1
|
Lyu Y, Yang F, Sundaresh B, Rosconi F, van Opijnen T, Gao J. Covalent Inhibition of a Host-Pathogen Protein-Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae. JACS AU 2024; 4:2484-2491. [PMID: 39055144 PMCID: PMC11267552 DOI: 10.1021/jacsau.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein-protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC-hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC-hFH interaction. This PPI inhibition reduced pneumococci's attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.
Collapse
Affiliation(s)
- Yuhan Lyu
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Fan Yang
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Bharathi Sundaresh
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Federico Rosconi
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jianmin Gao
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Alves LA, Naveed H, Franco EM, Garcia MT, Freitas VA, Junqueira JC, Bastos DC, Araujo TLS, Chen T, Mattos-Graner RO. PepO and CppA modulate Streptococcus sanguinis susceptibility to complement immunity and virulence. Virulence 2023; 14:2239519. [PMID: 37563831 PMCID: PMC10424592 DOI: 10.1080/21505594.2023.2239519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Streptococcus sanguinis is a ubiquitous commensal species of the oral cavity commonly involved as an opportunistic pathogen in cardiovascular infections. In this study, we investigated the functions of endopeptidase O (PepO) and a C3-degrading protease (CppA) in the systemic virulence of S. sanguinis. Isogenic mutants of pepO and cppA obtained in strain SK36 showed increased susceptibility to C3b deposition and to opsonophagocytosis by human polymorphonuclear neutrophils (PMN). These mutants differ, however, in their profiles of binding to serum amyloid P component (SAP) and C1q, whereas both showed reduced interaction with C4b-binding protein (C4BP) and/or factor H (FH) regulators as compared to SK36. The two mutants showed defects in ex vivo persistence in human blood, serum-mediated invasion of HCAEC endothelial cells, and virulence in a Galleria mellonella infection model. The transcriptional activities of pepO and cppA, assessed by RT-qPCR in nine wild-type strains, further indicated strain-specific profiles of pepO/cppA expression. Moreover, non-conserved amino acid substitutions were detected among the strains, mostly in CppA. Phylogenetic comparisons with homologues of streptococcal species of the oral and oropharyngeal sites suggested that S. sanguinis PepO and CppA have independent ancestralities. Thus, this study showed that PepO and CppA are complement evasion proteins expressed by S. sanguinis in a strain-specific manner, which are required for multiple functions associated with cardiovascular virulence.
Collapse
Affiliation(s)
- Lívia A. Alves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Hassan Naveed
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Eduardo M. Franco
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Victor A. Freitas
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Juliana C. Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, SP, Brazil
| | - Débora C. Bastos
- Department of Biosciences, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
- Department of Cell Biology, São Leopoldo Mandic Medical School, Campinas, SP, Brazil
| | - Thaís L. S. Araujo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Vilhena C, Du S, Battista M, Westermann M, Kohler T, Hammerschmidt S, Zipfel PF. The choline-binding proteins PspA, PspC, and LytA of Streptococcus pneumoniae and their interaction with human endothelial and red blood cells. Infect Immun 2023; 91:e0015423. [PMID: 37551971 PMCID: PMC10501214 DOI: 10.1128/iai.00154-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive opportunistic pathogen that can colonize the upper respiratory tract. It is a leading cause of a wide range of infectious diseases, including community-acquired pneumonia and meningitis. Pneumococcal infections cause 1-2 million deaths per year, most of which occur in developing countries. Here, we focused on three choline-binding proteins (CBPs), i.e., PspC, PspA, and LytA. These pneumococcal proteins have different surface-exposed regions but share related choline-binding anchors. These surface-exposed pneumococcal proteins are in direct contact with host cells and have diverse functions. We explored the role of the three CBPs on adhesion and pathogenicity in a human host by performing relevant imaging and functional analyses, such as electron microscopy, confocal laser scanning microscopy, and functional quantitative assays, targeting biofilm formation and the hemolytic capacity of S. pneumoniae. In vitro biofilm formation assays and electron microscopy experiments were used to examine the ability of knockout mutant strains lacking the lytA, pspC, or pspA genes to adhere to surfaces. We found that LytA plays an important role in robust synthesis of the biofilm matrix. PspA and PspC appeared crucial for the hemolytic effects of S. pneumoniae on human red blood cells. Furthermore, all knockout mutants caused less damage to endothelial cells than wild-type bacteria, highlighting the significance of each CPB for the overall pathogenicity of S. pneumoniae. Hence, in addition to their structural function within the cell wall of S. pneumoniae, each of these three surface-exposed CBPs controls or mediates multiple steps during bacterial pathogenesis.
Collapse
Affiliation(s)
- Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Miriana Battista
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Martin Westermann
- Centre for Electron Microscopy, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Thomas Kohler
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
4
|
Mu Y, Lan M, Li Y, Zhang Z, Guan Y. Effects of florfenicol on the antioxidant and immune systems of Chinese soft-shelled turtle (Pelodiscus sinensis). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108991. [PMID: 37562587 DOI: 10.1016/j.fsi.2023.108991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Florfenicol is a commonly used antibiotic for the treatment of bacterial diseases of the Chinese soft-shelled turtle (Pelodiscus sinensis). The study investigated the effects of florfenicol on the antioxidant and immune system of P. sinensis. Results showed that the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) activities were significantly increased in the 10 mg/kg and 40 mg/kg florfenicol treatment groups compared with the control group. Besides, the malondialdehyde (MDA) content was significantly increased, and the glutathione peroxidase (GSH-Px) activity was significantly decreased with 40 mg/kg florfenicol treatment. In addition, florfenicol has effects on the immune system, 10 mg/kg of florfenicol significantly promoted the activities of acid phosphatase (ACP) and alkaline phosphatase (AKP), whereas 40 mg/kg of florfenicol significantly inhibited their activities. To elucidate the molecular mechanisms, a comparative transcriptome analysis was conducted. A total of 59 differentially expressed genes (DEGs) and 12 significantly enriched KEGG pathways were identified in the 10 mg/kg group; 150 DEGs and 10 significantly enriched KEGG pathways were identified in the 40 mg/kg group. Among them, the complement and coagulation cascade pathways were the most significant which may play an important regulatory role in the immune response. The MADCAM1, STAT3, and IL4I1 genes may be the key genes of florfenicol affecting the immune response. The APOA1, APOA4, SPLA2, FADS1, and FADS2 genes may play a key role in anti-inflammatory and antioxidant effects through redox-related pathways. The study lays the foundation for a deeper understanding of the mechanism of the florfenicol effect on P. sinensis.
Collapse
Affiliation(s)
- Yuqi Mu
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengyan Lan
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yali Li
- School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071002, China.
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, 071002, China; Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
5
|
Wei X, Wu Z, Zhang T, Lei Y, Chen M, Yang Y, Gao A, Guo Z, Ye J. Functional characterization of complement factor H in host defense against bacterial pathogen in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 129:114-126. [PMID: 36007831 DOI: 10.1016/j.fsi.2022.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Complement factor H (CFH), a multifunctional soluble complement regulatory protein, can bind to a variety of pathogens and play a crucial role in host innate immune defense. To explore the functional characteristics of CFH (OnCFH) in Nile tilapia (Oreochromis niloticus), we cloned and characterized the open reading frame (ORF) of OnCFH in this study. The full-length of OnCFH ORF is 1359 bp, encoding 452 aa for a 48.85 kDa peptide, and its predicted structure containing six short complement-like repeats (SCRs). The analysis of tissue distribution showed that OnCFH was constitutively expressed in all tested tissues, with the highest in the liver. Upon Streptococcus agalactiae and Aeromonas hydrophila stimuli in vivo and in vitro, OnCFH mRNA transcript was significantly upregulated in head kidney tissue as well as head kidney monocytes/macrophages. Further, the recombinant OnCFH protein ((r)OnCFH) could bind to pathogenic bacteria in a dose-dependent. Moreover, it got involved in the regulation of inflammation as well as phagocytosis of monocytes/macrophages. The knockdown of OnCFH remarkably decreased the amount of bacteria in the head kidney. In summary, our data demonstrated that OnCFH could participate in the immune response of Nile tilapia against bacterial infection.
Collapse
Affiliation(s)
- Xiayi Wei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zhelin Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Tingyun Zhang
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, 510225, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Meng Chen
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangzhou, 510225, PR China.
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
6
|
Xu X, Marffy ALL, Keightley A, McCarthy AJ, Geisbrecht BV. Group B Streptococcus Surface Protein β: Structural Characterization of a Complement Factor H-Binding Motif and Its Contribution to Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1232-1247. [PMID: 35110419 PMCID: PMC8881398 DOI: 10.4049/jimmunol.2101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
The β protein from group B Streptococcus (GBS) is a ∼132-kDa, cell-surface exposed molecule that binds to multiple host-derived ligands, including complement factor H (FH). Many details regarding this interaction and its significance to immune evasion by GBS remain unclear. In this study, we identified a three-helix bundle domain within the C-terminal half of the B75KN region of β as the major FH-binding determinant and determined its crystal structure at 2.5 Å resolution. Analysis of this structure suggested a role in FH binding for a loop region connecting helices α1 and α2, which we confirmed by mutagenesis and direct binding studies. Using a combination of protein cross-linking and mass spectrometry, we observed that B75KN bound to complement control protein (CCP)3 and CCP4 domains of FH. Although this binding site lies within a complement regulatory region of FH, we determined that FH bound by β retained its decay acceleration and cofactor activities. Heterologous expression of β by Lactococcus lactis resulted in recruitment of FH to the bacterial surface and a significant reduction of C3b deposition following exposure to human serum. Surprisingly, we found that FH binding by β was not required for bacterial resistance to phagocytosis by neutrophils or killing of bacteria by whole human blood. However, loss of the B75KN region significantly diminished bacterial survival in both assays. Although our results show that FH recruited to the bacterial surface through a high-affinity interaction maintains key complement-regulatory functions, they raise questions about the importance of FH binding to immune evasion by GBS as a whole.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A
| | - Alexander L. Lewis Marffy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Andrew Keightley
- Department of Opthamology, School of Medicine, University of Missouri-Kansas City; Kansas City, MO U.S.A
| | - Alex J. McCarthy
- Department of Infectious Diseases, Section of Molecular Microbiology, MRC Centre for Molecular Bacteriology & Infection, Imperial College London; London, U.K
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University; Manhattan, KS U.S.A.,To whom correspondence should be addressed: Brian V. Geisbrecht, Ph.D., Kansas State University, 141 Chalmers Hall, 1711 Claflin Road, Manhattan, KS 66506, PH: 785.532.3154,
| |
Collapse
|
7
|
Sura T, Gering V, Cammann C, Hammerschmidt S, Maaß S, Seifert U, Becher D. Streptococcus pneumoniae and Influenza A Virus Co-Infection Induces Altered Polyubiquitination in A549 Cells. Front Cell Infect Microbiol 2022; 12:817532. [PMID: 35281454 PMCID: PMC8908964 DOI: 10.3389/fcimb.2022.817532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells are an important line of defense within the lung. Disruption of the epithelial barrier by pathogens enables the systemic dissemination of bacteria or viruses within the host leading to severe diseases with fatal outcomes. Thus, the lung epithelium can be damaged by seasonal and pandemic influenza A viruses. Influenza A virus infection induced dysregulation of the immune system is beneficial for the dissemination of bacteria to the lower respiratory tract, causing bacterial and viral co-infection. Host cells regulate protein homeostasis and the response to different perturbances, for instance provoked by infections, by post translational modification of proteins. Aside from protein phosphorylation, ubiquitination of proteins is an essential regulatory tool in virtually every cellular process such as protein homeostasis, host immune response, cell morphology, and in clearing of cytosolic pathogens. Here, we analyzed the proteome and ubiquitinome of A549 alveolar lung epithelial cells in response to infection by either Streptococcus pneumoniae D39Δcps or influenza A virus H1N1 as well as bacterial and viral co-infection. Pneumococcal infection induced alterations in the ubiquitination of proteins involved in the organization of the actin cytoskeleton and Rho GTPases, but had minor effects on the abundance of host proteins. H1N1 infection results in an anti-viral state of A549 cells. Finally, co-infection resembled the imprints of both infecting pathogens with a minor increase in the observed alterations in protein and ubiquitination abundance.
Collapse
Affiliation(s)
- Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Vanessa Gering
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
- *Correspondence: Dörte Becher,
| |
Collapse
|
8
|
Kárpáti É, Kremlitzka M, Sándor N, Hajnal D, Schneider AE, Józsi M. Complement Factor H Family Proteins Modulate Monocyte and Neutrophil Granulocyte Functions. Front Immunol 2021; 12:660852. [PMID: 34671340 PMCID: PMC8521052 DOI: 10.3389/fimmu.2021.660852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Besides being a key effector arm of innate immunity, a plethora of non-canonical functions of complement has recently been emerging. Factor H (FH), the main regulator of the alternative pathway of complement activation, has been reported to bind to various immune cells and regulate their functions, beyond its role in modulating complement activation. In this study we investigated the effect of FH, its alternative splice product FH-like protein 1 (FHL-1), the FH-related (FHR) proteins FHR-1 and FHR-5, and the recently developed artificial complement inhibitor mini-FH, on two key innate immune cells, monocytes and neutrophilic granulocytes. We found that, similar to FH, the other factor H family proteins FHL-1, FHR-1 and FHR-5, as well as the recombinant mini-FH, are able to bind to both monocytes and neutrophils. As a functional outcome, immobilized FH and FHR-1 inhibited PMA-induced NET formation, but increased the adherence and IL-8 production of neutrophils. FHL-1 increased only the adherence of the cells, while FHR-5 was ineffective in altering these functions. The adherence of monocytes was increased on FH, recombinant mini-FH and FHL-1 covered surfaces and, except for FHL-1, the same molecules also enhanced secretion of the inflammatory cytokines IL-1β and TNFα. When monocytes were stimulated with LPS in the presence of immobilized FH family proteins, FH, FHL-1 and mini-FH enhanced whereas FHR-1 and FHR-5 decreased the secretion of TNFα; FHL-1 and mini-FH also enhanced IL-10 release compared to the effect of LPS alone. Our results reveal heterogeneous effects of FH and FH family members on monocytes and neutrophils, altering key features involved in pathogen killing, and also demonstrate that FH-based complement inhibitors, such as mini-FH, may have effects beyond their function of inhibiting complement activation. Thus, our data provide new insight into the non-canonical functions of FH, FHL-1, FHR-1 and FHR-5 that might be exploited during protection against infections and in vaccine development.
Collapse
Affiliation(s)
- Éva Kárpáti
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mariann Kremlitzka
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hajnal
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea E Schneider
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Yu Y, Wang J, Han R, Wang L, Zhang L, Zhang AY, Xin J, Li S, Zeng Y, Shao G, Feng Z, Xiong Q. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF-Tu). Virulence 2021; 11:1059-1074. [PMID: 32815770 PMCID: PMC7549910 DOI: 10.1080/21505594.2020.1806664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycoplasmas persist in the host for a long time, suggesting that they possess mechanisms for immune evasion. Factor H is a negative regulator of the complement system, which binds to host cells to avoid unexpected complement activation. In this study, we revealed that many mycoplasmas, such as Mycoplasma hyopneumoniae, Mycoplasma hyorhinis, Mycoplasma hyosynoviae, Mycoplasma gallisepticum, Mycoplasma pneumoniae, Mycoplasma genitalium, Mycoplasma flocculare, and Mycoplasma bovis could hijack factor H such that they present themselves as a host tissue and thus escape from complement attack. Furthermore, the mechanism of recruiting factor H was identified in M. hyopneumoniae. M. hyopneumoniae binds factor H via factor H binding proteins, such as elongation factor thermo unstable (EF-Tu), P146, pyruvate dehydrogenase (acetyl-transferring) E1 component subunit alpha (PdhA), P46, Pyruvate dehydrogenase E1 component subunit beta (PdhB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and three different hypothetical proteins. The binding of factor H by EF-Tu further contributes to decreased C3 deposition on the M. hyopneumoniae surface and ultimately blocks further complement activation. In fact, binding of factor H occurs in a multifactorial manner; factor H is not only exploited by M. hyopneumoniae via its regulator activity to help mycoplasmas escape from complement killing, but also increases M. hyopneumoniae adhesion to swine tracheal epithelial cells, partially through EF-Tu. Meanwhile, the high sequence identity among EF-Tu proteins in the above-mentioned mycoplasmas implied the universality of the mechanism. This is the first report that mycoplasmas can escape complement killing by binding to factor H.
Collapse
Affiliation(s)
- Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,School of Food and Biological Engineering, Jiangsu University , Zhenjiang, China
| | - Jia Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal , Durban, South Africa
| | - Rui Han
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences , Hefei, China
| | - Li Wang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Amy Yimin Zhang
- College of Veterinary Medicine, Cornell University , Cornell, NY, USA
| | - Jiuqing Xin
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin, China
| | - Shaoli Li
- Department of Bacteriology, Capital Institute of Pediatrics , Beijing, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China , Hengyang, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,School of Food and Biological Engineering, Jiangsu University , Zhenjiang, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences , Nanjing, China.,Institute of Life Sciences, Jiangsu University , Zhenjiang, China
| |
Collapse
|
10
|
Syed S, Viazmina L, Mager R, Meri S, Haapasalo K. Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 2020; 594:2570-2585. [PMID: 32594520 DOI: 10.1002/1873-3468.13872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022]
Abstract
Streptococci are a broad group of Gram-positive bacteria. This genus includes various human pathogens causing significant morbidity and mortality. Two of the most important human pathogens are Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A streptococcus or GAS). Streptococcal pathogens have evolved to express virulence factors that enable them to evade complement-mediated attack. These include factor H-binding M (S. pyogenes) and pneumococcal surface protein C (PspC) (S. pneumoniae) proteins. In addition, S. pyogenes and S. pneumoniae express cytolysins (streptolysin and pneumolysin), which are able to destroy host cells. Sometimes, the interplay between streptococci, the complement, and antistreptococcal immunity may lead to an excessive inflammatory response or autoimmune disease. Understanding the fundamental role of the complement system in microbial clearance and the bacterial escape mechanisms is of paramount importance for understanding microbial virulence, in general, and, the conversion of commensals to pathogens, more specifically. Such insights may help to identify novel antibiotic and vaccine targets in bacterial pathogens to counter their growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Larisa Viazmina
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland.,Humanitas University, Milano, Italy
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
11
|
Tandem Mass Tag (TMT)-based quantitative proteomics reveals potential targets associated with onset of Sub-clinical Mastitis in cows. Sci Rep 2020; 10:9321. [PMID: 32518370 PMCID: PMC7283279 DOI: 10.1038/s41598-020-66211-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine milk is vital for infant nutrition and is a major component of the human diet. Bovine mastitis is a common inflammatory disease of mammary gland in cattle. It alters the immune profile of the animal and lowers the quality and yield of milk causing huge economic losses to dairy industry. The incidence of sub-clinical mastitis (SCM) is higher (25-65% worldwide) than clinical mastitis (CM) (>5%), and frequently progresses to clinical stage due to lack of sensitive and specific detection method. We used quantitative proteomics to identify changes in milk during sub-clinical mastitis, which may be potential biomarkers for developing rapid, non-invasive, sensitive detection methods. We performed comparative proteome analysis of the bovine milk, collected from the Indian hybrid cow Karan Fries. The differential proteome in the milk of Indian crossbred cows during sub-acute and clinical intramammary gland infection has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins, we identified a total of 1459 and 1358 proteins in biological replicates, out of which 220 and 157 proteins were differentially expressed between normal and infected samples. A total of 82 proteins were up-regulated and 27 proteins were down-regulated, having fold changes of ≥2 and ≤0.8 respectively. Among these proteins, overexpression of CHI3L1, LBP, GSN, GCLC, C4 and PIGR proteins was positively correlated with the events that elicit host defence system, triggering production of cytokines and inflammatory molecules. The appearance of these potential biomarkers in milk may be used to segregate affected cattle from the normal herd and may support mitigation measures for prevention of SCM and CM.
Collapse
|
12
|
Meinel C, Spartà G, Dahse HM, Hörhold F, König R, Westermann M, Coldewey SM, Cseresnyés Z, Figge MT, Hammerschmidt S, Skerka C, Zipfel PF. Streptococcus pneumoniae From Patients With Hemolytic Uremic Syndrome Binds Human Plasminogen via the Surface Protein PspC and Uses Plasmin to Damage Human Endothelial Cells. J Infect Dis 2019; 217:358-370. [PMID: 28968817 DOI: 10.1093/infdis/jix305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.
Collapse
Affiliation(s)
- Christian Meinel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Giuseppina Spartà
- Klinik für Kinder- und Jugendmedizin, Kantonsspital Winterthur, Switzerland
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Franziska Hörhold
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | - Rainer König
- Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | | | - Sina M Coldewey
- Center for Sepsis Control and Care.,Department of Anesthesiology and Intensive Care Medicine.,Septomics Research Center.,Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care.,Friedrich Schiller University, Jena, Germany
| |
Collapse
|
13
|
Upregulation of Complement Factor H by SOCS-1/3⁻STAT4 in Lung Cancer. Cancers (Basel) 2019; 11:cancers11040471. [PMID: 30987235 PMCID: PMC6520728 DOI: 10.3390/cancers11040471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Complement factor H (CFH) is a fluid phase regulator of complement proteins and functions to prevent complement attack and immune surveillance. CFH is known to inactivate therapeutic antibody-dependent complement-mediated cellular cytotoxicity. We found that CFH was highly expressed in human lung cancer cells and tissues. To investigate mechanisms of CFH upregulation, we searched for a CFH transcription factor and its regulatory factors. First, signal transducer and activator of transcription 4 (STAT4) expression patterns coincided with CFH expression patterns in lung cancer tissues. Knockdown of STAT4 led to decreased CFH secretion from lung cancer cells. STAT4 bound directly to the CFH promoter, as demonstrated by luciferase reporter assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay, suggesting that STAT4 is a transcription factor for CFH. In addition, a low level of suppressors of cytokine signaling (SOCS)-1/3, a Janus kinase (JAK) inhibitor, was observed in lung cancer cells and its transfection decreased CFH protein levels and promoter activity. Unexpectedly, the low level of SOCS-1/3 was not due to epigenetic silencing. Instead, differential methylation was found on the regulatory region of STAT4 between normal and lung cancer cells. In conclusion, our results demonstrated that CFH is upregulated by constitutive activation of STAT4, which is accounted for by SOCS silencing in lung cancer cells.
Collapse
|
14
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
15
|
Complement factor H family proteins in their non-canonical role as modulators of cellular functions. Semin Cell Dev Biol 2019; 85:122-131. [DOI: 10.1016/j.semcdb.2017.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2017] [Accepted: 12/31/2017] [Indexed: 12/17/2022]
|
16
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
17
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
18
|
Sánchez-Corral P, Pouw RB, López-Trascasa M, Józsi M. Self-Damage Caused by Dysregulation of the Complement Alternative Pathway: Relevance of the Factor H Protein Family. Front Immunol 2018; 9:1607. [PMID: 30050540 PMCID: PMC6052053 DOI: 10.3389/fimmu.2018.01607] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
The alternative pathway is a continuously active surveillance arm of the complement system, and it can also enhance complement activation initiated by the classical and the lectin pathways. Various membrane-bound and plasma regulatory proteins control the activation of the potentially deleterious complement system. Among the regulators, the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway and its powerful amplification loop. FH belongs to a protein family that also includes FH-like protein 1 and five factor H-related (FHR-1 to FHR-5) proteins. Genetic variants and abnormal rearrangements involving the FH protein family have been linked to numerous systemic and organ-specific diseases, including age-related macular degeneration, and the renal pathologies atypical hemolytic uremic syndrome, C3 glomerulopathies, and IgA nephropathy. This review covers the known and recently emerged ligands and interactions of the human FH family proteins associated with disease and discuss the very recent experimental data that suggest FH-antagonistic and complement-activating functions for the FHR proteins.
Collapse
Affiliation(s)
- Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Margarita López-Trascasa
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Chen SF, Wang FM, Li ZY, Yu F, Chen M, Zhao MH. Complement Factor H Inhibits Anti-Neutrophil Cytoplasmic Autoantibody-Induced Neutrophil Activation by Interacting With Neutrophils. Front Immunol 2018; 9:559. [PMID: 29616045 PMCID: PMC5867335 DOI: 10.3389/fimmu.2018.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 01/12/2023] Open
Abstract
Our previous study demonstrated that plasma levels of complement factor H (FH) were inversely associated with the disease activity of patients with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV). In addition to serving as an inhibitor of the alternative complement pathway, there is increasing evidence demonstrating direct regulatory roles of FH on several cell types. Here, we investigated the role of FH in the process of ANCA-mediated activation of neutrophils and neutrophil–endothelium interaction. We demonstrated that FH bound to neutrophils by immunostaining and flow cytometry. Interestingly, ANCA-induced activation of neutrophils, including respiratory burst and degranulation, was inhibited by FH. Although FH enhanced neutrophils adhesion and migration toward human glomerular endothelial cells (hGEnCs), it inhibited ANCA-induced activation of neutrophils in the coculture system of hGEnCs and neutrophils. Moreover, the activation and injury of hGEnCs, reflected by the level of endothelin-1 in the supernatant of cocultures, was markedly reduced by FH. However, we found that FH from patients with active AAV exhibited a deficient ability in binding neutrophils and inhibiting ANCA-induced neutrophil activation in fluid phase and on endothelial cells, as compared with that from healthy controls. Therefore, our findings indicate a novel role of FH in inhibiting ANCA-induced neutrophil activation and protecting against glomerular endothelial injury. However, FH from patients with active AAV are deficient in their ability to bind neutrophils and inhibit neutrophil activation by ANCA. It further extends the current understanding of the pathogenesis of AAV, thus providing potential clues for intervention strategies.
Collapse
Affiliation(s)
- Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Feng-Mei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
20
|
Antigenic Variation in Streptococcus pneumoniae PspC Promotes Immune Escape in the Presence of Variant-Specific Immunity. mBio 2018. [PMID: 29535198 PMCID: PMC5850329 DOI: 10.1128/mbio.00264-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genomic analysis reveals extensive sequence variation and hot spots of recombination in surface proteins of Streptococcus pneumoniae. While this phenomenon is commonly attributed to diversifying selection by host immune responses, there is little mechanistic evidence for the hypothesis that diversification of surface protein antigens produces an immune escape benefit during infection with S. pneumoniae. Here, we investigate the biological significance of sequence variation within the S. pneumoniae cell wall-associated pneumococcal surface protein C (PspC) protein antigen. Using pspC allelic diversity observed in a large pneumococcal collection, we produced variant-specific protein constructs that span the sequence variability within the pspC locus. We show that antibodies raised against these PspC constructs are variant specific and prevent association between PspC and the complement pathway mediator, human factor H. We found that PspC variants differ in their capacity to bind factor H, suggesting that sequence variation within pspC reflects differences in biological function. Finally, in an antibody-dependent opsonophagocytic assay, S. pneumoniae expressing a PspC variant matching the antibody specificity was killed efficiently. In contrast, killing efficacy was not evident against S. pneumoniae expressing mismatched PspC variants. Our data suggest that antigenic variation within the PspC antigen promotes immune evasion and could confer a fitness benefit during infection. Loci encoding surface protein antigens in Streptococcus pneumoniae are highly polymorphic. It has become a truism that these polymorphisms are the outcome of selective pressure on S. pneumoniae to escape host immunity. However, there is little mechanistic evidence to support the hypothesis that diversifying protein antigens produces a benefit for the bacteria. Using the highly diverse pspC locus, we have now characterized the functional and immune implications of sequence diversity within the PspC protein. We have characterized the spectrum of biological function among diverse PspC variants and show that pspC sequence diversity reflects functional differences. Further, we show that sequence variation in PspC confers an immune escape benefit in the presence of anti-PspC variant-specific immunity. Overall, the results of our studies provide insights into the functional implications of protein sequence diversity and the role of variant-specific immunity in its maintenance.
Collapse
|
21
|
Riesbeck K. Hemolytic Uremic Syndrome Associated With Pneumococci in Children—An Elusive Mystery Now Explained? J Infect Dis 2017; 217:341-343. [DOI: 10.1093/infdis/jix306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022] Open
|
22
|
Kanwal S, Jensch I, Palm GJ, Brönstrup M, Rohde M, Kohler TP, Somplatzki D, Tegge W, Jenkinson HF, Hammerschmidt S. Mapping the recognition domains of pneumococcal fibronectin-binding proteins PavA and PavB demonstrates a common pattern of molecular interactions with fibronectin type III repeats. Mol Microbiol 2017; 105:839-859. [PMID: 28657670 DOI: 10.1111/mmi.13740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin-binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non-human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both β-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1 , FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.
Collapse
Affiliation(s)
- Sajida Kanwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Inga Jensch
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Gottfried J Palm
- Department of Structural Biology, Institute for Biochemistry, University of Greifswald, Greifswald, D-17487, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, ZEIM, Helmholtz Centre for Infection Research, Braunschweig, D-38124, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Daniela Somplatzki
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Howard F Jenkinson
- Department of Oral and Dental Science, University of Bristol, Bristol, UK
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| |
Collapse
|
23
|
Wang J, Leong MC, Leong EZW, Kuan WS, Leong DT. Clinically Relevant Detection of Streptococcus pneumoniae with DNA-Antibody Nanostructures. Anal Chem 2017; 89:6900-6906. [PMID: 28548485 DOI: 10.1021/acs.analchem.7b01508] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae (SP) is a pathogenic bacterium and a major cause of community-acquired pneumonia that could be fatal if left untreated. Therefore, rapid and sensitive detection of SP is crucial to enable targeted treatment during SP infections. In this study, DNA tetrahedron (DNA TH) with a hollow structure is anchored on gold electrodes to construct an electrochemical immunosensor for rapid detection of pneumococcal surface protein A (PspA) peptide and SP lysate from synthetic and actual human samples. This DNA nanostructure-based immunosensor displays excellent electrochemical activity toward PspA with a sensitive linear region from 0 to 8 ng/mL of PspA peptide and a low limit of detection (LOD) of 0.218 ng/mL. In addition, this DNA-TH-based immunosensor exhibits good sensing performance toward SP lysate in a clinically relevant linear range from 5 to 100 CFU/mL with a LOD of 0.093 CFU/mL. Along with these attractive features, this electrochemical immunosensor is able to specifically recognize and detect the PspA peptide mixed with other physiologically relevant components like bovine serum albumin (BSA) and lipopolysaccharide. In addition, our sensor could detect SP lysate even when dispersed in BSA or Escherichia coli lysate. Lastly, uncultured samples from the nasal cavity, mouth, and axilla of a human subject could be successfully determined by this well-designed electrochemical immunosensor.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - May Ching Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Eric Zhe Wei Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Win Sen Kuan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117585, Singapore.,Emergency Medicine Department, National University Hospital, National University Health System , 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
24
|
Józsi M. Factor H Family Proteins in Complement Evasion of Microorganisms. Front Immunol 2017; 8:571. [PMID: 28572805 PMCID: PMC5435753 DOI: 10.3389/fimmu.2017.00571] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Human-pathogenic microbes possess various means to avoid destruction by our immune system. These include interactions with the host complement system that may facilitate pathogen entry into cells and tissues, expression of molecules that defuse the effector complement components and complexes, and acquisition of host complement inhibitors to downregulate complement activity on the surface of the pathogen. A growing number of pathogenic microorganisms have acquired the ability to bind the complement inhibitor factor H (FH) from body fluids and thus hijack its host protecting function. In addition to FH, binding of FH-related (FHR) proteins was also demonstrated for several microbes. Initial studies assumed that these proteins are complement inhibitors similar to FH. However, recent evidence suggests that FHR proteins may rather enhance complement activation both directly and also by competing with the inhibitor FH for binding to certain ligands and surfaces. This mini review focuses on the role of the main alternative pathway regulator FH in host–pathogen interactions, as well as on the emerging role of the FHR proteins as enhancers of complement activation.
Collapse
Affiliation(s)
- Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
25
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
26
|
Binsker U, Kohler TP, Krauel K, Kohler S, Habermeyer J, Schwertz H, Hammerschmidt S. Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. J Biol Chem 2017; 292:5770-5783. [PMID: 28209711 DOI: 10.1074/jbc.m116.760504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 strains emerge frequently within clinical isolates of invasive diseases. Bacterial invasion into deeper tissues is associated with colonization and immune evasion mechanisms. Thus, pneumococci express a versatile repertoire of surface proteins sequestering and interacting specifically with components of the human extracellular matrix and serum. Hic, a PspC-like pneumococcal surface protein, possesses vitronectin and factor H binding activity. Here, we show that heterologously expressed Hic domains interact, similar to the classical PspC molecule, with human matricellular thrombospondin-1 (hTSP-1). Binding studies with isolated human thrombospondin-1 and various Hic domains suggest that the interaction between hTSP-1 and Hic differs from binding to vitronectin and factor H. Binding of Hic to hTSP-1 is inhibited by heparin and chondroitin sulfate A, indicating binding to the N-terminal globular domain or type I repeats of hTSP-1. Competitive inhibition experiments with other pneumococcal hTSP-1 adhesins demonstrated that PspC and PspC-like Hic recognize similar domains, whereas PavB and Hic can bind simultaneously to hTSP-1. In conclusion, Hic binds specifically hTSP-1; however, truncation in the N-terminal part of Hic decreases the binding activity, suggesting that the full length of the α-helical regions of Hic is required for an optimal interaction.
Collapse
Affiliation(s)
- Ulrike Binsker
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Thomas P Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Krystin Krauel
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sylvia Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Johanna Habermeyer
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Hansjörg Schwertz
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sven Hammerschmidt
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| |
Collapse
|
27
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
28
|
Gutiérrez-Fernández J, Saleh M, Alcorlo M, Gómez-Mejía A, Pantoja-Uceda D, Treviño MA, Voß F, Abdullah MR, Galán-Bartual S, Seinen J, Sánchez-Murcia PA, Gago F, Bruix M, Hammerschmidt S, Hermoso JA. Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis. Sci Rep 2016; 6:38094. [PMID: 27917891 PMCID: PMC5137146 DOI: 10.1038/srep38094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca2+-binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp_Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.
Collapse
Affiliation(s)
- Javier Gutiérrez-Fernández
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Alejandro Gómez-Mejía
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - David Pantoja-Uceda
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Miguel A Treviño
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Franziska Voß
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Sergio Galán-Bartual
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Jolien Seinen
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Pedro A Sánchez-Murcia
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Marta Bruix
- Department of Biological Physical Chemistry. "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487 Greifswald, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, "Rocasolano" Institute of Physical-Chemistry, CSIC, Serrano 119, E-28006-Madrid, Spain
| |
Collapse
|
29
|
Recruitment of Factor H to the Streptococcus suis Cell Surface is Multifactorial. Pathogens 2016; 5:pathogens5030047. [PMID: 27399785 PMCID: PMC5039427 DOI: 10.3390/pathogens5030047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is an important bacterial swine pathogen and a zoonotic agent. Recently, two surface proteins of S. suis, Fhb and Fhbp, have been described for their capacity to bind factor H—a soluble complement regulatory protein that protects host cells from complement-mediated damages. Results obtained in this study showed an important role of host factor H in the adhesion of S. suis to epithelial and endothelial cells. Both Fhb and Fhbp play, to a certain extent, a role in such increased factor H-dependent adhesion. The capsular polysaccharide (CPS) of S. suis, independently of the presence of its sialic acid moiety, was also shown to be involved in the recruitment of factor H. However, a triple mutant lacking Fhb, Fhbp and CPS was still able to recruit factor H resulting in the degradation of C3b in the presence of factor I. In the presence of complement factors, the double mutant lacking Fhb and Fhbp was similarly phagocytosed by human macrophages and killed by pig blood when compared to the wild-type strain. In conclusion, this study suggests that recruitment of factor H to the S. suis cell surface is multifactorial and redundant.
Collapse
|
30
|
Schneider AE, Sándor N, Kárpáti É, Józsi M. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps. Mol Immunol 2016; 72:37-48. [PMID: 26938503 DOI: 10.1016/j.molimm.2016.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/27/2023]
Abstract
Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation.
Collapse
Affiliation(s)
- Andrea E Schneider
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Noémi Sándor
- MTA-ELTE Immunology Research Group, Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Éva Kárpáti
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary.
| |
Collapse
|
31
|
Glennie S, Gritzfeld JF, Pennington SH, Garner-Jones M, Coombes N, Hopkins MJ, Vadesilho CF, Miyaji EN, Wang D, Wright AD, Collins AM, Gordon SB, Ferreira DM. Modulation of nasopharyngeal innate defenses by viral coinfection predisposes individuals to experimental pneumococcal carriage. Mucosal Immunol 2016; 9:56-67. [PMID: 25921341 PMCID: PMC4703943 DOI: 10.1038/mi.2015.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Increased nasopharyngeal colonization density has been associated with pneumonia. We used experimental human pneumococcal carriage to investigate whether upper respiratory tract viral infection predisposes individuals to carriage. A total of 101 healthy subjects were screened for respiratory virus before pneumococcal intranasal challenge. Virus was associated with increased odds of colonization (75% virus positive became colonized vs. 46% virus-negative subjects; P=0.02). Nasal Factor H (FH) levels were increased in virus-positive subjects and were associated with increased colonization density. Using an in vitro epithelial model we explored the impact of increased mucosal FH in the context of coinfection. Epithelial inflammation and FH binding resulted in increased pneumococcal adherence to the epithelium. Binding was partially blocked by antibodies targeting the FH-binding protein Pneumococcal surface protein C (PspC). PspC epitope mapping revealed individuals lacked antibodies against the FH binding region. We propose that FH binding to PspC in vivo masks this binding site, enabling FH to facilitate pneumococcal/epithelial attachment during viral infection despite the presence of anti-PspC antibodies. We propose that a PspC-based vaccine lacking binding to FH could reduce pneumococcal colonization, and may have enhanced protection in those with underlying viral infection.
Collapse
Affiliation(s)
- S Glennie
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.5337.20000 0004 1936 7603Present Address: 7Present address: School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK., ,
| | - J F Gritzfeld
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - S H Pennington
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - M Garner-Jones
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - N Coombes
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - M J Hopkins
- grid.269741.f0000 0004 0421 1585Liverpool Specialist Virology Centre, Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - C F Vadesilho
- grid.418514.d0000 0001 1702 8585Centro de Biotecnologia, Instituto Butantan, Sao Paulo, Brazil
| | - E N Miyaji
- grid.418514.d0000 0001 1702 8585Centro de Biotecnologia, Instituto Butantan, Sao Paulo, Brazil
| | - D Wang
- grid.48004.380000 0004 1936 9764Tropical Clinical Trial Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - A D Wright
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.269741.f0000 0004 0421 1585NIHR Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, UK
| | - A M Collins
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.269741.f0000 0004 0421 1585NIHR Royal Liverpool and Broadgreen University Hospital NHS Trust, Liverpool, UK
| | - S B Gordon
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Ferreira
- grid.48004.380000 0004 1936 9764Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
32
|
Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol Lett 2015; 168:13-21. [DOI: 10.1016/j.imlet.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
|
33
|
|
34
|
Structural determinants of host specificity of complement Factor H recruitment by Streptococcus pneumoniae. Biochem J 2015; 465:325-35. [PMID: 25330773 DOI: 10.1042/bj20141069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many human pathogens have strict host specificity, which affects not only their epidemiology but also the development of animal models and vaccines. Complement Factor H (FH) is recruited to pneumococcal cell surface in a human-specific manner via the N-terminal domain of the pneumococcal protein virulence factor choline-binding protein A (CbpAN). FH recruitment enables Streptococcus pneumoniae to evade surveillance by human complement system and contributes to pneumococcal host specificity. The molecular determinants of host specificity of complement evasion are unknown. In the present study, we show that a single human FH (hFH) domain is sufficient for tight binding of CbpAN, present the crystal structure of the complex and identify the critical structural determinants for host-specific FH recruitment. The results offer new approaches to the development of better animal models for pneumococcal infection and redesign of the virulence factor for pneumococcal vaccine development and reveal how FH recruitment can serve as a mechanism for both pneumococcal complement evasion and adherence.
Collapse
|
35
|
Asmat TM, Agarwal V, Saleh M, Hammerschmidt S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int J Med Microbiol 2014; 304:1233-46. [PMID: 25455218 DOI: 10.1016/j.ijmm.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/17/2022] Open
Abstract
Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Department of Laboratory Medicine, Medical Protein Chemistry, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany.
| |
Collapse
|
36
|
Blom AM, Bergmann S, Fulde M, Riesbeck K, Agarwal V. Streptococcus pneumoniae phosphoglycerate kinase is a novel complement inhibitor affecting the membrane attack complex formation. J Biol Chem 2014; 289:32499-511. [PMID: 25281746 DOI: 10.1074/jbc.m114.610212] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen.
Collapse
Affiliation(s)
- Anna M Blom
- From the Section of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden,
| | - Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Marcus Fulde
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany, and
| | - Kristian Riesbeck
- Section of Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden
| | - Vaibhav Agarwal
- From the Section of Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden
| |
Collapse
|
37
|
Kohler S, Hallström T, Singh B, Riesbeck K, Spartà G, Zipfel PF, Hammerschmidt S. Binding of vitronectin and Factor H to Hic contributes to immune evasion of Streptococcus pneumoniae serotype 3. Thromb Haemost 2014; 113:125-42. [PMID: 25181963 DOI: 10.1160/th14-06-0561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/24/2014] [Indexed: 11/05/2022]
Abstract
Streptococcus pneumoniae serotype 3 strains are highly resistant to opsonophagocytosis due to recruitment of the complement inhibitor Factor H via Hic, a member of the pneumococcal surface protein C (PspC) family. In this study, we demonstrated that Hic also interacts with vitronectin, a fluid-phase regulator involved in haemostasis, angiogenesis, and the terminal complement cascade as well as a component of the extracellular matrix. Blocking of Hic by specific antiserum or genetic deletion significantly reduced pneumococcal binding to soluble and immobilised vitronectin and to Factor H, respectively. In parallel, ectopic expression of Hic on the surface of Lactococcus lactis conferred binding to soluble and immobilised vitronectin as well as Factor H. Molecular analyses with truncated Hic fragments narrowed down the vitronectin-binding site to the central core of Hic (aa 151-201). This vitronectin-binding region is separate from that of Factor H, which binds to the N-terminus of Hic (aa 38-92). Binding of pneumococcal Hic was localised to the C-terminal heparin-binding domain (HBD3) of vitronectin. However, an N-terminal region to HBD3 was further involved in Hic-binding to immobilised vitronectin. Finally, vitronectin bound to Hic was functionally active and inhibited formation of the terminal complement complex. In conclusion, Hic interacts with vitronectin and simultaneously with Factor H, and both human proteins may contribute to colonisation and invasive disease caused by serotype 3 pneumococci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Hammerschmidt
- Prof. Dr. Sven Hammerschmidt, Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Friedrich-Ludwig-Jahn-Strasse 15A, 17487 Greifswald, Germany, Tel.: +49 3834 864161, Fax: +49 3834 864172, E-mail:
| |
Collapse
|
38
|
Abstract
The human pathogenic fungus Candida albicans is the predominant cause of both superficial and invasive forms of candidiasis. C. albicans primarily infects immunocompromised individuals as a result of either immunodeficiency or intervention therapy, which highlights the importance of host immune defences in preventing fungal infections. The host defence system utilises a vast communication network of cells, proteins, and chemical signals distributed in blood and tissues, which constitute innate and adaptive immunity. Over the last decade the identity of many key molecules mediating host defence against C. albicans has been identified. This review will discuss how the host recognises this fungus, the events induced by fungal cells, and the host innate and adaptive immune defences that ultimately resolve C. albicans infections during health.
Collapse
|
39
|
Agarwal V, Sroka M, Fulde M, Bergmann S, Riesbeck K, Blom AM. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence. J Biol Chem 2014; 289:15833-44. [PMID: 24739385 DOI: 10.1074/jbc.m113.530212] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.
Collapse
Affiliation(s)
| | | | - Marcus Fulde
- the Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany, and
| | - Simone Bergmann
- the Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kristian Riesbeck
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, 20502 Malmö, Sweden
| | - Anna M Blom
- From the Divisions of Medical Protein Chemistry and
| |
Collapse
|
40
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
41
|
Role of Pht proteins in attachment of Streptococcus pneumoniae to respiratory epithelial cells. Infect Immun 2014; 82:1683-91. [PMID: 24491577 DOI: 10.1128/iai.00699-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pneumococcal adherence to mucosal surfaces is a critical step in nasopharyngeal colonization, but so far few pneumococcal adhesins involved in the interaction with host cells have been identified. PhtA, PhtB, PhtD, and PhtE are conserved pneumococcal surface proteins that have proven promising as vaccine candidates. One suggested virulence function of Pht proteins is to mediate adherence at the respiratory mucosa. In this study, we assessed the role of Pht proteins in pneumococcal binding to respiratory epithelial cells. Pneumococci were incubated with human nasopharyngeal epithelial cells (Detroit-562) and lung epithelial cells (A549 and NCI-H292), and the proportion of bound bacteria was measured by plating viable counts. Strains R36A (unencapsulated), D39 (serotype 2), 43 (serotype 3), 4-CDC (serotype 4), and 2737 (serotype 19F) with one or more of the four homologous Pht proteins deleted were compared with their wild-type counterparts. Also, the effect of anti-PhtD antibodies on the adherence of strain 2737 to the respiratory epithelial cells was studied. Our results suggest that Pht proteins play a role in pneumococcal adhesion to the respiratory epithelium. We also found that antibody to PhtD is able to inhibit bacterial attachment to the cells, suggesting that antibodies against PhtD present at mucosal surfaces might protect from pneumococcal attachment and subsequent colonization. However, the relative significance of Pht proteins to the ability of pneumococci to bind in vitro to epithelial cells depends on the genetic background and the capsular serotype of the strain.
Collapse
|
42
|
Zipfel PF, Hallström T, Riesbeck K. Human complement control and complement evasion by pathogenic microbes – Tipping the balance. Mol Immunol 2013; 56:152-60. [DOI: 10.1016/j.molimm.2013.05.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Luo S, Skerka C, Kurzai O, Zipfel PF. Complement and innate immune evasion strategies of the human pathogenic fungus Candida albicans. Mol Immunol 2013; 56:161-9. [DOI: 10.1016/j.molimm.2013.05.218] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/10/2013] [Indexed: 01/09/2023]
|
44
|
Rosenberger CM, Podyminogin RL, Askovich PS, Navarro G, Kaiser SM, Sanders CJ, McClaren JL, Tam VC, Dash P, Noonan JG, Jones BG, Surman SL, Peschon JJ, Diercks AH, Hurwitz JL, Doherty PC, Thomas PG, Aderem A. Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. J Gen Virol 2013; 95:350-362. [PMID: 24243730 DOI: 10.1099/vir.0.058438-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I alveolar epithelial cells are a replicative niche for influenza in vivo, yet their response to infection is not fully understood. To better characterize their cellular responses, we have created an immortalized murine lung epithelial type I cell line (LET1). These cells support spreading influenza virus infection in the absence of exogenous protease and thus permit simultaneous analysis of viral replication dynamics and host cell responses. LET1 cells can be productively infected with human, swine and mouse-adapted strains of influenza virus and exhibit expression of an antiviral transcriptional programme and robust cytokine secretion. We characterized influenza virus replication dynamics and host responses of lung type I epithelial cells and identified the capacity of epithelial cell-derived type I IFN to regulate specific modules of antiviral effectors to establish an effective antiviral state. Together, our results indicate that the type I epithelial cell can play a major role in restricting influenza virus infection without contribution from the haematopoietic compartment.
Collapse
Affiliation(s)
- Carrie M Rosenberger
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Rebecca L Podyminogin
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Peter S Askovich
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Garnet Navarro
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Shari M Kaiser
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Catherine J Sanders
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Jennifer L McClaren
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Vincent C Tam
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Pradyot Dash
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Jhoanna G Noonan
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Jacques J Peschon
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Alan H Diercks
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Peter C Doherty
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Alan Aderem
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| |
Collapse
|
45
|
Type I interferon protects against pneumococcal invasive disease by inhibiting bacterial transmigration across the lung. PLoS Pathog 2013; 9:e1003727. [PMID: 24244159 PMCID: PMC3820719 DOI: 10.1371/journal.ppat.1003727] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I), whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood. Mice that lack the type I interferon receptor (Ifnar1−/−) or mice that were treated with a neutralizing antibody against the type I interferon receptor, exhibited enhanced development of bacteremia following intranasal pneumococcal infection, while maintaining comparable bacterial numbers in the lung. In turn, treatment of mice with IFNβ or IFN-I-inducing synthetic double stranded RNA (poly(I:C)), dramatically reduced the development of bacteremia following intranasal infection with S. pneumoniae. IFNβ treatment led to upregulation of tight junction proteins and downregulation of the pneumococcal uptake receptor, platelet activating factor receptor (PAF receptor). In accordance with these findings, IFN-I reduced pneumococcal cell invasion and transmigration across epithelial and endothelial layers, and Ifnar1−/− mice showed overall enhanced lung permeability. As such, our data identify IFN-I as an important component of the host immune defense that regulates two possible mechanisms involved in pneumococcal invasion, i.e. PAF receptor-mediated transcytosis and tight junction-dependent pericellular migration, ultimately limiting progression from a site-restricted lung infection to invasive, lethal disease. Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia and invasive diseases such as sepsis and meningitis, which are associated with high morbidity and mortality. Here we identified type I Interferons (IFN-I) as critical mediators that prevent the progression of a local lung infection with S. pneumoniae to invasive disease. We found that mice lacking the receptor for IFN-I, or which received antibodies that interfere with receptor activation, showed increased development of bacteremia upon lung infection with S. pneumoniae. Treating mice, or cell lines, with IFN-I protected against bacterial migration across epithelial and endothelial cell barriers, correlating with increased expression of tight junction proteins, which enhance the lung's barrier function, and reduced surface expression levels of platelet activating factor receptor, a host receptor known to be hijacked by bacteria for migration across the lung/blood and blood/brain barriers. Together, our results identify IFN-I as an important component of the host immune defense against invasion from a gram-positive, extracellular bacterium, possibly reflecting a general mechanism for the regulation of epithelial and endothelial barrier function that is critical for protection from pathogen invasion.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Infection with Streptococcus pneumoniae (pneumococcus) results in colonization, which can lead to local or invasive disease, of which pneumonia is the most common manifestation. Despite the availability of pneumococcal vaccines, pneumococcal pneumonia is the leading cause of community and inhospital pneumonia in the United States and globally. This article discusses new insights into the pathogenesis of pneumococcal disease. RECENT FINDINGS The host-microbe interactions that determine whether pneumococcal colonization will result in clearance or invasive disease are highly complex. This article focuses on new information in three areas that bear on the pathogenesis of pneumococcal disease: factors that govern colonization, the prelude to invasive disease, including effects on colonization and invasion of capsular serotype, pneumolysin, surface proteins that regulate complement deposition, biofilm formation and agglutination; the effect of coinfection with other bacteria and viruses on pneumococcal growth and virulence, including the synergistic effect of influenza virus; and the contribution of the host inflammatory response to the pathogenesis of pneumococcal pneumonia, including the effects of pattern recognition molecules, cells that enhance and modulate inflammation, and therapies that modulate inflammation, such as statins. SUMMARY Recent research on pneumococcal pathogenesis reveals new mechanisms by which microbial factors govern the ability of pneumococcus to progress from the state of colonization to disease and host inflammatory responses contribute to the development of pneumonia. These mechanisms suggest that therapies which modulate the inflammatory response could hold promise for ameliorating damage stemming from the host inflammatory response in pneumococcal disease.
Collapse
|
47
|
Ermert D, Weckel A, Agarwal V, Frick IM, Björck L, Blom AM. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem 2013; 288:32172-32183. [PMID: 24064215 DOI: 10.1074/jbc.m113.502955] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of (125)I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92-109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10(-7) M between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.
Collapse
Affiliation(s)
- David Ermert
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Antonin Weckel
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Vaibhav Agarwal
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden
| | - Inga-Maria Frick
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Lars Björck
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Anna M Blom
- From the Department of Laboratory Medicine, Medical Protein Chemistry, Lund University, SE-205 02 Malmö, Sweden.
| |
Collapse
|
48
|
Agarwal V, Ahl J, Riesbeck K, Blom AM. An alternative role of C1q in bacterial infections: facilitating Streptococcus pneumoniae adherence and invasion of host cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4235-45. [PMID: 24038089 DOI: 10.4049/jimmunol.1300279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen, which evolved numerous successful strategies to colonize the host. In this study, we report a novel mechanism of pneumococcal-host interaction, whereby pneumococci use a host complement protein C1q, primarily involved in the host-defense mechanism, for colonization and subsequent dissemination. Using cell-culture infection assays and confocal microscopy, we observed that pneumococcal surface-bound C1q significantly enhanced pneumococcal adherence to and invasion of host epithelial and endothelial cells. Flow cytometry demonstrated a direct, Ab-independent binding of purified C1q to various clinical isolates of pneumococci. This interaction was seemingly capsule serotype independent and mediated by the bacterial surface-exposed proteins, as pretreatment of pneumococci with pronase E but not sodium periodate significantly reduced C1q binding. Moreover, similar binding was observed using C1 complex as the source of C1q. Furthermore, our data show that C1q bound to the pneumococcal surface through the globular heads and with the host cell-surface receptor(s)/glycosaminoglycans via its N-terminal collagen-like stalk, as the presence of C1q N-terminal fragment and low m.w. heparin but not the C-terminal globular heads blocked C1q-mediated pneumococcal adherence to host cells. Taken together, we demonstrate for the first time, to our knowledge, a unique function of complement protein C1q, as a molecular bridge between pneumococci and the host, which promotes bacterial cellular adherence and invasion. Nevertheless, in some conditions, this mechanism could be also beneficial for the host as it may result in uptake and clearance of the bacteria.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Medical Protein Chemistry, Department of Laboratory Medicine Malmö, Lund University, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
49
|
Browall S, Norman M, Tångrot J, Galanis I, Sjöström K, Dagerhamn J, Hellberg C, Pathak A, Spadafina T, Sandgren A, Bättig P, Franzén O, Andersson B, Örtqvist Å, Normark S, Henriques-Normark B. Intraclonal variations among Streptococcus pneumoniae isolates influence the likelihood of invasive disease in children. J Infect Dis 2013; 209:377-88. [PMID: 24009156 PMCID: PMC4014860 DOI: 10.1093/infdis/jit481] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background. Pneumococcal serotypes are represented by
a varying number of clonal lineages with different genetic contents, potentially affecting
invasiveness. However, genetic variation within the same genetic lineage may be larger
than anticipated. Methods. A total of 715 invasive and carriage isolates
from children in the same region and during the same period were compared using
pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Bacterial genome
sequencing, functional assays, and in vivo virulence mice studies were performed. Results. Clonal types of the same serotype but also
intraclonal variants within clonal complexes (CCs) showed differences in invasive-disease
potential. CC138, a common CC, was divided into several PFGE patterns, partly explained by
number, location, and type of temperate bacteriophages. Whole-genome sequencing of 4 CC138
isolates representing PFGE clones with different invasive-disease potentials revealed
intraclonal sequence variations of the virulence-associated proteins pneumococcal surface
protein A (PspA) and pneumococcal choline-binding protein C (PspC). A carrier isolate
lacking PcpA exhibited decreased virulence in mice, and there was a differential binding
of human factor H, depending on invasiveness. Conclusions. Pneumococcal clonal types but also
intraclonal variants exhibited different invasive-disease potentials in children.
Intraclonal variants, reflecting different prophage contents, showed differences in major
surface antigens. This suggests ongoing immune selection, such as that due to
PspC-mediated complement resistance through varied human factor H binding, that may affect
invasiveness in children.
Collapse
|
50
|
Niu S, Luo M, Tang J, Zhou H, Zhang Y, Min X, Cai X, Zhang W, Xu W, Li D, Ding J, Hu Y, Wang D, Huang A, Yin Y, Wang D. Structural basis of the novel S. pneumoniae virulence factor, GHIP, a glycosyl hydrolase 25 participating in host-cell invasion. PLoS One 2013; 8:e68647. [PMID: 23874703 PMCID: PMC3712932 DOI: 10.1371/journal.pone.0068647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/30/2013] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria produce a wide variety of virulence factors that are considered to be potential antibiotic targets. In this study, we report the crystal structure of a novel S. pneumoniae virulence factor, GHIP, which is a streptococcus-specific glycosyl hydrolase. This novel structure exhibits an α/β-barrel fold that slightly differs from other characterized hydrolases. The GHIP active site, located at the negatively charged groove in the barrel, is very similar to the active site in known peptidoglycan hydrolases. Functionally, GHIP exhibited weak enzymatic activity to hydrolyze the PNP-(GlcNAc)5 peptidoglycan by the general acid/base catalytic mechanism. Animal experiments demonstrated a marked attenuation of S. pneumoniae-mediated virulence in mice infected by ΔGHIP-deficient strains, suggesting that GHIP functions as a novel S. pneumoniae virulence factor. Furthermore, GHIP participates in allowing S. pneumoniae to colonize the nasopharynx and invade host epithelial cells. Taken together, these findings suggest that GHIP can potentially serve as an antibiotic target to effectively treat streptococcus-mediated infection.
Collapse
Affiliation(s)
- Siqiang Niu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Miao Luo
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jian Tang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Zhou
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yangli Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xun Min
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenchu Xu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Defeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jingjin Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yonglin Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Dacheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yibin Yin
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Key Laboratory of Molecular Biology on Infectious Disease, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|