1
|
Rajendran D, Oon CE. Navigating therapeutic prospects by modulating autophagy in colorectal cancer. Life Sci 2024; 358:123121. [PMID: 39389340 DOI: 10.1016/j.lfs.2024.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of death globally despite the improvements in cancer treatment. Autophagy is an evolutionarily conserved lysosomal-dependent degradation pathway that is critical in maintaining cellular homeostasis. However, in cancer, autophagy may have conflicting functions in preventing early tumour formation versus the maintenance of advanced-stage tumours. Defective autophagy has a broad and dynamic effect not just on cancer cells, but also on the tumour microenvironment which influences tumour progression and response to treatment. To add to the layer of complexity, somatic mutations in CRC including tumour protein p53 (TP53), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), Kirsten rat sarcoma viral oncogene homolog (KRAS), and phosphatase and tensin homolog (PTEN) can render chemoresistance by promoting a pro-survival advantage through autophagy. Recent studies have also reported autophagy-related cell deaths that are distinct from classical autophagy by employing parts of the autophagic machinery, which impacts strategies for autophagy regulation in cancer therapy. This review discusses the molecular processes of autophagy in the evolution of CRC and its role in the tumour microenvironment, as well as prospective therapeutic methods based on autophagy suppression or promotion. It also highlights clinical trials using autophagy modulators for treating CRC, underscoring the importance of autophagy regulation in CRC therapy.
Collapse
Affiliation(s)
- Deepa Rajendran
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Dergilev K, Gureenkov A, Parfyonova Y. Autophagy as a Guardian of Vascular Niche Homeostasis. Int J Mol Sci 2024; 25:10097. [PMID: 39337582 PMCID: PMC11432168 DOI: 10.3390/ijms251810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing burden of vascular dysfunction on healthcare systems worldwide results in higher morbidity and mortality rates across pathologies, including cardiovascular diseases. Vasculopathy is suggested to be caused by the dysregulation of vascular niches, a microenvironment of vascular structures comprising anatomical structures, extracellular matrix components, and various cell populations. These elements work together to ensure accurate control of the vascular network. In recent years, autophagy has been recognized as a crucial regulator of the vascular microenvironment responsible for maintaining basic cell functions such as proliferation, differentiation, replicative senescence, and apoptosis. Experimental studies indicate that autophagy activation can be enhanced or inhibited in various pathologies associated with vascular dysfunction, suggesting that autophagy plays both beneficial and detrimental roles. Here, we review and assess the principles of autophagy organization and regulation in non-tumor vascular niches. Our analysis focuses on significant figures in the vascular microenvironment, highlighting the role of autophagy and summarizing evidence that supports the systemic or multiorgan nature of the autophagy effects. Finally, we discuss the critical organizational and functional aspects of the vasculogenic niche, specifically in relation to autophagy. The resulting dysregulation of the vascular microenvironment contributes to the development of vascular dysfunction.
Collapse
Affiliation(s)
- Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexandre Gureenkov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Zibrova D, Ernst T, Hochhaus A, Heller R. The BCR::ABL1 tyrosine kinase inhibitors ponatinib and nilotinib differentially affect endothelial angiogenesis and signalling. Mol Cell Biochem 2024:10.1007/s11010-024-05070-5. [PMID: 39009935 DOI: 10.1007/s11010-024-05070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
BCR::ABL1 inhibitors, the treatment of choice for the majority of patients with chronic myeloid leukaemia (CML), can cause vascular side effects that vary between agents. The exact underlying mechanisms are still poorly understood, but the vascular endothelium has been proposed as a site of origin. The present study investigates the effects of three BCR::ABL1 inhibitors, ponatinib, nilotinib and imatinib, on angiogenesis and signalling in human endothelial cells in response to vascular endothelial growth factor (VEGF). The experiments were performed in endothelial cells isolated from human umbilical veins. After exposure to imatinib, ponatinib and nilotinib, the angiogenic capacity of endothelial cells was assessed in spheroid assays. VEGF-induced signalling pathways were examined in Western blotting experiments using different specific antibodies. RNAi technology was used to downregulate proteins of interest. Intracellular cGMP levels were measured by ELISA. Imatinib had no effect on endothelial function. Ponatinib inhibited VEGF-induced sprouting, while nilotinib increased spontaneous and VEGF-stimulated angiogenesis. These effects did not involve wild-type ABL1 or ABL2, as siRNA-mediated knockdown of these kinases did not affect angiogenesis and VEGF signalling. Consistent with their effects on sprouting, ponatinib and nilotinib affected angiogenic pathways in opposite directions. While ponatinib inhibited VEGF-induced signalling and cGMP formation, nilotinib activated angiogenic signalling, in particular phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2). The latter occurred in an epidermal growth factor receptor (EGFR)-dependent manner possibly via suppressing Fyn-related kinase (FRK), a negative regulator of EGFR signalling. Both, pharmacological inhibition of Erk1/2 or EGFR suppressed nilotinib-induced angiogenic sprouting. These results support the notion that the vascular endothelium is a site of action of BCR::ABL1 inhibitors from which side effects may arise, and that the different vascular toxicity profiles of BCR::ABL1 inhibitors may be due to their different actions at the molecular level. In addition, the as yet unknown pro-angiogenic effect of nilotinib should be considered in the treatment of patients with comorbidities associated with pathological angiogenesis, such as ocular disease, arthritis or obesity.
Collapse
Affiliation(s)
- Darya Zibrova
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany
| | - Thomas Ernst
- Department of Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Andreas Hochhaus
- Department of Hematology and Oncology, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany.
| |
Collapse
|
4
|
Mann CG, MacArthur MR, Zhang J, Gong S, AbuSalim JE, Hunter CJ, Lu W, Agius T, Longchamp A, Allagnat F, Rabinowitz J, Mitchell JR, De Bock K, Mitchell SJ. Sulfur Amino Acid Restriction Enhances Exercise Capacity in Mice by Boosting Fat Oxidation in Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601041. [PMID: 39005372 PMCID: PMC11244859 DOI: 10.1101/2024.06.27.601041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle β-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.
Collapse
Affiliation(s)
- Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Jenna E AbuSalim
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Craig J. Hunter
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne 1005, Switzerland
| | - Joshua Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James R Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Sarah J Mitchell
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, Ramanathan G. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod Sci 2024; 31:1508-1520. [PMID: 38228976 DOI: 10.1007/s43032-023-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Ganesh
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - G Usha Rani
- Department of Obstetrics And Gynecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Ablooglu AJ, Chen WS, Xie Z, Desai A, Paul S, Lack JB, Scott LA, Eisch AR, Dudek AZ, Parikh SM, Druey KM. Intrinsic endothelial hyperresponsiveness to inflammatory mediators drives acute episodes in models of Clarkson disease. J Clin Invest 2024; 134:e169137. [PMID: 38502192 DOI: 10.1172/jci169137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.
Collapse
Affiliation(s)
- Ararat J Ablooglu
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Abhishek Desai
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Subrata Paul
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Justin B Lack
- Integrative Data Sciences Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Linda A Scott
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - A Robin Eisch
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| | - Arkadiusz Z Dudek
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samir M Parikh
- Division of Nephrology, Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, and
| |
Collapse
|
7
|
Khapchaev AY, Vorotnikov AV, Antonova OA, Samsonov MV, Shestakova EA, Sklyanik IA, Tomilova AO, Shestakova MV, Shirinsky VP. Shear Stress and the AMP-Activated Protein Kinase Independently Protect the Vascular Endothelium from Palmitate Lipotoxicity. Biomedicines 2024; 12:339. [PMID: 38397940 PMCID: PMC10886486 DOI: 10.3390/biomedicines12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Saturated free fatty acids are thought to play a critical role in metabolic disorders associated with obesity, insulin resistance, type 2 diabetes (T2D), and their vascular complications via effects on the vascular endothelium. The most abundant saturated free fatty acid, palmitate, exerts lipotoxic effects on the vascular endothelium, eventually leading to cell death. Shear stress activates the endothelial AMP-activated protein kinase (AMPK), a cellular energy sensor, and protects endothelial cells from lipotoxicity, however their relationship is uncertain. Here, we used isoform-specific shRNA-mediated silencing of AMPK to explore its involvement in the long-term protection of macrovascular human umbilical vein endothelial cells (HUVECs) against palmitate lipotoxicity and to relate it to the effects of shear stress. We demonstrated that it is the α1 catalytic subunit of AMPK that is critical for HUVEC protection under static conditions, whereas AMPK-α2 autocompensated a substantial loss of AMPK-α1, but failed to protect the cells from palmitate. Shear stress equally protected the wild type HUVECs and those lacking either α1, or α2, or both AMPK-α isoforms; however, the protective effect of AMPK reappeared after returning to static conditions. Moreover, in human adipose microvascular endothelial cells isolated from obese diabetic individuals, shear stress was a strong protector from palmitate lipotoxicity, thus highlighting the importance of circulation that is often obstructed in obesity/T2D. Altogether, these results indicate that AMPK is important for vascular endothelial cell protection against lipotoxicity in the static environment, however it may be dispensable for persistent and more effective protection exerted by shear stress.
Collapse
Affiliation(s)
- Asker Y. Khapchaev
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Alexander V. Vorotnikov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Olga A. Antonova
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Mikhail V. Samsonov
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| | - Ekaterina A. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Igor A. Sklyanik
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Alina O. Tomilova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Marina V. Shestakova
- Diabetes Institute, Endocrinology Research Center, Moscow 117036, Russia; (E.A.S.); (I.A.S.); (A.O.T.); (M.V.S.)
| | - Vladimir P. Shirinsky
- Institute of Experimental Cardiology Named after Academician V.N. Smirnov, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia; (O.A.A.); (M.V.S.); (V.P.S.)
| |
Collapse
|
8
|
Hamad M, Mehana RA, Abd-Al haseeb MM, Houssen M. Potential antitumour effect of all-trans retinoic acid on regorafenib-treated human colon cancer cell lines. Contemp Oncol (Pozn) 2023; 27:198-210. [PMID: 38239861 PMCID: PMC10793621 DOI: 10.5114/wo.2023.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is a significant contributor to cancer-related mortality worldwide, ranking as the second leading cause of such deaths. Central to the progression of this malignancy is angiogenesis - a complex process orchestrated by vascular endothelial growth factor (VEGF). Regorafenib, a potent multikinase inhibitor, acts as a critical antagonist of multiple kinases involved in angiogenesis, proliferation, and metastasis. Conversely, all-trans retinoic acid (ATRA) has demonstrated compelling antitumour effects across various cancer types. This study aims to comprehensively evaluate the combined antitumour potential of ATRA and regorafenib in human colon cancer cell lines while elucidating the intricate molecular mechanisms that underlie their action. Material and methods Our investigative approach involved an enzyme-linked immunosorbent assay to meticulously analyse the levels of key players in the VEGF signalling pathway, including VEGF itself, activated protein kinase (AMPK), extracellular signal-regulated protein kinase 1 (ERK1), and nuclear factor kappa B (NF-κB). Additionally, we assessed caspase-3 activity as a fundamental marker of apoptosis. Results The combined use of ATRA and regorafenib exhibited a remarkable augmentation in both AMPK and caspase-3 activities. This was accompanied by a significant reduction in VEGF, ERK1, and NF-κB levels within human colon cancer cell lines subjected to regorafenib treatment. Conclusions Our findings underscore the remarkable antiproliferative, antiangiogenic, and proapoptotic effects resulting from the combined use of ATRA and regorafenib in the context of CRC. This modulation of tumourigenic processes is predominantly mediated through the VEGF signalling axis.
Collapse
Affiliation(s)
- Mariam Hamad
- Biochemistry Department Faculty, Pharmacy Damanhour University, Egypt
| | - Radwa Ali Mehana
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Maha Houssen
- Biochemistry Department Faculty, Pharmacy Damanhour University, Egypt
| |
Collapse
|
9
|
Doshi H, Spengler K, Godbole A, Gee YS, Baell J, Oakhill JS, Henke A, Heller R. AMPK protects endothelial cells against HSV-1 replication via inhibition of mTORC1 and ACC1. Microbiol Spectr 2023; 11:e0041723. [PMID: 37702499 PMCID: PMC10580915 DOI: 10.1128/spectrum.00417-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread contagious pathogen, mostly causing mild symptoms on the mucosal entry side. However, systemic distribution, in particular upon reactivation of the virus in immunocompromised patients, may trigger an innate immune response and induce damage of organs. In these conditions, HSV-1 may infect vascular endothelial cells, but little is known about the regulation of HSV-1 replication and possible defense mechanisms in these cells. The current study addresses the question of whether the host cell protein AMP-activated protein kinase (AMPK), an important metabolic sensor, can control HSV-1 replication in endothelial cells. We show that downregulation of the catalytic subunits AMPKα1 and/or AMPKα2 increased HSV-1 replication as monitored by TCID50 titrations, while a potent AMPK agonist, MK-8722, strongly inhibited it. MK-8722 induced a persistent phosphorylation of the AMPK downstream targets acetyl-CoA carboxylase (ACC) and the rapamycin-sensitive adaptor protein of mTOR (Raptor) and, related to this, impairment of ACC1-mediated lipid synthesis and the mechanistic target of the rapamycin complex-1 (mTORC1) pathway. Since blockade of mTOR by Torin-2 as well as downregulation of ACC1 by siRNA also decreased HSV-1 replication, MK-8722 is likely to exert its anti-viral effect via mTORC1 and ACC1 inhibition. Importantly, MK-8722 was able to reduce virus replication even when added after HSV-1. Together, our data highlight the importance of endothelial cells as host cells for HSV-1 replication upon systemic infection and identify AMPK, a metabolic host cell protein, as a potential target for antiviral strategies against HSV-1 infection and its severe consequences. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a common pathogen that causes blisters or cold sores in humans. It remains latent in infected individuals and can be reactivated multiple times. In adverse conditions, for instance, in immunocompromised patients, HSV-1 can lead to serious complications such as encephalitis, meningitis, or blindness. In these situations, infection of endothelial cells lining the surface of blood vessels may contribute to the manifestation of disease. Here, we describe the role of AMP-activated protein kinase (AMPK), a potent regulator of cellular energy metabolism, in HSV-1 replication in endothelial cells. While downregulation of AMPK potentiates HSV-1 replication, pharmacological AMPK activation inhibits it by limiting the availability of required host cell macromolecules such as proteins or fatty acids. These data highlight the role of metabolic host cell proteins as antiviral targets and reveal activation of endothelial AMPK as a potential strategy to protect from severe consequences of HSV-1 infection.
Collapse
Affiliation(s)
- Heena Doshi
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Katrin Spengler
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Amod Godbole
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Yi Sing Gee
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Jonathan S. Oakhill
- Metabolic Signaling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Regine Heller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Maduabuchi WO, Tansi FL, Heller R, Hilger I. Hyperthermia Influences the Secretion Signature of Tumor Cells and Affects Endothelial Cell Sprouting. Biomedicines 2023; 11:2256. [PMID: 37626752 PMCID: PMC10452125 DOI: 10.3390/biomedicines11082256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Tumors are a highly heterogeneous mass of tissue showing distinct therapy responses. In particular, the therapeutic outcome of tumor hyperthermia treatments has been inconsistent, presumably due to tumor versus endothelial cell cross-talks related to the treatment temperature and the tumor tissue environment. Here, we investigated the impact of the average or strong hyperthermic treatment (43 °C or 47 °C for 1 h) of the human pancreatic adenocarcinoma cell line (PANC-1 and BxPC-3) on endothelial cells (HUVECs) under post-treatment normoxic or hypoxic conditions. Immediately after the hyperthermia treatment, the distinct repression of secreted pro-angiogenic factors (e.g., VEGF, PDGF-AA, PDGF-BB, M-CSF), intracellular HIF-1α and the enhanced phosphorylation of ERK1/2 in tumor cells were detectable (particularly for strong hyperthermia, 2D cell monolayers). Notably, there was a significant increase in endothelial sprouting when 3D self-organized pancreatic cancer cells were treated with strong hyperthermia and the post-treatment conditions were hypoxic. Interestingly, for the used treatment temperatures, the intracellular HIF-1α accumulation in tumor cells seems to play a role in MAPK/ERK activation and mediator secretion (e.g., VEGF, PDGF-AA, Angiopoietin-2), as shown by inhibition experiments. Taken together, the hyperthermia of pancreatic adenocarcinoma cells in vitro impacts endothelial cells under defined environmental conditions (cell-to-cell contact, oxygen status, treatment temperature), whereby HIF-1α and VEGF secretion play a role in a complex context. Our observations could be exploited for the hyperthermic treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Wisdom O. Maduabuchi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Hans-Knöll-Str. 2, D-07745 Jena, Germany;
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| |
Collapse
|
11
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 234.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
12
|
Hermawan A, Putri H. Bioinformatics analysis reveals the potential target of rosiglitazone as an antiangiogenic agent for breast cancer therapy. BMC Genom Data 2022; 23:72. [PMID: 36114448 PMCID: PMC9482259 DOI: 10.1186/s12863-022-01086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background Several studies have demonstrated the antitumor activity of rosiglitazone (RGZ) in cancer cells, including breast cancer cells. However, the molecular targets of RGZ in the inhibition of angiogenesis in breast cancer cells remain unclear. This study aimed to explore the potential targets of RGZ in inhibiting breast cancer angiogenesis using bioinformatics-based analysis. Results Venn diagram analysis revealed 29 TR proteins. KEGG pathway enrichment analysis demonstrated that TR regulated the adipocytokine, AMPK, and PPAR signaling pathways. Oncoprint analysis showed genetic alterations in FABP4 (14%), ADIPOQ (2.9%), PPARG (2.8%), PPARGC1A (1.5%), CD36 (1.7%), and CREBBP (11%) in patients with breast cancer in a TCGA study. The mRNA levels of FABP4, ADIPOQ, PPARG, CD36, and PPARGC1A were significantly lower in patients with breast cancer than in those without breast cancer. Analysis of gene expression using bc-GenExMiner showed that the mRNA levels of FABP, ADIPOQ, PPARG, CD36, PPARGC1A, and CREBBP were significantly lower in basal-like and triple-negative breast cancer (TNBC) cells than in non-basal-like and non-TNBC cells. In general, the protein levels of these genes were low, except for that of CREBBP. Patients with breast cancer who had low mRNA levels of FABP4, ADIPOQ, PPARG, and PPARGC1A had lower overall survival rates than those with high mRNA levels, which was supported by the overall survival related to DNA methylation. Correlation analysis of immune cell infiltration with TR showed a correlation between TR and immune cell infiltration, highlighting the potential of RGZ for immunotherapy. Conclusion This study explored the potential targets of RGZ as antiangiogenic agents in breast cancer therapy and highlighted FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP as potential targets of RGZ. These findings require further validation to explore the potential of RGZ as an antiangiogenic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01086-2. Recent studies have focused on the development of indirect angiogenesis inhibitors. Bioinformatics-based identification of potential rosiglitazone target genes to inhibit breast cancer angiogenesis. FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP are potential targets of rosiglitazone.
Collapse
|
13
|
Yang X, Yi X, Zhang F, Li F, Lang L, Ling M, Lai X, Chen L, Quan L, Fu Y, Feng S, Shu G, Wang L, Zhu X, Gao P, Jiang Q, Wang S. Cytochrome P450 epoxygenase-derived EPA and DHA oxylipins 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid promote BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway. Food Funct 2022; 13:1232-1245. [PMID: 35019933 DOI: 10.1039/d1fo02608a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.
Collapse
Affiliation(s)
- Xiaohua Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xumin Lai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lulu Quan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China. .,National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
14
|
Endothelial Adenosine Monophosphate-Activated Protein Kinase-Alpha1 Deficiency Potentiates Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension. Antioxidants (Basel) 2021; 10:antiox10121913. [PMID: 34943016 PMCID: PMC8750184 DOI: 10.3390/antiox10121913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1–P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.
Collapse
|
15
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
16
|
Jia N, Zhou Y, Dong X, Ding M. The antitumor mechanisms of aerobic exercise: A review of recent preclinical studies. Cancer Med 2021; 10:6365-6373. [PMID: 34387383 PMCID: PMC8446393 DOI: 10.1002/cam4.4169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
Aerobic exercise is an important non‐pharmacological means of antitumor intervention, but related mechanisms are poorly understood. In this review, previous studies are summarized from the aspects of tumor oxygenation, autophagy versus apoptosis, and organismal immunity. Current findings on the antitumor effects of aerobic exercise involve AMPK signaling, PI3K/Akt signaling, Th1/Th2 cytokine balance related to immunity, PD‐1/PD‐L1 immunosuppressive signaling, and related cytokine pathways. Several directions for further research are proposed, including whether newly discovered subgroups of cytokines influence the effects of aerobic exercise on tumors, tailoring corresponding exercise prescriptions based on the bidirectional effects of certain cytokines at different stages, identifying the potential effects of exercise time and intensity, and elucidating details of the unclear mechanisms. Through the discussion of the existing data, we hope to provide new ideas for the future research of exercise therapy.
Collapse
Affiliation(s)
- Ningxin Jia
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Yanan Zhou
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Xiaosheng Dong
- College of Physical Education, Shandong University, Jinan, China
| | - Meng Ding
- College of Physical Education, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Gao S, Quick C, Guasch-Ferre M, Zhuo Z, Hutchinson JM, Su L, Hu F, Lin X, Christiani D. The Association Between Inflammatory and Oxidative Stress Biomarkers and Plasma Metabolites in a Longitudinal Study of Healthy Male Welders. J Inflamm Res 2021; 14:2825-2839. [PMID: 34234508 PMCID: PMC8254568 DOI: 10.2147/jir.s316262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Human metabolism and inflammation are closely related modulators of homeostasis and immunity. Metabolic profiling is a useful tool to understand the association between metabolism and inflammation at a systemic level. OBJECTIVE To investigate the longitudinal associations between the concentration of plasma metabolites and biomarkers related to inflammation and oxidative stress. METHODS We conducted a repeated cross-sectional analysis consisting of 8 short-term panels that included 88 healthy adult male welders in Massachusetts, USA. In each panel, we collected 1-6 repeated measurements of blood and urine. We used a human vascular injury panel assay and custom cytokine/chemokine assay to quantify inflammatory biomarker plasma levels, liquid chromatography-mass spectrometry to quantify the concentrations of 665 plasma metabolites, and a competitive enzyme-linked immunoassay to quantify urinary 8-OHdG and 8-isoprostane levels. We used linear mixed effects models to estimate the longitudinal association between each inflammatory and oxidative stress biomarker and each metabolite. RESULTS At a 5% FDR threshold, we detected ≥1metabolite association for 8 unique inflammatory and oxidative stress biomarkers: urinary 8-isoprostane, plasma C-reactive protein (CRP), serum amyloid A (SAA), intercellular adhesion molecule 1, circulating vascular cell adhesion molecule-1, interleukin 8 (IL-8), interleukin 10 (IL-10) and vascular endothelial growth factor. Specifically, 3 metabolites in the androgenic steroids pathway were negatively associated with SAA; 3 dihydrosphingomyelins metabolites were positively associated with 1 or more of CRP, SAA, IL-8 and IL-10; 4 metabolites in acyl choline metabolism pathways were negatively associated with IL-8; 7 lysophospholipid metabolites were negatively associated with 1 or more of CRP, SAA and IL-8; 4 sphingomyelins were positively associated with CRP and/or SAA; and 10 metabolites in the xanthine pathway were positively associated with urinary 8-isoprostane. CONCLUSION We found that metabolites in phospholipid groups had strong associations with multiple inflammatory biomarkers, especially CRP, SAA and IL-8. The mechanism of these associations warrants further investigation.
Collapse
Affiliation(s)
- Shangzhi Gao
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Corbin Quick
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Marta Guasch-Ferre
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Zhu Zhuo
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - John M Hutchinson
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Li Su
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Nutrition, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Biostatistics, Harvard University T H Chan School of Public Health, Boston, MA, USA
| | - David Christiani
- Environmental Health, Harvard University T H Chan School of Public Health, Boston, MA, USA
- Pulmonary and Critical Care Division, Department of Medicine, MA General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
19
|
Rodríguez C, Muñoz M, Contreras C, Prieto D. AMPK, metabolism, and vascular function. FEBS J 2021; 288:3746-3771. [PMID: 33825330 DOI: 10.1111/febs.15863] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor activated during energy stress that plays a key role in maintaining energy homeostasis. This ubiquitous signaling pathway has been implicated in multiple functions including mitochondrial biogenesis, redox regulation, cell growth and proliferation, cell autophagy and inflammation. The protective role of AMPK in cardiovascular function and the involvement of dysfunctional AMPK in the pathogenesis of cardiovascular disease have been highlighted in recent years. In this review, we summarize and discuss the role of AMPK in the regulation of blood flow in response to metabolic demand and the basis of the AMPK physiological anticontractile, antioxidant, anti-inflammatory, and antiatherogenic actions in the vascular system. Investigations by others and us have demonstrated the key role of vascular AMPK in the regulation of endothelial function, redox homeostasis, and inflammation, in addition to its protective role in the hypoxia and ischemia/reperfusion injury. The pathophysiological implications of AMPK involvement in vascular function with regard to the vascular complications of metabolic disease and the therapeutic potential of AMPK activators are also discussed.
Collapse
Affiliation(s)
- Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
20
|
Protein kinase A negatively regulates VEGF-induced AMPK activation by phosphorylating CaMKK2 at serine 495. Biochem J 2021; 477:3453-3469. [PMID: 32869834 DOI: 10.1042/bcj20200555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK) in endothelial cells by vascular endothelial growth factor (VEGF) via the Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) represents a pro-angiogenic pathway, whose regulation and function is incompletely understood. This study investigates whether the VEGF/AMPK pathway is regulated by cAMP-mediated signalling. We show that cAMP elevation in endothelial cells by forskolin, an activator of the adenylate cyclase, and/or 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, triggers protein kinase A (PKA)-mediated phosphorylation of CaMKK2 (serine residues S495, S511) and AMPK (S487). Phosphorylation of CaMKK2 by PKA led to an inhibition of its activity as measured in CaMKK2 immunoprecipitates of forskolin/IBMX-treated cells. This inhibition was linked to phosphorylation of S495, since it was not seen in cells expressing a non-phosphorylatable CaMKK2 S495C mutant. Phosphorylation of S511 alone in these cells was not able to inhibit CaMKK2 activity. Moreover, phosphorylation of AMPK at S487 was not sufficient to inhibit VEGF-induced AMPK activation in cells, in which PKA-mediated CaMKK2 inhibition was prevented by expression of the CaMKK2 S495C mutant. cAMP elevation in endothelial cells reduced basal and VEGF-induced acetyl-CoA carboxylase (ACC) phosphorylation at S79 even if AMPK was not inhibited. Together, this study reveals a novel regulatory mechanism of VEGF-induced AMPK activation by cAMP/PKA, which may explain, in part, inhibitory effects of PKA on angiogenic sprouting and play a role in balancing pro- and anti-angiogenic mechanisms in order to ensure functional angiogenesis.
Collapse
|
21
|
Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020; 22:E186. [PMID: 33375416 PMCID: PMC7795930 DOI: 10.3390/ijms22010186] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.
Collapse
Affiliation(s)
| | - David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland DD1 5EH, UK;
| |
Collapse
|
22
|
VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1. Cells 2020; 9:cells9030687. [PMID: 32168879 PMCID: PMC7140637 DOI: 10.3390/cells9030687] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.
Collapse
|
23
|
Vara-Ciruelos D, Dandapani M, Hardie DG. AMP-Activated Protein Kinase: Friend or Foe in Cancer? ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The AMP-activated protein kinase (AMPK) is activated by energy stress and restores homeostasis by switching on catabolism, while switching off cell growth and proliferation. Findings that AMPK acts downstream of the tumor suppressor LKB1 have suggested that AMPK might also suppress tumorigenesis. In mouse models of B and T cell lymphoma in which genetic loss of AMPK occurred before tumor initiation, tumorigenesis was accelerated, confirming that AMPK has tumor-suppressor functions. However, when loss of AMPK in a T cell lymphoma model occurred after tumor initiation, or simultaneously with tumor initiation in a lung cancer model, the disease was ameliorated. Thus, once tumorigenesis has occurred, AMPK switches from tumor suppression to tumor promotion. Analysis of alterations in AMPK genes in human cancers suggests similar dichotomies, with some genes being frequently amplified while others are mutated. Overall, while AMPK-activating drugs might be effective in preventing cancer, in some cases AMPK inhibitors might be required to treat it.
Collapse
Affiliation(s)
- Diana Vara-Ciruelos
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Madhumita Dandapani
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
24
|
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 2020; 31:472-492. [PMID: 32130880 DOI: 10.1016/j.cmet.2020.01.015] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.
Collapse
Affiliation(s)
- Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Sheng-Cai Lin
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
25
|
Bou Khzam L, Son NH, Mullick AE, Abumrad NA, Goldberg IJ. Endothelial cell CD36 deficiency prevents normal angiogenesis and vascular repair. Am J Transl Res 2020; 12:7737-7761. [PMID: 33437358 PMCID: PMC7791529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/23/2020] [Indexed: 03/16/2023]
Abstract
Endothelial cells (ECs) maintain vascular integrity and mediate vascular repair and angiogenesis, by which new blood vessels are formed from pre-existing blood vessels. Hyperglycemia has been shown to increase EC angiogenic potential. However, few studies have investigated effects of fatty acids (FAs) on EC angiogenesis. Cluster of differentiation 36 (CD36) is a FA transporter expressed by ECs, but its role in EC proliferation, migration, and angiogenesis is unknown. We sought to determine if circulating FAs regulate angiogenic function in a CD36-dependent manner. CD36-dependent effects of FAs on EC proliferation and migration of mouse heart ECs (MHECs) and lung ECs (MLECs) were studied. We used both silencing RNA and antisense oligonucleotides to reduce CD36 expression. Oleic acid (OA) did not affect EC proliferation, but significantly increased migration of ECs in wound healing experiments. CD36 knockdown prevented OA-induced increases in wound healing potential. In EC transwell migration experiments, OA increased recruitment and migration of ECs, an effect abolished by CD36 knockdown. Phospho-AMP-activated protein kinase (AMPK) increased in MHECs exposed to OA in a CD36-dependent manner. To test whether in vivo CD36 affects angiogenesis, we studied 21-day recovery in post-hindlimb ischemia. EC-specific CD36 knockout mice had reduced blood flow recovery as assessed by laser Doppler imaging. EC content in post-ischemic muscle, assessed from CD31 expression, increased in ischemic muscle of control mice. However, mice with EC-specific CD36 deletion lacked the increase in CD31 and matrix metalloprotease 9 expression observed in controls. EC expression of CD36 and its function in FA uptake modulate angiogenic function and response to ischemia, likely due to reduced activation of the AMPK pathway.
Collapse
Affiliation(s)
- Lara Bou Khzam
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | - Ni-Huiping Son
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| | | | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Ira J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Health New York, NY, USA
| |
Collapse
|
26
|
Graber K, Khan F, Glück B, Weigel C, Marzo S, Doshi H, Ehrhardt C, Heller R, Gräler M, Henke A. The role of sphingosine-1-phosphate signaling in HSV-1-infected human umbilical vein endothelial cells. Virus Res 2020; 276:197835. [DOI: 10.1016/j.virusres.2019.197835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/14/2023]
|
27
|
Mathews Samuel S, Satheesh NJ, Ghosh S, Büsselberg D, Majeed Y, Ding H, Triggle CR. Treatment with a Combination of Metformin and 2-Deoxyglucose Upregulates Thrombospondin-1 in Microvascular Endothelial Cells: Implications in Anti-Angiogenic Cancer Therapy. Cancers (Basel) 2019; 11:E1737. [PMID: 31698699 PMCID: PMC6895998 DOI: 10.3390/cancers11111737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin, the most widely used anti-diabetic drug, also exhibits anti-cancer properties; however, the true potential of metformin as an anticancer drug remains largely unknown. In this study using mouse microvascular endothelial cells (MMECs), we investigated the effects of metformin alone or in combination with the glycolytic inhibitor, 2-deoxyglucose (2DG), on angiogenesis-a process known to be an integral part of tumor growth, cancer cell survival and metastasis. MMECs were exposed to 2DG (1-10 mM) for 48 h in the absence or presence of metformin (2 mM). The status of angiogenic and anti-angiogenic marker proteins, proteins of the mTOR pathway and cell-cycle-related proteins were quantified by Western blot analysis. Assays for cell proliferation, migration and tubulogenesis were also performed. We observed robust up-regulation of anti-angiogenic thrombospondin-1 (TSP1) and increased TSP1-CD36 co-localization with a marked decrease in the levels of phosphorylated vascular endothelial growth factor receptor-2 (pVEGFR2; Y1175) in 2DG (5 mM) exposed cells treated with metformin (2 mM). Additionally, treatment with metformin and 2DG (5 mM) inhibited the Akt/mTOR pathway and down-regulated the cell-cycle-related proteins such as p-cyclin B1 (S147) and cyclins D1 and D2 when compared to cells that were treated with either 2DG or metformin alone. Treatment with a combination of 2DG (5 mM) and metformin (2 mM) also significantly decreased cell proliferation, migration and tubulogenic capacity when compared to cells that were treated with either 2DG or metformin alone. The up-regulation of TSP1, inhibition of cell proliferation, migration and tubulogenesis provides support to the argument that the combination of metformin and 2DG may prove to be an appropriate anti-proliferative and anti-angiogenic therapeutic strategy for the treatment of some cancers.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Noothan Jyothi Satheesh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Suparna Ghosh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Yasser Majeed
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
28
|
Omura J, Satoh K, Kikuchi N, Satoh T, Kurosawa R, Nogi M, Ohtsuki T, Al-Mamun ME, Siddique MAH, Yaoita N, Sunamura S, Miyata S, Hoshikawa Y, Okada Y, Shimokawa H. ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure: A Possible Novel Therapeutic Target. Circ Res 2019; 125:884-906. [PMID: 31556812 DOI: 10.1161/circresaha.119.315398] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. OBJECTIVE Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. METHODS AND RESULTS We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTSΔSM22). Hypoxia-induced PH was attenuated in ADAMTSΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTSΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8ΔαMHC). ADAMTS8ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. CONCLUSIONS These results indicate that ADAMTS8 is a novel therapeutic target in PAH.
Collapse
Affiliation(s)
- Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Tomohiro Ohtsuki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Md Elias Al-Mamun
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Japan (Y.H.)
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan (Y.O.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| |
Collapse
|
29
|
Kuo K, Roberts VHJ, Gaffney J, Takahashi DL, Morgan T, Lo JO, Stouffer RL, Frias AE. Maternal High-Fat Diet Consumption and Chronic Hyperandrogenemia Are Associated With Placental Dysfunction in Female Rhesus Macaques. Endocrinology 2019; 160:1937-1949. [PMID: 31180495 PMCID: PMC6656425 DOI: 10.1210/en.2019-00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 01/25/2023]
Abstract
The risk of adverse perinatal outcomes with maternal polycystic ovary syndrome may differ among hyperandrogenic and nonhyperandrogenic phenotypes and is likely modulated by maternal obesity and diet. The relative contribution of maternal hyperandrogenism and nutritional status to placental dysfunction is unknown. Female rhesus macaques (N = 39) were assigned at puberty to one of four treatment groups: subcutaneous cholesterol implants and a standard chow diet (controls); testosterone (T) implants and a normal diet; cholesterol implants and a high-fat, Western-style diet (WSD); and testosterone implants in combination with a high-fat diet. After 3.5 years of treatment, contrast-enhanced and Doppler ultrasound analyses of placental blood flow were performed for a representative subset of animals from each treatment group during pregnancy, and placental architecture assessed with stereological analysis. Placental growth factors, cellular nutrient sensors, and angiogenic markers were measured with ELISA and Western blotting. WSD consumption was associated with a 30% increase in placental flux rate relative to that in animals receiving a normal diet. T and WSD treatments were each independently associated with increased villous volume, and T also was associated with an ∼ 40% decrease fetal capillary volume on stereological analysis. T treatment was associated with significantly increased mTOR and SOCS3 expression. WSD consumption was associated with decreased GLUT1 expression and microvillous membrane localization. Hyperandrogenemic and nonhyperandrogenemic phenotypes are associated with altered placental angiogenesis, nutrient sensing, and glucose transport. WSD and T appear to have distinct effects on vascular impedance and capillary angiogenesis.
Collapse
Affiliation(s)
- Kelly Kuo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Correspondence: Kelly Kuo, MD, Division of Maternal Fetal Medicine, Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, SJH 2356, Portland, Oregon 97239. E-mail:
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Jessica Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Diana L Takahashi
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Jamie O Lo
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
| | - Richard L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Antonio E Frias
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| |
Collapse
|
30
|
Vara-Ciruelos D, Russell FM, Hardie DG. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? †. Open Biol 2019; 9:190099. [PMID: 31288625 PMCID: PMC6685927 DOI: 10.1098/rsob.190099] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) acts as a cellular energy sensor. Once switched on by increases in cellular AMP : ATP ratios, it acts to restore energy homeostasis by switching on catabolic pathways while switching off cell growth and proliferation. The canonical AMP-dependent mechanism of activation requires the upstream kinase LKB1, which was identified genetically to be a tumour suppressor. AMPK can also be switched on by increases in intracellular Ca2+, by glucose starvation and by DNA damage via non-canonical, AMP-independent pathways. Genetic studies of the role of AMPK in mouse cancer suggest that, before disease arises, AMPK acts as a tumour suppressor that protects against cancer, with this protection being further enhanced by AMPK activators such as the biguanide phenformin. However, once cancer has occurred, AMPK switches to being a tumour promoter instead, enhancing cancer cell survival by protecting against metabolic, oxidative and genotoxic stresses. Studies of genetic changes in human cancer also suggest diverging roles for genes encoding subunit isoforms, with some being frequently amplified, while others are mutated.
Collapse
Affiliation(s)
| | | | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
31
|
Li Y, Sun R, Zou J, Ying Y, Luo Z. Dual Roles of the AMP-Activated Protein Kinase Pathway in Angiogenesis. Cells 2019; 8:E752. [PMID: 31331111 PMCID: PMC6678403 DOI: 10.3390/cells8070752] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays important roles in development, stress response, wound healing, tumorigenesis and cancer progression, diabetic retinopathy, and age-related macular degeneration. It is a complex event engaging many signaling pathways including vascular endothelial growth factor (VEGF), Notch, transforming growth factor-beta/bone morphogenetic proteins (TGF-β/BMPs), and other cytokines and growth factors. Almost all of them eventually funnel to two crucial molecules, VEGF and hypoxia-inducing factor-1 alpha (HIF-1α) whose expressions could change under both physiological and pathological conditions. Hypoxic conditions stabilize HIF-1α, while it is upregulated by many oncogenic factors under normaxia. HIF-1α is a critical transcription activator for VEGF. Recent studies have shown that intracellular metabolic state participates in regulation of sprouting angiogenesis, which may involve AMP-activated protein kinase (AMPK). Indeed, AMPK has been shown to exert both positive and negative effects on angiogenesis. On the one hand, activation of AMPK mediates stress responses to facilitate autophagy which stabilizes HIF-1α, leading to increased expression of VEGF. On the other hand, AMPK could attenuate angiogenesis induced by tumor-promoting and pro-metastatic factors, such as the phosphoinositide 3-kinase /protein kinase B (Akt)/mammalian target of rapamycin (PI3K/Akt/mTOR), hepatic growth factor (HGF), and TGF-β/BMP signaling pathways. Thus, this review will summarize research progresses on these two opposite effects and discuss the mechanisms behind the discrepant findings.
Collapse
Affiliation(s)
- Yuanjun Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ruipu Sun
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi, Post Code 330006, China.
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang, Jiangxi 30006, China.
| |
Collapse
|
32
|
Myeloid-Specific Deletion of the AMPKα2 Subunit Alters Monocyte Protein Expression and Atherogenesis. Int J Mol Sci 2019; 20:ijms20123005. [PMID: 31248224 PMCID: PMC6627871 DOI: 10.3390/ijms20123005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is an energy sensing kinase that is activated by a drop in cellular ATP levels. Although several studies have addressed the role of the AMPKα1 subunit in monocytes and macrophages, little is known about the α2 subunit. The aim of this study was to assess the consequences of AMPKα2 deletion on protein expression in monocytes/macrophages, as well as on atherogenesis. A proteomics approach was applied to bone marrow derived monocytes from wild-type mice versus mice specifically lacking AMPKα2 in myeloid cells (AMPKα2∆MC mice). This revealed differentially expressed proteins, including methyltransferases. Indeed, AMPKα2 deletion in macrophages increased the ratio of S-adenosyl methionine to S-adenosyl homocysteine and increased global DNA cytosine methylation. Also, methylation of the vascular endothelial growth factor and matrix metalloproteinase-9 (MMP9) genes was increased in macrophages from AMPKα2∆MC mice, and correlated with their decreased expression. To link these findings with an in vivo phenotype, AMPKα2∆MC mice were crossed onto the ApoE-/- background and fed a western diet. ApoExAMPKα2∆MC mice developed smaller atherosclerotic plaques than their ApoExα2fl/fl littermates, that contained fewer macrophages and less MMP9 than plaques from ApoExα2fl/fl littermates. These results indicate that the AMPKα2 subunit in myeloid cells influences DNA methylation and thus protein expression and contributes to the development of atherosclerotic plaques.
Collapse
|
33
|
Van Bavel D, de Moraes R, Tibirica E. Effects of dietary supplementation with creatine on homocysteinemia and systemic microvascular endothelial function in individuals adhering to vegan diets. Fundam Clin Pharmacol 2019; 33:428-440. [PMID: 30506745 DOI: 10.1111/fcp.12442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 11/30/2022]
Abstract
The incidence of cardiovascular diseases in vegetarian individuals is lower than that in the general population. Nevertheless, individuals who adhere to vegan diets have a higher prevalence of hyperhomocysteinemia with eventual adverse effects on vascular reactivity. Creatine supplementation (CrS) reduces plasma homocysteine levels and enhances vascular reactivity in the microcirculation. Thus, we investigated the effects of CrS on systemic microcirculation and homocysteine blood levels in strict vegan subjects. Forty-nine strict vegan subjects were allocated to the oral CrS (5 g micronized creatine monohydrate daily for three weeks; n = 31) and placebo (n = 18) groups. Laser speckle contrast imaging coupled with acetylcholine skin iontophoresis was used to evaluate cutaneous microvascular reactivity, and intravital video-microscopy was used to evaluate skin capillary density and reactivity before and after CrS. We demonstrated that CrS reduces the plasma levels of homocysteine and increases those of folic acid. After the CrS period, the homocysteine levels of all of the vegan subjects normalized. CrS also induced increases in baseline skin functional capillary density and endothelium-dependent capillary recruitment in both normo- (N-Hcy) and hyperhomocysteinemic (H-Hcy) individuals. CrS increased endothelium-dependent skin microvascular vasodilation in the H-Hcy vegan subjects but not in the N-Hcy vegan subjects. In conclusion, three weeks of oral CrS was sufficient to increase skin capillary density and recruitment and endothelium-dependent microvascular reactivity. CrS also resulted in plasma increases in folic acid levels and reductions in homocysteine levels among only the H-Hcy individuals.
Collapse
Affiliation(s)
- Diogo Van Bavel
- National Institute of Cardiology, Ministry of Health, Rua das Laranjeiras 374, Rio de Janeiro, 22240-006, Brazil
| | - Roger de Moraes
- National Institute of Cardiology, Ministry of Health, Rua das Laranjeiras 374, Rio de Janeiro, 22240-006, Brazil.,Research and Productivity Program, Estacio de Sá University, Rua do Bispo 83, Rio de Janeiro, 20261-064, Brazil
| | - Eduardo Tibirica
- National Institute of Cardiology, Ministry of Health, Rua das Laranjeiras 374, Rio de Janeiro, 22240-006, Brazil
| |
Collapse
|
34
|
A769662 Inhibits Insulin-Stimulated Akt Activation in Human Macrovascular Endothelial Cells Independent of AMP-Activated Protein Kinase. Int J Mol Sci 2018; 19:ijms19123886. [PMID: 30563079 PMCID: PMC6321332 DOI: 10.3390/ijms19123886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Protein kinase B (Akt) is a key enzyme in the insulin signalling cascade, required for insulin-stimulated NO production in endothelial cells (ECs). Previous studies have suggested that AMP-activated protein kinase (AMPK) activation stimulates NO synthesis and enhances insulin-stimulated Akt activation, yet these studies have largely used indirect activators of AMPK. The effects of the allosteric AMPK activator A769662 on insulin signalling and endothelial function was therefore examined in cultured human macrovascular ECs. Surprisingly, A769662 inhibited insulin-stimulated NO synthesis and Akt phosphorylation in human ECs from umbilical veins (HUVECs) and aorta (HAECs). In contrast, the AMPK activators compound 991 and AICAR had no substantial inhibitory effect on insulin-stimulated Akt phosphorylation in ECs. Inhibition of AMPK with SBI-0206965 had no effect on the inhibition of insulin-stimulated Akt phosphorylation by A769662, suggesting the inhibitory action of A769662 is AMPK-independent. A769662 decreased IGF1-stimulated Akt phosphorylation yet had no effect on VEGF-stimulated Akt signalling in HUVECs, suggesting that A769662 attenuates early insulin/IGF1 signalling. The effects of A769662 on insulin-stimulated Akt phosphorylation were specific to human ECs, as no effect was observed in the human cancer cell lines HepG2 or HeLa, as well as in mouse embryonic fibroblasts (MEFs). A769662 inhibited insulin-stimulated Erk1/2 phosphorylation in HAECs and MEFs, an effect that was independent of AMPK in MEFs. Therefore, despite being a potent AMPK activator, A769662 has effects unlikely to be mediated by AMPK in human macrovascular ECs that reduce insulin sensitivity and eNOS activation.
Collapse
|
35
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
36
|
Jalnapurkar S, Moirangthem RD, Singh S, Limaye L, Kale V. Microvesicles Secreted by Nitric Oxide-Primed Mesenchymal Stromal Cells Boost the Engraftment Potential of Hematopoietic Stem Cells. Stem Cells 2018; 37:128-138. [PMID: 30290030 DOI: 10.1002/stem.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022]
Abstract
Patients with leukemia, lymphoma, severe aplastic anemia, etc. are frequently the targets of bone marrow transplantation, the success of which critically depends on efficient engraftment by transplanted hematopoietic cells (HSCs). Ex vivo manipulation of HSCs to improve their engraftment ability becomes necessary when the number or quality of donor HSCs is a limiting factor. Due to their hematopoiesis-supportive ability, bone marrow-derived mesenchymal stromal cells (MSCs) have been traditionally used as feeder layers for ex vivo expansion of HSCs. MSCs form a special HSC-niche in vivo, implying that signaling mechanisms operative in them would affect HSC fate. We have recently demonstrated that AKT signaling prevailing in the MSCs affect the HSC functionality. Here we show that MSCs primed with nitric oxide donor, Sodium nitroprusside (SNP), significantly boost the engraftment potential of the HSCs co-cultured with them via intercellular transfer of microvesicles (MVs) harboring mRNAs encoding HSC-supportive genes. Our data suggest that these MVs could be used as HSC-priming agents to improve transplantation efficacy. Since both, nitric oxide donors and MSCs are already in clinical use; their application in clinical settings may be relatively straight forward. This approach could also be applied in regenerative medicine protocols. Stem Cells 2019;37:128-138.
Collapse
Affiliation(s)
| | | | - Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
37
|
Endothelial AMP-Activated Kinase α1 Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. Int J Mol Sci 2018; 19:ijms19092753. [PMID: 30217073 PMCID: PMC6165563 DOI: 10.3390/ijms19092753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is frequently reported to phosphorylate Ser1177 of the endothelial nitric-oxide synthase (eNOS), and therefore, is linked with a relaxing effect. However, previous studies failed to consistently demonstrate a major role for AMPK on eNOS-dependent relaxation. As AMPK also phosphorylates eNOS on the inhibitory Thr495 site, this study aimed to determine the role of AMPKα1 and α2 subunits in the regulation of NO-mediated vascular relaxation. Vascular reactivity to phenylephrine and acetylcholine was assessed in aortic and carotid artery segments from mice with global (AMPKα-/-) or endothelial-specific deletion (AMPKαΔEC) of the AMPKα subunits. In control and AMPKα1-depleted human umbilical vein endothelial cells, eNOS phosphorylation on Ser1177 and Thr495 was assessed after AMPK activation with thiopental or ionomycin. Global deletion of the AMPKα1 or α2 subunit in mice did not affect vascular reactivity. The endothelial-specific deletion of the AMPKα1 subunit attenuated phenylephrine-mediated contraction in an eNOS- and endothelium-dependent manner. In in vitro studies, activation of AMPK did not alter the phosphorylation of eNOS on Ser1177, but increased its phosphorylation on Thr495. Depletion of AMPKα1 in cultured human endothelial cells decreased Thr495 phosphorylation without affecting Ser1177 phosphorylation. The results of this study indicate that AMPKα1 targets the inhibitory phosphorylation Thr495 site in the calmodulin-binding domain of eNOS to attenuate basal NO production and phenylephrine-induced vasoconstriction.
Collapse
|
38
|
Saternos HC, AbouAlaiwi WA. Signaling interplay between primary cilia and nitric oxide: A mini review. Nitric Oxide 2018; 80:108-112. [PMID: 30099097 DOI: 10.1016/j.niox.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/12/2023]
Abstract
New discoveries into the functional role of primary cilia are on the rise. In little more than 20 years, research has shown the once vestigial organelle is a signaling powerhouse involved in a vast number of essential cellular processes. In the same decade that interest in primary cilia was burgeoning, nitric oxide won molecule of the year and a Nobel prize for its role as a near ubiquitous signaling molecule. Although primary cilia and nitric oxide are both involved in signaling, a direct relationship has not been investigated; however, after a quick review of the literature, parallels between their functions can be drawn. This review aims to suggest a possible interplay between primary cilia and nitric oxide signaling especially in the areas of vascular tissue homeostasis and cellular proliferation.
Collapse
Affiliation(s)
- Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, USA.
| |
Collapse
|
39
|
Tawfik KM, Moustafa YM, El-Azab MF. Neuroprotective mechanisms of sildenafil and selenium in PTZ-kindling model: Implications in epilepsy. Eur J Pharmacol 2018; 833:131-144. [DOI: 10.1016/j.ejphar.2018.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
|
40
|
Zilch A, Rien C, Weigel C, Huskobla S, Glück B, Spengler K, Sauerbrei A, Heller R, Gräler M, Henke A. Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts. Med Microbiol Immunol 2018; 207:227-242. [DOI: 10.1007/s00430-018-0543-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
41
|
Fan Y, Lu H, Liang W, Garcia-Barrio MT, Guo Y, Zhang J, Zhu T, Hao Y, Zhang J, Chen YE. Endothelial TFEB (Transcription Factor EB) Positively Regulates Postischemic Angiogenesis. Circ Res 2018; 122:945-957. [PMID: 29467198 DOI: 10.1161/circresaha.118.312672] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/11/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Postischemic angiogenesis is critical to limit the ischemic tissue damage and improve the blood flow recovery. The regulation and the underlying molecular mechanisms of postischemic angiogenesis are not fully unraveled. TFEB (transcription factor EB) is emerging as a master gene for autophagy and lysosome biogenesis. However, the role of TFEB in vascular disease is less understood. OBJECTIVE We aimed to determine the role of endothelial TFEB in postischemic angiogenesis and its underlying molecular mechanism. METHODS AND RESULTS In primary human endothelial cells (ECs), serum starvation induced TFEB nuclear translocation. VEGF (vascular endothelial growth factor) increased TFEB expression level and nuclear translocation. Utilizing genetically engineered EC-specific TFEB transgenic and KO (knockout) mice, we investigated the role of TFEB in postischemic angiogenesis in the mouse hindlimb ischemia model. We observed improved blood perfusion and increased capillary density in the EC-specific TFEB transgenic mice compared with the wild-type littermates. Furthermore, blood flow recovery was attenuated in EC-TFEB KO mice compared with control mice. In aortic ring cultures, the TFEB transgene significantly increased vessel sprouting, whereas TFEB deficiency impaired the vessel sprouting. In vitro, adenovirus-mediated TFEB overexpression promoted EC tube formation, migration, and survival, whereas siRNA-mediated TFEB knockdown had the opposite effect. Mechanistically, TFEB activated AMPK (AMP-activated protein kinase)-α signaling and upregulated autophagy. Through inactivation of AMPKα or inhibition of autophagy, we demonstrated that the AMPKα and autophagy are necessary for TFEB to regulate angiogenesis in ECs. Finally, the positive effect of TFEB on AMPKα activation and EC tube formation was mediated by TFEB-dependent transcriptional upregulation of MCOLN1 (mucolipin-1). CONCLUSIONS In summary, our data demonstrate that TFEB is a positive regulator of angiogenesis through activation of AMPKα and autophagy, suggesting that TFEB constitutes a novel molecular target for ischemic vascular disease.
Collapse
Affiliation(s)
- Yanbo Fan
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor.
| | - Haocheng Lu
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Wenying Liang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Minerva T Garcia-Barrio
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Yanhong Guo
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Ji Zhang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Tianqing Zhu
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Yibai Hao
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Jifeng Zhang
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor
| | - Y Eugene Chen
- From the Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor.
| |
Collapse
|
42
|
Hardie DG. Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 2018; 15:20170774. [PMID: 29343628 PMCID: PMC5805978 DOI: 10.1098/rsif.2017.0774] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK.
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
43
|
Abstract
The role of AMPK in angiogenesis can be studied using in vitro and in vivo assays. The endothelial spheroid assay is a robust three-dimensional in vitro test, which allows investigation of tubular morphogenesis by integrating cell-cell as well as cell-matrix interactions. The Matrigel plug assay validates the process of angiogenesis in vivo and allows studies in genetically modified mice. Here, we give a detailed description of both assays and their application in AMPK research.
Collapse
|
44
|
Spheroids as vascularization units: From angiogenesis research to tissue engineering applications. Biotechnol Adv 2017; 35:782-791. [DOI: 10.1016/j.biotechadv.2017.07.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
|
45
|
Abstract
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Ian P Salt
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.).
| | - D Grahame Hardie
- From the Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Scotland, United Kingdom (I.P.S.); and Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, United Kingdom (D.G.H.)
| |
Collapse
|
46
|
The sweet side of AMPK signaling: regulation of GFAT1. Biochem J 2017; 474:1289-1292. [PMID: 28336748 DOI: 10.1042/bcj20170006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/17/2022]
Abstract
Maintaining a steady balance between nutrient supply and energy demand is essential for all living organisms and is achieved through the dynamic control of metabolic processes that produce and consume adenosine-5'-triphosphate (ATP), the universal currency of energy in all cells. A key sensor of cellular energy is the adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), which is the core component of a signaling network that regulates energy and nutrient metabolism. AMPK is activated by metabolic stresses that decrease cellular ATP, and functions to restore energy balance by orchestrating a switch in metabolism away from anabolic pathways toward energy-generating catabolic processes. A new study published in a recent issue of Biochemical Journal by Zibrova et al. shows that glutamine:fructose-6-phosphate amidotransferase-1 (GFAT1), the rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), is a physiological substrate of AMPK. The HBP is an offshoot of the glycolytic pathway that drives the synthesis of uridine-5'-diphospho-N-acetylglucosamine, the requisite donor metabolite needed for dynamic β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of cellular proteins. O-GlcNAcylation is a nutrient-sensitive post-translational modification that, like phosphorylation, regulates numerous intracellular processes. Zibrova et al. show that inhibitory phosphorylation of the GFAT1 residue Ser243 by AMPK in response to physiological or small-molecule activators leads to a reduction in cellular protein O-GlcNAcylation. Further work revealed that AMPK-dependent phosphorylation of GFAT1 promotes angiogenesis in endothelial cells. This elegant study demonstrates that the AMPK-GFAT1 signaling axis serves as an important communication point between two nutrient-sensitive signaling pathways and is likely to play a significant role in controlling physiological processes in many other tissues.
Collapse
|
47
|
GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 2017; 474:983-1001. [PMID: 28008135 DOI: 10.1042/bcj20160980] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.
Collapse
|
48
|
Daskalopoulos EP, Dufeys C, Beauloye C, Bertrand L, Horman S. AMPK in Cardiovascular Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:179-201. [PMID: 27812981 DOI: 10.1007/978-3-319-43589-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cardiovascular Research (Care) Institute, Athens, Ioannina, Greece
| | - Cécile Dufeys
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Division of Cardiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| |
Collapse
|
49
|
Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol 2015; 309:H543-52. [PMID: 26071549 DOI: 10.1152/ajpheart.00899.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/07/2015] [Indexed: 01/01/2023]
Abstract
Left ventricular (LV) hypertrophy is an important physiological compensatory mechanism in response to chronic increase in hemodynamic overload. There are two different forms of LV hypertrophy, one physiological and another pathological. Aerobic exercise induces beneficial physiological LV remodeling. The molecular/cellular mechanisms for this effect are not totally known, and here we review various mechanisms including the role of microRNA (miRNA). Studies in the heart, have identified antihypertrophic miRNA-1, -133, -26, -9, -98, -29, -378, and -145 and prohypertrophic miRNA-143, -103, -130a, -146a, -21, -210, -221, -222, -27a/b, -199a/b, -208, -195, -499, -34a/b/c, -497, -23a, and -15a/b. Four miRNAs are recognized as cardiac-specific: miRNA-1, -133a/b, -208a/b, and -499 and called myomiRs. In our studies we have shown that miRNAs respond to swimming aerobic exercise by 1) decreasing cardiac fibrosis through miRNA-29 increasing and inhibiting collagen, 2) increasing angiogenesis through miRNA-126 by inhibiting negative regulators of the VEGF pathway, and 3) modulating the renin-angiotensin system through the miRNAs-27a/b and -143. Exercise training also increases cardiomyocyte growth and survival by swimming-regulated miRNA-1, -21, -27a/b, -29a/c, -30e, -99b, -100, -124, -126, -133a/b, -143, -144, -145, -208a, and -222 and running-regulated miRNA-1, -26, -27a, -133, -143, -150, and -222, which influence genes associated with the heart remodeling and angiogenesis. We conclude that there is a potential role of these miRNAs in promoting cardioprotective effects on physiological growth.
Collapse
Affiliation(s)
- Tiago Fernandes
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Valério G Baraúna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Carlos E Negrão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; Heart Institute (InCor), Medical School, University of São Paulo, São Paulo, Brazil; and
| | - M Ian Phillips
- Laboratory of Stem Cells, Keck Graduate Institute, Claremont, California
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil;
| |
Collapse
|
50
|
Ma MQ, Thapalia BA, Lin XH. A 6 hour therapeutic window, optimal for interventions targeting AMPK synergism and apoptosis antagonism, for cardioprotection against myocardial ischemic injury: an experimental study on rats. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2015; 5:63-71. [PMID: 26064793 PMCID: PMC4447076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The time relation between autophagy and myocardium ischemia (MI) has never been documented. Therefore, the present study was conducted to find out the exact timings and specific roles that AMP-activated protein kinase (AMPK)-mTOR signaling pathway plays on autophagy and apoptosis in rats' ischemic heart. 36 male Sprague Dawley (SD) rats were divided randomly into control and MI groups (each = 6). MI models were created by ligating left anterior descending artery (LAD) of rat hearts and the right myocardium were harvested at 0.5 h, 1 h, 3 h, 6 h, 12 h after ischimia. Expressions of Phosphorylated-AMPK (p-AMPK) and Phosphorylated-mTOR (p-mTOR) were determined by immunohistochemistry (IHC), western blotting (WB) and quantitative real-time PCR (Q-PCR) methods. LC3 expression was determined by WB and Q-PCR. The level of cell apoptosis was measured by the terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) method. p-AMPK was activated significantly in ischemic myocardium and its expression at MI groups showed a time dependent pattern with a fluctuating pattern compared to the control group. p-AMPK levels were seen to rise at 0.5 h followed by a fall at 1 h after MI, which again gradually peaked at 6 h and finally decreased at 12 h. While, p-mTOR levels suggested a constant declining trend with time. Autophagy related protein LC3 had a sustained up-regulation with time. TUNEL method suggested that apoptosis increased at 0.5 h, then decreased at 1 h and 3 h after MI and finally showed a continuous rising trend. Activation of protective autophagy that occured during the initial phases of ischemic insults was within 6 hours. When the ischemia was prolonged, after 6 hours, although autophagy increased, cardiomyocyte death followed via the activation of apoptosis. Thus, limiting autophagy within 6 hours would give us double benefits. It would prevent the death related autophagy and prevent apoptotic cellular death. This 6 hours time period could serve as a landmark for therapeutic application for achieving cardioprotection from ischemic insults.
Collapse
Affiliation(s)
- Meng-Qing Ma
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei, China
- Anhui Medical UniversityHefei, Anhui, China
| | - Bisharad Anil Thapalia
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei, China
- Anhui Medical UniversityHefei, Anhui, China
| | - Xian-He Lin
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei, China
| |
Collapse
|