1
|
Caputo A, Vipparthi K, Bazeley P, Downs-Kelly E, McIntire P, Duckworth LA, Ni Y, Hu B, Keri RA, Karaayvaz M. Spatial Transcriptomics Suggests That Alterations Occur in the Preneoplastic Breast Microenvironment of BRCA1/2 Mutation Carriers. Mol Cancer Res 2024; 22:169-180. [PMID: 37878345 PMCID: PMC10872731 DOI: 10.1158/1541-7786.mcr-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. Defects in mammary epithelial cell differentiation have been previously recognized in germline BRCA1/2 mutation carriers even before cancer incidence. However, the underlying mechanism is largely unknown. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from noncarrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that β1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells may differ from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than noncarrier breast tissues with more integrin receptor-expressing stromal cells. IMPLICATIONS These results suggest alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.
Collapse
Affiliation(s)
- Anthony Caputo
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kavya Vipparthi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erinn Downs-Kelly
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick McIntire
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren A. Duckworth
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mihriban Karaayvaz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, Kancharla S, Kolli P, Mandadapu G, Sahoo AK, Rath PK, Taneera J, Kumar S, Mohanty AK, Goh KW, Ming LC, Ardianto C. Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:491-508. [PMID: 37694522 DOI: 10.1080/21691401.2023.2252872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Syed Azmal Ali
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdullah Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, Malmo, Sweden
| | | | | | | | - Anjan Kumar Sahoo
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | - Khang Wen Goh
- Faculty Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Caputo A, Vipparthi K, Bazeley P, Downs-Kelly E, McIntire P, Ni Y, Hu B, Keri RA, Karaayvaz M. Alterations in the preneoplastic breast microenvironment of BRCA1/ 2 mutation carriers revealed by spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542078. [PMID: 37292816 PMCID: PMC10245938 DOI: 10.1101/2023.05.24.542078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Breast cancer is the most common cancer in females, affecting one in every eight women and accounting for the majority of cancer-related deaths in women worldwide. Germline mutations in the BRCA1 and BRCA2 genes are significant risk factors for specific subtypes of breast cancer. BRCA1 mutations are associated with basal-like breast cancers, whereas BRCA2 mutations are associated with luminal-like disease. There are currently few chemoprevention strategies available for BRCA1/2 mutation carriers, and irreversible prophylactic mastectomy is the primary option. Designing chemo-preventive strategies requires an in-depth understanding of the physiological processes underlying tumor initiation. Here, we employ spatial transcriptomics to investigate defects in mammary epithelial cell differentiation accompanied by distinct microenvironmental alterations in preneoplastic breast tissues from BRCA1/2 mutation carriers and normal breast tissues from non-carrier controls. We uncovered spatially defined receptor-ligand interactions in these tissues for the investigation of autocrine and paracrine signaling. We discovered that β1-integrin-mediated autocrine signaling in BRCA2-deficient mammary epithelial cells differs from BRCA1-deficient mammary epithelial cells. In addition, we found that the epithelial-to-stromal paracrine signaling in the breast tissues of BRCA1/2 mutation carriers is greater than in control tissues. More integrin-ligand pairs were differentially correlated in BRCA1/2-mutant breast tissues than non-carrier breast tissues with more integrin receptor-expressing stromal cells. These results reveal alterations in the communication between mammary epithelial cells and the microenvironment in BRCA1 and BRCA2 mutation carriers, laying the foundation for designing innovative breast cancer chemo-prevention strategies for high-risk patients.
Collapse
Affiliation(s)
- Anthony Caputo
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kavya Vipparthi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erinn Downs-Kelly
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick McIntire
- Department of Pathology, Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ying Ni
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mihriban Karaayvaz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Mironov A, Fisher M, Narayanan P, Elsayed R, Karabulutoglu M, Akhtar N. Rac1 controls cell turnover and reversibility of the involution process in postpartum mammary glands. PLoS Biol 2023; 21:e3001583. [PMID: 36656812 PMCID: PMC9851507 DOI: 10.1371/journal.pbio.3001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/11/2022] [Indexed: 01/20/2023] Open
Abstract
Cell turnover in adult tissues is essential for maintaining tissue homeostasis over a life span and for inducing the morphological changes associated with the reproductive cycle. However, the underlying mechanisms that coordinate the balance of cell death and proliferation remain unsolved. Using the mammary gland, we have discovered that Rac1 acts as a nexus to control cell turnover. Postlactational tissue regression is characterised by the death of milk secreting alveoli, but the process is reversible within the first 48 h if feeding recommences. In mice lacking epithelial Rac1, alveolar regression was delayed. This defect did not result from failed cell death but rather increased cell turnover. Fitter progenitor cells inappropriately divided, regenerating the alveoli, but cell death also concomitantly accelerated. We discovered that progenitor cell hyperproliferation was linked to nonautonomous effects of Rac1 deletion on the macrophageal niche with heightened inflammation. Moreover, loss of Rac1 impaired cell death with autophagy but switched the cell death route to apoptosis. Finally, mammary gland reversibility failed in the absence of Rac1 as the alveoli failed to recommence lactation upon resuckling.
Collapse
Affiliation(s)
- Aleksandr Mironov
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Fisher
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Priya Narayanan
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Randa Elsayed
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Melis Karabulutoglu
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Nasreen Akhtar
- The Bateson Centre and Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Luzardo-Ocampo I, Dena-Beltrán JL, Ruiz-Herrera X, Ocampo-Ruiz AL, Martínez de la Escalera G, Clapp C, Macotela Y. Obesity-derived alterations in the lactating mammary gland: Focus on prolactin. Mol Cell Endocrinol 2023; 559:111810. [PMID: 36374835 DOI: 10.1016/j.mce.2022.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Obesity is a modern pandemic with negative consequences in women's reproductive health. Women with overweight and obesity can develop mammary gland alterations that unable exclusive breastfeeding. Obesity associates with a disturbed lactating mammary gland endocrine environment including a decreased action of the hormone prolactin (PRL), the master regulator of lactation. The PRL receptor and the action of PRL are reduced in the mammary gland of lactating rodents fed an obesogenic diet and are contributing factors to impaired lactation in obesity. Also, treatment with PRL improves milk yield in women with lactation insufficiency. This review focuses on the impact of diet-induced obesity in the lactating mammary gland and how obesity impairs the lactogenic action of PRL. Although obesity alters lactation performance in humans and rodents, the responsible mechanisms have been mainly addressed in rodents.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - José L Dena-Beltrán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Ana Luisa Ocampo-Ruiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
6
|
Englund JI, Bui H, Dinç DD, Paavolainen O, McKenna T, Laitinen S, Munne P, Klefström J, Peuhu E, Katajisto P. Laminin matrix adhesion regulates basal mammary epithelial cell identity. J Cell Sci 2022; 135:285829. [DOI: 10.1242/jcs.260232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
ABSTRACT
Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through β4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.
Collapse
Affiliation(s)
- Johanna I. Englund
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Hien Bui
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Defne D. Dinç
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Oona Paavolainen
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Tomás McKenna
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
| | - Suvi Laitinen
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
| | - Pauliina Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki 5 , Helsinki FI-00014 , Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN west, University of Turku 2 , Turku FI-20014 , Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University 3 , Turku FI-20014 , Finland
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki 1 , Helsinki FI-00014 , Finland
- Karolinska Institutet 4 Department of Cell and Molecular Biology (CMB) , , Stockholm SE-171 77 , Sweden
- University of Helsinki 6 Faculty of Biological and Environmental Sciences , , Helsinki FI-00014 , Finland
| |
Collapse
|
7
|
An extracellular receptor tyrosine kinase motif orchestrating intracellular STAT activation. Nat Commun 2022; 13:6953. [PMID: 36376313 PMCID: PMC9663514 DOI: 10.1038/s41467-022-34539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
The ErbB4 receptor isoforms JM-a and JM-b differ within their extracellular juxtamembrane (eJM) domains. Here, ErbB4 isoforms are used as a model to address the effect of structural variation in the eJM domain of receptor tyrosine kinases (RTK) on downstream signaling. A specific JM-a-like sequence motif is discovered, and its presence or absence (in JM-b-like RTKs) in the eJM domains of several RTKs is demonstrated to dictate selective STAT activation. STAT5a activation by RTKs including the JM-a like motif is shown to involve interaction with oligosaccharides of N-glycosylated cell surface proteins such as β1 integrin, whereas STAT5b activation by JM-b is dependent on TYK2. ErbB4 JM-a- and JM-b-like RTKs are shown to associate with specific signaling complexes at different cell surface compartments using analyses of RTK interactomes and super-resolution imaging. These findings provide evidence for a conserved mechanism linking a ubiquitous extracellular motif in RTKs with selective intracellular STAT signaling.
Collapse
|
8
|
ITGA5 Promotes Tumor Progression through the Activation of the FAK/AKT Signaling Pathway in Human Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8611306. [PMID: 36193075 PMCID: PMC9526618 DOI: 10.1155/2022/8611306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Background ITGA5 is an adhesion molecule that integrates the intracellular structures with the extracellular matrix to perform biological functions. However, ITGA5 is highly expressed in a variety of tumors and is involved in tumor progression by promoting cell proliferation and metastasis. Nevertheless, little research has been performed on its function in gastric cancer. Therefore, the aim of this study was to investigate the role of ITGA5 in gastric cancer, focusing on the mechanism regulating the proliferation, invasion and migration. Methods The expression of ITGA5 in gastric cancer tissues was assessed by the use of molecular bioinformatics databases and high-throughput sequencing of gastric cancer tissues from patients. Western blot, qPCR, and immunohistochemistry were performed to detect the expression of ITGA5 in samples from gastric cancer patients and gastric cancer cell lines. Furthermore, the ITGA5 gene was silenced and overexpressed in gastric cancer cells, and the effect on proliferation, invasion, migration, and tumorigenic ability was assessed. Results ITGA5 mRNA and protein expression were upregulated in gastric cancer cell lines and tissues from patients, and its expression was closely associated with tumor size, lymph node metastasis, and TNM stage. In vitro and in vivo experiments showed that ITGA5 silencing resulted in the inhibition of proliferation, invasion, migration, and graft growth of gastric cancer cells; conversely, the overexpression resulted in the promotion of these cell functions. Our results finally showed that the effect of ITGA5 on proliferation, invasion, and migration of gastric cancer cells was performed through the activation of the FAK/AKT pathway. Conclusions ITGA5 promotes proliferation, invasion, and migration of gastric cancer cells through the activation of FAK/AKT signaling pathway, suggesting that ITGA5 may be potentially considered as a new target in gastric cancer therapy.
Collapse
|
9
|
Wang F, van Baal J, Ma L, Gao X, Dijkstra J, Bu D. MRCKα is a novel regulator of prolactin-induced lactogenesis in bovine mammary epithelial cells. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:319-328. [PMID: 35891685 PMCID: PMC9304597 DOI: 10.1016/j.aninu.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 01/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Myotonic dystrophy-related Cdc42-binding kinase alpha (MRCKα) is an integral component of signaling pathways controlling vital cellular processes, including cytoskeletal reorganization, cell proliferation and cell survival. In this study, we investigated the physiological role of MRCKα in milk protein and fat production in dairy cows, which requires a dynamic and strict organization of the cytoskeletal network in bovine mammary epithelial cells (BMEC). Within a selection of 9 Holstein cows, we found that both mRNA and protein expression of MRCKα in the mammary gland were upregulated during lactation and correlated positively (r > 0.89) with the mRNA and protein levels of β-casein. Similar positive correlations (r > 0.79) were found in a primary culture of BMEC stimulated with prolactin for 24 h. In these cells, silencing of MRCKα decreased basal β-casein, sterol-regulatory element binding protein (SREBP)-1 and cyclin D1 protein level, phosphorylation of mTOR, triglyceride secretion, cell number and viability-while overexpression of MRCKα displayed the reversed effect. Notably, silencing of MRCKα completely prevented the stimulatory action of prolactin on the same parameters. These data demonstrate that MRCKα is a critical mediator of prolactin-induced lactogenesis via stimulation of the mTOR/SREBP1/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Jürgen van Baal
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingzhou, 434020, China
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University and Research, Wageningen, 6708, WD, the Netherlands
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, China
| |
Collapse
|
10
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
11
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
12
|
Onuma K, Sato Y, Okuyama H, Uematsu H, Homma K, Ohue M, Kondo J, Inoue M. Aberrant activation of Rho/ROCK signaling in impaired polarity switching of colorectal micropapillary carcinoma. J Pathol 2021; 255:84-94. [PMID: 34156098 DOI: 10.1002/path.5748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Micropapillary carcinoma (MPC) is a morphologically distinctive form of carcinoma, composed of small nests of cancer cells surrounded by lacunar spaces. Invasive MPC is associated with poor prognosis. The nests of tumor cells in MPC reportedly exhibit reverse polarity, although the molecular mechanisms underlying MPC patterns are poorly understood. Using the cancer tissue-originated spheroid (CTOS) method, we previously reported polarity switching in colorectal cancer (CRC). When cultured in suspension, the apical membrane promptly switches from the outside surface of the CTOSs to the surface of the lumen inside the CTOSs under extracellular matrix (ECM)-embedded conditions, and vice versa. Here, we investigated two CTOS lines from CRC patient tumors with MPC lesions. Xenograft tumors from the CTOSs exhibited the MPC phenotype. The MPC-CTOSs did not switch polarity in vitro. Time-course analysis of polarity switching using real-time imaging of the apical membrane revealed that local switching was continually propagated in non-MPC-CTOSs, while MPC-CTOSs were unable to complete the process. Integrin β4 translocated to the outer membrane when embedded in ECM in both MPC and non-MPC-CTOSs. Protein levels, as well as the active form of RhoA, were higher in MPC-CTOSs. The suppression of RhoA activity by GAP overexpression enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, while overexpression of active RhoA did not affect polarity switching in non-MPC-CTOSs. Pretreatment with a ROCK inhibitor enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, although delayed treatment after becoming embedded in ECM failed to do so. Thus, the inability to switch polarity might be a cause of MPC, in which the aberrant activation of RhoA plays a critical role. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yumi Sato
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Hiroaki Okuyama
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Keiichiro Homma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Englund JI, Ritchie A, Blaas L, Cojoc H, Pentinmikko N, Döhla J, Iqbal S, Patarroyo M, Katajisto P. Laminin alpha 5 regulates mammary gland remodeling through luminal cell differentiation and Wnt4-mediated epithelial crosstalk. Development 2021; 148:269157. [PMID: 34128985 PMCID: PMC8254867 DOI: 10.1242/dev.199281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation. Summary: Luminal mammary epithelial cells produce basement membrane laminin α5 necessary for mammary epithelial growth and differentiation. Laminin α5 loss compromises hormone receptor-positive luminal cell function and Wnt4-mediated crosstalk between epithelial cells.
Collapse
Affiliation(s)
- Johanna I Englund
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Alexandra Ritchie
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Hanne Cojoc
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Julia Döhla
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Sharif Iqbal
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland
| | - Manuel Patarroyo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 11 Solna, Sweden
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), 00014 University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden.,Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Helsinki, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Solna, Sweden
| |
Collapse
|
14
|
Dong W, Yang J, Zhang Y, Liu S, Ning C, Ding X, Wang W, Zhang Y, Zhang Q, Jiang L. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet 2021; 138:562-573. [PMID: 33620112 DOI: 10.1111/jbg.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023]
Abstract
Epigenetic modification plays a critical role in establishing and maintaining cell differentiation, embryo development, tumorigenesis and many complex diseases. However, little is known about the epigenetic regulatory mechanisms for milk production in dairy cattle. Here, we conducted an epigenome-wide study, together with gene expression profiles to identify important epigenetic candidate genes related to the milk production traits in dairy cattle. Whole-genome bisulphite sequencing and RNA sequencing were employed to detect differentially methylated genes (DMG) and differentially expressed genes (DEG) in blood samples in dry period and lactation period between two groups of cows with extremely high and low milk production performance. A total of 10,877 and 6,617 differentially methylated regions were identified between the two groups in the two periods, which corresponded to 3,601 and 2,802 DMGs, respectively. Furthermore, 156 DEGs overlap with DMGs in comparison of the two groups, and 131 DEGs overlap with DMGs in comparison of the two periods. By integrating methylome, transcriptome and GWAS data, some potential candidate genes for milk production traits in dairy cattle were suggested, such as DOCK1, PTK2 and PIK3R1. Our studies may contribute to a better understanding of epigenetic modification on milk production traits of dairy cattle.
Collapse
Affiliation(s)
- Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenwen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
16
|
Wu X, Zhou X, Xiong L, Pei J, Yao X, Liang C, Bao P, Chu M, Guo X, Yan P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front Cell Dev Biol 2020; 8:579708. [PMID: 33324637 PMCID: PMC7723986 DOI: 10.3389/fcell.2020.579708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
17
|
Lefort S, Balani S, Pellacani D, Guyot B, Gorski SM, Maguer-Satta V, Eaves CJ. Single-cell analysis of autophagy activity in normal and de novo transformed human mammary cells. Sci Rep 2020; 10:20266. [PMID: 33219251 PMCID: PMC7679376 DOI: 10.1038/s41598-020-77347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Assessment of autophagy activity has historically been limited to investigations of fixed tissue or bulk cell populations. To address questions of heterogeneity and relate measurements to functional properties of viable cells isolated from primary tissue, we created a lentiviral (RFP-GFP-MAP1LC3B) vector that allows the autophagosome and autolysosome content of transduced cells to be monitored at the single-cell level. Use of this strategy to analyze purified subsets of normal human mammary cells showed that both the luminal progenitor-containing (LP) subset and the basal cells (BCs) display highly variable but overall similar autophagic flux activity despite differences suggested by measurements of the proteins responsible (i.e., LC3B, ATG7 and BECLIN1) in bulk lysates. Autophagosome content was also highly variable in the clonogenic cells within both the LPs and BCs, but the proliferative response of the BCs was more sensitive to autophagy inhibition. In addition, use of this vector showed cells with the lowest autophagosome content elicited the fastest tumor growth in 2 different models of human mammary tumorigenesis. These results illustrate the utility of this vector to define differences in the autophagy properties of individual cells in primary tissue and couple these with their responses to proliferative and oncogenic stimuli.
Collapse
Affiliation(s)
- Sylvain Lefort
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada. .,Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France.
| | - Sneha Balani
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Boris Guyot
- Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Véronique Maguer-Satta
- Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
18
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
19
|
Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin Cell Dev Biol 2020; 114:159-170. [PMID: 33109441 DOI: 10.1016/j.semcdb.2020.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023]
Abstract
Prolactin has a rich mechanistic set of actions and signaling in order to elicit developmental effects in mammals. Historically, prolactin has been appreciated as an endocrine peptide hormone that is responsible for final, functional mammary gland development and lactation. Multiple signaling pathways impacted upon by the microenvironment contribute to cell function and differentiation. Endocrine, autocrine and paracrine signaling are now apparent in not only mammary development, but also in cancer, and involve multiple cell types including those of the immune system. Multiple ligands agonists are capable of binding to the prolactin receptor, potentially expanding receptor function. Prolactin has an important role not only in tumorigenesis of the breast, but also in a number of hormonally responsive cancers such as prostate, ovarian and endometrial cancer, as well as pancreatic and lung cancer. Although pituitary and extra-pituitary sources of prolactin such as the epithelium are important, stromal sourced prolactin is now also being recognized as an important factor in tumor progression, all of which potentially signal to multiple cell types in the tumor microenvironment. While prolactin has important roles in milk production including calcium and bone homeostasis, in the disease state it can also affect bone homeostasis. Prolactin also impacts metastatic cancer of the breast to modulate the bone microenvironment and promote bone damage. Prolactin has a fascinating contribution in both physiologic and pathologic settings of mammals.
Collapse
|
20
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
21
|
Beckett L, Xie S, Thimmapuram J, Tucker HA, Donkin SS, Casey T. Mammary transcriptome reveals cell maintenance and protein turnover support milk synthesis in early-lactation cows. Physiol Genomics 2020; 52:435-450. [PMID: 32744883 DOI: 10.1152/physiolgenomics.00046.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A more complete understanding of the molecular mechanisms that support milk synthesis is needed to develop strategies to efficiently and sustainably meet the growing global demand for dairy products. With the postulate that coding gene transcript abundance reflects relative importance in supporting milk synthesis, we analyzed the global transcriptome of early lactation cows across magnitudes of normalized RNA-Seq read counts. Total RNA was isolated from milk samples collected from early-lactation cows (n = 6) following two treatment periods of postruminal lysine infusion of 0 or 63 g/day. Twelve libraries were prepared and sequenced on an Illumina NovaSeq6000 platform using paired end reads. Normalized read counts were averaged across both treatments, because EBseq analysis found no significant effect of lysine infusion. Approximately 10% of the total reads corresponded to 12,730 protein coding transcripts with a normalized read count mean ≥5. For functional annotation analysis, the protein coding transcripts were divided into nine categories by magnitude of reads. The 13 most abundant transcripts (≥50K reads) accounted for 67% of the 23M coding reads and included casein and whey proteins, regulators of fat synthesis and secretion, a ubiquitinating protein, and a tRNA transporter. Mammalian target of rapamycin, JAK/STAT, peroxisome proliferator-activated receptor alpha, and ubiquitin proteasome pathways were enriched with normalized reads ≥100 counts. Genes with ≤100 reads regulated tissue homeostasis and immune response. Enrichment in ontologies that reflect maintenance of translation, protein turnover, and amino acid recycling indicated that proteostatic mechanisms are central to supporting mammary function and primary milk component synthesis.
Collapse
Affiliation(s)
- L Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - S Xie
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - H A Tucker
- Novus International Incorporated, St. Charles, Missouri
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - T Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
22
|
Yue S, Wang Z, Wang L, Peng Q, Xue B. Transcriptome Functional Analysis of Mammary Gland of Cows in Heat Stress and Thermoneutral Condition. Animals (Basel) 2020; 10:ani10061015. [PMID: 32532099 PMCID: PMC7341491 DOI: 10.3390/ani10061015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The current study employed RNA-seq technology to analyze the impact of heat stress on the whole transcript sequencing profile in the mammary glands of lactating Holstein dairy cows. In the findings of the current study, heat stress downregulated the expression of casein genes, which resulted in a decrease in milk production. Moreover, heat stress upregulated the gene expression of HSPA1A and HSP90B1, while it downregulated the expression of immune response-related genes that resulted in a reduction in milk yield. Furthermore, there was an increased synthesis of heat shock proteins and unfolded proteins that could reduce the availability of circulating amino acids for milk protein synthesis. The findings of the current experiment may help to explore the impact of heat stress on immune function, milk production, and milk protein synthesis in cows. Abstract Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.
Collapse
|
23
|
Laminin-dependent integrin β1 signaling regulates milk protein synthesis via prolactin/STAT5 pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun 2020; 524:288-294. [DOI: 10.1016/j.bbrc.2020.01.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
|
24
|
Plosa EJ, Benjamin JT, Sucre JM, Gulleman PM, Gleaves LA, Han W, Kook S, Polosukhin VV, Haake SM, Guttentag SH, Young LR, Pozzi A, Blackwell TS, Zent R. β1 Integrin regulates adult lung alveolar epithelial cell inflammation. JCI Insight 2020; 5:129259. [PMID: 31873073 PMCID: PMC7098727 DOI: 10.1172/jci.insight.129259] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of β1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged β1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by β1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with β1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for β1 integrin in alveolar homeostasis in the adult lung.
Collapse
Affiliation(s)
| | | | | | | | - Linda A. Gleaves
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Scott M. Haake
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | - Lisa R. Young
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ambra Pozzi
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Molecular Physiology and Biophysics, and
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and,Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roy Zent
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Division of Nephrology and Hypertension, Department of Medicine,,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Romagnoli M, Bresson L, Di-Cicco A, Pérez-Lanzón M, Legoix P, Baulande S, de la Grange P, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Glukhova MA, Faraldo MM. Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. Development 2020; 147:dev.181552. [DOI: 10.1242/dev.181552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Integrin dimers α3/β1, α6/β1 and α6/β4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated by the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice, however myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins and underline an essential role of cell interactions with laminin for lactogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - María Pérez-Lanzón
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Patricia Legoix
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marina A. Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marisa M. Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| |
Collapse
|
26
|
Wang P, Wu J, Wood A, Jones M, Pedley R, Li W, Ross RS, Ballestrem C, Gilmore AP, Streuli CH. Vinculins interaction with talin is essential for mammary epithelial differentiation. Sci Rep 2019; 9:18400. [PMID: 31804547 PMCID: PMC6895056 DOI: 10.1038/s41598-019-54784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022] Open
Abstract
Vinculin is an essential component of cell adhesion complexes, where it regulates the strength and stability of adhesions. Whilst the role of vinculin in cell motility is well established, it remains unclear how vinculin contributes to other aspects of tissue function. Here we examine the role of vinculin in mammary epithelial cell phenotype. In these cells, correct adhesion to the extracellular matrix is essential for both the formation of polarised secretory acini and for the transcription of tissue-specific milk protein genes. We show that vinculin, through its interaction with talin, controls milk protein gene expression. However, vinculin is not required for the formation of polarised acini. This work reveals new roles for vinculin that are central to cellular differentiation, and for the ability of cells to interpret their extracellular microenvironment.
Collapse
Affiliation(s)
- Pengbo Wang
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
- CRUK Manchester Institute, Manchester, UK
| | - Jian Wu
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Amber Wood
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Matthew Jones
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert Pedley
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Weiping Li
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Robert S Ross
- UCSD School of Medicine, Department of Medicine, La Jolla, CA, UK
- Veterans Administration Healthcare San Diego, San Diego, CA, USA
| | - Christoph Ballestrem
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK.
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research, FBMH, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Frank-Kamenetskii A, Booth BW. Redirecting Normal and Cancer Stem Cells to a Mammary Epithelial Cell Fate. J Mammary Gland Biol Neoplasia 2019; 24:285-292. [PMID: 31732837 DOI: 10.1007/s10911-019-09439-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
Tissue microenvironments, also known as stem cell niches, influence not only resident cells but also cells in surrounding tissues. Physical and biochemical intercellular signals originating from resident stem cells or non-stem cells participate in the homeostasis of the tissue regulating cell proliferation, differentiation, wound healing, tissue remodeling, and tumorigenesis. In recent publications it has been demonstrated that the normal mouse mammary microenvironment can provide development and differentiation guidance to not only resident mammary cells but also cells of non-mammary origin including tumor-derived cells. When placed in reforming mammary stem cell niches the non-mammary cells proliferate and differentiate along mammary epithelial cell lineages and contribute progeny to reforming mammary gland outgrowths. The tumor-derived cells that are redirected to assume mammary epithelial phenotypes lose their cancer-forming capacity and shift their gene expression profiles from a cancer profile towards a normal mammary epithelial expression profile. This review summarizes the recent discoveries regarding the ability of the normal mouse mammary microenvironment to dictate the cell fates of non-mammary cells introduced into mammary stem cell niches.
Collapse
Affiliation(s)
- Anastasia Frank-Kamenetskii
- Department of Bioengineering, Clemson University, 401-1 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Brian W Booth
- Department of Bioengineering, Clemson University, 401-1 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.
| |
Collapse
|
28
|
High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia. Cell Rep 2019; 23:1205-1219. [PMID: 29694896 PMCID: PMC5946804 DOI: 10.1016/j.celrep.2018.03.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/19/2018] [Accepted: 03/25/2018] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with tissue-level changes in cellular composition that are correlated with increased susceptibility to disease. Aging human mammary tissue shows skewed progenitor cell potency, resulting in diminished tumor-suppressive cell types and the accumulation of defective epithelial progenitors. Quantitative characterization of these age-emergent human cell subpopulations is lacking, impeding our understanding of the relationship between age and cancer susceptibility. We conducted single-cell resolution proteomic phenotyping of healthy breast epithelia from 57 women, aged 16–91 years, using mass cytometry. Remarkable heterogeneity was quantified within the two mammary epithelial lineages. Population partitioning identified a subset of aberrant basal-like luminal cells that accumulate with age and originate from age-altered progenitors. Quantification of age-emergent phenotypes enabled robust classification of breast tissues by age in healthy women. This high-resolution mapping highlighted specific epithelial subpopulations that change with age in a manner consistent with increased susceptibility to breast cancer. CyTOF analysis reveals human mammary epithelial heterogeneity with age Age-emergent luminal cells share phenotypes with candidate breast cancer cells of origin Classification models correctly assign tissue samples to their age group Age-related changes are conserved between mammary epithelial tissue and primary cells
Collapse
|
29
|
Orré T, Rossier O, Giannone G. The inner life of integrin adhesion sites: From single molecules to functional macromolecular complexes. Exp Cell Res 2019; 379:235-244. [DOI: 10.1016/j.yexcr.2019.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
|
30
|
Streuli CH, Meng QJ. Influence of the extracellular matrix on cell-intrinsic circadian clocks. J Cell Sci 2019; 132:jcs207498. [PMID: 30709969 DOI: 10.1242/jcs.207498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-autonomous circadian clocks coordinate tissue homeostasis with a 24-hourly rhythm. The molecular circadian clock machinery controls tissue- and cell type-specific sets of rhythmic genes. Disruptions of clock mechanisms are linked to an increased risk of acquiring diseases, especially those associated with aging, metabolic dysfunction and cancer. Despite rapid advances in understanding the cyclic outputs of different tissue clocks, less is known about how the clocks adapt to their local niche within tissues. We have discovered that tissue stiffness regulates circadian clocks, and that this occurs in a cell-type-dependent manner. In this Review, we summarise new work linking the extracellular matrix with differential control of circadian clocks. We discuss how the changes in tissue structure and cellular microenvironment that occur throughout life may impact on the molecular control of circadian cycles. We also consider how altered clocks may have downstream impacts on the acquisition of diseases.
Collapse
Affiliation(s)
- Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
31
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
32
|
Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci Rep 2018; 8:14139. [PMID: 30237579 PMCID: PMC6148073 DOI: 10.1038/s41598-018-32507-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
Fibulin-2 (FBLN2) is a secreted extracellular matrix glycoprotein which has been associated with tissue development and remodelling. In the mouse mammary gland, FBLN2 can be detected during ductal morphogenesis in cap cells and myoepithelial cells at puberty and early pregnancy, respectively. In an attempt to assign its function, we knocked down Fbln2 in the mouse mammary epithelial cell line EpH4. FBLN2 reduction led to an increase in the size of spheroidal structures when compared to scrambled control shRNA-transduced cells plated on Matrigel matrix. This phenotype was associated with a disruption of the collagen IV sheath around the epithelial spheroids and downregulation of integrin β1, suggesting a role for FBLN2 in stabilizing the basement membrane (BM). In contrast to mice, in normal adult human breast tissue, FBLN2 was detected in ductal stroma, and in the interlobular stroma, but was not detectable within the lobular regions. In tissue sections of 65 breast cancers FBLN2 staining was lost around malignant cells with retained staining in the neighbouring histologically normal tissue margins. These results are consistent with a role of FBLN2 in mammary epithelial BM stability, and that its down-regulation in breast cancer is associated with loss of the BM and early invasion.
Collapse
|
33
|
Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr Top Dev Biol 2018; 130:1-37. [PMID: 29853174 DOI: 10.1016/bs.ctdb.2018.02.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The extracellular matrix is a complex network of hydrated macromolecular proteins and sugars that, in concert with bound soluble factors, comprise the acellular stromal microenvironment of tissues. Rather than merely providing structural information to cells, the extracellular matrix plays an instructive role in development and is critical for the maintenance of tissue homeostasis. In this chapter, we review the composition of the extracellular matrix and summarize data illustrating its importance in embryogenesis, tissue-specific development, and stem cell differentiation. We discuss how the biophysical and biochemical properties of the extracellular matrix ligate specific transmembrane receptors to activate intracellular signaling that alter cell shape and cytoskeletal dynamics to modulate cell growth and viability, and direct cell migration and cell fate. We present examples describing how the extracellular matrix functions as a highly complex physical and chemical entity that regulates tissue organization and cell behavior through a dynamic and reciprocal dialogue with the cellular constituents of the tissue. We suggest that the extracellular matrix not only transmits cellular and tissue-level force to shape development and tune cellular activities that are key for coordinated tissue behavior, but that it is itself remodeled such that it temporally evolves to maintain the integrated function of the tissue. Accordingly, we argue that perturbations in extracellular matrix composition and structure compromise key developmental events and tissue homeostasis, and promote disease.
Collapse
Affiliation(s)
- Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Graduate Program in Bioengineering, University of California San Francisco and University of California Berkeley, San Francisco, CA, United States
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
34
|
Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget 2018; 7:48093-48106. [PMID: 27344177 PMCID: PMC5217003 DOI: 10.18632/oncotarget.10137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Estrogen receptor α positive (ERα+) breast cancer accounts for most breast cancer deaths. Both prolactin (PRL) and extracellular matrix (ECM) stiffness/density have been implicated in metastatic progression of this disease. We previously demonstrated that these factors cooperate to fuel processes involved in cancer progression. Culture of ERα+ breast cancer cells in dense/stiff 3D collagen-I matrices shifts the repertoire of PRL signals, and increases crosstalk between PRL and estrogen to promote proliferation and invasion. However, previous work did not distinguish ECM stiffness and collagen density. In order to dissect the ECM features that control PRL signals, we cultured T47D and MCF-7 cells on polyacrylamide hydrogels of varying elastic moduli (stiffness) with varying collagen-I concentrations (ligand density). Increasing stiffness from physiological to pathological significantly augmented PRL-induced phosphorylation of ERK1/2 and the SFK target, FAK-Y925, with only modest effects on pSTAT5. In contrast, higher collagen-I ligand density lowered PRL-induced pSTAT5 with no effect on pERK1/2 or pFAK-Y925. Disrupting focal adhesion signaling decreased PRL signals and PRL/estrogen-induced proliferation more efficiently in stiff, compared to compliant, extracellular environments. These data indicate that matrix stiffness shifts the balance of PRL signals from physiological (JAK2/STAT5) to pathological (FAK/SFK/ERK1/2) by increasing PRL signals through focal adhesions. Together, our studies suggest that PRL signaling to FAK and SFKs may be useful targets in clinical aggressive ERα+ breast carcinomas.
Collapse
Affiliation(s)
- Craig E Barcus
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Keely
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Laboratory for Cellular and Molecular Biology and Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA.,University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
35
|
Verma NK, Kelleher D. Not Just an Adhesion Molecule: LFA-1 Contact Tunes the T Lymphocyte Program. THE JOURNAL OF IMMUNOLOGY 2017; 199:1213-1221. [PMID: 28784685 DOI: 10.4049/jimmunol.1700495] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
The αLβ2 integrin LFA-1 is known to play a key role in T lymphocyte migration, which is necessary to mount a local immune response, and is also the main driver of autoimmune diseases. This migration-triggering signaling process in T cells is tightly regulated to permit an immune response that is appropriate to the local trigger, as well as to prevent deleterious tissue-damaging bystander effects. Emerging evidence shows that, in addition to prompting a diverse range of downstream signaling cascades, LFA-1 stimulation in T lymphocytes modulates gene-transcription programs, including genetic signatures of TGF-β and Notch pathways, with multifactorial biological outcomes. This review highlights recent findings and discusses molecular mechanisms by which LFA-1 signaling influence T lymphocyte differentiation into the effector subsets Th1, Th17, and induced regulatory T cells. We argue that LFA-1 contact with a cognate ligand, such as ICAM-1, independent of the immune synapse activates a late divergence in T cells' effector phenotypes, hence fine-tuning their functioning.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; and .,Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
36
|
Streuli CH. Integrins as architects of cell behavior. Mol Biol Cell 2017; 27:2885-8. [PMID: 27687254 PMCID: PMC5042575 DOI: 10.1091/mbc.e15-06-0369] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022] Open
Abstract
Integrins are cell surface receptors that bind cells to their physical external environment, linking the extracellular matrix to cell function. They are essential in the biology of all animals. In the late 1980s, we discovered that integrins are required for the ability of breast epithelia to do what they are programmed to do, which is to differentiate and make milk. Since then, integrins have been shown to control most other aspects of phenotype: to stay alive, to divide, and to move about. Integrins also provide part of the mechanism that allows cells to form tissues. Here I discuss how we discovered that integrins control mammary gland differentiation and explore the role of integrins as central architects of other aspects of cell behavior.
Collapse
Affiliation(s)
- Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
37
|
Gutiérrez Diez PJ, Su Y, Russo J. Immunocytochemical stem cell markers can predict clinical stage of breast cancer. Oncol Rep 2017; 38:1507-1516. [PMID: 28714035 DOI: 10.3892/or.2017.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
We present a computational-statistical algorithm that, from data on the staining degree of immunocytochemical markers: i) evaluates the ability of the considered immuno-panel in predicting the breast cancer stage; ii) makes the accurate identification of breast cancer stage possible; iii) provides the best stage prognosis compatible with the considered sample; and iv) does so through the use of the minimum number of markers minimizing time and resource costs. After running the algorithm on two data sets [triple-negative breast cancer, (TNBC), and estrogen receptor-negative breast cancer, (ERNBC)], we conclude that EpCAM and β1 integrin are enough to accurately predict TNBC stage, being ALDH1, CD24, CD61, and CK5 the necessary markers to exactly predict ERNBC stage.
Collapse
Affiliation(s)
- Pedro J Gutiérrez Diez
- Department of Economic Theory, University of Valladolid, School of Economics, Valladolid, Spain
| | - Yanrong Su
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| |
Collapse
|
38
|
Bridgewater RE, Streuli CH, Caswell PT. Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Sci Rep 2017; 7:4572. [PMID: 28676702 PMCID: PMC5496899 DOI: 10.1038/s41598-017-04783-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The hormone prolactin promotes lactational differentiation of mammary epithelial cells (MECs) via its cognate receptor and the downstream JAK2-STAT5a signalling pathway. In turn this regulates transcription of milk protein genes. Prolactin signalling depends on a cross-talk with basement membrane extracellular matrix (ECM) via β1 integrins which activate both ILK and Rac1 and are required for STAT5a activation and lactational differentiation. Endocytosis is an important regulator of signalling. It can both enhance and suppress cytokine signalling, although the role of endocytosis for prolactin signalling is not known. Here we show that clathrin-mediated endocytosis is required for ECM-dependent STAT5 activation. In the presence of ECM, prolactin is internalised via a clathrin-dependent, but caveolin-independent, route. This occurs independently from JAK2 and Rac signalling, but is required for full phosphorylation and activation of STAT5. Prolactin is internalised into early endosomes, where the master early endosome regulator Rab5b promotes STAT5 phosphorylation. These data reveal a novel role for ECM-driven endocytosis in the positive regulation of cytokine signalling.
Collapse
Affiliation(s)
- Rebecca E Bridgewater
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
39
|
Akhtar N, Li W, Mironov A, Streuli CH. Rac1 Controls Both the Secretory Function of the Mammary Gland and Its Remodeling for Successive Gestations. Dev Cell 2017; 38:522-35. [PMID: 27623383 PMCID: PMC5022528 DOI: 10.1016/j.devcel.2016.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Abstract
An important feature of the mammary gland is its ability to undergo repeated morphological changes during each reproductive cycle with profound tissue expansion in pregnancy and regression in involution. However, the mechanisms that determine the tissue's cyclic regenerative capacity remain elusive. We have now discovered that Cre-Lox ablation of Rac1 in mammary epithelia causes gross enlargement of the epithelial tree and defective alveolar regeneration in a second pregnancy. Architectural defects arise because loss of Rac1 disrupts clearance in involution following the first lactation. We show that Rac1 is crucial for mammary alveolar epithelia to switch from secretion to a phagocytic mode and rapidly remove dying neighbors. Moreover, Rac1 restricts the extrusion of dying cells into the lumen, thus promoting their eradication by live phagocytic neighbors while within the epithelium. Without Rac1, residual milk and cell corpses flood the ductal network, causing gross dilation, chronic inflammation, and defective future regeneration. Rac1 is required for full secretory differentiation of the mammary gland Rac1 restricts apoptotic cell shedding into the lumen to limit inflammation Rac1 contributes to post-lactational tissue remodeling during involution Defective clearance of milk and dead cells in Rac1-null glands causes ductal bloating
Collapse
Affiliation(s)
- Nasreen Akhtar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Department of Oncology and Metabolism, The Bateson Centre, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Weiping Li
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aleksander Mironov
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Manchester Breast Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Gajewska M, McNally S. Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases. Methods Mol Biol 2017; 1501:199-216. [PMID: 27796954 DOI: 10.1007/978-1-4939-6475-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).
Collapse
Affiliation(s)
- Malgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| | - Sara McNally
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| |
Collapse
|
41
|
Flick MJ, Bugge TH. Plasminogen-receptor KT : plasminogen activation and beyond. J Thromb Haemost 2017; 15:150-154. [PMID: 27740735 PMCID: PMC5280338 DOI: 10.1111/jth.13541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
The cell surface orchestrates plasminogen activation through the concomitant binding of plasminogen and plasminogen activators to specific receptors. In this issue, Miles and colleagues describe their detailed phenotypic characterization of mice deficient in Plg-RKT, a key plasminogen receptor expressed in numerous tissues, but highly expressed by proinflammatory macrophages. The analysis provides critical and surprising new insights into the biology of this receptor.
Collapse
Affiliation(s)
- Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Maya-Mendoza A, Bartek J, Jackson DA, Streuli CH. Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle 2016; 15:345-56. [PMID: 26818565 PMCID: PMC4943696 DOI: 10.1080/15384101.2015.1121354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Defects in nuclear architecture occur in a variety of diseases, however the fundamental mechanisms that control the internal structure of nuclei are poorly defined. Here we reveal that the cellular microenvironment has a profound influence on the global internal organization of nuclei in breast epithelia. A 3D microenvironment induces a prolonged but reversible form of cell cycle arrest that features many of the classical markers of cell senescence. This unique form of arrest is dependent on signaling from the external microenvironment through β1-integrins. It is concomitant with alterations in nuclear architecture that characterize the withdrawal from cell proliferation. Unexpectedly, following prolonged cell cycle arrest in 3D, the senescence-like state and associated reprogramming of nuclear architecture are freely reversible on altering the dimensionality of the cellular microenvironment. Breast epithelia can therefore maintain a proliferative plasticity that correlates with nuclear remodelling. However, the changes in nuclear architecture are cell lineage-specific and do not occur in fibroblasts, and moreover they are overcome in breast cancer cells.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom.,b Department of Genome Integrity , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Jiri Bartek
- b Department of Genome Integrity , Danish Cancer Society Research Center , Copenhagen , Denmark.,c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm , Sweden
| | - Dean A Jackson
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom
| | - Charles H Streuli
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom
| |
Collapse
|
43
|
Pathania M, Wang Y, Simirskii VN, Duncan MK. β1-integrin controls cell fate specification in early lens development. Differentiation 2016; 92:133-147. [PMID: 27596755 PMCID: PMC5159248 DOI: 10.1016/j.diff.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/05/2016] [Accepted: 08/09/2016] [Indexed: 02/03/2023]
Abstract
Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers. β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation.
Collapse
Affiliation(s)
- Mallika Pathania
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Vladimir N Simirskii
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
44
|
Rooney N, Wang P, Brennan K, Gilmore AP, Streuli CH. The Integrin-Mediated ILK-Parvin-αPix Signaling Axis Controls Differentiation in Mammary Epithelial Cells. J Cell Physiol 2016; 231:2408-17. [PMID: 27019299 PMCID: PMC5053222 DOI: 10.1002/jcp.25390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/03/2023]
Abstract
Epithelial cell adhesion to the surrounding extracellular matrix is necessary for their proper behavior and function. During pregnancy and lactation, mammary epithelial cells (MECs) receive signals from their interaction with laminin via β1‐integrin (β1‐itg) to establish apico‐basal polarity and to differentiate in response to prolactin. Downstream of β1‐itg, the scaffold protein Integrin Linked Kinase (ILK) has been identified as the key signal transducer that is required for both lactational differentiation and the establishment of apico‐basal polarity. ILK is an adaptor protein that forms the IPP complex with PINCH and Parvins, which are central to its adaptor functions. However, it is not known how ILK and its interacting partners control tissue‐specific gene expression. Expression of ILK mutants, which weaken the interaction between ILK and Parvin, revealed that Parvins have a role in mammary epithelial differentiation. This conclusion was supported by shRNA‐mediated knockdown of the Parvins. In addition, shRNA knockdown of the Parvin‐binding guanine nucleotide exchange factor αPix prevented prolactin‐induced differentiation. αPix depletion did not disrupt focal adhesions, MEC proliferation, or polarity. This suggests that αPix represents a differentiation‐specific bifurcation point in β1‐itg‐ILK adhesive signaling. In summary, this study has identified a new role for Parvin and αPix downstream of the integrin‐ILK signaling axis for MEC differentiation. J. Cell. Physiol. 231: 2408–2417, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas Rooney
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pengbo Wang
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Keith Brennan
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew P Gilmore
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Charles H Streuli
- The Wellcome Trust Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Baker L, BeGora M, Au Yeung F, Feigin ME, Rosenberg AZ, Lowe SW, Kislinger T, Muthuswamy SK. Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. J Cell Sci 2016; 129:2307-15. [PMID: 27179074 DOI: 10.1242/jcs.185413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/30/2016] [Indexed: 02/02/2023] Open
Abstract
The cell polarity protein scribble (SCRIB) is a crucial regulator of polarization, cell migration and tumorigenesis. Whereas SCRIB is known to regulate early stages of mouse mammary gland development, its function in the adult gland is not known. Using an inducible RNA interference (RNAi) mouse model for downregulating SCRIB expression, we report an unexpected role for SCRIB as a positive regulator of cell proliferation during pregnancy-associated mammary alveologenesis. SCRIB was required in the epithelial cell compartment of the mammary gland. Lack of SCRIB attenuated prolactin-induced activation of the JAK2-STAT5 signaling pathway. In addition, loss of SCRIB resulted in the downregulation of prolactin receptor (PRLR) at cell surface and its accumulation in intracellular structures that express markers of the Golgi complex and the recycling endosome. Unlike its role in virgin gland as a negative regulator cell proliferation, SCRIB is a positive regulator of mammary epithelial cell proliferation during pregnancy.
Collapse
Affiliation(s)
- Leena Baker
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Michael BeGora
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Faith Au Yeung
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Michael E Feigin
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Avi Z Rosenberg
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Scott W Lowe
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Senthil K Muthuswamy
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2M9, Canada Department of Medicine, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
46
|
Okuyama H, Kondo J, Sato Y, Endo H, Nakajima A, Piulats JM, Tomita Y, Fujiwara T, Itoh Y, Mizoguchi A, Ohue M, Inoue M. Dynamic Change of Polarity in Primary Cultured Spheroids of Human Colorectal Adenocarcinoma and Its Role in Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:899-911. [PMID: 26878211 DOI: 10.1016/j.ajpath.2015.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Intestinal epithelial cells possess apical-basal polarity, which governs the exchange of nutrients and waste. Perturbation of cell polarity appears to be a general feature of cancers, although most colorectal cancers are differentiated adenocarcinomas, in which polarity is maintained to some extent. Little is known about the role of dysregulated polarity in cancer. The cancer tissue-originated spheroid method was applied to the preparation and culture of spheroids. Spheroids were cultured in suspension or in type I collagen gel. Polarity was assessed by IHC of apical markers and electron microscopy. Two types of polarity status in spheroids were observed: apical-in, with apical membrane located at cavities inside the spheroids in type I collagen gel; and apical-out, with apical membrane located at the outermost layer of spheroids in suspension. These polarities were highly interchangeable. Inhibitors of Src and dynamin attenuated the polarity switch. In patients, clusters of cancer cells that invaded vessels had both apical-in and apical-out morphologic features, whereas primary and metastatic tumors had apical-in features. In a mouse liver metastasis model, apical-out spheroids injected into the portal vein became apical-in spheroids in the liver within a few days. Inhibitors of Src and dynamin significantly decreased liver metastasis. Polarity switching was observed in spheroids and human cancer. The polarity switch was critical in an experimental liver metastasis model.
Collapse
Affiliation(s)
- Hiroaki Okuyama
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jumpei Kondo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yumi Sato
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hiroko Endo
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Jose M Piulats
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasuhiko Tomita
- Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Takeshi Fujiwara
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Yu Itoh
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Akira Mizoguchi
- Department of Anatomy, Faculty of Medicine, Mie University, Tsu, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan.
| |
Collapse
|
47
|
Wang X, Wei W, Krzeszinski JY, Wang Y, Wan Y. A Liver-Bone Endocrine Relay by IGFBP1 Promotes Osteoclastogenesis and Mediates FGF21-Induced Bone Resorption. Cell Metab 2015; 22:811-24. [PMID: 26456333 PMCID: PMC4635071 DOI: 10.1016/j.cmet.2015.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/26/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
Fibroblast growth factor 21 (FGF21) promotes insulin sensitivity but causes bone loss. It elevates bone resorption by an undefined non-osteoclast-autonomous mechanism. We have detected a pro-osteoclastogenic activity in the hepatic secretome that is increased by FGF21 and largely attributed to insulin-like growth factor binding protein 1 (IGFBP1). Ex vivo osteoclast differentiation and in vivo bone resorption are both enhanced by recombinant IGFBP1 but suppressed by an IGFBP1-blocking antibody. Anti-IGFBP1 treatment attenuates ovariectomy-induced osteoporosis and abolishes FGF21-induced bone loss while maintaining its insulin-sensitizing metabolic benefit. Mechanistically, IGFBP1 functions via its RGD domain to bind to its receptor integrin β1 on osteoclast precursors, thereby potentiating RANKL-stimulated Erk-phosphorylation and NFATc1 activation. Consequently, osteoclastic integrin β1 deletion confers resistance to the resorption-enhancing effects of both IGFBP1 and FGF21. Therefore, the hepatokine IGFBP1 is a critical liver-bone hormonal relay that promotes osteoclastogenesis and bone resorption as well as an essential mediator of FGF21-induced bone loss.
Collapse
Affiliation(s)
- Xunde Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Y Krzeszinski
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubao Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
48
|
Medina-Estrada I, Alva-Murillo N, López-Meza JE, Ochoa-Zarzosa A. Non-classical effects of prolactin on the innate immune response of bovine mammary epithelial cells: Implications during Staphylococcus aureus internalization. Microb Pathog 2015; 89:43-53. [PMID: 26341952 DOI: 10.1016/j.micpath.2015.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/24/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus has the ability to invade mammary epithelial cells (bMECs) causing mastitis. This event depends primarily on the α5β1 integrin in the host cell. In addition, bMECs are a target for the hormone prolactin (PRL), which can regulate β1 integrin-dependent actions related to differentiation and lactation. Previously, we demonstrated that bovine PRL (bPRL, 5 ng/ml) stimulates S. aureus internalization into bMECs. TLR2 is important during S. aureus infections, but its activation by PRL has not yet been established. The objective of this study was to determine the role of α5β1 integrin and TLR2 during S. aureus internalization into bMECs stimulated with bPRL. We demonstrated that the prolactin-stimulated internalization of S. aureus decreases in response to the blockage of α5β1 integrin (∼ 80%) and TLR2 (∼ 80%). bPRL increases the membrane abundance (MA) of α5β1 integrin (∼ 20%) and induces TLR2 MA (∼ 2-fold). S. aureus reduces the α5β1 integrin MA in bMECs treated with bPRL (∼ 75%) but induces TLR2 MA in bMECs (∼ 3-fold). Bacteria and bPRL did not modify TLR2 MA compared with the hormone alone. S. aureus induces the activation of the transcription factor AP-1, which was inhibited in bMECs treated with bPRL and infected. In general, bPRL induces both pro- and anti-inflammatory responses in bMECs, which are abated in response to bacterial challenge. Interestingly, the canonical Stat-5 transcription factor was not activated in the challenged bMECs and/or treated with bPRL. Taken together, these results support novel functions of prolactin as a modulator of the innate immune response that do not involve the classical prolactin pathway.
Collapse
Affiliation(s)
- Ivan Medina-Estrada
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Nayeli Alva-Murillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico.
| |
Collapse
|
49
|
Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res 2015; 16:459. [PMID: 25606594 PMCID: PMC4384274 DOI: 10.1186/s13058-014-0459-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell–cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM–integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, β1 and β4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Paola Nisticò
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, 00144, Italy.
| | | | | | | |
Collapse
|
50
|
Yin Y, Deng X, Liu Z, Baldwin LA, Lefringhouse J, Zhang J, Hoff JT, Erfani SF, Rucker EB, O'Connor K, Liu C, Wu Y, Zhou BP, Yang XH. CD151 represses mammary gland development by maintaining the niches of progenitor cells. Cell Cycle 2015; 13:2707-22. [PMID: 25486358 DOI: 10.4161/15384101.2015.945823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD151 interacts with laminin-binding integrins (i.e., α3β1, α6β1 and α6β4) and other cell surface molecules to control diverse cellular and physiological processes, ranging from cell adhesion, migration and survival to tissue architecture and homeostasis. Here, we report a novel role of CD151 in maintaining the branching morphogenesis and activity of progenitor cells during the pubertal development of mammary glands. In contrast to the disruption of laminin-binding integrins, CD151 removal in mice enhanced the tertiary branching in mammary glands by 2.4-fold and the number of terminal end buds (TEBs) by 30%, while having minimal influence on either primary or secondary ductal branching. Consistent with these morphological changes are the skewed distribution of basal/myoepithelial cells and a 3.2-fold increase in proliferating Ki67-positive cells. These novel observations suggest that CD151 impacts the branching morphogenesis of mammary glands by upregulating the activities of bipotent progenitor cells. Indeed, our subsequent analyses indicate that upon CD151 removal the proportion of CD24(Hi)CD49f(Low) progenitor cells in the mammary gland increased by 34%, and their proliferating and differentiating activities were significantly upregulated. Importantly, fibronectin, a pro-branching extracellular matrix (ECM) protein deposited underlying mammary epithelial or progenitor cells, increased by >7.2-fold. Moreover, there was a concomitant increase in the expression and nuclear distribution of Slug, a transcription factor implicated in the maintenance of mammary progenitor cell activities. Taken together, our studies demonstrate that integrin-associated CD151 represses mammary branching morphogenesis by controlling progenitor cell activities, ECM integrity and transcription program.
Collapse
Affiliation(s)
- Yuanqin Yin
- a Cancer Institute; First Affiliated Hospital ; China Medical University ; Shenyang , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|