1
|
Tian X, Li F, Lin J, Xu Y, Tian K, Gu L, Zhang Y, Xu JR, Wang Q. Ancient duplications, multidimensional specializations, and defense role of hexokinases in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39495610 DOI: 10.1111/tpj.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Hexokinases (HXKs), which sense and catalyze cellular sugar, play a critical role in the growth and development of various plants, including wheat, a primary source of human calories frequently attacked by fungal pathogens. However, the evolutionary dynamics and functional diversification of HXKs in wheat, particularly their roles in plant defense, remain unclear. Here, we discovered that the wheat hexokinase gene family originated through multiple ancient gene duplications across different plant lineages and has undergone comprehensive, multidimensional functional specialization in gene expression, subcellular localization, enzyme activity, and regulation of plant defense responses. Gene expression analysis suggests that two-thirds of the TaHXK genes are responsive to fungal infection. Subcellular analysis reveals that while six TaHXKs are localized in mitochondria, three TaHXKs from different phylogenetic branches are sorted into other cellular compartments. Notably, biochemical analysis shows that TaHXKs in mitochondria differ in their glucose-catalyzing activity, with TaHXK5 and TaHXK3 exhibiting the highest and lowest enzyme activity, respectively. Consistently, transient expression analysis suggests that TaHXK5 induces various plant defense responses, while TaHXK3 is defective in activating some plant defense responses. Furthermore, inactivation of the glucokinase activity of TaHXK5 compromised its function in defense activation, suggesting that mitochondrial TaHXKs display functional divergence in both enzyme activity and defense-inducing activity that are intrinsically connected. Overall, our findings reveal that the multidimensional specialization events following the ancient duplication events may have shaped the functional diversity of HXKs in wheat, shedding light on their evolutionary dynamics and potentially contributing to the improvement of wheat defense.
Collapse
Affiliation(s)
- Xiaolin Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Lin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yun Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kai Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, Du J, Luo L, Zhao Z, Wang X, Xue C, Rao S. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. CELL GENOMICS 2024; 4:100583. [PMID: 38889719 PMCID: PMC11293580 DOI: 10.1016/j.xgen.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
CRISPR mutagenesis screens conducted with SpCas9 and other nucleases have identified certain cis-regulatory elements and genetic variants but at a limited resolution due to the absence of protospacer adjacent motif (PAM) sequences. Here, leveraging the broad targeting scope of the near-PAMless SpRY variant, we have demonstrated that saturated SpRY mutagenesis and base editing screens can faithfully identify functional regulatory elements and essential genetic variants for target gene expression at single-base resolution. We further extended this methodology to investigate a genome-wide association study (GWAS) locus at 10q22.1 associated with a red blood cell trait, where we identified potential enhancers regulating HK1 gene expression, despite not all of these enhancers exhibiting typical chromatin signatures. More importantly, our saturated base editing screens pinpoint multiple causal variants within this locus that would otherwise be missed by Bayesian statistical fine-mapping. Our approach is generally applicable to functional interrogation of all non-coding genomic elements while complementing other high-coverage CRISPR screens.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Zhiwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoling Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhirui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yixin Zhai
- Department of Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaolin Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingyi Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Liheng Luo
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Xiaoyue Wang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
3
|
Vizuete AFK, Gonçalves CA. Is Methylglyoxal a Potential Biomarker for the Warburg Effect Induced by the Lipopolysaccharide Neuroinflammation Model? Neurochem Res 2024; 49:1823-1837. [PMID: 38727985 DOI: 10.1007/s11064-024-04142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1β, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
He F, Liu J, Huang Y, Chen L, Rizi EP, Zhang K, Ke L, Loh TP, Niu M, Peng WK. Nutritional load in post-prandial oxidative stress and the pathogeneses of diabetes mellitus. NPJ Sci Food 2024; 8:41. [PMID: 38937488 PMCID: PMC11211471 DOI: 10.1038/s41538-024-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.
Collapse
Affiliation(s)
- Fangzhou He
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Junshi Liu
- Dongguan Institute of Technology, Dongguan, China
| | | | - Lan Chen
- BioSyM, SMART Centre, Singapore, Singapore
| | | | - Ke Zhang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Lijing Ke
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Tze Ping Loh
- National University of Health System, Singapore, Singapore
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Dongguan, China.
- BioSyM, SMART Centre, Singapore, Singapore.
| |
Collapse
|
5
|
Xiao Y, Wang Q, Zhang H, Nederlof R, Bakker D, Siadari BA, Wesselink MW, Preckel B, Weber NC, Hollmann MW, Schomakers BV, van Weeghel M, Zuurbier CJ. Insulin and glycolysis dependency of cardioprotection by nicotinamide riboside. Basic Res Cardiol 2024; 119:403-418. [PMID: 38528175 PMCID: PMC11142987 DOI: 10.1007/s00395-024-01042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) levels contribute to various pathologies such as ageing, diabetes, heart failure and ischemia-reperfusion injury (IRI). Nicotinamide riboside (NR) has emerged as a promising therapeutic NAD+ precursor due to efficient NAD+ elevation and was recently shown to be the only agent able to reduce cardiac IRI in models employing clinically relevant anesthesia. However, through which metabolic pathway(s) NR mediates IRI protection remains unknown. Furthermore, the influence of insulin, a known modulator of cardioprotective efficacy, on the protective effects of NR has not been investigated. Here, we used the isolated mouse heart allowing cardiac metabolic control to investigate: (1) whether NR can protect the isolated heart against IRI, (2) the metabolic pathways underlying NR-mediated protection, and (3) whether insulin abrogates NR protection. NR protection against cardiac IRI and effects on metabolic pathways employing metabolomics for determination of changes in metabolic intermediates, and 13C-glucose fluxomics for determination of metabolic pathway activities (glycolysis, pentose phosphate pathway (PPP) and mitochondrial/tricarboxylic acid cycle (TCA cycle) activities), were examined in isolated C57BL/6N mouse hearts perfused with either (a) glucose + fatty acids (FA) ("mild glycolysis group"), (b) lactate + pyruvate + FA ("no glycolysis group"), or (c) glucose + FA + insulin ("high glycolysis group"). NR increased cardiac NAD+ in all three metabolic groups. In glucose + FA perfused hearts, NR reduced IR injury, increased glycolytic intermediate phosphoenolpyruvate (PEP), TCA intermediate succinate and PPP intermediates ribose-5P (R5P) / sedoheptulose-7P (S7P), and was associated with activated glycolysis, without changes in TCA cycle or PPP activities. In the "no glycolysis" hearts, NR protection was lost, whereas NR still increased S7P. In the insulin hearts, glycolysis was largely accelerated, and NR protection abrogated. NR still increased PPP intermediates, with now high 13C-labeling of S7P, but NR was unable to increase metabolic pathway activities, including glycolysis. Protection by NR against IRI is only present in hearts with low glycolysis, and is associated with activation of glycolysis. When activation of glycolysis was prevented, through either examining "no glycolysis" hearts or "high glycolysis" hearts, NR protection was abolished. The data suggest that NR's acute cardioprotective effects are mediated through glycolysis activation and are lost in the presence of insulin because of already elevated glycolysis.
Collapse
Affiliation(s)
- Y Xiao
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Q Wang
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - H Zhang
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - R Nederlof
- Institut für Herz- und Kreislaufphysiologie, Medizinische fakultät und Universitätsklinikum Düsseldorf, Heinrich- Heine- Universität Düsseldorf, Düsseldorf, Germany
| | - D Bakker
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - B A Siadari
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - M W Wesselink
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - B Preckel
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - N C Weber
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - M W Hollmann
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
| | - B V Schomakers
- Laboratory Genetic Metabolic Diseases, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - M van Weeghel
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Location Academic Medical Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, The Netherlands
| | - C J Zuurbier
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences Institute, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Vizuete AFK, Fróes F, Seady M, Hansen F, Ligabue-Braun R, Gonçalves CA, Souza DO. A Mechanism of Action of Metformin in the Brain: Prevention of Methylglyoxal-Induced Glutamatergic Impairment in Acute Hippocampal Slices. Mol Neurobiol 2024; 61:3223-3239. [PMID: 37980327 DOI: 10.1007/s12035-023-03774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified. Herein, we investigated the neuroprotective role of metformin in acute hippocampal slices exposed to methylglyoxal (MG), a highly reactive dicarbonyl compound and a key molecule in T2D developmental pathophysiology. Metformin protected acute hippocampal slices from MG-induced glutamatergic neurotoxicity and neuroinflammation by reducing IL-1β synthesis and secretion and RAGE protein expression. The drug also improved astrocyte function, particularly with regard to the glutamatergic system, increasing glutamate uptake. Moreover, we observed a direct effect of metformin on glutamate transporters, where the compound prevented glycation, by facilitating enzymatic phosphorylation close to Lys residues, suggesting a new neuroprotective role of metformin via PKC ζ in preventing dysfunction in glutamatergic system induced by MG.
Collapse
Affiliation(s)
- Adriana Fernanda K Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| | - Fernanda Fróes
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Seady
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Hansen
- Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre, 90050-130, Brazil
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Diogo O Souza
- Post Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
7
|
Singh A, Tiwari S, Singh S. Pirh2 modulates the mitochondrial function and cytochrome c-mediated neuronal death during Alzheimer's disease. Cell Death Dis 2024; 15:331. [PMID: 38740775 PMCID: PMC11091053 DOI: 10.1038/s41419-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aβ1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, βamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.
Collapse
Affiliation(s)
- Abhishek Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubhangini Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of lactate production by hexokinases binding to mitochondria in single cells. PLoS One 2024; 19:e0300150. [PMID: 38457438 PMCID: PMC10923494 DOI: 10.1371/journal.pone.0300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Maia JRLCB, Machado LKA, Fernandes GG, Vitorino LC, Antônio LS, Araújo SMB, Colodeti LC, Fontes-Dantas FL, Zeidler JD, Saraiva GN, Da Poian AT, Figueiredo CP, Passos GF, da Costa R. Mitotherapy prevents peripheral neuropathy induced by oxaliplatin in mice. Neuropharmacology 2024; 245:109828. [PMID: 38158014 DOI: 10.1016/j.neuropharm.2023.109828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Oxaliplatin (OXA) is an antineoplastic agent used for the treatment of cisplatin-resistant tumours, presenting lower incidence of nephrotoxicity and myelotoxicity than other platinum-based drugs. However, OXA treatment is highly associated with painful peripheral neuropathy, a well-known and relevant side effect caused by mitochondrial dysfunction. The transfer of functional exogenous mitochondria (mitotherapy) is a promising therapeutic strategy for mitochondrial diseases. We investigated the effect of mitotherapy on oxaliplatin-induced painful peripheral neuropathy (OIPN) in male mice. OIPN was induced by i.p. injections of oxaliplatin (3 mg/kg) over 5 consecutive days. Mechanical (von Frey test) and cold (acetone drop test) allodynia were evaluated between 7 and 17 days after the first OXA treatment. Mitochondria was isolated from donor mouse livers and mitochondrial oxidative phosphorylation was assessed with high resolution respirometry. After confirming that the isolated mitochondria were functional, the organelles were administered at the dose of 0.5 mg/kg of mitochondrial protein on days 1, 3 and 5. Treatment with OXA caused both mechanical and cold allodynia in mice that were significant 7 days after the initial injection of OXA and persisted for up to 17 days. Mitotherapy significantly prevented the development of both sensory alterations, and attenuated body weight loss induced by OXA. Mitotherapy also prevented spinal cord ERK1/2 activation, microgliosis and the increase in TLR4 mRNA levels. Mitotherapy prevented OIPN by inhibiting neuroinflammation and the consequent cellular overactivity in the spinal cord, presenting a potential therapeutic strategy for pain management in oncologic patients undergoing OXA treatment.
Collapse
Affiliation(s)
- João R L C B Maia
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Loreena K A Machado
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel G Fernandes
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Louise C Vitorino
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Letícia S Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Maria B Araújo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lilian C Colodeti
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabrícia L Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julianna D Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Georgia N Saraiva
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Giselle F Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Robson da Costa
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Vyssokikh MY, Vigovskiy MA, Philippov VV, Boroday YR, Marey MV, Grigorieva OA, Vepkhvadze TF, Kurochkina NS, Manukhova LA, Efimenko AY, Popov DV, Skulachev VP. Age-Dependent Changes in the Production of Mitochondrial Reactive Oxygen Species in Human Skeletal Muscle. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:299-312. [PMID: 38622097 DOI: 10.1134/s0006297924020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 04/17/2024]
Abstract
A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.
Collapse
Affiliation(s)
- Mikhail Yu Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Maksim A Vigovskiy
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Vladislav V Philippov
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Yakov R Boroday
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Mariya V Marey
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
| | - Olga A Grigorieva
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Tatiana F Vepkhvadze
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Nadezhda S Kurochkina
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Ludmila A Manukhova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov, Moscow, 117997, Russia
| | - Anastasiya Yu Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Daniil V Popov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, 123007, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
11
|
Ogbodo AK, Mustafov D, Arora M, Lambrou GI, Braoudaki M, Siddiqui SS. Analysis of SIGLEC12 expression, immunomodulation and prognostic value in renal cancer using multiomic databases. Heliyon 2024; 10:e24286. [PMID: 38268823 PMCID: PMC10803920 DOI: 10.1016/j.heliyon.2024.e24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
Siglecs belong to a family of immune regulatory receptors predominantly found on hematopoietic cells. They interact with Sia, resulting in the activation or inhibition of the immune response. Previous reports have suggested that the SIGLEC12 gene, which encodes the Siglec-XII protein, is expressed in the epithelial tissues and upregulated in carcinomas. However, studies deciphering the role of Siglec-XII in renal cancer (RC) are still unavailable, and here we provide insights on this question. We conducted expression analysis using the Human Protein Atlas and UALCAN databases. The impact of SIGLEC12 on RC prognosis was determined using the KM plotter, and an assessment of immune infiltration with SIGLEC12 was performed using the TIMER database. GSEA was conducted to identify the pathways affected by SIGLEC12. Finally, using GeneMania, we identified Siglec-XII interacting proteins. Our findings indicated that macrophages express SIGLEC12 in the kidney. Furthermore, we hypothesize that Siglec-XII expression might be involved in the increase of primary RC, but this effect may not be dependent on the age of the patient. In the tumour microenvironment, oncogenic pathways appeared to be upregulated by SIGLEC12. Similarly, our analysis suggested that SIGLEC12-related kidney renal papillary cell carcinomas may be more suitable for targeted immunotherapy, such as CTLA-4 and PD-1/PD-L1 inhibitors. These preliminary results suggested that high expression of SIGLEC12 is associated with poor prognosis for RC. Future studies to assess its clinical utility are necessitated.
Collapse
Affiliation(s)
- Amobichukwu K. Ogbodo
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
- #Current Address: Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, United Kingdom
| | - Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
- College of Health, Medicine, and Life Science, Brunel University London UB8 3PH, United Kingdom
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Paediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece, Thivon & Levadeias 8, 11527, Goudi, Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
| | - Shoib S. Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, United Kingdom
| |
Collapse
|
12
|
Yako H, Niimi N, Takaku S, Sango K. Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1208441. [PMID: 38089620 PMCID: PMC10715313 DOI: 10.3389/fendo.2023.1208441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Various animal and cell culture models of diabetes mellitus (DM) have been established and utilized to study diabetic peripheral neuropathy (DPN). The divergence of metabolic abnormalities among these models makes their etiology complicated despite some similarities regarding the pathological and neurological features of DPN. Thus, this study aimed to review the omics approaches toward DPN, especially on the metabolic states in diabetic rats and mice induced by chemicals (streptozotocin and alloxan) as type 1 DM models and by genetic mutations (MKR, db/db and ob/ob) and high-fat diet as type 2 DM models. Omics approaches revealed that the pathways associated with lipid metabolism and inflammation in dorsal root ganglia and sciatic nerves were enriched and controlled in the levels of gene expression among these animal models. Additionally, these pathways were conserved in human DPN, indicating the pivotal pathogeneses of DPN. Omics approaches are beneficial tools to better understand the association of metabolic changes with morphological and functional abnormalities in DPN.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Camacho-Pereira J, Lai de Souza LO, Chichierchio MS, Rodrigues-Chaves C, Lomba LDS, Fonseca-Oliveira M, Carvalho-Mendonça D, Silva-Rodrigues T, Galina A. The NADase CD38 may not dictate NAD levels in brain mitochondria of aged mice but regulates hydrogen peroxide generation. Free Radic Biol Med 2023; 209:29-39. [PMID: 37774804 DOI: 10.1016/j.freeradbiomed.2023.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Aging is a time-related functional decline that affects many species. One of the hallmarks of aging is mitochondrial dysfunction, which leads to metabolic decline. The NAD decline during aging, in several tissues, correlates with increase in NADase activity of CD38. Knock out or pharmacological inhibition of CD38 activity can rescue mitochondrial function in several tissues, however, the role of CD38 in controlling NAD levels and metabolic function in the aging brain is unknown. In this work, we investigated CD38 NADase activity controlling NAD levels and mitochondrial function in mice brain with aging. We demonstrate that NADase activity of CD38 does not dictate NAD total levels in brain of aging mice and does not control mitochondrial oxygen consumption nor other oxygen parameters markers of mitochondrial dysfunction. However, for the first time we show that CD38 regulates hydrogen peroxide (H2O2) generation, one of the reactive oxygen species (ROS) in aging brain, through regulation of pyruvate dehydrogenase and alfa-ketoglutarate dehydrogenase, as mitochondria H2O2 leakage sites. The effect may be related to mitochondrial calcium handling differences in CD38 absence. Our study highlights a novel role of CD38 in brain energy metabolism and aging.
Collapse
Affiliation(s)
- Juliana Camacho-Pereira
- Laboratório de Biologia Molecular de Leveduras, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Leonardo Osbourne Lai de Souza
- Laboratório de Biologia Molecular de Leveduras, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Marina Santos Chichierchio
- Laboratório de Biologia Molecular de Leveduras, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Camila Rodrigues-Chaves
- Laboratório de Bioenergética e Fisiologia Mitocondrial, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Luiza de Sousa Lomba
- Laboratório de Bioenergética e Fisiologia Mitocondrial, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Manoel Fonseca-Oliveira
- Laboratório de Bioenergética e Fisiologia Mitocondrial, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Daniel Carvalho-Mendonça
- Laboratório de Biologia Molecular de Leveduras, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Thaia Silva-Rodrigues
- Laboratório de Bioenergética e Fisiologia Mitocondrial, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| | - Antonio Galina
- Laboratório de Bioenergética e Fisiologia Mitocondrial, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
14
|
Yao Y, Chen Z, Wu Q, Lu Y, Zhou X, Zhu X. Single-cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell-type-specific mechanisms. MedComm (Beijing) 2023; 4:e372. [PMID: 37746666 PMCID: PMC10511833 DOI: 10.1002/mco2.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
High myopia is a leading cause of blindness worldwide with increasing prevalence. Retina percepts visual information and triggers myopia development, but the underlying etiology is not fully understood because of cellular heterogeneity. In this study, single-cell RNA sequencing analysis was performed on retinas of mouse highly myopic and control eyes to dissect the involvement of each cell type during high myopia progression. For highly myopic photoreceptors, Hk2 inhibition underlying metabolic remodeling from aerobic glycolysis toward oxidative phosphorylation and excessive oxidative stress was identified. Importantly, a novel Apoe + rod subpopulation was specifically identified in highly myopic retina. In retinal neurons of highly myopic eyes, neurodegeneration was generally discovered, and the imbalanced ON/OFF signaling driven by cone-bipolar cells and the downregulated dopamine receptors in amacrine cells were among the most predominant findings, indicating the aberrant light processing in highly myopic eyes. Besides, microglia exhibited elevated expression of cytokines and TGF-β receptors, suggesting enhanced responses to inflammation and the growth-promoting states involved in high myopia progression. Furthermore, cell-cell communication network revealed attenuated neuronal interactions and increased glial/vascular interactions in highly myopic retinas. In conclusion, this study outlines the transcriptional landscape of highly myopic retina, providing novel insights into high myopia development and prevention.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Yi Lu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xingtao Zhou
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Xiangjia Zhu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Galvan-Alvarez V, Martin-Rincon M, Gallego-Selles A, Martínez Canton M, HamedChaman N, Gelabert-Rebato M, Perez-Valera M, García-Gonzalez E, Santana A, Holmberg HC, Boushel R, Hallén J, Calbet JAL. Determinants of the maximal functional reserve during repeated supramaximal exercise by humans: The roles of Nrf2/Keap1, antioxidant proteins, muscle phenotype and oxygenation. Redox Biol 2023; 66:102859. [PMID: 37666117 PMCID: PMC10491831 DOI: 10.1016/j.redox.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
When high-intensity exercise is performed until exhaustion a "functional reserve" (FR) or capacity to produce power at the same level or higher than reached at exhaustion exists at task failure, which could be related to reactive oxygen and nitrogen species (RONS)-sensing and counteracting mechanisms. Nonetheless, the magnitude of this FR remains unknown. Repeated bouts of supramaximal exercise at 120% of VO2max interspaced with 20s recovery periods with full ischaemia were used to determine the maximal FR. Then, we determined which muscle phenotypic features could account for the variability in functional reserve in humans. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation (near-infrared spectroscopy) were measured, and resting muscle biopsies were obtained from 43 young healthy adults (30 males). Males and females had similar aerobic (VO2max per kg of lower extremities lean mass (LLM): 166.7 ± 17.1 and 166.1 ± 15.6 ml kg LLM-1.min-1, P = 0.84) and anaerobic fitness (similar performance in the Wingate test and maximal accumulated oxygen deficit when normalized to LLM). The maximal FR was similar in males and females when normalized to LLM (1.84 ± 0.50 and 2.05 ± 0.59 kJ kg LLM-1, in males and females, respectively, P = 0.218). This FR depends on an obligatory component relying on a reserve in glycolytic capacity and a putative component generated by oxidative phosphorylation. The aerobic component depends on brain oxygenation and phenotypic features of the skeletal muscles implicated in calcium handling (SERCA1 and 2 protein expression), oxygen transport and diffusion (myoglobin) and redox regulation (Keap1). The glycolytic component can be predicted by the protein expression levels of pSer40-Nrf2, the maximal accumulated oxygen deficit and the protein expression levels of SOD1. Thus, an increased capacity to modulate the expression of antioxidant proteins involved in RONS handling and calcium homeostasis may be critical for performance during high-intensity exercise in humans.
Collapse
Affiliation(s)
- Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Miriam Martínez Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - NaDer HamedChaman
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Eduardo García-Gonzalez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Clinical Genetics Unit, 35016, Las Palmas de Gran Canaria, Spain
| | - Hans-Christer Holmberg
- Department of Health Sciences, Luleå University of Technology, Sweden; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada
| | - Jostein Hallén
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway.
| |
Collapse
|
16
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
17
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
18
|
Catalano G, Zaza A, Banella C, Pelosi E, Castelli G, de Marinis E, Smigliani A, Travaglini S, Ottone T, Divona M, Del Principe MI, Buccisano F, Maurillo L, Ammatuna E, Testa U, Nervi C, Venditti A, Voso MT, Noguera NI. MCL1 regulates AML cells metabolism via direct interaction with HK2. Metabolic signature at onset predicts overall survival in AMLs' patients. Leukemia 2023; 37:1600-1610. [PMID: 37349598 DOI: 10.1038/s41375-023-01946-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.
Collapse
Affiliation(s)
- Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Alessandra Zaza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Cristina Banella
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, Florence, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta de Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, Rome, Italy
| | - Ariela Smigliani
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Ammatuna
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Clara Nervi
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy.
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy.
| |
Collapse
|
19
|
León M, Prieto J, Molina-Navarro MM, García-García F, Barneo-Muñoz M, Ponsoda X, Sáez R, Palau F, Dopazo J, Izpisua Belmonte JC, Torres J. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov 2023; 9:217. [PMID: 37393339 DOI: 10.1038/s41420-023-01531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. A Redox-immune axis underlying motor neuron degeneration caused by the absence of Gdap1. Our results show that Gdap1-/- motor neurons have a fragile cellular phenotype that is prone to degeneration. Gdap1-/- iPSCs differentiated into motor neurons showed an altered metabolic state: decreased glycolysis and increased OXPHOS. These alterations may lead to hyperpolarization of mitochondria and increased ROS levels. Excessive amounts of ROS might be the cause of increased mitophagy, p38 activation and inflammation as a cellular response to oxidative stress. The p38 MAPK pathway and the immune response may, in turn, have feedback mechanisms, leading to the induction of apoptosis and senescence, respectively. CAC, citric acid cycle; ETC, electronic transport chain; Glc, glucose; Lac, lactate; Pyr, pyruvate.
Collapse
Affiliation(s)
- Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - María Micaela Molina-Navarro
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francisco García-García
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat Predepartamental de Medicina, Universidad Jaume I, Castellón de la Plana, Castellón, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Rosana Sáez
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francesc Palau
- Institut de Recerca and Hospital San Joan de Déu, 08950, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquín Dopazo
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, 5510 Morehouse Drive, San Diego, CA, 92121, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain.
- Instituto de Investigación Sanitaria (INCLIVA), 46010, València, Spain.
| |
Collapse
|
20
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
21
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
22
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
23
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zhang X, Wu L, Swerdlow RH, Zhao L. Opposing Effects of ApoE2 and ApoE4 on Glycolytic Metabolism in Neuronal Aging Supports a Warburg Neuroprotective Cascade against Alzheimer's Disease. Cells 2023; 12:410. [PMID: 36766752 PMCID: PMC9914046 DOI: 10.3390/cells12030410] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
25
|
Vorotnikov AV, Khapchaev AY, Nickashin AV, Shirinsky VP. In Vitro Modeling of Diabetes Impact on Vascular Endothelium: Are Essentials Engaged to Tune Metabolism? Biomedicines 2022; 10:biomedicines10123181. [PMID: 36551937 PMCID: PMC9775148 DOI: 10.3390/biomedicines10123181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Angiopathy is a common complication of diabetes mellitus. Vascular endothelium is among the first targets to experience blood-borne metabolic alterations, such as hyperglycemia and hyperlipidemia, the hallmarks of type 2 diabetes. To explore mechanisms of vascular dysfunction and eventual damage brought by these pathologic conditions and to find ways to protect vasculature in diabetic patients, various research approaches are used including in vitro endothelial cell-based models. We present an analysis of the data available from these models that identifies early endothelial cell apoptosis associated with oxidative stress as the major outcome of mimicking hyperglycemia and hyperlipidemia in vitro. However, the fate of endothelial cells observed in these studies does not closely follow it in vivo where massive endothelial damage occurs mainly in the terminal stages of diabetes and in conjunction with comorbidities. We propose that the discrepancy is likely in missing essentials that should be available to cultured endothelial cells to adjust the metabolic state and withstand the immediate apoptosis. We discuss the role of carnitine, creatine, and AMP-activated protein kinase (AMPK) in suiting the endothelial metabolism for long-term function in diabetic type milieu in vitro. Engagement of these essentials is anticipated to expand diabetes research options when using endothelial cell-based models.
Collapse
|
26
|
Mei L, Chen Y, Chen P, Chen H, He S, Jin C, Wang Y, Hu Z, Li W, Jin L, Cong W, Wang X, Guan X. Fibroblast growth factor 7 alleviates myocardial infarction by improving oxidative stress via PI3Kα/AKT-mediated regulation of Nrf2 and HXK2. Redox Biol 2022; 56:102468. [PMID: 36113339 PMCID: PMC9482143 DOI: 10.1016/j.redox.2022.102468] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myocardial infarction (MI) triggers oxidative stress, which worsen cardiac function, eventually leads to remodeling and heart failure. Unfortunately, effective therapeutic approaches are lacking. Fibroblast growth factor 7 (FGF7) is proved with respect to its proliferative effects and high expression level during embryonic heart development. However, the regulatory role of FGF7 in cardiovascular disease, especially MI, remains unclear. FGF7 expression was significantly decreased in a mouse model at 7 days after MI. Further experiments suggested that FGF7 alleviated MI-induced cell apoptosis and improved cardiac function. Mechanistic studies revealed that FGF7 attenuated MI by inhibiting oxidative stress. Overexpression of FGF7 actives nuclear factor erythroid 2-related factor 2 (Nrf2) and scavenging of reactive oxygen species (ROS), and thereby improved oxidative stress, mainly controlled by the phosphatidylinositol-3-kinase α (PI3Kα)/AKT signaling pathway. The effects of FGF7 were partly abrogated in Nrf2 deficiency mice. In addition, overexpression of FGF7 promoted hexokinase2 (HXK2) and mitochondrial membrane translocation and suppressed mitochondrial superoxide production to decrease oxidative stress. The role of HXK2 in FGF7-mediated improvement of mitochondrial superoxide production and protection against MI was verified using a HXK2 inhibitor (3-BrPA) and a HXKII VDAC binding domain (HXK2VBD) peptide, which competitively inhibits localization of HXK2 on mitochondria. Furthermore, inhibition of PI3Kα/AKT signaling abolished regulation of Nrf2 and HXK2 by FGF7 upon MI. Together, these results indicate that the cardio protection of FGF7 under MI injury is mostly attributable to its role in maintaining redox homeostasis via Nrf2 and HXK2, which is mediated by PI3Kα/AKT signaling. The expression of FGF7 in cardiomyocytes is decreased upon myocardial infarction (MI). Overexpression of FGF7 in the heart protects against cardiomyocytes apoptosis in a rodent model of MI. FGF7 attenuates MI-induced cardiac apoptosis via maintaining redox homeostasis. FGF7 maintains redox homeostasis by promoting mitochondrial HXK2 localization and Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Lin Mei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China; Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yunjie Chen
- Department of Pharmacy, Ningbo First Hospital, Ningbo, 315010, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wanqian Li
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, 318000, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
27
|
Vays V, Vangeli I, Eldarov C, Popkov V, Holtze S, Hildebrandt T, Averina O, Zorov D, Bakeeva L. Unique Features of the Tissue Structure in the Naked Mole Rat ( Heterocephalus glaber): Hypertrophy of the Endoplasmic Reticulum and Spatial Mitochondrial Rearrangements in Hepatocytes. Int J Mol Sci 2022; 23:ijms23169067. [PMID: 36012332 PMCID: PMC9409344 DOI: 10.3390/ijms23169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.
Collapse
Affiliation(s)
- Valeriya Vays
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina Vangeli
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Chupalav Eldarov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vasily Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Olga Averina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (D.Z.); (L.B.); Tel.: +7-4959395944 (D.Z. & L.B.)
| | - Lora Bakeeva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (D.Z.); (L.B.); Tel.: +7-4959395944 (D.Z. & L.B.)
| |
Collapse
|
28
|
Oliveira T, Lemos D, Jean L, Kawashima JM, de Azevedo VR, Salustiano EJ, Rumjanek VM, Monteiro RQ. Detachment of Hexokinase II From Mitochondria Promotes Collateral Sensitivity in Multidrug Resistant Chronic Myeloid Leukemia Cells. Front Oncol 2022; 12:852985. [PMID: 35719932 PMCID: PMC9204307 DOI: 10.3389/fonc.2022.852985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic Myeloid Leukemia is a neoplastic disease characterized by the abnormal expansion of hematopoietic cells with compromised functions. Leukemic cells often display a multidrug resistance phenotype, enabling them to evade a number of structurally unrelated cytotoxic compounds. One of those mechanisms relies on the high expression of efflux transporters, such as the ABC proteins, whose activity depends on the hydrolysis of ATP to reduce intracellular drug accumulation. In the present work, we employed a well-known erythroleukemia cell line, K562, and a multidrug resistant derivative cell, FEPS, to evaluate how hexokinase II, a key regulator for the rate-limiting step glycolysis, contributes to the establishment of the multidrug resistance phenotype. We found that multidrug resistant cells primarily resort to glycolysis to generate ATP. Clotrimazole reduced the expression of mitochondrial hexokinase II, which destabilized bioenergetic parameters such as reactive oxygen species production, ATP, and glutathione levels on multidrug resistant cells. This impaired the activity of ABCC1, leading to increased drug accumulation and cell death. In summary, we propose that decoupling of hexokinase II from the mitochondria emerges as a promising strategy to generate collateral sensitivity and aid in the management of chronic myeloid leukemia in chemotherapy-refractory patients.
Collapse
Affiliation(s)
- Thaís Oliveira
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Lemos
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louise Jean
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica M Kawashima
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitória R de Azevedo
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo J Salustiano
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q Monteiro
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Wasserman DH. Insulin, Muscle Glucose Uptake, and Hexokinase: Revisiting the Road Not Taken. Physiology (Bethesda) 2022; 37:115-127. [PMID: 34779282 PMCID: PMC8977147 DOI: 10.1152/physiol.00034.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
Research conducted over the last 50 yr has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane Transport alone, however, does not result in net glucose uptake as free glucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucose cannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter (GLUT4) in skeletal muscle. By contrast, the insulin-regulated hexokinase (hexokinase II) parallels Robert Frost's "The Road Not Taken." Here the case is made that an understanding of glucose phosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can be regulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.
Collapse
Affiliation(s)
- David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
30
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
31
|
Hexokinase 2 Inhibition and Biological Effects of BNBZ and Its Derivatives: The Influence of the Number and Arrangement of Hydroxyl Groups. Int J Mol Sci 2022; 23:ijms23052616. [PMID: 35269760 PMCID: PMC8910004 DOI: 10.3390/ijms23052616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Hexokinase 2 (HK2), an enzyme of the sugar kinase family, plays a dual role in glucose metabolism and mediating cancer cell apoptosis, making it an attractive target for cancer therapy. While positive HK2 expression usually promotes cancer cells survival, silencing or inhibiting this enzyme has been found to improve the effectiveness of anti-cancer drugs and even result in cancer cell death. Previously, benitrobenrazide (BNBZ) was characterized as a potent HK2 inhibitor with good anti-cancer activity in mice, but the effect of its trihydroxy moiety (pyrogallol-like) on inhibitory activity and some cellular functions has not been fully understood. Therefore, the main goal of this study was to obtain the parent BNBZ (2a) and its three dihydroxy derivatives 2b–2d and to conduct additional physicochemical and biological investigations. The research hypothesis assumed that the HK2 inhibitory activity of the tested compounds depends on the number and location of hydroxyl groups in their chemical structure. Among many studies, the binding affinity to HK2 was determined and two human liver cancer cell lines, HepG2 and HUH7, were used and exposed to chemicals at various times: 24 h, 48 h and 72 h. The study showed that the modifications to the structures of the new BNBZ derivatives led to significant changes in their activities. It was also found that these compounds tend to aggregate and exhibit toxic effects. They were found to contribute to: (a) DNA damage, (b) increased ROS production, and (c) disruption of cell cycle progression. It was observed that, HepG2, occurred much more sensitive to the tested chemicals than the HUH7 cells; However, regardless of the used cell line it seems that the increase in the expression of HK2 in cancer cells compared to normal cells which have HK2 at a very low level, is a serious obstacle in anti-cancer therapy and efforts to find the effective inhibitors of this enzyme should be intensified.
Collapse
|
32
|
Zhao M, Wang Q, Liu L, Geng T, Gong D. Mitochondrial-bound hexokinase 1 can affect the glucolipid metabolism and reactive oxygen species production in goose fatty liver. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2029589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qian Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Wu Q, Wang SP, Sun XX, Tao YF, Yuan XQ, Chen QM, Dai L, Li CL, Zhang JY, Yang AL. HuaChanSu suppresses tumor growth and interferes with glucose metabolism in hepatocellular carcinoma cells by restraining Hexokinase-2. Int J Biochem Cell Biol 2022; 142:106123. [PMID: 34826616 DOI: 10.1016/j.biocel.2021.106123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) has become the sixth highly diagnosed cancer and the fourth main reason of cancer deaths worldwide. HuaChanSu, an extract from dried toad skin, exhibits good anticancer effects and has been widely used in the treatment of liver cancer. The reprogramming of glucose metabolism is one remarkable feature of hepatocellular carcinoma, and the effects of HuaChanSu on the abnormal glucose metabolism of cancer cells have not been elucidated. In our study, we investigate the effects of HuaChanSu on glucose metabolism of hepatocellular carcinoma cells and tumor growth in vivo. The results show that HuaChanSu inhibits the tumor growth of hepatoma H22-bearing mice and prolongs the survival time of tumor-bearing mice, additionally, HuaChanSu has no obvious adverse effects in these mice. In vitro, HuaChanSu restrains the proliferation, induces apoptosis and cell cycle arrest of human hepatoma cells. HuaChanSu also promotes ROS production and causes mitochondrial damage. Furthermore, HuaChanSu inhibits glucose uptake and lactate release in human hepatoma cells. Mechanistically, we find that HuaChanSu downregulates Hexokinase-2 (HK2) expression, and using RNA interference, we confirm that HuaChanSu suppresses the growth of HepG2 cells by interfering with glucose metabolism through downregulation of Hexokinase-2. However, knockdown of Hexokinase-2 has no obvious effect on the proliferation of SK-HEP-1 cells, although glucose uptake and lactate release are reduced in siHK2-transfected SK-HEP-1 cells, subsequently, we illustrate that two human hepatoma cell lines exhibit glucose metabolism heterogeneity, which causes the different cell proliferation responses to the inhibition of Hexokinase-2. Taken together, our study indicates that HuaChanSu could inhibit tumor growth and interfere with glucose metabolism via suppression of Hexokinase-2, and these findings provide a new insight into the anti-hepatoma mechanisms of HuaChanSu and lay a theoretical foundation for the further clinical application of HuaChanSu.
Collapse
Affiliation(s)
- Qi Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shao-Ping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Xue Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu-Fan Tao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Qing Yuan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qi-Mei Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chun-Lei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 510632, China.
| | - Jia-Yu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Ai-Lin Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
34
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
35
|
Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells. Biosci Rep 2021; 41:230295. [PMID: 34821365 PMCID: PMC8661505 DOI: 10.1042/bsr20211191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.
Collapse
|
36
|
Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation. Neurochem Res 2021; 47:470-480. [PMID: 34623563 DOI: 10.1007/s11064-021-03463-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Glucose and oxygen (O2) are vital to the brain. Glucose metabolism and mitochondria play a pivotal role in this process, culminating in the increase of reactive O2 species. Hexokinase (HK) is a key enzyme on glucose metabolism and is coupled to the brain mitochondrial redox modulation by recycling ADP for oxidative phosphorylation (OXPHOS). GABA shunt is an alternative pathway to GABA metabolism that increases succinate levels, a Krebs cycle intermediate. Although glucose and GABA metabolisms are intrinsically connected, their interplay coordinating mitochondrial function is poorly understood. Here, we hypothesize that the HK and the GABA shunt interact to control mitochondrial metabolism differently in the cortex and the hypothalamus. The GABA shunt stimulated mitochondrial O2 consumption and H2O2 production higher in hypothalamic synaptosomes (HSy) than cortical synaptosomes (CSy). The GABA shunt increased the HK coupled to OXPHOS activity in both population of synaptosomes, but the rate of activation was higher in HSy than CSy. Significantly, malonate and vigabatrin blocked the effects of the GABA shunt in the HK activity coupled to OXPHOS. It indicates that the glucose phosphorylation is linked to GABA and Krebs cycle reactions. Together, these data shed light on the HK and SDH role on the metabolism of each region fed by GABA turnover, which depends on the neurons' metabolic route.
Collapse
|
37
|
Li W, Zeng H, Xu M, Huang C, Tao L, Li J, Zhang T, Chen H, Xia J, Li C, Li X. Oleanolic Acid Improves Obesity-Related Inflammation and Insulin Resistance by Regulating Macrophages Activation. Front Pharmacol 2021; 12:697483. [PMID: 34393781 PMCID: PMC8361479 DOI: 10.3389/fphar.2021.697483] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
The chronic low-grade inflammation of adipose tissues, primarily mediated by adipose tissue macrophages (ATMs), is the key pathogenic link between obesity and metabolic disorders. Oleanolic acid (OA) is a natural triterpenoid possessing anti-diabetic and anti-inflammation effects, but the machinery is poorly understood. This study investigated the detailed mechanisms of OA on adipose tissue inflammation in obese mice. C57BL/6J mice were fed with high-fat diet (HFD) for 12 weeks, then daily intragastric administrated with vehicle, 25 and 50 mg/kg OA for 4 weeks. Comparing with vehicle, OA administration in obese mice greatly improved insulin resistance, and reduced adipose tissue hypertrophy, ATM infiltration as well as the M1/M2 ratio. The pro-inflammatory markers were significantly down-regulated by OA in both adipose tissue of obese mice and RAW264.7 macrophages treated with interferon gamma/lipopolysaccharide (IFN-γ/LPS). Furthermore, it was found that OA suppressed activation of mitogen-activated protein kinase (MAPK) signaling and NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome through decreasing voltage dependent anion channels (VDAC) expression and reactive oxygen species (ROS) production. This is the first report that oleanolic acid exerts its benefits by affecting mitochondrial function and macrophage activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chunli Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, da Silva-Álvarez E, Rojo-Domínguez P, Tapia JA, Gil MC, Ortega-Ferrusola C, Peña FJ. Proteins involved in mitochondrial metabolic functions and fertilization predominate in stallions with better motility. J Proteomics 2021; 247:104335. [PMID: 34298182 DOI: 10.1016/j.jprot.2021.104335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Even in stallions with sperm quality within normal reference ranges at ejaculation, subtle differences in sperm quality exist that in many cases lead to reduced time frames for conservation of the ejaculate and/or reduced fertility. The spermatozoon is a cell highly suitable for proteomics studies, and the use of this technique is allowing rapid advances in the understanding of sperm biology. The aim of the present study was to investigate differences among stallions of variable sperm quality (based on motility and sperm velocities), although all horses had sperm characteristics within normal ranges. The proteome was studied using UHPLC/MS/MS and posterior bioinformatic and enrichment analysis; data are available via ProteomeXchange with identifier PXD025807. Sperm motility, linear motility and circular, straight line and average velocities (VCL, VSL, VAP) were measured using computer assisted sperm analysis (CASA). In stallions showing better percentages of motility, circular and average velocity predominated mitochondrial proteins with roles in the Citric acid cycle, pyruvate metabolism and oxidative phosphorylation. Interestingly, in stallions with better percentages of total motility, sperm proteins were also enriched in proteins within the gene ontology (G0) terms, single fertilization (G0: 0007338), fertilization (G0: 0009566), and zona pellucida receptor complex (GO:0002199). The enrichment of this proteins in samples with better percentages of total motility may offer a molecular explanation for the link between this parameter and fertility. SIGNIFICANCE: Proteomic analysis identified a high degree of specificity of stallion sperm proteins with discriminant power for motility, linear motility, and sperm velocities (VCL, VAP and VSL). These findings may represent an interesting outcome in relation to the molecular biology regulating the movement of the spermatozoa, and the biological meaning of the measurements that computer assisted sperm analysis (CASA) provide. Of a total of 903 proteins identified in stallion spermatozoa, 24 were related to the percentage of total motility in the sample; interestingly, gene ontology (G0) analysis revealed that these proteins were enriched in terms like single fertilization and fertilization, providing a molecular link between motility and fertility. Field studies indicate that the percentage of total motility is the CASA derived parameter with the best correlation with fertility in stallions.
Collapse
Affiliation(s)
- Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | | | - José A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
39
|
Yu L, Fink BD, Sivitz WI. Simultaneous Quantification of Mitochondrial ATP and ROS Production Using ATP Energy Clamp Methodology. Methods Mol Biol 2021; 2276:271-283. [PMID: 34060049 DOI: 10.1007/978-1-0716-1266-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several methods are available to measure ATP production by isolated mitochondria or permeabilized cells but have several limitations, depending upon the particular assay employed. These limitations may include poor sensitivity or specificity, complexity of the method, poor throughput, changes in mitochondrial inner membrane potential as ATP is consumed, and/or inability to simultaneously assess other mitochondrial functional parameters. Here we describe a novel nuclear magnetic resonance (NMR)-based assay that can be carried out with high efficiency in a manner that alleviates the above problems.
Collapse
Affiliation(s)
- Liping Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA
| | - Brian D Fink
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA
| | - William I Sivitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
40
|
Suzuki C, Han S, Kesavamoorthy G, Kosugi M, Araki K, Harada N, Kanazawa M, Tsukada H, Magata Y, Ouchi Y. Differences in in vitro microglial accumulation of the energy metabolism tracers [ 18F]FDG and [ 18F]BCPP-EF during LPS- and IL4 stimulation. Sci Rep 2021; 11:13200. [PMID: 34168190 PMCID: PMC8225620 DOI: 10.1038/s41598-021-92436-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023] Open
Abstract
The positron emission tomography probes 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) are designed to evaluate glycolysis and oxidative phosphorylation, respectively, and are both used to estimate neuronal activity. However, previous studies have shown a discrepancy in these probes' accumulation in the compromised region, possibly due to the presence of activated microglia acting like deleterious or neuroprotective phenotypes. Hence, we evaluated lipopolysaccharide (LPS)- and interleukin 4 (IL4)-stimulated microglial uptake of [14C]2DG and [18F]BCPP-EF to give a new insight into the hypothesis that different uptake of [18F]FDG and [18F]BCPP-EF can be ascribed to the different metabolic pathways activated during microglial activation. LPS or IL4 stimulation increased the proinflammatory or anti-inflammatory marker gene expression in microglial cells. In LPS-stimulated cells, [14C]2DG uptake and glycolysis related gene expression were elevated, and [18F]BCPP-EF uptake was reduced. In IL4-stimulated cells, [18F]BCPP-EF uptake was increased, and [14C]2DG uptake was decreased. The expression of genes involved in glycolysis and mitochondrial complex I subunits was not changed by IL4 stimulation. The uptake of [14C]2DG and [18F]BCPP-EF differs in LPS- and IL4-stimulated polarized microglial cells. The present results suggest that the in vivo accumulation of metabolic tracers [18F]FDG and [18F]BCPP-EF can be influenced by the different aspects of neuroinflammation.
Collapse
Affiliation(s)
- Chie Suzuki
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Sarina Han
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Gandhervin Kesavamoorthy
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Mutsumi Kosugi
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Araki
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | | | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
41
|
Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells 2021; 10:1223. [PMID: 34067674 PMCID: PMC8155893 DOI: 10.3390/cells10051223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023] Open
Abstract
The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Raimondo Ascione
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 111 a, Kievskaya Street, 634012 Tomsk, Russia;
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
| | - M. Saadeh Suleiman
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| |
Collapse
|
42
|
Bou-Teen D, Kaludercic N, Weissman D, Turan B, Maack C, Di Lisa F, Ruiz-Meana M. Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med 2021; 167:109-124. [PMID: 33716106 DOI: 10.1016/j.freeradbiomed.2021.02.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Excessive mitochondrial ROS production has been causally linked to the pathophysiology of aging in the heart and other organs, and plays a deleterious role in several age-related cardiac pathologies, including myocardial ischemia-reperfusion injury and heart failure, the two worldwide leading causes of death and disability in the elderly. However, ROS generation is also a fundamental mitochondrial function that orchestrates several signaling pathways, some of them exerting cardioprotective effects. In cardiac myocytes, mitochondria are particularly abundant and are specialized in subcellular populations, in part determined by their relationships with other organelles and their cyclic calcium handling activity necessary for adequate myocardial contraction/relaxation and redox balance. Depending on their subcellular location, mitochondria can themselves be differentially targeted by ROS and display distinct age-dependent functional decline. Thus, precise mitochondria-targeted therapies aimed at counteracting unregulated ROS production are expected to have therapeutic benefits in certain aging-related heart conditions. However, for an adequate design of such therapies, it is necessary to unravel the complex and dynamic interactions between mitochondria and other cellular processes.
Collapse
Affiliation(s)
- Diana Bou-Teen
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR),Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), via Ugo Bassi 58/B, 35131, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35129, Padova, Italy
| | - David Weissman
- Comprehensive Heart Failure Center, University Clinic Würzburg, 97080, Würzburg, Germany
| | - Belma Turan
- Departments of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, 97080, Würzburg, Germany
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR), via Ugo Bassi 58/B, 35131, Padova, Italy; Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marisol Ruiz-Meana
- Hospital Universitari Vall d'Hebron, Department of Cardiology, Vall d'Hebron Institut de Recerca (VHIR),Universitat Autonoma de Barcelona, 08035, Barcelona, Spain; Centro de Investigación Biomédica en Red-CV, CIBER-CV, Spain.
| |
Collapse
|
43
|
Ortiz-Rodríguez JM, Martín-Cano FE, Gaitskell-Phillips GL, Silva A, Ortega-Ferrusola C, Gil MC, Peña FJ. Low glucose and high pyruvate reduce the production of 2-oxoaldehydes, improving mitochondrial efficiency, redox regulation, and stallion sperm function†. Biol Reprod 2021; 105:519-532. [PMID: 33864078 DOI: 10.1093/biolre/ioab073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Energy metabolism in spermatozoa is complex and involves the metabolism of carbohydrate fatty acids and amino acids. The ATP produced in the electron transport chain in the mitochondria appears to be crucial for both sperm motility and maintaining viability, whereas glycolytic enzymes in the flagella may contribute to ATP production to sustain motility and velocity. Stallion spermatozoa seemingly use diverse metabolic strategies, and in this regard, a study of the metabolic proteome showed that Gene Ontology terms and Reactome pathways related to pyruvate metabolism and the Krebs cycle were predominant. Following this, the hypothesis that low glucose concentrations can provide sufficient support for motility and velocity, and thus glucose concentration can be significantly reduced in the medium, was tested. Aliquots of stallion semen in four different media were stored for 48 h at 18°C; a commercial extender containing 67 mM glucose was used as a control. Stallion spermatozoa stored in media with low glucose (1 mM) and high pyruvate (10 mM) (LG-HP) sustained better motility and velocities than those stored in the commercial extender formulated with very high glucose (61.7 ± 1.2% in INRA 96 vs 76.2 ± 1.0% in LG-HP media after 48 h of incubation at 18°C; P < 0.0001). Moreover, mitochondrial activity was superior in LG-HP extenders (24.1 ± 1.8% in INRA 96 vs 51.1 ± 0.7% in LG-HP of spermatozoa with active mitochondria after 48 h of storage at 18°C; P < 0.0001). Low glucose concentrations may permit more efficient sperm metabolism and redox regulation when substrates for an efficient tricarboxylic acid cycle are provided. The improvement seen using low glucose extenders is due to reductions in the levels of glyoxal and methylglyoxal, 2-oxoaldehydes formed during glycolysis; these compounds are potent electrophiles able to react with proteins, lipids, and DNA, causing sperm damage.
Collapse
Affiliation(s)
- José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
44
|
Dumas G, Goubran‐Botros H, Matondo M, Pagan C, Boulègue C, Chaze T, Chamot‐Rooke J, Maronde E, Bourgeron T. Mass-spectrometry analysis of the human pineal proteome during night and day and in autism. J Pineal Res 2021; 70:e12713. [PMID: 33368564 PMCID: PMC8047921 DOI: 10.1111/jpi.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
- Precision Psychiatry and Social Physiology laboratoryCHU Ste‐Justine Research CenterDepartment of PsychiatryUniversity of MontrealQuebecQCCanada
| | - Hany Goubran‐Botros
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| | - Mariette Matondo
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Cécile Pagan
- Paris Descartes UniversityParisFrance
- Service de Biochimie et Biologie MoléculaireINSERM U942Hôpital LariboisièreAPHPParisFrance
| | - Cyril Boulègue
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Thibault Chaze
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Julia Chamot‐Rooke
- Institut PasteurUnité de Spectrométrie de Masse pour la Biologie (MSBio)Centre de Ressources et Recherches Technologiques (C2RT)USR 2000 CNRSParisFrance
| | - Erik Maronde
- Institute for Anatomy IIFaculty of MedicineGoethe UniversityFrankfurtGermany
| | - Thomas Bourgeron
- Human Genetics and Cognitive FunctionsInstitut PasteurUMR 3571 CNRSUniversity Paris DiderotParisFrance
| |
Collapse
|
45
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
46
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
47
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
48
|
Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 2021; 165:24-37. [PMID: 33484825 DOI: 10.1016/j.freeradbiomed.2021.01.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ 1105, Amsterdam, the Netherlands
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
49
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
50
|
Guimarães NC, Alves DS, Vilela WR, de-Souza-Ferreira E, Gomes BRB, Ott D, Murgott J, E N de Souza P, de Sousa MV, Galina A, Roth J, Fabro de Bem A, Veiga-Souza FH. Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain Behav Immun 2021; 92:90-101. [PMID: 33242651 DOI: 10.1016/j.bbi.2020.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.
Collapse
Affiliation(s)
- Natália C Guimarães
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Débora S Alves
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Wembley R Vilela
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Daniela Ott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Jolanta Murgott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Paulo E N de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília, DF, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil; School of Ceilândia, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|