1
|
Saha S, Skeie JM, Schmidt GA, Eggleston T, Shevalye H, Sales CS, Phruttiwanichakun P, Dusane A, Field MG, Rinkoski TA, Fautsch MP, Baratz KH, Roy M, Jun AS, Pendleton C, Salem AK, Greiner MA. TCF4 trinucleotide repeat expansions and UV irradiation increase susceptibility to ferroptosis in Fuchs endothelial corneal dystrophy. Redox Biol 2024; 77:103348. [PMID: 39332053 PMCID: PMC11470242 DOI: 10.1016/j.redox.2024.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD), the leading indication for corneal transplantation in the U.S., causes loss of corneal endothelial cells (CECs) and corneal edema leading to vision loss. FECD pathogenesis is linked to impaired response to oxidative stress and environmental ultraviolet A (UVA) exposure. Although UVA is known to cause nonapoptotic oxidative cell death resulting from iron-mediated lipid peroxidation, ferroptosis has not been characterized in FECD. We investigated the roles of genetic background and UVA exposure in causing CEC degeneration in FECD. Using ungenotyped FECD patient surgical samples, we found increased levels of cytosolic ferrous iron (Fe2+) and lipid peroxidation in end-stage diseased tissues compared with healthy controls. Using primary and immortalized cell cultures modeling the TCF4 intronic trinucleotide repeat expansion genotype, we found altered gene and protein expression involved in ferroptosis compared to controls including elevated levels of Fe2+, basal lipid peroxidation, and the ferroptosis-specific marker transferrin receptor 1. Increased cytosolic Fe2+ levels were detected after physiologically relevant doses of UVA exposure, indicating a role for ferroptosis in FECD disease progression. Cultured cells were more prone to ferroptosis induced by RSL3 and UVA than controls, indicating ferroptosis susceptibility is increased by both FECD genetic background and UVA. Finally, cell death was preventable after RSL3 induced ferroptosis using solubilized ubiquinol, indicating a role for anti-ferroptosis therapies in FECD. This investigation demonstrates that genetic background and UVA exposure contribute to iron-mediated lipid peroxidation and cell death in FECD, and provides the basis for future investigations of ferroptosis-mediated disease progression in FECD.
Collapse
Affiliation(s)
- Sanjib Saha
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Jessica M Skeie
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA
| | | | | | | | - Christopher S Sales
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA
| | - Pornpoj Phruttiwanichakun
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Apurva Dusane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew G Field
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Tommy A Rinkoski
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Madhuparna Roy
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Chandler Pendleton
- The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| | - Mark A Greiner
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA; Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA; Iowa Lions Eye Bank, Coralville, IA, 52241, USA.
| |
Collapse
|
2
|
Eslami H, Katebi K, Ghaffaripour Saleh S, Mirizadeh L, Hashemi M. The relationship between oxidative stress markers and temporomandibular disorders: A systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:33. [PMID: 39239079 PMCID: PMC11376713 DOI: 10.4103/jrms.jrms_660_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 09/07/2024]
Abstract
Background Oxidative stress has a role in many pathologic conditions, including oral diseases and temporomandibular joint disorders (TMDs) pathophysiology. This study compared the selected oxidative biomarkers' levels in TMD patients and healthy controls in a systematic review and meta-analysis. Materials and Methods Medline/PubMed, Scopus, Web of Science, Google Scholar, and Embase were systematically searched for English articles up to October 2022 using MeSH and free keywords. Joanna Briggs Institute checklist was used to assess the risk of bias. Differences between biomarker levels in TMD patients were compared to the control group. Results Ten case-control studies were included based on inclusion and exclusion criteria with a total of 659 patients: 314 with TMD and 345 healthy controls. The studies investigated 15 markers, including total oxidant status (TOS), total antioxidant status, and malondialdehyde (MDA). There was a significant difference in the salivary MDA of patients with TMD in comparison with healthy people; standard mean difference = 3.22 (95% confidence interval [CI]: 0.28-6.16); I 2 = 96.0%). The Antioxidant status in serum was significantly lower in patients with TMD in comparison with healthy people; weighted mean difference = -0.52 (95% CI: -0.90 to -0.14; I 2 = 97.0%). The result of TOS was inconclusive. Conclusion Salivary MDA and serum total antioxidative status measurements may be used as a biomarker for diagnosing TMD. Due to the lack of sufficient evidence, it is not possible to express a definite relation between the amount and type of marker and TMD diagnosis, which suggests that more case-control studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Hosein Eslami
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Katebi
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Lalehsan Mirizadeh
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Hashemi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Goto S, Setoguchi S, Matsunaga K, Takata J. Effects of radical scavengers for reactive oxygen species on vitamin K-induced phototoxicity under UVA irradiation. Toxicol In Vitro 2024; 98:105839. [PMID: 38723978 DOI: 10.1016/j.tiv.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Vitamin K possesses efficacy as a topical dermatological agent. However, vitamin K is phototoxic and susceptible to photodegradation. Herein, we investigated the mechanisms underlying the phototoxicity of phylloquinone (PK, vitamin K1) and menaquinone-4 (MK-4, vitamin K2) under ultraviolet A (UVA) irradiation using various reactive oxygen species (ROS) scavengers. This resulted in the production of superoxide anion radicals via type I and singlet oxygen via type II photodynamic reactions, which were quenched by the ROS scavengers: superoxide dismutase and sodium azide (NaN3). In HaCaT cells, MK-4 and PK induced the production of intracellular ROS, particularly hydrogen peroxide, in response to UVA irradiation. Furthermore, the addition of catalase successfully decreased maximum ROS levels by approximately 30%. NaN3 and catalase decreased the maximum reduction in cell viability induced by UVA-irradiated PK and MK-4 in cell viability by approximately 2-7-fold. Additionally, ROS scavengers had no effect on the photodegradation of PK or MK-4 at 373 nm. Therefore, the phototoxicities of PK and MK-4 were attributed to the generation of singlet oxygen and hydrogen peroxide, underscoring the importance of photoshielding in circumventing phototoxicity.
Collapse
Affiliation(s)
- Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Ling J, Gu R, Liu L, Chu R, Wu J, Zhong R, Ye S, Liu J, Fan S. Versatile Design of Organic Polymeric Nanoparticles for Photodynamic Therapy of Prostate Cancer. ACS MATERIALS AU 2024; 4:14-29. [PMID: 38221923 PMCID: PMC10786136 DOI: 10.1021/acsmaterialsau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024]
Abstract
Radical prostatectomy is a primary treatment option for localized prostate cancer (PCa), although high rates of recurrence are commonly observed postsurgery. Photodynamic therapy (PDT) has demonstrated efficacy in treating nonmetastatic localized PCa with a low incidence of adverse events. However, its limited efficacy remains a concern. To address these issues, various organic polymeric nanoparticles (OPNPs) loaded with photosensitizers (PSs) that target prostate cancer have been developed. However, further optimization of the OPNP design is necessary to maximize the effectiveness of PDT and improve its clinical applicability. This Review provides an overview of the design, preparation, methodology, and oncological aspects of OPNP-based PDT for the treatment of PCa.
Collapse
Affiliation(s)
- Jiacheng Ling
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongrong Gu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Lulu Liu
- School
of Resources and Environment, Anhui Agricultural
University, 130 Changjiang
West Road, Hefei 230036, China
| | - Ruixi Chu
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junchao Wu
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Rongfang Zhong
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Sheng Ye
- College
of Science & School of Plant Protection, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jian Liu
- Inner
Mongolia University Hohhot, Inner
Mongolia 010021, China
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- DICP-Surrey
Joint Centre for Future Materials, Department of Chemical and Process
Engineering and Advanced Technology Institute, University of Surrey, Guilford,
Surrey GU27XH, U.K.
| | - Song Fan
- Department
of Urology, The First Affiliated Hospital
of Anhui Medical University, Institute of Urology & Anhui Province
Key Laboratory of Genitourinary Diseases, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
5
|
Fujii J, Soma Y, Matsuda Y. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death. Molecules 2023; 28:molecules28104085. [PMID: 37241826 DOI: 10.3390/molecules28104085] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Energy transfer to ground state triplet molecular oxygen results in the generation of singlet molecular oxygen (1O2), which has potent oxidizing ability. Irradiation of light, notably ultraviolet A, to a photosensitizing molecule results in the generation of 1O2, which is thought to play a role in causing skin damage and aging. It should also be noted that 1O2 is a dominant tumoricidal component that is generated during the photodynamic therapy (PDT). While type II photodynamic action generates not only 1O2 but also other reactive species, endoperoxides release pure 1O2 upon mild exposure to heat and, hence, are considered to be beneficial compounds for research purposes. Concerning target molecules, 1O2 preferentially reacts with unsaturated fatty acids to produce lipid peroxidation. Enzymes that contain a reactive cysteine group at the catalytic center are vulnerable to 1O2 exposure. Guanine base in nucleic acids is also susceptible to oxidative modification, and cells carrying DNA with oxidized guanine units may experience mutations. Since 1O2 is produced in various physiological reactions in addition to photodynamic reactions, overcoming technical challenges related to its detection and methods used for its generation would allow its potential functions in biological systems to be better understood.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Yuya Soma
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Yumi Matsuda
- Graduate School of Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
6
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Tripathi AK, Ray AK, Mishra SK, Bishen SM, Mishra H, Khurana A. Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:272-287. [PMID: 36778891 PMCID: PMC9904877 DOI: 10.1007/s43450-023-00370-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Alpha-lipoic acid is an organic, sulfate-based compound produced by plants, humans, and animals. As a potent antioxidant and a natural dithiol compound, it performs a crucial role in mitochondrial bioenergetic reactions. A healthy human body, on the other hand, can synthesize enough α-lipoic acid to scavenge reactive oxygen species and increase endogenous antioxidants; however, the amount of α-lipoic acid inside the body decreases significantly with age, resulting in endothelial dysfunction. Molecular orbital energy and spin density analysis indicate that the sulfhydryl (-SH) group of molecules has the greatest electron donating activity, which would be responsible for the antioxidant potential and free radical scavenging activity. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties. α-Lipoic acid has cytotoxic and antiproliferative effects on several cancers, including polycystic ovarian syndrome. It also has usefulness in the context of female and male infertility. Although α-lipoic acid has numerous clinical applications, the majority of them stem from its antioxidant properties; however, its bioavailability in its pure form is low (approximately 30%). However, nanoformulations have shown promise in this regard. The proton affinity and electron donating activity, as a redox-active agent, would be responsible for the antioxidant potential and free radical scavenging activity of the molecule. This review discusses the most recent clinical data on α-lipoic acid in the prevention, management, and treatment of a variety of diseases, including coronavirus disease 2019. Based on current evidence, the preclinical and clinical potential of this molecule is discussed. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00370-1.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, UP Noida, India
- Molecular Biology Unit, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 India
| | - Anup Kumar Ray
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| | - Siddharth Mall Bishen
- Department of Physics, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, India
| | - Hirdyesh Mishra
- Department of Physics, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, India
| | - Aman Khurana
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
8
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Panieri E, Telkoparan-Akillilar P, Saso L. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. Biofactors 2022; 49:228-250. [PMID: 36310374 DOI: 10.1002/biof.1912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
The skin represents a physical barrier between the organism and the environment that has evolved to confer protection against biological, chemical, and physical insults. The inner layer, known as dermis, is constituted by connective tissue and different types of immune cells whereas the outer layer, the epidermis, is composed by different layers of keratinocytes and an abundant number of melanocytes, localized in the stratum basale of the epidermis. Oxidative stress is a common alteration of inflammatory skin disorders such as vitiligo, dermatitis, or psoriasis but can also play a causal role in skin carcinogenesis and tumor progression. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) has emerged as a crucial regulator of cell defense mechanisms activating complex transcriptional programs that facilitate reactive oxygen species detoxification, repair oxidative damage and prevent xenobiotic-induced toxicity. Accumulating evidence suggests that the keratinocytes, melanocytes, and other skin cell types express high levels of NRF2, which is known to play a pivotal role in the skin homeostasis, differentiation, and metabolism during normal and pathologic conditions. In the present review, we summarize the current evidence linking NRF2 to skin pathophysiology and we discuss some recent modulators of NRF2 activity that have shown a therapeutic efficacy in skin protection against tumor initiation and common inflammatory skin conditions such as vitiligo or psoriasis, with a particular emphasis on natural compounds.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
11
|
The Role of Preservatives and Multifunctionals on the Oxidation of Cosmetic O/W Emulsions. COSMETICS 2022. [DOI: 10.3390/cosmetics9030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Preservatives are typically used to protect cosmetic products from microbial spoilage. However, there is evidence that some preservatives can increase oxidation in O/W emulsions. This could have disadvantages for product quality, efficacy, and consumer health and well-being. Therefore, the impact of preservatives or multifunctionals on oxidation should be quantified. For this purpose, five O/W emulsions with different preservatives were prepared and stored. During storage, the oxygen concentration in the headspace of the samples was studied. The samples showed significant differences in their oxygen uptake and daily oxygen consumption rate. Thus, the preservatives used in this study had an influence on oxidation.
Collapse
|
12
|
Firsov AM, Franco MSF, Chistyakov DV, Goriainov SV, Sergeeva MG, Kotova EA, Fomich MA, Bekish AV, Sharko OL, Shmanai VV, Itri R, Baptista MS, Antonenko YN, Shchepinov MS. Deuterated polyunsaturated fatty acids inhibit photoirradiation-induced lipid peroxidation in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112425. [PMID: 35276579 DOI: 10.1016/j.jphotobiol.2022.112425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS3) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.
Collapse
Affiliation(s)
- A M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M S F Franco
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil
| | - D V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - S V Goriainov
- SREC PFUR Peoples' Friendship University of Russia, Moscow, Russia
| | - M G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - E A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - M A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - A V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - O L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - V V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - R Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, 1371 (217-B.Jafet), Butantã, USP, 05508-090 São Paulo, Brazil
| | - M S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo (IQUSP), AV. Professor Lineu Prestes avenue, 748, USP, CEP: 05508-000 São Paulo, Brazil.
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
13
|
Ciprés M, Satue M, Melchor I, Gil-Arribas L, Vilades E, Garcia-Martin E. Retinal neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2022; 97:205-218. [PMID: 35523467 DOI: 10.1016/j.oftale.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 06/14/2023]
Abstract
In diabetes mellitus (DM) patients retinal complications were typically considered part of a vascular process. Recent research suggests that retinal degeneration in DM might also be caused by a neuropathy that could precede microvascular alterations. The present work reviews the currently available bibliography about neurodegeneration in patients with type 2 DM (DM2) without diabetic retinopathy (DR). In patients with non-severe, early DM2 without DR and good metabolic control visual function parameters show early abnormalities that precede clinical DR (in which we diagnose with a conventional ophthalmological examination). Using optical coherence tomography (OCT) technology, a reduction in macular and peripapillary thickness has been observed in different studies. Recent researches suggest that systemic complications (especially ischaemia) and a possible microvascular alteration eventually contributes to retinal neurodegeneration, which opens the door to new studies that include new techniques for evaluating the microvascularization of the retinal layers.
Collapse
Affiliation(s)
- M Ciprés
- Servicio de Oftalmologia, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
| | - M Satue
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, Grupo de investigación Miguel Servet Oftalmología (GIMSO), Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - I Melchor
- Departamento de Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - L Gil-Arribas
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, Grupo de investigación Miguel Servet Oftalmología (GIMSO), Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - E Vilades
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, Grupo de investigación Miguel Servet Oftalmología (GIMSO), Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - E Garcia-Martin
- Servicio de Oftalmología, Hospital Universitario Miguel Servet, Zaragoza, Grupo de investigación Miguel Servet Oftalmología (GIMSO), Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
14
|
Wang X, Wan M, Zhang L, Dai Y, Hai Y, Yue C, Xu J, Ding Y, Wang M, Xie J, Lei X, Zhong JL. ALA_PDT Promotes Ferroptosis-Like Death of Mycobacterium abscessus and Antibiotic Sterilization via Oxidative Stress. Antioxidants (Basel) 2022; 11:546. [PMID: 35326196 PMCID: PMC8945036 DOI: 10.3390/antiox11030546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium abscessus is one of the common clinical non-tuberculous mycobacteria (NTM) that can cause severe skin infection. 5-Aminolevulinic acid photodynamic therapy (ALA_PDT) is an emerging effective antimicrobial treatment. To explore whether ALA_PDT can be used to treat M. abscessus infections, we conducted a series of experiments in vitro. We found that ALA_PDT can kill M. abscesses. Mechanistically, we found that ALA_PDT promoted ferroptosis-like death of M. abscesses, and the ROS scavenger N-Acetyl-L-cysteine (NAC) and ferroptosis inhibitor Ferrostatin-1 (Fer-1) can mitigate the ALA_PDT-mediated sterilization. Furthermore, ALA_PDT significantly up-regulated the transcription of heme oxygenase MAB_4773, increased the intracellular Fe2+ concentration and altered the transcription of M. abscessus iron metabolism genes. ALA_PDT disrupted the integrity of the cell membrane and enhanced the permeability of the cell membrane, as evidenced by the boosted sterilization effect of antibiotics. In summary, ALA_PDT can kill M. abscesses via promoting the ferroptosis-like death and antibiotic sterilization through oxidative stress by changing iron metabolism. The study provided new mechanistic insights into the clinical efficacy of ALA_PDT against M. abscessus.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.W.); (M.W.); (Y.D.); (M.W.)
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing 400044, China;
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Meiyin Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.W.); (M.W.); (Y.D.); (M.W.)
| | - Lei Zhang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Yang Hai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Chenda Yue
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing 400044, China;
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Yadan Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.W.); (M.W.); (Y.D.); (M.W.)
| | - Mei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.W.); (M.W.); (Y.D.); (M.W.)
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, College of Life and Sciences, Southwest University, Chongqing 400700, China; (L.Z.); (Y.D.); (Y.H.); (J.X.)
| | - Xia Lei
- Department of Dermatology, Daping Hospital, The Army Medical University, Chongqing 400044, China;
| | - Julia-Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.W.); (M.W.); (Y.D.); (M.W.)
| |
Collapse
|
15
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu P, Xiao J, Chi S. Piperlongumine attenuates oxidative stress, inflammatory, and apoptosis through modulating the GLUT-2/4 and AKT signaling pathway in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2021; 35:1-12. [PMID: 33724628 DOI: 10.1002/jbt.22763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 01/14/2023]
Abstract
The current study was done to measure the role of piperlongumine (PL) on hyperglycemia interrelated oxidative stress-mediated inflammation and apoptosis, inflammatory stress, and the diabetic insulin receptor substrate 2 (IRS2), protein kinase B (AKT), and glucose transporter 2 (GLUT-2)/4 signaling pathway in streptozotocin (STZ)-persuaded diabetic animals. Diabetes was initiated in experimental animals via a single dose intraperitoneal inoculation of STZ. Diabetic rats revealed an augmented blood-glucose level with drastically diminished plasma-insulin status. The functions of antioxidants were diminished with enhanced lipid peroxidation, conjugated dienes, and protein carbonyls noticed in diabetic rats' plasma and pancreatic tissues. An elevation of nuclear factor-κB (NF-κB), tumor necrosis factor-α, and interleukin-6 proteins was noticed in pancreatic tissues as well as IRS2, AKT, GLUT-2, and GLUT-4 marker expressions were quantified in the hepatic tissue of control and diabetic rats. Oral administration of PL for 30 days drastically lowered glucose and higher insulin status in STZ-induced diabetic rats. Impressively, PL oral supplementation considerably restored the antioxidant levels and reduced inflammation and diabetic marker expressions in STZ-diabetic rats. These results were supported through a histological study. Moreover, PL also augmented the level of B-cell lymphoma 2 and diminished the level of Bcl-2-associated X protein in STZ-treated rat's hepatic tissues. Thus, we concluded that PL excellently rescued pancreatic β cells through mitigating hyperglycemia via dynamic insulin secretion, activating antioxidants, and inhibiting inflammation and apoptosis in the pancreatic and hepatic tissue of diabetic rats.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (Second Clinical Medical Collage of Jinan University), Shenzhen, Guangdong, China
| | - Juan Xiao
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Shuixia Chi
- Department of Traditional Chinese Medicine, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
18
|
Kwong SP, Huang Z, Ji L, Wang C. PORIMIN: The key to (+)-Usnic acid-induced liver toxicity and oncotic cell death in normal human L02 liver cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113873. [PMID: 33485970 DOI: 10.1016/j.jep.2021.113873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes. AIM OF THE STUDY This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection. MATERIALS AND METHODS Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied. RESULTS The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells. CONCLUSIONS In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.
Collapse
Affiliation(s)
- Sukfan P Kwong
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhenlin Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
19
|
A Nazir L, Tanveer MA, Umar SA, Love S, Divya G, Tasduq SA. Inhibition of Ultraviolet-B Radiation Induced Photodamage by Trigonelline Through Modulation of Mitogen Activating Protein Kinases and Nuclear Factor-κB Signaling Axis in Skin. Photochem Photobiol 2021; 97:785-794. [PMID: 33345344 DOI: 10.1111/php.13369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous photodamage is incited via exposure of ultraviolet-B (UV-B) radiation to skin, characterized by the manifestation of oxidative stress, inflammation, collagen degradation and apoptosis which translates to external aging signs such as wrinkle formation and leathery skin appearance. Meanwhile, it increases cellular susceptibility to photocarcinogenesis. Several studies have accumulated evidence regarding the usage of natural agents in reversing the clinical signs of photoaging as well as preventing photo-toxicity at molecular level. In this study, we have explored the therapeutic potential of natural agent Trigonelline (TG) against UV-B radiation mediated skin photodamage. Various parameters modulated by the exposure of UV-B radiation were investigated in human skin cells and chronic photodamage mice model (Balb/c). We found that TG alleviates UV-B radiation induced photodamage in human skin cells and Balb/c skin mice. TG treatment in UV-B irradiated skin cells abates UV-B radiation mediated phototoxicity, oxidative stress, inflammation and apoptosis. At molecular level, we observed TG treatment significantly prevents the reactive oxygen species (ROS) generation and lipid peroxidation, restores collagen synthesis and matrix metalloproteinase (MMPs) levels. The in vitro findings were replicated in the in vivo model. We found that the TG acts potentially via modulation of ROS-MAPKs-NF-κB axis. Collectively, we propose that TG acts antagonistically against UV-B mediated skin damage and has strong potential to be developed as a therapeutic and cosmetical agent against photodamage disorders.
Collapse
Affiliation(s)
- Lone A Nazir
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Malik A Tanveer
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sheikh A Umar
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sharma Love
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gupta Divya
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sheikh A Tasduq
- Pharmacokinetics - Pharmacodynamics and Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Goto S, Setoguchi S, Nagata-Akaho N, Terada K, Watase D, Yamakawa H, Toki E, Koga M, Matsunaga K, Karube Y, Takata J. Ester derivatives of phyllohydroquinone effectively deliver the active form of vitamin K 1 topically, owing to their non-photosensitivity. Eur J Pharm Sci 2020; 155:105519. [PMID: 32822810 DOI: 10.1016/j.ejps.2020.105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Topical application of phylloquinone (PK) is beneficial to the skin; however, its topical use is limited in Europe owing to its photosensitive properties such as photodegradation and phototoxicity. We evaluated the suitability of ester derivatives of phyllohydroquinone (PKH), the active form of PK, for topical application to overcome the abovementioned problems of PK. We used the PKH derivatives PKH-1,4-bis-N,N-dimethylglycinate hydrochloride (PKH-DMG) and PKH-1,4-bis-hemisuccinate (PKH-SUC) for our studies. Photostability was determined by measuring the residual concentration after irradiation with artificial sunlight and multi-wavelength light. Phototoxicity after ultraviolet A (UVA) irradiation was assessed by measuring drug-induced singlet oxygen and intracellular reactive oxygen species (ROS) generation, and cell viability of a human epidermal keratinocyte cell line (HaCaT). Delivery of PKH into HaCaT cells was assessed by measuring PK epoxide (PKO) levels. The PKH derivatives showed higher photostability than PK. After UVA irradiation, PK induced high singlet oxygen levels and intracellular ROS generation, and reduced cell viability, whereas the PKH derivatives showed no effects. The PKH derivatives increased intracellular PKO levels. AUCPKO(0-72 h) values after PKH-DMG and PKH-SUC treatments were 0.741- and 22.9-fold higher than that after PK treatment, respectively. In conclusion, PKH derivatives act as PKH prodrugs and are suitable for topical application without the need for special protection from light.
Collapse
Affiliation(s)
- Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Nami Nagata-Akaho
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuki Terada
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Daisuke Watase
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Hirofumi Yamakawa
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Erina Toki
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mitsuhisa Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | - Yoshiharu Karube
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
21
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Corvalán NA, Caviglia AF, Felsztyna I, Itri R, Lascano R. Lipid Hydroperoxidation Effect on the Dynamical Evolution of the Conductance Process in Bilayer Lipid Membranes: A Condition Toward Criticality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8883-8893. [PMID: 32643942 DOI: 10.1021/acs.langmuir.0c01243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cell membranes are one of the main targets of oxidative processes mediated by reactive oxygen species (ROS). These chemical species interact with unsaturated fatty acids of membrane lipids, triggering an autocatalytic chain reaction, producing lipid hydroperoxides (LOOHs) as the first relatively stable product of the ROS-mediated lipid peroxidation (LPO) process. Numerous biophysical and computational studies have been carried out to elucidate the LPO impact on the structure and organization of lipid membranes. However, although LOOHs are the major primary product of LPO of polyunsaturated fatty acids (PUFAs), to the best of our knowledge, there is no experimental evidence on the effects of the accumulation of these LPO byproducts on the electrical properties and the underlying dynamics of lipid membranes. In this work, bilayer lipid membranes (BLMs) containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) with increasing hydroperoxidized POPC (POPC-OOH) molar proportions (BLMPC/PC-OOH) are used as model membranes to investigate the effect of LOOH-mediated LPO propagation on the electrical behavior of lipid bilayers. Voltage-induced ion current signals are analyzed by applying the fractal method of power spectrum density (PSD) analysis. We experimentally prove that, when certain LOOH concentration and energy threshold are overcome, oxidized membranes evolve toward a critical state characterized by the emergence of non-linear electrical behavior dynamics and the pore-type metastable structures formation. PSD analysis shows that temporal dynamics exhibiting "white" noise (non-time correlations) reflects a linear relationship between the input and output signals, while long-term correlations (β > 0.5) begin to be observed closely to the transition (critical point) from linear (Ohmic) to nonlinear (non-Ohmic) behavior. The generation of lipid pores appears to arise as an optimized energy dissipation mechanism based on the system's ability to self-organize and generate ordered structures capable of dissipating energy gradients more efficiently under stressful oxidative conditions.
Collapse
Affiliation(s)
- Natalia A Corvalán
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, CP 66318, 05314970 São Paulo, Brazil
| | - Agustín F Caviglia
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
| | - Iván Felsztyna
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Universidad Nacional de Córdoba-CONICET, Córdoba CP X5016, Argentina
| | - Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, CP 66318, 05314970 São Paulo, Brazil
| | - Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP X5000, Argentina
- Unidad de Estudios Agropecuarios (UDEA), Instituto Nacional de Tecnología Agropecuaria (INTA)-CONICET, Córdoba CP X5119, Argentina
| |
Collapse
|
23
|
Lemke RAS, Olson SM, Morse K, Karlen SD, Higbee A, Beebe ET, Ralph J, Coon JJ, Fox BG, Donohue TJ. A bacterial biosynthetic pathway for methylated furan fatty acids. J Biol Chem 2020; 295:9786-9801. [PMID: 32434926 PMCID: PMC7380195 DOI: 10.1074/jbc.ra120.013697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.
Collapse
Affiliation(s)
- Rachelle A S Lemke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephanie M Olson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaitlin Morse
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven D Karlen
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan Higbee
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian G Fox
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA .,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Zeng L, Wang MD, Ming SL, Li GL, Yu PW, Qi YL, Jiang DW, Yang GY, Wang J, Chu BB. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol 2020; 36:101601. [PMID: 32535542 PMCID: PMC7278711 DOI: 10.1016/j.redox.2020.101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 02/02/2023] Open
Abstract
Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membrane fusion process. LJ002 efficiently generates 1O2 in solution and living cells. LJ002 oxidizes lipids in the viral envelope, thus inhibiting fusion between the virus and cell membrane. LJ002-inactivated PRV vaccine has no effect on the content of antigens on the viral surface. LJ002-inactivated PRV vaccine elicits a strong neutralizing antibody response. LJ002 can inactivate a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- Lei Zeng
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Meng-Di Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Sheng-Li Ming
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Li Li
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Peng-Wei Yu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Yan-Li Qi
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Da-Wei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China
| | - Guo-Yu Yang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Jiang Wang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| | - Bei-Bei Chu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, Henan Province, PR China; Henan Provincial Key Laboratory of Animal Growth and Development Regulation, The Education Department of Henan Provence, Henan Agricultural University, Zhengzhou, Henan Province, PR China; National Center for International Research, Ministry of Science and Technology, Henan Agricultural University, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
25
|
Kumar S, Rana R, Yadav DK. Atomic-scale modeling of the effect of lipid peroxidation on the permeability of reactive species. J Biomol Struct Dyn 2020; 39:1284-1294. [PMID: 32072880 DOI: 10.1080/07391102.2020.1730971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomembranes and lipid systems are rich in unsaturated lipid components and are subject to photo-induced lipid peroxidation. The peroxidized lipid products in cellular systems are known to affect the structural organization and function of the biomembrane. We employed molecular dynamics simulations to study the effects of phospholipid peroxidation on membrane properties and the permeability of different reactive species. The results suggest that when the lipids are peroxidized, the peroxide group moves toward the membrane surface, which causes the membrane system to expand laterally and increase in area. The permeability profile revealed that nitrogen species can easily permeate through the native and peroxidized system in comparison to oxygen species, suggesting its importance in plasma-based treatment. Thus, by breaching the energy barrier with lower energy, they can traverse the cell membrane and induce oxidative stress, which leads to apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
26
|
Li R, Hu C, Geng T, Lv D, Gao K, Guo X, Hou C. Expressional analysis of the silkworm storage protein 1 and identification of its interacting proteins. INSECT MOLECULAR BIOLOGY 2020; 29:66-76. [PMID: 31301266 DOI: 10.1111/imb.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Storage proteins are haemolymph-specific proteins in insects, mainly synthesized in the fat body, released into the haemolymph, and then selectively reabsorbed by the fat body before pupation. These storage proteins play an important role in insect metamorphosis and egg development. Some of these storage proteins are responsive to pathogen infection and can even suppress pathogen multiplication. However, the mechanisms of the physiological, biochemical and immune-responsive functions of storage proteins remain unclear. In this study, the expression patterns of Bombyx mori storage protein 1 (BmSP1) during the larval stage were analysed. Then, BmSP1 protein fused with enhanced green fluorescent protein (EGFP) was successfully expressed in a B. mori baculovirus vector expression system. Quantitative real-time PCR showed that the expression level of BmSP1 increased with the advance of instars and reached the highest level in the fifth instar, especially in the fat body. Recombinant BmSP1 expressed in silkworm larvae inhibited haemolymph melanization. Then, proteins that interact with BmSP1 were identified with EGFP used as an antigenic determinant by co-immunoprecipitation. A 30 kDa low molecular weight lipoprotein PBMHP-6 precursor (BmLP6) was shown to interact with BmSP1. Yeast two-hybrid experiments confirmed the interaction between BmSP1 and BmLP6. The results obtained in this study will be helpful for further study of the functions of BmSP1 and BmLP6 in the regulatory network of silkworm development and innate immunity.
Collapse
Affiliation(s)
- Ruilin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Congwu Hu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Geng
- Environment and Plant Protection Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Kun Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Chengxiang Hou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
27
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
28
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
29
|
Abstract
This year marks the 50th anniversary of the discovery of σ70 as a protein factor that was needed for bacterial RNA polymerase to accurately transcribe a promoter in vitro. It was 25 years later that the Group IV alternative σs were described as a distinct family of proteins related to σ70 . In the intervening time, there has been an ever-growing list of Group IV σs, numbers of genes they transcribe, insight into the diverse suite of processes they control, and appreciation for their impact on bacterial lifestyles. This work summarizes knowledge of the Rhodobacter sphaeroides σE -ChrR pair, a member of the ECF11 subfamily of Group IV alternative σs, in protecting cells from the reactive oxygen species, singlet oxygen. It describes lessons learned from analyzing ChrR, a zinc-dependent anti-σ factor, that are generally applicable to Group IV σs and relevant to the response to single oxygen. This MicroReview also illustrates insights into stress responses in this and other bacteria that have been acquired by analyzing or modeling the activity of the σE -ChrR across the bacterial phylogeny.
Collapse
Affiliation(s)
- Timothy J. Donohue
- Bacteriology Department, Great Lakes Bioenergy Research CenterWisconsin Energy Institute, University of Wisconsin‐MadisonMadisonWI53726USA
| |
Collapse
|
30
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Wang YY, Huang JL, Yin XX. A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. Front Oncol 2019; 9:595. [PMID: 31338328 PMCID: PMC6629863 DOI: 10.3389/fonc.2019.00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Despite responses to initial treatment of photodynamic therapy (PDT) being promising, a recurrence rate exists. Thus, finding novel therapeutic targets to enhance PDT efficacy is an urgent need. Reports indicate that connexin (Cx) 40 plays an important role in tumor angiogenesis and growth. However, it is unknown whether Cx40-composed channels have effects on PDT efficacy. The study uniquely demonstrated that Cx40-formed channels could enhance the phototoxicity of PDT to malignant cells in vitro and in vivo. Specifically, Cx40-formed channels at high cell density could increase PDT photocytotoxicity. This action was substantially restricted when Cx40 expression was not induced or Cx40 channels were restrained. Additionally, the presence of Cx40-composed channels enhanced the phototoxicity of PDT in the tumor xenografts. The above results indicate that enhancing the function of Cx40-formed channels increases PDT efficacy. The enhancement of PDT efficacy mediated by Cx40 channels was related with intracellular pathways mediated by ROS and calcium pathways, but not the lipid peroxide-mediated pathway. This work demonstrates the capacity of Cx40-mediated channels to increase PDT efficacy and suggests that therapeutic strategies designed to maintain or enhance Cx40 expression and/or channels composed by Cx40 may increase the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan-Yuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Akhtar T, Xie H, Khan MI, Zhao H, Bao J, Zhang M, Xue T. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res 2019; 39:101491. [PMID: 31326746 DOI: 10.1016/j.scr.2019.101491] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Retinal organoids (ROs) derived from human-induced pluripotent stem cells recapitulate the three-dimensional structure of retina, mimic human retinal development, and provide cell sources for pre-clinical retinal transplantation. Retinal pigment epithelium (RPE) is crucial for normal outer retinal physiology, including phagocytosis of shed photoreceptor outer segments and secretion of neurotrophic and vasculotrophic growth factors. However, whether ROs-RPE co-culture can improve the differentiation of photoreceptors in ROs in vitro remains unknown. Herein, primary mouse RPE cells were contact co-cultured with ROs at different time points. Our results revealed that the RPE cells accelerated photoreceptor differentiation in ROs, as the cross talk between the RPE and ROs promoted the stage specific expression of photoreceptor markers at different differentiation stages. Thus, we established an improved co-culture system based on modeling of human retina-RPE dynamics during retinogenesis for the evaluation of ocular therapies.
Collapse
Affiliation(s)
- Tasneem Akhtar
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haohuan Xie
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Muhammad Imran Khan
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Huan Zhao
- Department of Biological and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Jin Bao
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Tian Xue
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
32
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Huang JL. A novel role of Cx43-composed GJIC in PDT phototoxicity: an implication of Cx43 for the enhancement of PDT efficacy. Int J Biol Sci 2019; 15:598-609. [PMID: 30745846 PMCID: PMC6367575 DOI: 10.7150/ijbs.29582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 11/07/2022] Open
Abstract
In spite of initially promising responses, 5-year recurrence after photodynamic therapy (PDT) sustains high level and an increase in PDT effectiveness is needed. It has been demonstrated that gap junctional intercellular communication (GJIC) formed by Connexin (Cx)43 could improve the transfer of "death signal" between cells, thereby causing the enhancement of cytotoxicity of chemotherapeutics and suicide gene therapy. Nevertheless, whether Cx43-composed GJIC has an effect on PDT phototoxicity remains unknown. This study showed that Cx43-formed GJIC could improve PDT phototoxicity to tumor cells in vitro and in vivo. Specifically, Cx43-formed GJIC under the condition of high cellular density could improve PDT phototoxicity in Cx43-transfected HeLa cells and Cx43-expressing U87 glioma cells. This effect was remarkably inhibited when Cx43 was not expressed or Cx43-formed GJ channels were prohibited. Additionally, the presence of Cx43-mediated GJIC could decrease the mean RTV and tumor weights of xenografts after Photofrin-PDT. The improved PDT efficacy by Cx43-composed GJIC was correlated with stress signaling pathways mediated by ROS, calcium and lipid peroxide. The present study demonstrates the presence of Cx43-composed GJIC improves PDT phototoxicity and suggests that therapeutic strategies designed to upregulate the expression of Cx43 or enhance Cx43-mediated GJIC function may increase the sensitivity of malignant cell to PDT, leading to the increment of PDT efficacy. Oppositely, factors that retard Cx43 expression or prohibit the function of Cx43-mediated GJIC may cause insensitivity of malignant cells to PDT, leading to PDT resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Li-Ru Bai
- Department of Pharmacy,Wuxi Ninth Affiliated Hospital of Suzhou University, 214062, Wuxi City, Jiangsu Province, P.R. China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
33
|
Kim C. ROS-Driven Oxidative Modification: Its Impact on Chloroplasts-Nucleus Communication. FRONTIERS IN PLANT SCIENCE 2019; 10:1729. [PMID: 32038693 PMCID: PMC6990121 DOI: 10.3389/fpls.2019.01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
As a light-harvesting organelle, the chloroplast inevitably produces a substantial amount of reactive oxygen species (ROS) primarily through the photosystems. These ROS, such as superoxide anion, hydrogen peroxide, hydroxyl radical, and singlet oxygen, are potent oxidizing agents, thereby damaging the photosynthetic apparatus. On the other hand, it became increasingly clear that ROS act as beneficial tools under photo-oxidative stress conditions by stimulating chloroplast-nucleus communication, a process called retrograde signaling (RS). These ROS-mediated RS cascades appear to participate in a broad spectrum of plant physiology, such as acclimation, resistance, programmed cell death (PCD), and growth. Recent reports imply that ROS-driven oxidation of RS-associated components is essential in sensing and responding to an increase in ROS contents. ROS appear to activate RS pathways via reversible or irreversible oxidation of sensor molecules. This review provides an overview of the emerging perspective on the topic of "oxidative modification-associated retrograde signaling."
Collapse
|
34
|
Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2299-2307. [DOI: 10.1016/j.bbamem.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
|
35
|
Post-illumination cellular effects of photodynamic treatment. PLoS One 2017; 12:e0188535. [PMID: 29200431 PMCID: PMC5714340 DOI: 10.1371/journal.pone.0188535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Increased interest in clinical application of photodynamic therapy (PDT) in various medical fields poses a demand for better understanding of processes triggered by photo-treatment. Most of the work on PDT performed so far has focused on the immediate effects of photo-treatment. It is generally accepted that cellular damage occurs during light exposure and within a short period thereafter. If cells are not killed during the PDT, they might recover, depending on the extent of the photo-induced damage. Little is known, however, about the relationship between the properties of photosensitizers (PSs) and the delayed consequences of PDT. The aim of this work was to investigate cellular responses to sub-lethal photodynamic treatment and how toxicogenic potency may be affected by molecular features of the PS. Results demonstrated that for cationic porphyrin-based PSs, lipophilicity is the main factor determining the fate of the cells in the 24-hour post-illumination period. PSs with amphiphilic properties initiated oxidative reactions that continued in the dark, long after light exposure, and caused suppression of metabolism and loss of cell viability with concomitant changes in electrophoretic mobility of proteins, including caspases. Apoptotic activity was not stimulated in the post-illumination period. This study demonstrated that in PDT mediated by amphiphilic cationic metalloporphyrin PSs, even when immediate photo-damage is relatively mild, destructive oxidative processes initiated during PDT continue in the absence of light to substantially impair metabolism, and that post-illumination protein modification may modify utilization of cell death pathways.
Collapse
|
36
|
Wu DP, Lin TY, Bai LR, Huang JL, Zhou Y, Zhou N, Zhong SL, Gao S, Yin XX. Enhanced phototoxicity of photodynamic treatment by Cx26-composed GJIC via ROS-, calcium- and lipid peroxide-mediated pathways. JOURNAL OF BIOPHOTONICS 2017; 10:1586-1596. [PMID: 28417552 DOI: 10.1002/jbio.201600255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/11/2016] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
In spite of the promising initial treatment responses presented by photodynamic therapy (PDT), 5-year recurrence rates remain high level. Therefore, improvement in the efficacy of PDT is needed. There are reports showing that connexin(Cx) 26-composed gap junctional intercellular communication (GJIC) enhances the intercellular propagation of "death signal", thereby increasing chemotherapeutic cytotoxicity. However, it is unclear whether Cx26-formed GJIC has an effect on PDT phototoxicity. The results in the present study showed that Cx26-composed GJ formation at high density enhances the phototoxicity of Photofrin-PDT. When the Cx26 is not expressed or Cx26 channels are blocked, the phototoxicity in high-density cultures substantially reduces, indicating that the enhanced PDT phototoxicity at high density is mediated by Cx26-composed GJIC. The GJIC-mediated increase in PDT phototoxicity was associated with ROS, calcium and lipid peroxide-mediated stress signaling pathways. The work presents the ability of Cx26-composed GJIC to enhance the sensitivity of malignant cells to PDT, and indicates that maintenance or increase of Cx26-formed GJIC may be a profitable strategy towards the enhancement of PDT therapeutic efficiency. Picture: The survival response of Photofrin-PDT in Dox-treated (Cx26 expressing, GJ-formed) and Dox-untreated cells (Cx26 non-expressing, GJ-unformed) at high-cell density condition.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Li-Ru Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Sheng-Lei Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Shan Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
37
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
38
|
|
39
|
Khandpur S, Porter R, Boulton S, Anstey A. Drug-induced photosensitivity: new insights into pathomechanisms and clinical variation through basic and applied science. Br J Dermatol 2017; 176:902-909. [DOI: 10.1111/bjd.14935] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- S. Khandpur
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - R.M. Porter
- Academic Dermatology; Aneurin Bevan Health Board, Stow Hill; St Woolos Hospital; Newport NP20 4SZ U.K
| | - S.J. Boulton
- School of Biomedical Sciences; Faculty of Medical Sciences; Newcastle University Medical School, Framlington Place; Newcastle upon Tyne NE2 4HH U.K
| | - A. Anstey
- Betsi Cadwaladr University Health Board; Ysbyty Gwynedd, Penrhosgarnedd; Bangor Gwynedd LL57 2PY U.K
| |
Collapse
|
40
|
Tardu M, Bulut S, Kavakli IH. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Sci Rep 2017; 7:40817. [PMID: 28098242 PMCID: PMC5241685 DOI: 10.1038/srep40817] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Blue light (BL) is a major environmental factor that affects the physiology, behavior, and infectivity of bacteria as it contributes to the generation of reactive oxygen species (ROS) while increasing photo-oxidative stress in cells. However, precise photo-oxidative response mechanism in non-phototrophic bacteria is yet to be elucidated. In this study, we investigated the effect of BL in Vibrio cholerae by using genetics and transcriptome profiling. Genome-wide analysis revealed that transcription of 6.3% of V. cholerae genes were regulated by BL. We further showed that BL enhances ROS production, which is generated through the oxidative phosphorylation. To understand signaling mechanisms, we generated several knockouts and analyzed their transcriptome under BL exposure. Studies with a double-knockout confirm an anti-sigma factor (ChrR) and putative metalloregulatory-like protein (MerR) are responsible for the genome-wide regulation to BL response in V. cholerae. Collectively, these results demonstrate that MerR-like proteins, in addition to ChrR, are required for V. cholerae to mount an appropriate response against photo-oxidative stress induced by BL. Outside its natural host, V. cholerae can survive for extended periods in natural aquatic environments. Therefore, the regulation of light response for V. cholerae may be a critical cellular process for its survival in these environments.
Collapse
Affiliation(s)
- Mehmet Tardu
- Computational Science and Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| | - Selma Bulut
- Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Computational Science and Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey.,Chemical and Biological Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey.,Molecular Biology and Genetics, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
41
|
|
42
|
Palumbo F, Bosca F, Morera IM, Andreu I, Miranda MA. Biradical vs singlet oxygen photogeneration in suprofen–cholesterol systems. Beilstein J Org Chem 2016; 12:1196-202. [PMID: 27559371 PMCID: PMC4979683 DOI: 10.3762/bjoc.12.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
Cholesterol (Ch) is an important lipidic building block and a target for oxidative degradation, which can be induced via free radicals or singlet oxygen (1O2). Suprofen (SP) is a nonsteroidal anti-inflammatory drug that contains the 2-benzoylthiophene (BZT) chromophore and has a π,π* lowest triplet excited state. In the present work, dyads (S)- and (R)-SP-α-Ch (1 and 2), as well as (S)-SP-β-Ch (3) have been prepared from β- or α-Ch and SP to investigate the possible competition between photogeneration of biradicals and 1O2, the key mechanistic steps in Ch photooxidation. Steady-state irradiation of 1 and 2 was performed in dichloromethane, under nitrogen, through Pyrex, using a 400 W medium pressure mercury lamp. The spectral analysis of the separated fractions revealed formation of two photoproducts 4 and 5, respectively. By contrast, under the same conditions, 3 did not give rise to any isolable Ch-derived product. These results point to an intramolecular hydrogen abstraction in 1 and 2 from the C7 position of Ch and subsequent C–C coupling of the generated biradicals. Interestingly, 2 was significantly more photoreactive than 1 indicating a clear stereodifferentiation in the photochemical behavior. Transient absorption spectra obtained for 1–3 were very similar and matched that described for the SP triplet excited state (typical bands with maxima at ca. 350 nm and 600 nm). Direct kinetic analysis of the decay traces at 620 nm led to determination of triplet lifetimes that were ca. 4.1 μs for 1 and 2 and 5.8 μs for 3. From these data, the intramolecular quenching rate constants in 1 and 2 were determined as 0.78 × 105 s−1. The capability of dyads 1–3 to photosensitize the production of singlet oxygen was assessed by time-resolved near infrared emission studies in dichloromethane using perinaphthenone as standard. The quantum yields (ΦΔ) were 0.52 for 1 and 2 and 0.56 for 3. In conclusion, SP-α-Ch dyads are unique in the sense that they can be used to photogenerate both biradicals and singlet oxygen, thus being able to initiate Ch oxidation from their triplet excited states following either of the two competing mechanistic pathways.
Collapse
Affiliation(s)
- Fabrizio Palumbo
- Instituto de Tecnología Química UPV-CSIC/ Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Bosca
- Instituto de Tecnología Química UPV-CSIC/ Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Isabel Maria Morera
- Instituto de Tecnología Química UPV-CSIC/ Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Inmaculada Andreu
- Unidad Mixta de Investigación IIS La Fe-UPV, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química UPV-CSIC/ Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
43
|
Riboflavin and chlorophyll as photosensitizers in electroformed giant unilamellar vesicles as food models. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2718-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Liang YI, Lu LM, Chen Y, Lin YK. Photodynamic therapy as an antifungal treatment. Exp Ther Med 2016; 12:23-27. [PMID: 27347012 DOI: 10.3892/etm.2016.3336] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2016] [Indexed: 12/29/2022] Open
Abstract
Photodynamic therapy (PDT) involves the systemic or topical application of a photosensitizer (PS), alongside the selective illumination of the target lesion with light of an appropriate wavelength, in order to promote localized oxidative photodamage and subsequent cell death. Numerous studies have demonstrated that PDT is highly effective in the destruction of fungi in vitro. The mechanism underlying the effects of PDT results from the photons of visible light of an appropriate wavelength interacting with the intracellular molecules of the PS. Reactive species are produced as a result of the oxidative stress caused by the interaction between the visible light and the biological tissue. At present, no antifungal treatment based on PDT has been licensed. However, antifungal PDT is emerging as an area of interest for research.
Collapse
Affiliation(s)
- Y I Liang
- Department of Dermatology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi 545007, P.R. China
| | - Li-Ming Lu
- Department of Dermatology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi 545007, P.R. China
| | - Yong Chen
- Department of Dermatology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi 545007, P.R. China
| | - You-Kun Lin
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
45
|
Siani P, de Souza RM, Dias LG, Itri R, Khandelia H. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2498-2511. [PMID: 27058982 DOI: 10.1016/j.bbamem.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Biological membranes and model lipid systems containing high amounts of unsaturated lipids and sterols are subject to chemical and/or photo-induced lipid oxidation, which leads to the creation of exotic oxidized lipid products (OxPLs). OxPLs are known to have significant physiological impact in cellular systems and also affect physical properties of both biological and model lipid bilayers. In this paper we (i) provide a perspective on the existing literature on simulations of lipid bilayer systems containing oxidized lipid species as well as the main related experimental results, (ii) describe our new data of all-atom and coarse-grained simulations of hydroperoxidized lipid monolayer and bilayer systems and (iii) provide a comparison of the MARTINI and ELBA coarse grained force fields for lipid bilayer systems. We show that the better electrostatic treatment of interactions in ELBA is able to resolve previous conflicts between experiments and simulations. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- P Siani
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern, Denmark; Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R M de Souza
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L G Dias
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - H Khandelia
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern, Denmark.
| |
Collapse
|
46
|
Gruber F, Ornelas CM, Karner S, Narzt MS, Nagelreiter IM, Gschwandtner M, Bochkov V, Tschachler E. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts. Free Radic Biol Med 2015; 88:439-451. [PMID: 25981373 DOI: 10.1016/j.freeradbiomed.2015.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/19/2022]
Abstract
Fish oil rich in docosahexaenoic acid (DHA) has beneficial effects on human health. Omega-3 polyunsaturated fatty acids are precursors of eicosanoids and docosanoids, signaling molecules that control inflammation and immunity, and their dietary uptake improves a range of disorders including cardiovascular diseases, ulcerative colitis, rheumatoid arthritis, and psoriasis. The unsaturated nature of these fatty acids, however, makes them prone to oxidation, especially when they are incorporated into (membrane) phospholipids. The skin is an organ strongly exposed to oxidative stress, mainly due to solar ultraviolet radiation. Thus, increased levels of PUFA in combination with oxidative stress could cause increased local generation of oxidized lipids, whose action spectrum reaches from signaling molecules to reactive carbonyl compounds that can crosslink biomolecules. Here, we investigated whether PUFA supplements to fibroblasts are incorporated into membrane phospholipids and whether an increase of PUFA within phospholipids affects the responses of the cells to UV exposure. The redox-sensitive transcription factor Nrf2 is the major regulator of the fibroblast stress response to ultraviolet radiation or exposure to oxidized lipids. Here we addressed how Nrf2 signaling would be affected in PUFA-supplemented human dermal fibroblasts and mouse dermal fibroblasts from Nrf2-deficient and wild type mice. We found, using HPLC-tandem MS, that DHA supplements to culture media of human and murine fibroblasts were readily incorporated into phospholipids and that subsequent irradiation of the supplemented cells with UVA resulted in an increase in 1-palmitoyl-2-(epoxyisoprostane-E2)-sn-glycero-3-phosphorylcholine and Oxo-DHA esterified to phospholipid, both of which are Nrf2 agonists. Also, induction of Nrf2 target genes was enhanced in the DHA-supplemented fibroblasts after UVA irradiation. In Nrf2-deficient murine fibroblasts, the expression of the target genes was, as expected, decreased, but surprisingly, expression of TNFα and MMP13 was strongly induced in DHA-supplemented, UVA-irradiated cells. Also, Nrf2-deficient cells had increased levels of oxidized phospholipids relative to the unoxidized precursors after UVA irradiation. Our data suggest that under ultraviolet stress a functioning Nrf2 system is required to prevent DHA-induced inflammation and matrix degradation in dermal fibroblasts.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria.
| | - Cayo Mecking Ornelas
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Susanne Karner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Anna Spiegel Gebäude E6 Lab5, 1090 Vienna, Austria
| |
Collapse
|
47
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
48
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
49
|
Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract 2015; 24 Suppl 1:14-28. [PMID: 24820409 PMCID: PMC6489067 DOI: 10.1159/000362416] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used for the management of a variety of cancers and benign diseases. The destruction of unwanted cells and tissues in PDT is achieved by the use of visible or near-infrared radiation to activate a light-absorbing compound (a photosensitizer, PS), which, in the presence of molecular oxygen, leads to the production of singlet oxygen and other reactive oxygen species. These cytotoxic species damage and kill target cells. The development of new PSs with properties optimized for PDT applications is crucial for the improvement of the therapeutic outcome. This review outlines the principles of PDT and discusses the relationship between the structure and physicochemical properties of a PS, its cellular uptake and subcellular localization, and its effect on PDT outcome and efficacy.
Collapse
Affiliation(s)
- Ludmil Benov
- *Ludmil Benov, Department of Biochemistry, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
50
|
|