1
|
Bakhtiarizade MR, Heidari M, Ghanatghestani AHM. Comprehensive circular RNA profiling in various sheep tissues. Sci Rep 2024; 14:26238. [PMID: 39482374 PMCID: PMC11527890 DOI: 10.1038/s41598-024-76940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the scientific relevance of circular RNAs (circRNAs), the study of these RNAs in non-model organisms, especially in sheep, is still in its infancy. On the other hand, while some studies have focused on sheep circRNA identification in a limited number of tissues, there is a lack of comprehensive analysis that profile circRNA expression patterns across the tissues not yet investigated. In this study, 61 public RNA sequencing datasets from 12 different tissues were uniformly analyzed to identify circRNAs, profile their expression and investigate their various characteristics. We reported for the first time a circRNA expression landscape with functional annotation in sheep tissues not yet investigated including hippocampus, BonMarrowMacrophage, left-ventricle, thymus, ileum, reticulum and 23-day-embryo. A stringent computational pipeline was employed and 8919 exon-derived circRNAs with high confidence were identified, including 88 novel circRNAs. Tissue-specificity analysis revealed that 3059 circRNAs were tissue-specific, which were also more specific to the tissues than linear RNAs. The highest number of tissue-specific circRNAs was found in kidney, hippocampus and thymus, respectively. Co-expression analysis revealed that expression of circRNAs may not be affected by their host genes. While most of the host genes produced more than one isoform, only one isoform had dominant expression across the tissues. The host genes of the tissue-specific circRNAs were significantly enriched in biological/pathways terms linked to the important functions of their corresponding tissues, suggesting potential roles of circRNAs in modulating physiological activity of those tissues. Interestingly, functional terms related to the regulation and various signaling pathways were significantly enriched in all tissues, suggesting some common regulatory mechanisms of circRNAs to modulate the physiological functions of tissues. Finding of the present study provide a valuable resource for depicting the complexity of circRNAs expression across tissues of sheep, which can be useful for the field of sheep genomic and veterinary research.
Collapse
Affiliation(s)
| | - Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
2
|
Loeb GB, Kathail P, Shuai RW, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu AY, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis NM, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. Nat Genet 2024; 56:2078-2092. [PMID: 39256582 DOI: 10.1038/s41588-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Kidney failure, the decrease of kidney function below a threshold necessary to support life, is a major cause of morbidity and mortality. We performed a genome-wide association study (GWAS) of 406,504 individuals in the UK Biobank, identifying 430 loci affecting kidney function in middle-aged adults. To investigate the cell types affected by these loci, we integrated the GWAS with human kidney candidate cis-regulatory elements (cCREs) identified using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq). Overall, 56% of kidney function heritability localized to kidney tubule epithelial cCREs and an additional 7% to kidney podocyte cCREs. Thus, most heritable differences in adult kidney function are a result of altered gene expression in these two cell types. Using enhancer assays, allele-specific scATAC-seq and machine learning, we found that many kidney function variants alter tubule epithelial cCRE chromatin accessibility and function. Using CRISPRi, we determined which genes some of these cCREs regulate, implicating NDRG1, CCNB1 and STC1 in human kidney function.
Collapse
Affiliation(s)
- Gabriel B Loeb
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Richard W Shuai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Reinier J Grona
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Y Chu
- Human Genetics and Genomics, GSK, Cambridge, MA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genome Biology, Research Technologies, GSK, Stevenage, UK
| | - Nilah M Ioannidis
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Alzarka B, Charnaya O, Gunay-Aygun M. Diseases of the primary cilia: a clinical characteristics review. Pediatr Nephrol 2024:10.1007/s00467-024-06528-w. [PMID: 39340573 DOI: 10.1007/s00467-024-06528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Ciliopathies encompass a broad spectrum of diseases stemming from dysfunction of the primary (non-motile) cilia, present on almost all cells in the human body. These disorders include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, and multisystem ciliopathies such as Joubert, Meckel, Bardet-Biedl, Alström, oral-facial-digital syndromes, and skeletal ciliopathies. The majority of these ciliopathies are associated with fibrocystic kidney disease resulting in progressive kidney dysfunction. In addition, many ciliopathies are associated with extra-renal manifestations including congenital hepatic fibrosis, retinal dystrophy, obesity, and brain and skeletal anomalies. The diagnoses may be challenging due to their overlapping clinical features and molecular heterogeneity. To date, over 190 genes encoding proteins that localize to the primary cilia have been identified as disease-causing. This review will discuss the clinical features of the most frequently encountered disorders of primary cilia.
Collapse
Affiliation(s)
- Bakri Alzarka
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga Charnaya
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meral Gunay-Aygun
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| |
Collapse
|
4
|
Salman MA, Elgebaly A, Soliman NA. Epidemiology and outcomes of pediatric autosomal recessive polycystic kidney disease in the Middle East and North Africa. Pediatr Nephrol 2024; 39:2569-2578. [PMID: 38261064 DOI: 10.1007/s00467-024-06281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
The incidence of rare diseases is expected to be comparatively higher in the Middle East and North Africa (MENA) region than in other parts of the world, attributed to the high prevalence of consanguinity. Most MENA countries share social and economic statuses, cultural relativism, religious beliefs, and healthcare policies. Polycystic kidney diseases (PKDs) are the most common genetic causes of kidney failure, accounting for nearly 8.0% of dialysis cases. The development of PKDs is linked to variants in several genes, including PKD1, PKD2, PKHD1, DZIP1L, and CYS1. Autosomal recessive PKD (ARPKD) is the less common yet aggressive form of PKD. ARPKD has an estimated incidence between 1:10,000 and 1:40,000. Most patients with ARPKD require kidney replacement therapy earlier than patients with autosomal dominant polycystic kidney disease (ADPKD), often in their early years of life. This review gathered data from published research studies and reviews of ARPKD, highlighting the epidemiology, phenotypic presentation, investigations, genetic analysis, outcomes, and management. Although limited data are available, the published literature suggests that the incidence of ARPKD may be higher in the MENA region due to consanguineous marriages. Patients with ARPKD from the MENA region usually present at a later disease stage and have a relatively short time to progress to kidney failure. Limited data are available regarding the management practice in the region, which warrants further investigations.
Collapse
Affiliation(s)
| | - Ahmed Elgebaly
- Smart Health Unit, University of East London, London, E16 2, UK
| | - Neveen A Soliman
- Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy Medical School, Cairo University, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
- Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| |
Collapse
|
5
|
Tran U, Streets AJ, Smith D, Decker E, Kirschfink A, Izem L, Hassey JM, Rutland B, Valluru MK, Bräsen JH, Ott E, Epting D, Eisenberger T, Ong AC, Bergmann C, Wessely O. BICC1 Interacts with PKD1 and PKD2 to Drive Cystogenesis in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.608867. [PMID: 39253489 PMCID: PMC11383298 DOI: 10.1101/2024.08.27.608867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.
Collapse
|
6
|
Henein M, Russo F, Sentell ZT, Goupil R, Kitzler TM. Phenotypic Discordance among Siblings with Autosomal Recessive Polycystic Kidney Disease: Case Report and Review of the Literature. Nephron Clin Pract 2024:1-9. [PMID: 39467534 DOI: 10.1159/000540741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/02/2024] [Indexed: 10/30/2024] Open
Abstract
Missense variants in the PKHD1 gene are associated with the full spectrum of autosomal recessive polycystic kidney disease severity and exhibit variable expressivity. The study of clinical expressivity is limited by the extensive allelic heterogeneity within the PKHD1 gene, which encodes a 4074-amino-acid protein. We report the case of adult siblings with biallelic missense PKHD1 variants, c.4870C>T (p.Arg1624Trp) and c.8206T>G (p.Trp2736Gly), who presented with discordant phenotypes. Patient A developed progressive chronic kidney disease and Caroli syndrome in childhood requiring combined liver and kidney transplantation, while patient B remains minimally affected in the fourth decade of life with normal kidney function and signs of medullary sponge kidney on imaging. We review previously reported cases of phenotypic discordance among siblings and suggest that genotypes composed of at least one hypomorphic missense variant are more likely to lead to phenotypic discordance.
Collapse
Affiliation(s)
- Marc Henein
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada,
| | - Felicia Russo
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
| | - Zachary T Sentell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Rémi Goupil
- Department of Nephrology, Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Thomas M Kitzler
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
7
|
Qian C, Yan J, Huang X, Wang Z, Lin F. Novel splice site and nonsense variants in PKHD1 cause autosomal recessive polycystic kidney disease in a Chinese Zhuang ethnic family. Medicine (Baltimore) 2024; 103:e39216. [PMID: 39093746 PMCID: PMC11296461 DOI: 10.1097/md.0000000000039216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND This study aims to report the clinical characteristics of a child with autosomal recessive polycystic kidney disease (ARPKD) within a Chinese Zhuang ethnic family. METHODS We used whole exome sequencing (WES) in the family to examine the genetic cause of the disease. Candidate pathogenic variants were validated by Sanger sequencing. RESULTS We identified previously unreported mutations in the PKHD1 gene of the proband with ARPKD through WES: a splice site mutation c.6809-2A > T, a nonsense mutation c.4192C > T(p.Gln1398Ter), and a missense mutation c.2181T > G(p.Asn727Lys). Her mother is a heterozygous carrier of c.2181T > G(p.Asn727Lys) mutation. Her father is a carrier of c.6809-2A > T mutation and c.4192C > T(p.Gln1398Ter) mutation. CONCLUSIONS The identification of novel mutations in the PKHD1 gene through WES not only expands the spectrum of known variants but also potentially enhances genetic counseling and prenatal diagnostic approaches for families affected by ARPKD.
Collapse
Affiliation(s)
- Chen Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jie Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ximei Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zila Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
8
|
Ozyavuz Cubuk P, Akin Duman T. New Variants Identified by Next-Generation Sequencing in Polycystic Kidney Disease Patients. Biochem Genet 2024:10.1007/s10528-024-10880-9. [PMID: 38971859 DOI: 10.1007/s10528-024-10880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Polycystic kidney disease (PKD) is a common inherited disease characterized by multiple cysts in kidneys and various extra renal manifestations. Molecular diagnosis plays a crucial role in confirming both the clinical diagnosis and preimplantation genetic diagnosis furthermore, selecting appropriate treatment options. This study aimed to expand the understanding of genetic mutations in patients with polycystic kidney disease and to improve the management of patients. The study included 92 patients with a clinical diagnosis of PKD based on renal ultrasound criteria. Targeted next-generation sequencing was performed using a custom panel kit. Of the 92 patients included in the study, pathogenic/likely pathogenic variants of the PKD1, PKD2 genes were detected in 37 patients (40.2%), while 8 patients (8.6%) had variants with uncertain clinical significance. After the additional assessment of pathogenic/likely pathogenic variants, it was found that 15 of the variants in PKD1 and 2 of the variants in PKD2 have not been reported in the literature previously. Additionally, pathogenic variants, 5 of which were novel, have been identified in different genes in 8 patients. This study presented the largest patient cohort conducted in Turkey. These findings were significant in expanding our understanding of the genetic variations associated with polycystic kidney disease. The study contrıbuted the literature data on polycystic kidney disease by reporting important findings that could pave the way for further investigations in the diagnosis, treatment, and management of the affected patients.
Collapse
Affiliation(s)
- Pelin Ozyavuz Cubuk
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Sciences University, Fatih/Istanbul, Turkey.
| | - Tugba Akin Duman
- Department of Medical Genetics, Haseki Training and Research Hospital, Health Sciences University, Fatih/Istanbul, Turkey
| |
Collapse
|
9
|
Zhang X, Wu J, Zhou J, Liang J, Han Y, Qi Y, Zhu T, Yuan D, Zhu Z, Zhai J. Pathogenic relationship between phenotypes of ARPKD and novel compound heterozygous mutations of PKHD1. Front Genet 2024; 15:1429336. [PMID: 39015774 PMCID: PMC11250243 DOI: 10.3389/fgene.2024.1429336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Background To investigate whether the novel mutation of PKHD1 could cause polycystic kidney disease by affecting splicing with a recessive inheritance pattern. Methods A nonconsanguineous Chinese couple with two recurrent pregnancies showed fetal enlarged echogenic polycystic kidney and oligoamnios were recruited. Pedigree WES, minigene splicing assay experiment and following bioinformatics analysis were performed to verify the effects, and inheritance pattern of diseasing-causing mutations. Results WES revealed that both fetuses were identified as carrying the same novel mutation c.3592_3628 + 45del, p.? and c.11207 T>C, p.(Ile3736Thr) in the PKHD1 gene (NM_138694.4), which inherited from the father and mother respectively. Both bioinformatic method prediction and minigene splicing assay experience results supported the mutation c.3592_3628 + 45del, p.? affects the splicing of the PKHD1 transcript, resulting in exon 31 skipping. Another missense mutation c.11207 T>C, p.(Ile3736Thr) has a low frequency in populations and is predicted to be deleterious by bioinformatic methods. Conclusion These findings provide a direct clinical and functional evidence that the truncating mutations of the PKHD1 gene could lead to more severe phenotypes, and cause ARPKD as a homozygous or compound heterozygous pattern. Our study broadens the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and diagnosis of ARPKD.
Collapse
Affiliation(s)
- Xinrong Zhang
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jiebin Wu
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jianteng Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Liang
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Han
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yunmeng Qi
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Zuobin Zhu
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingfang Zhai
- Xuzhou Central Hospital, Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Prenatal Diagnosis Medical Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Key Laboratory of Brain Diseases Bioinformation of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Prakapenka D, Liang Z, Zaabza HB, VanRaden PM, Van Tassell CP, Da Y. Large-Sample Genome-Wide Association Study of Resistance to Retained Placenta in U.S. Holstein Cows. Int J Mol Sci 2024; 25:5551. [PMID: 38791589 PMCID: PMC11122073 DOI: 10.3390/ijms25105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
A genome-wide association study of resistance to retained placenta (RETP) using 632,212 Holstein cows and 74,747 SNPs identified 200 additive effects with p-values < 10-8 on thirteen chromosomes but no dominance effect was statistically significant. The regions of 87.61-88.74 Mb of Chr09 about 1.13 Mb in size had the most significant effect in LOC112448080 and other highly significant effects in CCDC170 and ESR1, and in or near RMND1 and AKAP12. Four non-ESR1 genes in this region were reported to be involved in ESR1 fusions in humans. Chr23 had the largest number of significant effects that peaked in SLC17A1, which was involved in urate metabolism and transport that could contribute to kidney disease. The PKHD1 gene contained seven significant effects and was downstream of another six significant effects. The ACOT13 gene also had a highly significant effect. Both PKHD1 and ACOT13 were associated with kidney disease. Another highly significant effect was upstream of BOLA-DQA2. The KITLG gene of Chr05 that acts in utero in germ cell and neural cell development, and hematopoiesis was upstream of a highly significant effect, contained a significant effect, and was between another two significant effects. The results of this study provided a new understanding of genetic factors underlying RETP in U.S. Holstein cows.
Collapse
Affiliation(s)
- Dzianis Prakapenka
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Zuoxiang Liang
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hafedh B. Zaabza
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Paul M. VanRaden
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yang Da
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Mahboobipour AA, Ala M, Safdari Lord J, Yaghoobi A. Clinical manifestation, epidemiology, genetic basis, potential molecular targets, and current treatment of polycystic liver disease. Orphanet J Rare Dis 2024; 19:175. [PMID: 38671465 PMCID: PMC11055360 DOI: 10.1186/s13023-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic liver disease (PLD) is a rare condition observed in three genetic diseases, including autosomal dominant polycystic liver disease (ADPLD), autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). PLD usually does not impair liver function, and advanced PLD becomes symptomatic when the enlarged liver compresses adjacent organs or increases intra-abdominal pressure. Currently, the diagnosis of PLD is mainly based on imaging, and genetic testing is not required except for complex cases. Besides, genetic testing may help predict patients' prognosis, classify patients for genetic intervention, and conduct early treatment. Although the underlying genetic causes and mechanisms are not fully understood, previous studies refer to primary ciliopathy or impaired ciliogenesis as the main culprit. Primarily, PLD occurs due to defective ciliogenesis and ineffective endoplasmic reticulum quality control. Specifically, loss of function mutations of genes that are directly involved in ciliogenesis, such as Pkd1, Pkd2, Pkhd1, and Dzip1l, can lead to both hepatic and renal cystogenesis in ADPKD and ARPKD. In addition, loss of function mutations of genes that are involved in endoplasmic reticulum quality control and protein folding, trafficking, and maturation, such as PRKCSH, Sec63, ALG8, ALG9, GANAB, and SEC61B, can impair the production and function of polycystin1 (PC1) and polycystin 2 (PC2) or facilitate their degradation and indirectly promote isolated hepatic cystogenesis or concurrent hepatic and renal cystogenesis. Recently, it was shown that mutations of LRP5, which impairs canonical Wnt signaling, can lead to hepatic cystogenesis. PLD is currently treated by somatostatin analogs, percutaneous intervention, surgical fenestration, resection, and liver transplantation. In addition, based on the underlying molecular mechanisms and signaling pathways, several investigational treatments have been used in preclinical studies, some of which have shown promising results. This review discusses the clinical manifestation, complications, prevalence, genetic basis, and treatment of PLD and explains the investigational methods of treatment and future research direction, which can be beneficial for researchers and clinicians interested in PLD.
Collapse
Affiliation(s)
- Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Javad Safdari Lord
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
12
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Al Homyani DK, Al Homaiani L. Not All Diabetic Ketoacidosis in Infant Is Type 1: A Case Report Permanent Neonatal Diabetes. AACE Clin Case Rep 2024; 10:7-9. [PMID: 38303767 PMCID: PMC10829776 DOI: 10.1016/j.aace.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024] Open
Abstract
Background/Objective Neonatal diabetes is a monogenic type of diabetes mellitus. It arises at the first 6 months of age and can be classified as permanent or transient. There are limited cases of neonates with DKA who have heterozygous mutations in INS and PKHD1 genes, especially in Saudi Arabia. We present a case of neonatal diabetes with diabetic ketoacidosis (DKA) born to consanguineous parents in Saudi Arabia. This study aims to highlight the importance of the genetic mutations associated with neonatal diabetes and identify the clinical manifestation features of neonatal diabetes. Case Report A six-month-old boy born to consanguineous parents with a family history of neonatal diabetes was diagnosed with DKA. The case was presented to the emergency department (ED) with vomiting and increased urination for 3 days. The child showed signs of severe dehydration and severe metabolic acidosis with a high anion gap and elevated hemoglobin A1C level (16.3%) was reported. According to the genetic test, the patient had an INS and PKHD1gene mutation. The treatment was initiated according to the DKA protocol, and then he received subcutaneous insulin. Discussion Neonatal diabetes is a condition caused by several gene mutations. In this case, heterozygous mutations in INS and PKHD1 genes were reported. The type of gene mutation could predict neonatal diabetes type, whether permanent or transient, and its response to treatment. Conclusion Genetic testing for neonates soon after birth is suggested for the early detection and classification of neonatal diabetes, especially among children with a family history of neonatal diabetes.
Collapse
Affiliation(s)
| | - Lina Al Homaiani
- IBN Sina National College For Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Shafqat MN, Memon MYY, Javed S, Kanagala SG, Saleem M. Caroli's Syndrome: A Case Report and Literature Review. Cureus 2023; 15:e50871. [PMID: 38249206 PMCID: PMC10799222 DOI: 10.7759/cureus.50871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Synonymous with congenital non-obstructive saccular or fusiform intra-hepatic duct dilatation and congenital communicating cavernous ectasia of the intra-hepatic biliary tract, Caroli's syndrome (CS) is an extremely rare fibro-polycystic liver disorder characterized by ductal plate malformation and consequent peri-portal fibrosis due to segmental intra-hepatic duct dilatation. No more than 200 cases of the syndrome have been reported since 1958. CS may affect one or both lobes of the liver, but more commonly it affects the left hepatic lobe. We describe a rare case of CS localized to the right hepatic lobe in a 21-year-old male, who presented with complaints of upper gastrointestinal (GI) bleeding without any signs or stigmata of chronic liver disease. Personal as well as family history was non-significant except positive for consanguineous parental marriage. General physical examination was unremarkable except for pallor, and upper GI endoscopy revealed columns of bandable esophageal varices which led us to a line of investigations to identify the cause of portal hypertension. Blood tests were non-specific, though imaging studies chiefly abdominal ultrasound, CT abdomen and pelvis with contrast, and magnetic resonance cholangiopancreatography (MRCP) led us to confirmation of the diagnosis of CS in the right hepatic lobe with manifestations of portal hypertension as the predominant feature. Diagnosis was confirmed on liver biopsy which showed right-sided cystic dilations with congenital hepatic fibrosis.
Collapse
Affiliation(s)
- Muhammad Nabeel Shafqat
- Department of Gastroenterology and Hepatology, Allied Teaching Hospital Gujranwala, Gujranwala, PAK
| | | | - Salman Javed
- Department of Gastroenterology and Hepatology, Services Institute of Medical Sciences, Lahore, PAK
| | | | - Momina Saleem
- Department of Medicine, Allied Teaching Hospital Gujranwala, Gujranwala, PAK
| |
Collapse
|
15
|
Harafuji N, Yang C, Wu M, Thiruvengadam G, Gordish-Dressman H, Thompson RG, Bell PD, Rosenberg AZ, Dafinger C, Liebau MC, Bebok Z, Caldovic L, Guay-Woodford LM. Differential regulation of MYC expression by PKHD1/Pkhd1 in human and mouse kidneys: phenotypic implications for recessive polycystic kidney disease. Front Cell Dev Biol 2023; 11:1270980. [PMID: 38125876 PMCID: PMC10731465 DOI: 10.3389/fcell.2023.1270980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe, hereditary, hepato-renal fibrocystic disorder that leads to early childhood morbidity and mortality. Typical forms of ARPKD are caused by pathogenic variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC) protein. MYC overexpression has been proposed as a driver of renal cystogenesis, but little is known about MYC expression in recessive PKD. In the current study, we provide the first evidence that MYC is overexpressed in kidneys from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from cpk mutant mice. In contrast, renal MYC expression levels were not altered in several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-CTD) is proteolytically cleaved through Notch-like processing, translocates to the nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD plays a role in regulating MYC/Myc transcription. Using immunofluorescence, reporter gene assays, and ChIP, we demonstrate that both human and mouse FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and activate MYC/Myc expression. Interestingly, we observed species-specific differences in FPC-CTD intracellular trafficking. Furthermore, our informatic analyses revealed limited sequence identity of FPC-CTD across vertebrate phyla and database queries identified temporal differences in PKHD1/Pkhd1 and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these temporal differences in gene expression could contribute to the relative renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our findings provide new mechanistic insights into differential mFPC-CTD and hFPC-CTD regulation of MYC expression in renal epithelial cells, which may illuminate the basis for the phenotypic disparities between human patients with PKHD1 pathogenic variants and Pkhd1-mutant mice.
Collapse
Affiliation(s)
- Naoe Harafuji
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Chaozhe Yang
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Maoqing Wu
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | - Girija Thiruvengadam
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
| | | | - R. Griffin Thompson
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - P. Darwin Bell
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Zsuzsanna Bebok
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
- Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M. Guay-Woodford
- Center for Translational Research, Children’s National Hospital, Washington, DC, United States
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States
| |
Collapse
|
16
|
Walker RV, Yao Q, Xu H, Maranto A, Swaney KF, Ramachandran S, Li R, Cassina L, Polster BM, Outeda P, Boletta A, Watnick T, Qian F. Fibrocystin/Polyductin releases a C-terminal fragment that translocates into mitochondria and suppresses cystogenesis. Nat Commun 2023; 14:6513. [PMID: 37845212 PMCID: PMC10579373 DOI: 10.1038/s41467-023-42196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Fibrocystin/Polyductin (FPC), encoded by PKHD1, is associated with autosomal recessive polycystic kidney disease (ARPKD), yet its precise role in cystogenesis remains unclear. Here we show that FPC undergoes complex proteolytic processing in developing kidneys, generating three soluble C-terminal fragments (ICDs). Notably, ICD15, contains a novel mitochondrial targeting sequence at its N-terminus, facilitating its translocation into mitochondria. This enhances mitochondrial respiration in renal epithelial cells, partially restoring impaired mitochondrial function caused by FPC loss. FPC inactivation leads to abnormal ultrastructural morphology of mitochondria in kidney tubules without cyst formation. Moreover, FPC inactivation significantly exacerbates renal cystogenesis and triggers severe pancreatic cystogenesis in a Pkd1 mouse mutant Pkd1V/V in which cleavage of Pkd1-encoded Polycystin-1 at the GPCR Proteolysis Site is blocked. Deleting ICD15 enhances renal cystogenesis without inducing pancreatic cysts in Pkd1V/V mice. These findings reveal a direct link between FPC and a mitochondrial pathway through ICD15 cleavage, crucial for cystogenesis mechanisms.
Collapse
Affiliation(s)
- Rebecca V Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore, 117411, Singapore
| | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma, and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Yang C, Harafuji N, Caldovic L, Yu W, Boddu R, Bhattacharya S, Barseghyan H, Gordish-Dressman H, Foreman O, Bebok Z, Eicher EM, Guay-Woodford LM. Pkhd1 cyli/cyli mice have altered renal Pkhd1 mRNA processing and hormonally sensitive liver disease. J Mol Med (Berl) 2023; 101:1141-1151. [PMID: 37584738 PMCID: PMC10482757 DOI: 10.1007/s00109-023-02351-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Autosomal-recessive polycystic kidney disease (ARPKD; MIM #263200) is a severe, hereditary, hepato-renal fibrocystic disorder that causes early childhood morbidity and mortality. Mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which encodes the protein fibrocystin/polyductin complex (FPC), cause all typical forms of ARPKD. Several mouse lines carrying diverse, genetically engineered disruptions in the orthologous Pkhd1 gene have been generated, but none expresses the classic ARPKD renal phenotype. In the current study, we characterized a spontaneous mouse Pkhd1 mutation that is transmitted as a recessive trait and causes cysticliver (cyli), similar to the hepato-biliary disease in ARPKD, but which is exacerbated by age, sex, and parity. We mapped the mutation to Chromosome 1 and determined that an insertion/deletion mutation causes a frameshift within Pkhd1 exon 48, which is predicted to result in a premature termination codon (UGA). Pkhd1cyli/cyli (cyli) mice exhibit a severe liver pathology but lack renal disease. Further analysis revealed that several alternatively spliced Pkhd1 mRNA, all containing exon 48, were expressed in cyli kidneys, but in lower abundance than in wild-type kidneys, suggesting that these transcripts escaped from nonsense-mediated decay (NMD). We identified an AAAAAT motif in exon 48 upstream of the cyli mutation which could enable ribosomal frameshifting, thus potentially allowing production of sufficient amounts of FPC for renoprotection. This mechanism, expressed in a species-specific fashion, may help explain the disparities in the renal phenotype observed between Pkhd1 mutant mice and patients with PKHD1-related disease. KEY MESSAGES: The Pkhd1cyli/cyli mouse expresses cystic liver disease, but no kidney phenotype. Pkhd1 mRNA expression is decreased in cyli liver and kidneys compared to wild-type. Ribosomal frameshifting may be responsible for Pkhd1 mRNA escape from NMD. Pkhd1 mRNA escape from NMD could contribute to the absent kidney phenotype.
Collapse
Affiliation(s)
- Chaozhe Yang
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Naoe Harafuji
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Weiying Yu
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Ravindra Boddu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Heather Gordish-Dressman
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Oded Foreman
- Genentech USA, Inc, South San Francisco, CA, 94080, USA
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zsuzsa Bebok
- Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eva M Eicher
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20010, USA.
- Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
18
|
Burgmaier K, Broekaert IJ, Liebau MC. Autosomal Recessive Polycystic Kidney Disease: Diagnosis, Prognosis, and Management. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:468-476. [PMID: 38097335 DOI: 10.1053/j.akdh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 12/18/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Ilse J Broekaert
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Lea WA, Winklhofer T, Zelenchuk L, Sharma M, Rossol-Allison J, Fields TA, Reif G, Calvet JP, Bakeberg JL, Wallace DP, Ward CJ. Polycystin-1 Interacting Protein-1 (CU062) Interacts with the Ectodomain of Polycystin-1 (PC1). Cells 2023; 12:2166. [PMID: 37681898 PMCID: PMC10487028 DOI: 10.3390/cells12172166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The PKD1 gene, encoding protein polycystin-1 (PC1), is responsible for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). PC1 has been shown to be present in urinary exosome-like vesicles (PKD-ELVs) and lowered in individuals with germline PKD1 mutations. A label-free mass spectrometry comparison of urinary PKD-ELVs from normal individuals and those with PKD1 mutations showed that several proteins were reduced to a degree that matched the decrease observed in PC1 levels. Some of these proteins, such as polycystin-2 (PC2), may be present in a higher-order multi-protein assembly with PC1-the polycystin complex (PCC). CU062 (Q9NYP8) is decreased in ADPKD PKD-ELVs and, thus, is a candidate PCC component. CU062 is a small glycoprotein with a signal peptide but no transmembrane domain and can oligomerize with itself and interact with PC1. We investigated the localization of CU062 together with PC1 and PC2 using immunofluorescence (IF). In nonconfluent cells, all three proteins were localized in close proximity to focal adhesions (FAs), retraction fibers (RFs), and RF-associated extracellular vesicles (migrasomes). In confluent cells, primary cilia had PC1/PC2/CU062 + extracellular vesicles adherent to their plasma membrane. In cells exposed to mitochondrion-decoupling agents, we detected the development of novel PC1/CU062 + ring-like structures that entrained swollen mitochondria. In contact-inhibited cells under mitochondrial stress, PC1, PC2, and CU062 were observed on large, apically budding extracellular vesicles, where the proteins formed a reticular network on the membrane. CU062 interacts with PC1 and may have a role in the identification of senescent mitochondria and their extrusion in extracellular vesicles.
Collapse
Affiliation(s)
- Wendy A. Lea
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Thomas Winklhofer
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Lesya Zelenchuk
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Madhulika Sharma
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | | | - Timothy A. Fields
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3062, Kansas City, KS 66160, USA
| | - Gail Reif
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - James P. Calvet
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Jason L. Bakeberg
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Darren P. Wallace
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| | - Christopher J. Ward
- Department of Nephrology and Hypertension, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., Mail Stop 3018, KS 66160, USA (D.P.W.)
| |
Collapse
|
20
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
21
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
22
|
Miao M, Feng L, Wang J, Xu C, Su X, Zhang G, Lu S. A novel PKHD1 splicing variant identified in a fetus with autosomal recessive polycystic kidney disease. Front Genet 2023; 14:1207772. [PMID: 37456659 PMCID: PMC10339289 DOI: 10.3389/fgene.2023.1207772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Objective: Variants of the polycystic kidney and hepatic disease 1 (PKHD1) gene are associated with autosomal recessive polycystic kidney disease (ARPKD). This study aimed to identify the genetic causes in a Chinese pedigree with ARPKD and design a minigene construct of the PKHD1 gene to investigate the impact of its variants on splicing. Methods: Umbilical cord samples from the proband and peripheral blood samples from his parents were collected, and genomic DNA was extracted for whole-exome sequencing (WES). Bioinformatic analysis was used to identify potential genetic causes, and Sanger sequencing confirmed the existence of variants within the pedigree. A minigene assay was performed to validate the effects of an intronic variant on mRNA splicing. Results: Two variants, c.9455del (p.N3152Tfs*10) and c.2408-13C>G, were identified in the PKHD1 gene (NM_138694.4) by WES; the latter has not been previously reported. In silico analysis predicted that this intronic variant is potentially pathogenic. Bioinformatic splice prediction tools revealed that the variant is likely to strongly impact splice site function. An in vitro minigene assay revealed that c.2408-13C>G can cause aberrant splicing, resulting in the retention of 12 bp of intron 23. Conclusion: A novel pathogenic variant of PKHD1, c.2408-13C>G, was found in a fetus with ARPKD, which enriches the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and the diagnosis of ARPKD. Minigenes are optimal to determine whether intron variants can cause aberrant splicing.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaotian Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Guoying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoulian Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Mekahli D, Liebau MC, Cadnapaphornchai MA, Goldstein SL, Greenbaum LA, Litwin M, Seeman T, Schaefer F, Guay-Woodford LM. Design of two ongoing clinical trials of tolvaptan in the treatment of pediatric patients with autosomal recessive polycystic kidney disease. BMC Nephrol 2023; 24:33. [PMID: 36782137 PMCID: PMC9926647 DOI: 10.1186/s12882-023-03072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Autosomal recessive polycystic kidney disease (ARPKD) is a hereditary condition characterized by massive kidney enlargement and developmental liver defects. Potential consequences during childhood include the need for kidney replacement therapy (KRT). We report the design of 2 ongoing clinical trials (Study 204, Study 307) to evaluate safety, tolerability, and efficacy of tolvaptan in children with ARPKD. METHODS Both trials are of multinational, multicenter, open-label design. Age range at enrollment is 28 days to < 12 weeks in Study 204 and 28 days to < 18 years in Study 307. Subjects in both studies must have a clinical diagnosis of ARPKD, and those in Study 204 must additionally have signs indicative of risk of rapid progression to KRT, namely, all of: nephromegaly, multiple kidney cysts or increased kidney echogenicity suggesting microcysts, and oligohydramnios or anhydramnios. Target enrollment is 20 subjects for Study 204 and ≥ 10 subjects for Study 307. RESULTS Follow-up is 24 months in Study 204 (with optional additional treatment up to 36 months) and 18 months in Study 307. Outcomes include safety, tolerability, change in kidney function, and percentage of subjects requiring KRT relative to historical data. Regular safety assessments monitor for possible adverse effects of treatment on parameters such as liver function, kidney function, fluid balance, electrolyte levels, and growth trajectory, with increased frequency of monitoring following tolvaptan initiation or dose escalation. CONCLUSIONS These trials will provide data on tolvaptan safety and efficacy in a population without disease-specific treatment options. TRIAL REGISTRATION Study 204: EudraCT 2020-005991-36; Study 307: EudraCT 2020-005992-10.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. .,Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Max C. Liebau
- grid.6190.e0000 0000 8580 3777Department of Pediatrics, Center for Family Health, Center for Rare Diseases, and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Melissa A. Cadnapaphornchai
- grid.437199.1Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian/St. Luke’s Medical Center, Denver, CO USA
| | - Stuart L. Goldstein
- grid.24827.3b0000 0001 2179 9593Center for Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Larry A. Greenbaum
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Division of Pediatric Nephrology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA USA
| | - Mieczyslaw Litwin
- grid.413923.e0000 0001 2232 2498Department of Nephrology, Kidney Transplantation and Arterial Hypertension, Children’s Memorial Health Institute, Warsaw, Poland
| | - Tomas Seeman
- grid.4491.80000 0004 1937 116XDepartment of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic ,grid.412727.50000 0004 0609 0692Department of Pediatrics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Franz Schaefer
- grid.5253.10000 0001 0328 4908Division of Pediatric Nephrology, University Children’s Hospital Heidelberg, Heidelberg, Germany
| | - Lisa M. Guay-Woodford
- grid.239560.b0000 0004 0482 1586Center for Translational Research, Children’s National Research Institute, Washington, DC USA
| |
Collapse
|
24
|
Van Buren JD, Neuman JT, Sidlow R. Predominant Liver Cystic Disease in a New Heterozygotic PKHD1 Variant: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e938507. [PMID: 36691356 PMCID: PMC9883601 DOI: 10.12659/ajcr.938507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The polycystic kidney and hepatic disease 1 (PKHD1) gene codes for fibrocystin-polyductin, a protein that takes part in cell-signaling for cell differentiation, especially in kidney tubules and bile ducts. A homozygous or compound heterozygous defect in this gene can cause autosomal recessive polycystic kidney disease (ARPKD). Polycystic liver disease (PCLD) can also be caused by single heterozygous variants in the PKHD1 gene. ARPKD presents with renal insufficiency and cystic dilatation of bile ducts, although disease is not expected with a single heterozygous mutation. PCLD presents with multiple cysts in the liver and dilated bile ducts as well, but with less of an impact on the kidneys than with ARPKD. Our purpose in publishing this report is to introduce an as-yet unknown variant to the body of genetic defects associated with ARPKD and PCLD, as well as to argue for the likely pathogenicity of the variant according to the prevailing criteria used for classifying gene variants. CASE REPORT We present a patient with a de novo PKHD1 variant currently classified as a variant of unknown significance manifesting with bilaterally enlarged cystic kidneys and echogenic cystic structures in the hepatic portal system, indicative of cystic disease. CONCLUSIONS Given this patient's liver and kidney presentation that does not fully align with either ARPKD or PCLD, the authors believe that the single heterozygous variant in this patient's PKHD1 gene is worthy of reporting. This new single heterozygous variant in PKHD1 gene causing cystic kidney and cystic hepatic disease in the patient should be considered 'likely pathogenic' according to the criteria set by the American College of Medical Genetics.
Collapse
Affiliation(s)
- Jacob D. Van Buren
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel,Corresponding Author: Jacob D. Van Buren, e-mail:
| | - Jeremy T. Neuman
- Radiology Associates of Main Street, New York-Presbyterian Queens, Flushing, NY, USA
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children’s Hospital, Madera, CA, USA
| |
Collapse
|
25
|
Khare S, Jiang L, Cabrara DP, Apte U, Pritchard MT. Global Transcriptomics of Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease using PCK rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524760. [PMID: 36711494 PMCID: PMC9882327 DOI: 10.1101/2023.01.19.524760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Congenital hepatic fibrosis / Autosomal recessive polycystic kidney disease (CHF/ARPKD) is an inherited neonatal disease induced by mutations in the PKHD1 gene and characterized by cysts, and robust pericystic fibrosis in liver and kidney. The PCK rat is an excellent animal model which carries a Pkhd1 mutation and exhibits similar pathophysiology. We performed RNA-Seq analysis on liver samples from PCK rats over a time course of postnatal day (PND) 15, 20, 30, and 90 using age-matched Sprague-Dawley (SD) rats as controls to characterize molecular mechanisms of CHF/ARPKD pathogenesis. A comprehensive differential gene expression (DEG) analysis identified 1298 DEGs between PCK and SD rats. The genes overexpressed in the PCK rats at PND 30 and 90 were involved cell migration (e.g. Lamc2, Tgfb2 , and Plet1 ), cell adhesion (e.g. Spp1, Adgrg1 , and Cd44 ), and wound healing (e.g. Plat, Celsr1, Tpm1 ). Connective tissue growth factor ( Ctgf ) and platelet-derived growth factor ( Pdgfb ), two genes associated with fibrosis, were upregulated in PCK rats at all time-points. Genes associated with MHC class I molecules (e.g. RT1-A2 ) or involved in ribosome assembly (e.g. Pes1 ) were significantly downregulated in PCK rats. Upstream regulator analysis showed activation of proteins involved tissue growth (MTPN) and inflammation (STAT family members) and chromatin remodeling (BRG1), and inhibition of proteins involved in hepatic differentiation (HNF4α) and reduction of fibrosis (SMAD7). The increase in mRNAs of four top upregulated genes including Reg3b, Aoc1, Tm4sf20 , and Cdx2 was confirmed at the protein level using immunohistochemistry. In conclusion, these studies indicate that a combination of increased inflammation, cell migration and wound healing, and inhibition of hepatic function, decreased antifibrotic gene expression are the major underlying pathogenic mechanisms in CHF/ARPKD.
Collapse
|
26
|
Fleischer LT, Ballester L, Dutt M, Howarth K, Poznick L, Darge K, Furth SL, Hartung EA. Evaluation of galectin-3 and intestinal fatty acid binding protein as serum biomarkers in autosomal recessive polycystic kidney disease. J Nephrol 2023; 36:133-145. [PMID: 35980535 DOI: 10.1007/s40620-022-01416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) causes fibrocystic kidney disease, congenital hepatic fibrosis, and portal hypertension. Serum galectin-3 (Gal-3) and intestinal fatty acid binding protein (I-FABP) are potential biomarkers of kidney fibrosis and portal hypertension, respectively. We examined whether serum Gal-3 associates with kidney disease severity and serum I-FABP associates with liver disease severity in ARPKD. METHODS Cross-sectional study of 29 participants with ARPKD (0.2-21 years old) and presence of native kidneys (Gal-3 analyses, n = 18) and/or native livers (I-FABP analyses, n = 21). Serum Gal-3 and I-FABP were analyzed using enzyme linked immunosorbent assay. Kidney disease severity variables included estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume (htTKV). Liver disease severity was characterized using ultrasound elastography to measure liver fibrosis, and spleen length and platelet count as markers of portal hypertension. Simple and multivariable linear regression examined associations between Gal-3 and kidney disease severity (adjusted for liver disease severity) and between I-FABP and liver disease severity (adjusted for eGFR). RESULTS Serum Gal-3 was negatively associated with eGFR; 1 standard deviation (SD) lower eGFR was associated with 0.795 SD higher Gal-3 level (95% CI - 1.116, - 0.473; p < 0.001). This association remained significant when adjusted for liver disease severity. Serum Gal-3 was not associated with htTKV in adjusted analyses. Overall I-FABP levels were elevated, but there were no linear associations between I-FABP and liver disease severity in unadjusted or adjusted models. CONCLUSIONS Serum Gal-3 is associated with eGFR in ARPKD, suggesting its value as a possible novel biomarker of kidney disease severity. We found no associations between serum I-FABP and ARPKD liver disease severity despite overall elevated I-FABP levels.
Collapse
Affiliation(s)
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohini Dutt
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Poznick
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Sekine A, Hidaka S, Moriyama T, Shikida Y, Shimazu K, Ishikawa E, Uchiyama K, Kataoka H, Kawano H, Kurashige M, Sato M, Suwabe T, Nakatani S, Otsuka T, Kai H, Katayama K, Makabe S, Manabe S, Shimabukuro W, Nakanishi K, Nishio S, Hattanda F, Hanaoka K, Miura K, Hayashi H, Hoshino J, Tsuchiya K, Mochizuki T, Horie S, Narita I, Muto S. Cystic Kidney Diseases That Require a Differential Diagnosis from Autosomal Dominant Polycystic Kidney Disease (ADPKD). J Clin Med 2022; 11:6528. [PMID: 36362756 PMCID: PMC9657046 DOI: 10.3390/jcm11216528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary cystic kidney disease, with patients often having a positive family history that is characterized by a similar phenotype. However, in atypical cases, particularly those in which family history is unclear, a differential diagnosis between ADPKD and other cystic kidney diseases is important. When diagnosing ADPKD, cystic kidney diseases that can easily be excluded using clinical information include: multiple simple renal cysts, acquired cystic kidney disease (ACKD), multilocular renal cyst/multilocular cystic nephroma/polycystic nephroma, multicystic kidney/multicystic dysplastic kidney (MCDK), and unilateral renal cystic disease (URCD). However, there are other cystic kidney diseases that usually require genetic testing, or another means of supplementing clinical information to enable a differential diagnosis of ADPKD. These include autosomal recessive polycystic kidney disease (ARPKD), autosomal dominant tubulointerstitial kidney disease (ADTKD), nephronophthisis (NPH), oral-facial-digital (OFD) syndrome type 1, and neoplastic cystic kidney disease, such as tuberous sclerosis (TSC) and Von Hippel-Lindau (VHL) syndrome. To help physicians evaluate cystic kidney diseases, this article provides a review of cystic kidney diseases for which a differential diagnosis is required for ADPKD.
Collapse
Affiliation(s)
- Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Tomofumi Moriyama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Yasuto Shikida
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Keiji Shimazu
- Department of Nephrology, Saiseikai Nakatsu Hospital, Osaka 530-0012, Japan
| | - Eiji Ishikawa
- Department of Nephrology, Saiseikai Matsusaka General Hospital, Mie 515-8557, Japan
| | - Kiyotaka Uchiyama
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mahiro Kurashige
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Mai Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo 105-8470, Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Otsuka
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hirayasu Kai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Wataru Shimabukuro
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Fumihiko Hattanda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kazushige Hanaoka
- Department of General Internal Medicine, Daisan Hospital, Jikei University, School of Medicine, Tokyo 105-8471, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University, Aichi 470-1192, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Advanced Informatics for Genetic Disease, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Department of Urology, Juntendo University Nerima Hospital, Tokyo 177-8521, Japan
| |
Collapse
|
28
|
Acharya R, Upadhyay K. Hyperinsulinemic Hypoglycemia Due to PMM2 Mutation in Two Siblings with Autosomal Recessive Polycystic Kidney Disease. Pediatr Rep 2022; 14:444-449. [PMID: 36412659 PMCID: PMC9680396 DOI: 10.3390/pediatric14040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Hyperinsulinemic hypoglycemia (HH) is an important cause of persistent hypoglycemia in newborns and infants. Recently, PMM2 (phosphomannomutase 2) mutation has been associated with HH, especially in conjunction with polycystic kidney disease (PKD). PMM2 deficiency is one of the most common causes of congenital disorder of glycosylation (CDG). Renal involvement in PMM2-CDG manifests as cystic kidney disease, echogenic kidneys, nephrotic syndrome or mild proteinuria. Case Summary: Here, we describe a pair of siblings with HH associated with autosomal recessive polycystic kidney disease (ARPKD) and PMM2 mutation. Two siblings with ARPKD presented during infancy and early toddler years with severe hypoglycemia. Both had inappropriately elevated serum insulin, low β-hydroxybutyrate, a need for a high glucose infusion rate, positive glycemic response to glucagon, positive diazoxide response and PMM2 mutation. Conclusions: Although this combination of HH and PKD was recently described in patients of European descent who also had PMM2 mutation, our report is unique given that these non-consanguineous siblings were not exclusively of European descent. PMM2 mutation leading to abnormal glycosylation and causing cystic kidneys and the alteration of insulin secretion is the most likely pathogenesis of this clinical spectrum.
Collapse
Affiliation(s)
- Ratna Acharya
- Division of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Kiran Upadhyay
- Department of Pediatrics, Division of Pediatric Nephrology, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-352-273-9180; Fax: +1-352-294-8072
| |
Collapse
|
29
|
Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Cells 2022; 11:cells11091571. [PMID: 35563876 PMCID: PMC9105797 DOI: 10.3390/cells11091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.
Collapse
|
30
|
Goggolidou P, Richards T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim Biophys Acta Mol Basis Dis 2022; 1868:166348. [PMID: 35032595 DOI: 10.1016/j.bbadis.2022.166348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Taylor Richards
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
31
|
Jordan P, Dorval G, Arrondel C, Morinière V, Tournant C, Audrezet MP, Michel-Calemard L, Putoux A, Lesca G, Labalme A, Whalen S, Loeuillet L, Martinovic J, Attie-Bitach T, Bessières B, Schaefer E, Scheidecker S, Lambert L, Beneteau C, Patat O, Boute-Benejean O, Molin A, Guimiot F, Fontanarosa N, Nizon M, Lefebvre M, Jeanpierre C, Saunier S, Heidet L. Targeted next-generation sequencing in a large series of fetuses with severe renal diseases. Hum Mutat 2022; 43:347-361. [PMID: 35005812 DOI: 10.1002/humu.24324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
We report the screening of a large panel of genes in a series of 100 fetuses (98 families) affected with severe renal defects. Causative variants were identified in 22% of cases, greatly improving genetic counseling. The percentage of variants explaining the phenotype was different according to the type of phenotype. The highest diagnostic yield was found in cases affected with the ciliopathy-like phenotype (11/15 families and, in addition, a single heterozygous or a homozygous Class 3 variant in PKHD1 in three unrelated cases with autosomal recessive polycystic kidney disease). The lowest diagnostic yield was observed in cases with congenital anomalies of the kidney and urinary tract (9/78 families and, in addition, Class 3 variants in GREB1L in three unrelated cases with bilateral renal agenesis). Inheritance was autosomal recessive in nine genes (PKHD1, NPHP3, CEP290, TMEM67, DNAJB11, FRAS1, ACE, AGT, and AGTR1), and autosomal dominant in six genes (PKD1, PKD2, PAX2, EYA1, BICC1, and MYOCD). Finally, we developed an original approach of next-generation sequencing targeted RNA sequencing using the custom capture panel used for the sequencing of DNA, to validate one MYOCD heterozygous splicing variant identified in two male siblings with megabladder and inherited from their healthy mother.
Collapse
Affiliation(s)
- Penelope Jordan
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Guillaume Dorval
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Christelle Arrondel
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Vincent Morinière
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Carole Tournant
- APHP Service de Génétique, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Marie-Pierre Audrezet
- Service de Génétique moléculaire, Génétique, Génomique et Biotechnologies, UMR 1078, Hôpital Universitaire de Brest, Brest, France
| | - Laurence Michel-Calemard
- Service Biochimie Biologie Moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, CBPE, Bron, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Gaethan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Audrey Labalme
- Service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Sandra Whalen
- APHP UF de Génétique Clinique, Centre de Référence des Anomalies du Développement et Syndromes Malformatifs, APHP, Hôpital Armand Trousseau, ERN ITHACA, Sorbonne Université, Paris, France
| | - Laurence Loeuillet
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- APHP Service de Fœtopathologie, Hôpital Universitaire Antoine Béclère, Clamart, France
| | - Tania Attie-Bitach
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Bettina Bessières
- APHP Service d'Embryofœtopathologie, Hôpital Universitaire Necker-Enfants Malades, Paris, France.,Inserm U 1163, Institut Imagine, Université de Paris, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Service de Génétique Médicale, Institut de Génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Lambert
- Service de Génétique Médicale, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France
| | - Claire Beneteau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Olivier Patat
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Odile Boute-Benejean
- Service de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Arnaud Molin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Fabien Guimiot
- APHP Service d'Embryo-Fœtopathologie, Hôpital Universitaire Robert Debré, Paris, France
| | | | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Mathilde Lefebvre
- APHP Service de Pathologie fœtale, Hôpital Universitaire Armand Trousseau, Paris, France
| | - Cécile Jeanpierre
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Sophie Saunier
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France
| | - Laurence Heidet
- Inserm U1163, Laboratoire des Maladies Rénales Héréditaires Institut Imagine, Université de Paris, Paris, France.,APHP Service de Néphrologie Pédiatrique, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Hôpital Universitaire Necker-Enfants Malades, Paris, France
| |
Collapse
|
32
|
Wu M, Harafuji N, O'Connor AK, Caldovic L, Guay-Woodford LM. Transcription factor Ap2b regulates the mouse autosomal recessive polycystic kidney disease genes, Pkhd1 and Cys1. Front Mol Biosci 2022; 9:946344. [PMID: 36710876 PMCID: PMC9877354 DOI: 10.3389/fmolb.2022.946344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.
Collapse
Affiliation(s)
- Maoqing Wu
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Naoe Harafuji
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Amber K O'Connor
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, DC, United States.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
33
|
Advances in genetic, epigenetic and environmental aspects of rare liver diseases. Eur J Med Genet 2021; 65:104411. [PMID: 34942406 DOI: 10.1016/j.ejmg.2021.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
35
|
A human multi-lineage hepatic organoid model for liver fibrosis. Nat Commun 2021; 12:6138. [PMID: 34686668 PMCID: PMC8536785 DOI: 10.1038/s41467-021-26410-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
To investigate the pathogenesis of a congenital form of hepatic fibrosis, human hepatic organoids were engineered to express the most common causative mutation for Autosomal Recessive Polycystic Kidney Disease (ARPKD). Here we show that these hepatic organoids develop the key features of ARPKD liver pathology (abnormal bile ducts and fibrosis) in only 21 days. The ARPKD mutation increases collagen abundance and thick collagen fiber production in hepatic organoids, which mirrors ARPKD liver tissue pathology. Transcriptomic and other analyses indicate that the ARPKD mutation generates cholangiocytes with increased TGFβ pathway activation, which are actively involved stimulating myofibroblasts to form collagen fibers. There is also an expansion of collagen-producing myofibroblasts with markedly increased PDGFRB protein expression and an activated STAT3 signaling pathway. Moreover, the transcriptome of ARPKD organoid myofibroblasts resemble those present in commonly occurring forms of liver fibrosis. PDGFRB pathway involvement was confirmed by the anti-fibrotic effect observed when ARPKD organoids were treated with PDGFRB inhibitors. Besides providing insight into the pathogenesis of congenital (and possibly acquired) forms of liver fibrosis, ARPKD organoids could also be used to test the anti-fibrotic efficacy of potential anti-fibrotic therapies.
Collapse
|
36
|
Heidari M, Gharshasbi H, Isazadeh A, Soleyman-Nejad M, Taskhiri MH, Shapouri J, Bolhassani M, Sadighi N, Heidari M. Identification of Two Novel Mutations in PKHD1 Gene from Two Families with Polycystic Kidney Disease by Whole Exome Sequencing. Curr Genomics 2021; 22:232-236. [PMID: 34975292 PMCID: PMC8640847 DOI: 10.2174/1389202922666210219111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.
Collapse
Affiliation(s)
- Masoud Heidari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hamid Gharshasbi
- Department of Genetics, Tabriz Branch Islamic Azad University, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Javad Shapouri
- Pediatric Clinical Research and Development Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Nahid Sadighi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
37
|
Ishiko S, Morisada N, Kondo A, Nagai S, Aoto Y, Okada E, Rossanti R, Sakakibara N, Nagano C, Horinouchi T, Yamamura T, Ninchoji T, Kaito H, Hamada R, Shima Y, Nakanishi K, Matsuo M, Iijima K, Nozu K. Clinical features of autosomal recessive polycystic kidney disease in the Japanese population and analysis of splicing in PKHD1 gene for determination of phenotypes. Clin Exp Nephrol 2021; 26:140-153. [PMID: 34536170 PMCID: PMC8770369 DOI: 10.1007/s10157-021-02135-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 11/05/2022]
Abstract
Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene. The clinical spectrum is often more variable than previously considered. We aimed to analyze the clinical features of genetically diagnosed ARPKD in the Japanese population. Methods We conducted a genetic analysis of patients with clinically diagnosed or suspected ARPKD in Japan. Moreover, we performed a minigene assay to elucidate the mechanisms that could affect phenotypes. Results PKHD1 pathogenic variants were identified in 32 patients (0–46 years). Approximately one-third of the patients showed prenatal anomalies, and five patients died within one year after birth. Other manifestations were detected as follows: chronic kidney disease stages 1–2 in 15/26 (57.7%), Caroli disease in 9/32 (28.1%), hepatic fibrosis in 7/32 (21.9%), systemic hypertension in 13/27 (48.1%), and congenital hypothyroidism in 3 patients. There have been reported that truncating mutations in both alleles led to severe phenotypes with perinatal demise. However, one patient without a missense mutation survived the neonatal period. In the minigene assay, c.2713C > T (p.Gln905Ter) and c.6808 + 1G > A expressed a transcript that skipped exon 25 (123 bp) and exon 41 (126 bp), resulting in an in-frame mutation, which might have contributed to the milder phenotype. Missense mutations in cases of neonatal demise did not show splicing abnormalities. Conclusion Clinical manifestations ranged from cases of neonatal demise to those diagnosed in adulthood. The minigene assay results indicate the importance of functional analysis, and call into question the fundamental belief that at least one non-truncating mutation is necessary for perinatal survival. Supplementary Information The online version contains supplementary material available at 10.1007/s10157-021-02135-3.
Collapse
Affiliation(s)
- Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. .,Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, 1-6-7, Minatojimaminami-machi, Chou-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Sadayuki Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hiroshi Kaito
- Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, 1-6-7, Minatojimaminami-machi, Chou-ku, Kobe, Hyogo, 650-0047, Japan
| | - Riku Hamada
- Department of Nephrology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fichu-shi, Tokyo, 183-8561, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, 811-1, Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of Ryukyus, 207 Uehara, Nishihara-cho, Nakagami-gun, Okinawa, 903-2015, Japan
| | - Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise Ikawadani-cho, Nishi-ku, Kobe Hyogo, 651-2113, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
38
|
Therapeutic Potential for CFTR Correctors in Autosomal Recessive Polycystic Kidney Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1517-1529. [PMID: 34329764 PMCID: PMC8529398 DOI: 10.1016/j.jcmgh.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). Severe disease occurs in perinates. Those who survive the neonatal period face a myriad of comorbidities, including systemic and portal hypertension, liver fibrosis, and hepatosplenomegaly. The goal here was to uncover therapeutic strategies for ARPKD. METHODS We used wild-type and an FPC-mutant cholangiocyte cell line in 3-dimenional cysts and in confluent monolayers to evaluate protein expression using western blotting and protein trafficking using confocal microscopy. RESULTS We found that the protein level of the cystic fibrosis transmembrane conductance regulator (CFTR) was downregulated. The levels of heat shock proteins (HSPs) were altered in the FPC-mutant cholangiocytes, with HSP27 being downregulated and HSP90 and HSP70 upregulated. FPC-mutant cholangiocytes formed cysts, but normal cells did not. Cyst growth could be reduced by increasing HSP27 protein levels, by HSP90 and HSP70 inhibitor treatments, by silencing HSP90 through messenger RNA inhibition, or by the novel approach of treating the cysts with the CFTR corrector VX-809. In wild-type cholangiocytes, CFTR is present in both apical and basolateral membranes. FPC malfunction resulted in altered colocalization of CFTR with both apical and basolateral membranes. Whereas, treatment with VX-809, increasing HSP27 or inhibiting HSP70 or HSP90 restored CFTR localization toward normal values. CONCLUSIONS FPC malfunction induces the formation of cysts, which are fueled by alterations in HSPs and in CFTR protein levels and miss-localization. We suggest that CFTR correctors, already in clinical use to treat cystic fibrosis, could also be used as a treatment for ARPKD.
Collapse
|
39
|
Song R, Yosypiv IV. Sequence variants in the renin-angiotensin system genes are associated with isolated multicystic dysplastic kidney in children. Pediatr Res 2021; 90:205-211. [PMID: 33173183 DOI: 10.1038/s41390-020-01255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multicystic dysplastic kidney (MCDK) is a common form of congenital cystic kidney disease in children. The etiology of MCDK remains unclear. Given an important role of the renin-angiotensin system in normal kidney development, we explored whether MCDK in children is associated with variants in the genes encoding renin-angiotensin system components by Sanger sequencing. METHODS The coding regions of renin (REN), angiotensinogen (AGT), ACE, and angiotensin 1 receptor (AGTR1) genes were amplified by PCR. The effect of DNA sequence variants on protein function was predicted with PolyPhen-2 software. RESULTS 3 novel and known AGT variants were found. 1 variant was probably damaging, 1 was possibly damaging and one was benign. Out of 7 REN variants, 4 were probably damaging and 3 were benign. Of 6 ACE variants, 3 were probably damaging and 3-benign. 3 AGTR1 variants were found. 2 variants were possibly damaging, and one was benign. CONCLUSION We report novel associations of sequence variants in REN, AGT, ACE, or AGTR1 genes in children with isolated MCDK in the United States. Our findings suggest a recessive disease model and support the hypothesis of multiple renin-angiotensin system gene involvement in MCDK. IMPACT Discovery of novel gene variants in renin-angiotensin genes in children with MCDK. Novel possibly damaging gene variants discovered. Multiple renin-angiotensin system gene variants are involved in MCDK.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
40
|
Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease. Int J Mol Sci 2021; 22:6523. [PMID: 34204582 PMCID: PMC8235086 DOI: 10.3390/ijms22126523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.
Collapse
Affiliation(s)
- Adrian Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.)
- Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Fundación Publica Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
41
|
Benson KA, Murray SL, Senum SR, Elhassan E, Conlon ET, Kennedy C, Conlon S, Gilbert E, Connaughton D, O'Hara P, Khamis S, Cormican S, Brody LC, Molloy AM, Lynch SA, Casserly L, Griffin MD, Carton R, Yachnin K, Harris PC, Cavalleri GL, Conlon P. The genetic landscape of polycystic kidney disease in Ireland. Eur J Hum Genet 2021; 29:827-838. [PMID: 33454723 PMCID: PMC8110806 DOI: 10.1038/s41431-020-00806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Polycystic kidney diseases (PKDs) comprise the most common Mendelian forms of renal disease. It is characterised by the development of fluid-filled renal cysts, causing progressive loss of kidney function, culminating in the need for renal replacement therapy or kidney transplant. Ireland represents a valuable region for the genetic study of PKD, as family sizes are traditionally large and the population relatively homogenous. Studying a cohort of 169 patients, we describe the genetic landscape of PKD in Ireland for the first time, compare the clinical features of patients with and without a molecular diagnosis and correlate disease severity with autosomal dominant pathogenic variant type. Using a combination of molecular genetic tools, including targeted next-generation sequencing, we report diagnostic rates of 71-83% in Irish PKD patients, depending on which variant classification guidelines are used (ACMG or Mayo clinic respectively). We have catalogued a spectrum of Irish autosomal dominant PKD pathogenic variants including 36 novel variants. We illustrate how apparently unrelated individuals carrying the same autosomal dominant pathogenic variant are highly likely to have inherited that variant from a common ancestor. We highlight issues surrounding the implementation of the ACMG guidelines for variant pathogenicity interpretation in PKD, which have important implications for clinical genetics.
Collapse
Affiliation(s)
- Katherine A Benson
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan L Murray
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Eoin T Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Claire Kennedy
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Shane Conlon
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Paul O'Hara
- Department of Renal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Sarah Khamis
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Cormican
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| | - Lawrence C Brody
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Liam Casserly
- Department of Renal Medicine, University Hospital Limerick, Limerick, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| | - Robert Carton
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Peter Conlon
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
42
|
Burgmaier K, Brinker L, Erger F, Beck BB, Benz MR, Bergmann C, Boyer O, Collard L, Dafinger C, Fila M, Kowalewska C, Lange-Sperandio B, Massella L, Mastrangelo A, Mekahli D, Miklaszewska M, Ortiz-Bruechle N, Patzer L, Prikhodina L, Ranchin B, Ranguelov N, Schild R, Seeman T, Sever L, Sikora P, Szczepanska M, Teixeira A, Thumfart J, Uetz B, Weber LT, Wühl E, Zerres K, Dötsch J, Schaefer F, Liebau MC. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants. Kidney Int 2021; 100:650-659. [PMID: 33940108 DOI: 10.1016/j.kint.2021.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe disease of early childhood that is clinically characterized by fibrocystic changes of the kidneys and the liver. The main cause of ARPKD are variants in the PKHD1 gene encoding the large transmembrane protein fibrocystin. The mechanisms underlying the observed clinical heterogeneity in ARPKD remain incompletely understood, partly due to the fact that genotype-phenotype correlations have been limited to the association of biallelic null variants in PKHD1 with the most severe phenotypes. In this observational study we analyzed a deep clinical dataset of 304 patients with ARPKD from two independent cohorts and identified novel genotype-phenotype correlations during childhood and adolescence. Biallelic null variants frequently show severe courses. Additionally, our data suggest that the affected region in PKHD1 is important in determining the phenotype. Patients with two missense variants affecting amino acids 709-1837 of fibrocystin or a missense variant in this region and a null variant less frequently developed chronic kidney failure, and patients with missense variants affecting amino acids 1838-2624 showed better hepatic outcome. Variants affecting amino acids 2625-4074 of fibrocystin were associated with poorer hepatic outcome. Thus, our data expand the understanding of genotype-phenotype correlations in pediatric ARPKD patients and can lay the foundation for more precise and personalized counselling and treatment approaches.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Leonie Brinker
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Florian Erger
- Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Bodo B Beck
- Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | | | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany
| | - Olivia Boyer
- Department of Pediatric Nephrology and Kidney Transplantation, Necker Hospital, APHP, Paris University, Paris, France
| | - Laure Collard
- Reference centre pediatric nephrology, Clinique de l'Espérance, Montegnee, Belgium
| | - Claudia Dafinger
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Marc Fila
- Pediatric Nephrology Unit, CHU Arnaud de Villeneuve-Université de Montpellier, Montpellier, France
| | - Claudia Kowalewska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Djalila Mekahli
- PKD Research Group, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | | | - Ludwig Patzer
- Department of Pediatrics, Children's Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Research Clinical Institute for Pediatrics n.a. acad. Y. E. Veltishev, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Bruno Ranchin
- Pediatric Nephrology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Centre de référence maladies rénales rares, Bron, France
| | - Nadejda Ranguelov
- Department of Pediatrics, Université Catholique de Louvain Medical School, Saint-Luc Academic Hospital, Brussels, Belgium
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tomas Seeman
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany; Department of Pediatrics, University Hospital Motol, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Lale Sever
- Department of Pediatric Nephrology, Cerrahpaşa School of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Maria Szczepanska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ana Teixeira
- Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - Julia Thumfart
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Barbara Uetz
- KfH Center of Pediatric Nephrology, Children's Hospital Munich Schwabing, Munich, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Jörg Dötsch
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany; Center for Rare Diseases, University Hospital Cologne and Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
43
|
Wicher D, Obrycki Ł, Jankowska I. Autosomal Recessive Polycystic Kidney Disease-The Clinical Aspects and Diagnostic Challenges. J Pediatr Genet 2021; 10:1-8. [PMID: 33552631 DOI: 10.1055/s-0040-1714701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is one of the most common ciliopathies with kidney (nephromegaly, hypertension, renal dysfunction) and liver involvement (congenital hepatic fibrosis, dilated bile ducts). Clinical features also include growth failure and neurocognitive impairment. Plurality of clinical aspects requires multidisciplinary approach to treatment and care of patients. Until recently, diagnosis was based on clinical criteria. Results of genetic testing show the molecular basis of polycystic kidneys disease is heterogeneous, and differential diagnosis is essential. The aim of the article is to discuss the role of genetic testing and its difficulties in diagnostics of ARPKD in children.
Collapse
Affiliation(s)
- Dorota Wicher
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Łukasz Obrycki
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
44
|
Sparapani S, Millet-Boureima C, Oliver J, Mu K, Hadavi P, Kalostian T, Ali N, Avelar CM, Bardies M, Barrow B, Benedikt M, Biancardi G, Bindra R, Bui L, Chihab Z, Cossitt A, Costa J, Daigneault T, Dault J, Davidson I, Dias J, Dufour E, El-Khoury S, Farhangdoost N, Forget A, Fox A, Gebrael M, Gentile MC, Geraci O, Gnanapragasam A, Gomah E, Haber E, Hamel C, Iyanker T, Kalantzis C, Kamali S, Kassardjian E, Kontos HK, Le TBU, LoScerbo D, Low YF, Mac Rae D, Maurer F, Mazhar S, Nguyen A, Nguyen-Duong K, Osborne-Laroche C, Park HW, Parolin E, Paul-Cole K, Peer LS, Philippon M, Plaisir CA, Porras Marroquin J, Prasad S, Ramsarun R, Razzaq S, Rhainds S, Robin D, Scartozzi R, Singh D, Fard SS, Soroko M, Soroori Motlagh N, Stern K, Toro L, Toure MW, Tran-Huynh S, Trépanier-Chicoine S, Waddingham C, Weekes AJ, Wisniewski A, Gamberi C. The Biology of Vasopressin. Biomedicines 2021; 9:89. [PMID: 33477721 PMCID: PMC7832310 DOI: 10.3390/biomedicines9010089] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada; (S.S.); (C.M.-B.); (J.O.); (K.M.); (P.H.); (T.K.); (N.A.); (C.M.A.); (M.B.); (B.B.); (M.B.); (G.B.); (R.B.); (L.B.); (Z.C.); (A.C.); (J.C.); (T.D.); (J.D.); (I.D.); (J.D.); (E.D.); (S.E.-K.); (N.F.); (A.F.); (A.F.); (M.G.); (M.C.G.); (O.G.); (A.G.); (E.G.); (E.H.); (C.H.); (T.I.); (C.K.); (S.K.); (E.K.); (H.K.K.); (T.B.U.L.); (D.L.); (Y.F.L.); (D.M.R.); (F.M.); (S.M.); (A.N.); (K.N.-D.); (C.O.-L.); (H.W.P.); (E.P.); (K.P.-C.); (L.S.P.); (M.P.); (C.-A.P.); (J.P.M.); (S.P.); (R.R.); (S.R.); (S.R.); (D.R.); (R.S.); (D.S.); (S.S.F.); (M.S.); (N.S.M.); (K.S.); (L.T.); (M.W.T.); (S.T.-H.); (S.T.-C.); (C.W.); (A.J.W.); (A.W.)
| |
Collapse
|
45
|
Panfoli I, Granata S, Candiano G, Verlato A, Lombardi G, Bruschi M, Zaza G. Analysis of urinary exosomes applications for rare kidney disorders. Expert Rev Proteomics 2021; 17:735-749. [PMID: 33395324 DOI: 10.1080/14789450.2020.1866993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.
Collapse
Affiliation(s)
- Isabella Panfoli
- Department of Pharmacy-DIFAR, University of Genoa , Genoa, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Alberto Verlato
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Gianmarco Lombardi
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini , Genoa, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona , Verona, Italy
| |
Collapse
|
46
|
Liebau MC. Early clinical management of autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:3561-3570. [PMID: 33594464 PMCID: PMC8497312 DOI: 10.1007/s00467-021-04970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but highly relevant disorder in pediatric nephrology. This genetic disease is mainly caused by variants in the PKHD1 gene and is characterized by fibrocystic hepatorenal phenotypes with major clinical variability. ARPKD frequently presents perinatally, and the management of perinatal and early disease symptoms may be challenging. This review discusses aspects of early manifestations in ARPKD and its clincial management with a special focus on kidney disease.
Collapse
Affiliation(s)
- Max Christoph Liebau
- Department of Pediatrics and Center for Molecular Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
47
|
Possible PKHD1 Hot-spot Mutations Related to Early Kidney Function Failure or Hepatofibrosis in Chinese Children with ARPKD: A Retrospective Single Center Cohort Study and Literature Review. Curr Med Sci 2020; 40:835-844. [PMID: 33123899 DOI: 10.1007/s11596-020-2268-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
PKHD1 mutations are generally considered to cause autosomal recessive polycystic kidney disease (ARPKD). ARPKD is a rare disorder and one of the most severe conditions leading to end-stage renal disease in childhood. With the biallelic deletion mutation, patients have difficulty in surviving the perinatal period, resulting in perinatal or neonatal death. This study retrospectively analyzed patient characteristics, imaging characteristics, laboratory examinations and family surveys from 7 Chinese children with different PKHD1 gene mutations diagnosed by high-throughput sequencing from January 2014 to February 2018. Of the 7 children, there were 3 males and 4 females. Eight missense mutations, two frameshift mutations, two deletion mutations, and two intronic slicing mutations were identified. Six of the mutations have not previously been identified. In the literature search, we identified a total of 29 Chinese children with PKHD1 mutations. The missense mutation c.2507T>C in exon 24 was found in one patient in our study, and five patients with liver fibrosis but normal renal function were reported in the literature. The missense mutation c.5935G>A in exon 37 was found in two patients in our study and three cases in the literature. Four patients had renal failure at an age as young as 1 year of those five patients with the missense mutation c.5935G>A in exon 37. It was concluded that: (1) Kidney length more than 2-3 SDs above the mean and early-onset hypertension might be associated with PKHD1-associated ARPKD; (2) The more enlarged the kidney size is, the lower the renal function is likely to be; (3) c.5935G>A may be a hot spot that leads to early renal failure in Chinese children with PKHD1 mutations; (4) c.2507T>C may be a hot-spot mutation associated with hepatic lesions in Chinese children with PKHD1.
Collapse
|
48
|
Molinari E, Srivastava S, Dewhurst RM, Sayer JA. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol 2020; 21:435. [PMID: 33059616 PMCID: PMC7559414 DOI: 10.1186/s12882-020-02094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Background PKHD1 is the main genetic cause of autosomal recessive polycystic kidney disease (ARPKD), a hereditary hepato-renal fibrocystic disorder which is the most important cause of end-stage renal disease during early childhood. ARPKD can also present in adulthood with milder phenotypes. In this study, we describe a 24-year-old woman with atypical polycystic kidney, no family history of renal disease and no obvious extra-renal manifestations who was referred for genetic investigation. Methods We used a combination of next generation sequencing, Sanger sequencing and RNA and microscopy studies performed on urine-derived renal epithelial cells (URECs) to provide a genetic diagnosis of ARPKD. Results A next generation sequencing panel of cystic ciliopathy genes allowed the identification of two heterozygous sequence changes in PKHD1 (c.6900C > T; p.(Asn2300=) and c.7964A > C; p.(His2655Pro)). The pathogenicity of the synonymous PKHD1 variant is not clear and requires RNA studies, which cannot be carried out efficiently on RNA extracted from proband blood, due to the low expression levels of PKHD1 in lymphocytes. Using URECs as a source of kidney-specific RNA, we show that PKHD1 is alternatively spliced around exon 43, both in control and proband URECs. The variant p.(Asn2300=) shifts the expression ratio in favour of a shorter, out-of-frame transcript. To further study the phenotypic consequence of these variants, we investigated the ciliary phenotype of patient URECs, which were abnormally elongated and presented multiple blebs along the axoneme. Conclusions We confirm the power of URECs as a tool for functional studies on candidate variants in inherited renal disease, especially when the expression of the gene of interest is restricted to the kidney and we describe, for the first time, ciliary abnormalities in ARPKD patient cells.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Shalabh Srivastava
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rebecca M Dewhurst
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. .,Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK. .,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK.
| |
Collapse
|
49
|
Burgmaier K, Ariceta G, Bald M, Buescher AK, Burgmaier M, Erger F, Gessner M, Gokce I, König J, Kowalewska C, Massella L, Mastrangelo A, Mekahli D, Pape L, Patzer L, Potemkina A, Schalk G, Schild R, Shroff R, Szczepanska M, Taranta-Janusz K, Tkaczyk M, Weber LT, Wühl E, Wurm D, Wygoda S, Zagozdzon I, Dötsch J, Oh J, Schaefer F, Liebau MC. Severe neurological outcomes after very early bilateral nephrectomies in patients with autosomal recessive polycystic kidney disease (ARPKD). Sci Rep 2020; 10:16025. [PMID: 32994492 PMCID: PMC7525474 DOI: 10.1038/s41598-020-71956-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/24/2020] [Indexed: 11/23/2022] Open
Abstract
To test the association between bilateral nephrectomies in patients with autosomal recessive polycystic kidney disease (ARPKD) and long-term clinical outcome and to identify risk factors for severe outcomes, a dataset comprising 504 patients from the international registry study ARegPKD was analyzed for characteristics and complications of patients with very early (≤ 3 months; VEBNE) and early (4–15 months; EBNE) bilateral nephrectomies. Patients with very early dialysis (VED, onset ≤ 3 months) without bilateral nephrectomies and patients with total kidney volumes (TKV) comparable to VEBNE infants served as additional control groups. We identified 19 children with VEBNE, 9 with EBNE, 12 with VED and 11 in the TKV control group. VEBNE patients suffered more frequently from severe neurological complications in comparison to all control patients. Very early bilateral nephrectomies and documentation of severe hypotensive episodes were independent risk factors for severe neurological complications. Bilateral nephrectomies within the first 3 months of life are associated with a risk of severe neurological complications later in life. Our data support a very cautious indication of very early bilateral nephrectomies in ARPKD, especially in patients with residual kidney function, and emphasize the importance of avoiding severe hypotensive episodes in this at-risk cohort.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne and University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Martin Bald
- Department of Pediatric Nephrology, Klinikum Stuttgart, Olga Children's Hospital, Stuttgart, Germany
| | | | - Mathias Burgmaier
- Department of Internal Medicine I, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Florian Erger
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michaela Gessner
- Department of General Pediatrics and Hematology/Oncology, Children's University Hospital Tuebingen, Tuebingen, Germany
| | - Ibrahim Gokce
- Division of Pediatric Nephrology, Research and Training Hospital, Marmara University, Istanbul, Turkey
| | - Jens König
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | | | - Laura Massella
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Djalila Mekahli
- Department of Development and Regeneration, PKD Research Group, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Lars Pape
- Department of Pediatrics II, University Hospital Essen, Essen, Germany.,Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ludwig Patzer
- Children's Hospital St. Elisabeth and St. Barbara, Halle (Saale), Germany
| | - Alexandra Potemkina
- Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Gesa Schalk
- Department of Pediatrics, University Hospital Bonn, Bonn, Germany
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Rukshana Shroff
- UCL Great Ormond Street Hospital for Children Institute of Child Health, UCL, London, UK
| | - Maria Szczepanska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, SUM in Katowice, Katowice, Poland
| | | | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Lutz Thorsten Weber
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne and University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Donald Wurm
- Department of Pediatrics, Klinikum Saarbrücken, Saarbrücken, Germany
| | - Simone Wygoda
- Clinic for Children and Adolescents, Hospital St. Georg, Leipzig, Germany
| | - Ilona Zagozdzon
- Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdansk, Gdansk, Poland
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne and University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Max Christoph Liebau
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne and University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | | |
Collapse
|
50
|
Al Alawi I, Molinari E, Al Salmi I, Al Rahbi F, Al Mawali A, Sayer JA. Clinical and genetic characteristics of autosomal recessive polycystic kidney disease in Oman. BMC Nephrol 2020; 21:347. [PMID: 32799815 PMCID: PMC7429752 DOI: 10.1186/s12882-020-02013-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is a high prevalence of rare genetic disorders in the Middle East, and their study provides unique clinical and genetic insights. Autosomal recessive polycystic kidney disease (ARPKD) is one of the leading causes of kidney and liver-associated morbidity and mortality in Oman. We describe the clinical and genetic profile of cohort of ARPKD patients. METHODS We studied patients with a clinical diagnosis of ARPKD (n = 40) and their relatives (parents (n = 24) and unaffected siblings (n = 10)) from 32 apparently unrelated families, who were referred to the National Genetic Centre in Oman between January 2015 and December 2018. Genetic analysis of PKHD1 if not previously known was performed using targeted exon PCR of known disease alleles and Sanger sequencing. RESULTS A clinical diagnosis of ARPKD was made prenatally in 8 patients, 21 were diagnosed during infancy (0-1 year), 9 during early childhood (2-8 years) and 2 at later ages (9-13 years). Clinical phenotypes included polycystic kidneys, hypertension, hepatic fibrosis and splenomegaly. Twenty-four patients had documented chronic kidney disease (median age 3 years). Twenty-four out of the 32 families had a family history suggesting an autosomal recessive pattern of inherited kidney disease, and there was known consanguinity in 21 families (66%). A molecular genetic diagnosis with biallelic PKHD1 mutations was known in 18 patients and newly identified in 20 other patients, totalling 38 patients from 30 different families. Two unrelated patients remained genetically unsolved. The different PKHD1 missense pathogenic variants were: c.107C > T, p.(Thr36Met); c.406A > G, p.(Thr136Ala); c.4870C > T, p.(Arg1624Trp) and c.9370C > T, p.(His3124Tyr) located in exons 3, 6, 32 and 58, respectively. The c.406A > G, p.(Thr136Ala) missense mutation was detected homozygously in one family and heterozygously with a c.107C > T, p.(Thr36Met) allele in 5 other families. Overall, the most commonly detected pathogenic allele was c.107C > T; (Thr36Met), which was seen in 24 families. CONCLUSIONS Molecular genetic screening of PKHD1 in clinically suspected ARPKD cases produced a high diagnostic rate. The limited number of PKHD1 missense variants identified in ARPKD cases suggests these may be common founder alleles in the Omani population. Cost effective targeted PCR analysis of these specific alleles can be a useful diagnostic tool for future cases of suspected ARPKD in Oman.
Collapse
Affiliation(s)
- Intisar Al Alawi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
- National Genetic Center, Ministry of Health, Muscat, Oman.
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Issa Al Salmi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Fatma Al Rahbi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Adhra Al Mawali
- Center of Studies and Research, Ministry of Health, Muscat, Oman
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|