIns3P within a 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) membrane environment was also examined and compared to the available experimental data and simulation studies of related molecules.
Collapse
Affiliation(s)
- ZhiGuang Jia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queens Land, 4072, Australia
| | | | | | | |
Collapse
|