1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
3
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
4
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Dou J, Zhang X, Hu C, Gao Y, Zhao Y, Hei M, Wang Z, Guo N, Zhu H. QKL injection ameliorates Alzheimer's disease-like pathology by regulating expression of RAGE. Exp Gerontol 2024; 190:112422. [PMID: 38599502 DOI: 10.1016/j.exger.2024.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aβ in the brain. Recent studies suggest that excessive Aβ in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aβ in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aβ transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aβ and Aβ transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.
Collapse
Affiliation(s)
- Jinfang Dou
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin'ai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chaoqun Hu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Gao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Murong Hei
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhimiao Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Nan Guo
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Haiyan Zhu
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Berkowitz BA, Paruchuri A, Stanek J, Abdul-Nabi M, Podolsky RH, Bustos AH, Childers KL, Murphy GG, Stangis K, Roberts R. Biomarker evidence of early vision and rod energy-linked pathophysiology benefits from very low dose DMSO in 5xFAD mice. Acta Neuropathol Commun 2024; 12:85. [PMID: 38822433 PMCID: PMC11140992 DOI: 10.1186/s40478-024-01799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA.
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mura Abdul-Nabi
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, MD, USA
| | | | | | - Geoffrey G Murphy
- Department of Molecular and Integrative Physiology, Molecular Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Hidalgo C, Paula-Lima A. RyR-mediated calcium release in hippocampal health and disease. Trends Mol Med 2024; 30:25-36. [PMID: 37957056 DOI: 10.1016/j.molmed.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Hippocampal synaptic plasticity is widely considered the cellular basis of learning and spatial memory processes. This article highlights the central role of Ca2+ release from the endoplasmic reticulum (ER) in hippocampal synaptic plasticity and hippocampus-dependent memory in health and disease. The key participation of ryanodine receptor (RyR) channels, which are the principal Ca2+ release channels expressed in the hippocampus, in these processes is emphasized. It is proposed that the increased neuronal oxidative tone displayed by hippocampal neurons during aging or Alzheimer's disease (AD) leads to excessive activation of RyR-mediated Ca2+ release, a process that is highly redox-sensitive, and that this abnormal response contributes to and aggravates these deleterious conditions.
Collapse
Affiliation(s)
- Cecilia Hidalgo
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism, and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile.
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute and Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile.
| |
Collapse
|
8
|
Torres R, Hidalgo C. Subcellular localization and transcriptional regulation of brain ryanodine receptors. Functional implications. Cell Calcium 2023; 116:102821. [PMID: 37949035 DOI: 10.1016/j.ceca.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.
Collapse
Affiliation(s)
- Rodrigo Torres
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842, Puerto Montt, Chile.
| | - Cecilia Hidalgo
- Department of Neurosciences. Biomedical Neuroscience Institute, Physiology and Biophysics Program, Institute of Biomedical Sciences, Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380000, Chile
| |
Collapse
|
9
|
Lobos P, Vega-Vásquez I, Bruna B, Gleitze S, Toledo J, Härtel S, Hidalgo C, Paula-Lima A. Amyloid β-Oligomers Inhibit the Nuclear Ca 2+ Signals and the Neuroprotective Gene Expression Induced by Gabazine in Hippocampal Neurons. Antioxidants (Basel) 2023; 12:1972. [PMID: 38001825 PMCID: PMC10669355 DOI: 10.3390/antiox12111972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AβOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AβOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AβOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AβOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AβOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AβOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
Collapse
Affiliation(s)
- Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Barbara Bruna
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
| | - Jorge Toledo
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Steffen Härtel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Laboratory for Scientific Image Analysis, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Anatomy and Biology of Development Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Interuniversity Center for Healthy Aging (CIES), Santiago 8380000, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| |
Collapse
|
10
|
Jadiya P, Kolmetzky DW, Tomar D, Thomas M, Cohen HM, Khaledi S, Garbincius JF, Hildebrand AN, Elrod JW. Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561889. [PMID: 37904949 PMCID: PMC10614731 DOI: 10.1101/2023.10.11.561889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid beta, intracellular neurofibrillary tangles, synaptic dysfunction, and neuronal cell death. These phenotypes correlate with and are linked to elevated neuronal intracellular calcium ( i Ca 2+ ) levels. Recently, our group reported that mitochondrial calcium ( m Ca 2+ ) overload, due to loss of m Ca 2+ efflux capacity, contributes to AD development and progression. We also noted proteomic remodeling of the mitochondrial calcium uniporter channel (mtCU) in sporadic AD brain samples, suggestive of altered m Ca 2+ uptake in AD. Since the mtCU is the primary mechanism for Ca 2+ uptake into the mitochondrial matrix, inhibition of the mtCU has the potential to reduce or prevent m Ca 2+ overload in AD. Here, we report that neuronal-specific loss of mtCU-dependent m Ca 2+ uptake in the 3xTg-AD mouse model of AD reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline. Knockdown of Mcu in a cellular model of AD significantly decreased matrix Ca 2+ content, oxidative stress, and cell death. These results suggest that inhibition of neuronal m Ca 2+ uptake is a novel therapeutic target to impede AD progression.
Collapse
|
11
|
Xu J, Yang C, Zeng S, Wang X, Yang P, Qin L. Disturbance of neuron-microglia crosstalk mediated by GRP78 in Neuropsychiatric systemic lupus erythematosus mice. J Neuroinflammation 2023; 20:150. [PMID: 37365565 DOI: 10.1186/s12974-023-02832-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious phenotype of systemic lupus erythematosus (SLE). The disturbance of neuron-microglia crosstalk is recently revealed in many neuropsychiatric diseases but was not well studied in NPSLE. We found glucose regulatory protein 78 (GRP78), a marker of endoplasmic reticulum stress, was significantly increased in the cerebrospinal fluid (CSF) of our NPSLE cohort. We, therefore, investigated whether GRP78 can act as a mediator between the neuron-microglia crosstalk and is involved in the pathogenic process of NPSLE. METHODS Serum and CSF parameters were analyzed in 22 NPSLE patients and controls. Anti-DWEYS IgG was injected intravenously into mice to establish a model of NPSLE. Behavioral assessment, histopathological staining, RNA-seq analyses, and biochemical assays were performed to examine the neuro-immunological alterations in the mice. Rapamycin was intraperitoneally administered to define the therapeutic effect. RESULTS The level of GRP78 was elevated significantly in the CSF of the patients with NPSLE. An increase in GRP78 expression, accompanied by neuroinflammation and cognitive impairment, was also found in the brain tissues of the NPSLE model mice induced by anti-DWEYS IgG deposition on hippocampal neurons. In vitro experiments demonstrated that anti-DWEYS IgG could stimulate neurons to release GRP78, which activated microglia via TLR4/MyD88/NFκB pathway to produce more pro-inflammatory cytokines and promote migration and phagocytosis. Rapamycin ameliorated GRP78-inducing neuroinflammation and cognitive impairment in anti-DWEYS IgG-transferred mice. CONCLUSION GRP78 acts as a pathogenic factor in neuropsychiatric disorders via interfering neuron-microglia crosstalk. Rapamycin may be a promising therapeutic candidate for NPSLE.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chunshu Yang
- Department of 1st Cancer Institute, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Siyuan Zeng
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Ling Qin
- Department of Physiology, School of Life Science, China Medical University, Shenyang, Liaoning Province, 110122, People's Republic of China.
| |
Collapse
|
12
|
Gleitze S, Ramírez OA, Vega-Vásquez I, Yan J, Lobos P, Bading H, Núñez MT, Paula-Lima A, Hidalgo C. Ryanodine Receptor Mediated Calcium Release Contributes to Ferroptosis Induced in Primary Hippocampal Neurons by GPX4 Inhibition. Antioxidants (Basel) 2023; 12:antiox12030705. [PMID: 36978954 PMCID: PMC10045106 DOI: 10.3390/antiox12030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
13
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Waseem R. Multiple Bioenergy-Linked OCT Biomarkers Suggest Greater-Than-Normal Rod Mitochondria Activity Early in Experimental Alzheimer's Disease. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 36867132 PMCID: PMC9988708 DOI: 10.1167/iovs.64.3.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose In Alzheimer's disease, central brain neurons show evidence for early hyperactivity. It is unclear if this occurs in the retina, another disease target. Here, we tested for imaging biomarker manifestation of prodromal hyperactivity in rod mitochondria in vivo in experimental Alzheimer's disease. Methods Light- and dark-adapted 4-month-old 5xFAD and wild-type (WT) mice, both on a C57BL/6J background, were studied with optical coherence tomography (OCT). We measured the reflectivity profile shape of the inner segment ellipsoid zone (EZ) as a proxy for mitochondria distribution. Two additional indices responsive to mitochondria activity were also measured: the thickness of the external limiting membrane-retinal pigment epithelium (ELM-RPE) region and the signal magnitude of a hyporeflective band (HB) between photoreceptor tips and apical RPE. Retinal laminar thickness and visual performance were evaluated. Results In response to low energy demand (light), WT mice showed the expected elongation in EZ reflectivity profile shape, relatively thicker ELM-RPE, and greater HB signal. Under high energy demand (dark), the EZ reflectivity profile shape was rounder, the ELM-RPE was thinner, and the HB was reduced. These OCT biomarker patterns for light-adapted 5xFAD mice did not match those of light-adapted WT mice but rather that of dark-adapted WT mice. Dark-adapted 5xFAD and WT mice showed the same biomarker pattern. The 5xFAD mice exhibited modest nuclear layer thinning and lower-than-normal contrast sensitivity. Conclusions Results from three OCT bioenergy biomarkers raise the novel possibility of early rod hyperactivity in vivo in a common Alzheimer's disease model.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen L Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
14
|
Joshi M, Joshi S, Khambete M, Degani M. Role of calcium dysregulation in Alzheimer's disease and its therapeutic implications. Chem Biol Drug Des 2023; 101:453-468. [PMID: 36373976 DOI: 10.1111/cbdd.14175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The increasing incidence of Alzheimer's disease (AD) coupled with the lack of therapeutics to address the underlying pathology of the disease has necessitated the need for exploring newer targets. Calcium dysregulation represents a relatively newer target associated with AD. Ca+2 serves as an important cellular messenger in neurons. The concentration of the Ca+2 ion needs to be regulated at optimal concentrations intracellularly for normal functioning of the neurons. This is achieved with the help of mitochondria, endoplasmic reticulum, and neuronal plasma membrane channel proteins. Disruption in normal calcium homeostasis can induce formation of amyloid beta plaques, accumulation of neurofibrillary tangles, and dysfunction of synaptic plasticity, which in turn can affect calcium homeostasis further, thus forming a vicious cycle. Hence, understanding calcium dysregulation can prove to be a key to develop newer therapeutics. This review provides detailed account of physiology of calcium homeostasis and its dysregulation associated with AD. Further, with an understanding of various receptors and organelles involved in these pathways, the review also discusses various calcium channel blockers explored in AD hand in hand with some multitarget molecules addressing calcium as one of the targets.
Collapse
Affiliation(s)
- Maithili Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Siddhi Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mihir Khambete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
15
|
Vega-Vásquez I, Lobos P, Toledo J, Adasme T, Paula-Lima A, Hidalgo C. Hippocampal dendritic spines express the RyR3 but not the RyR2 ryanodine receptor isoform. Biochem Biophys Res Commun 2022; 633:96-103. [PMID: 36344175 DOI: 10.1016/j.bbrc.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The hippocampus is a brain region implicated in synaptic plasticity and memory formation; both processes require neuronal Ca2+ signals generated by Ca2+ entry via plasma membrane Ca2+ channels and Ca2+ release from the endoplasmic reticulum (ER). Through Ca2+-induced Ca2+ release, the ER-resident ryanodine receptor (RyR) Ca2+ channels amplify and propagate Ca2+ entry signals, leading to activation of cytoplasmic and nuclear Ca2+-dependent signaling pathways required for synaptic plasticity and memory processes. Earlier reports have shown that mice and rat hippocampus expresses mainly the RyR2 isoform, with lower expression levels of the RyR3 isoform and almost undetectable levels of the RyR1 isoform; both the RyR2 and RyR3 isoforms have central roles in synaptic plasticity and hippocampal-dependent memory processes. Here, we describe that dendritic spines of rat primary hippocampal neurons express the RyR3 channel isoform, which is also expressed in the neuronal body and neurites. In contrast, the RyR2 isoform, which is widely expressed in the neuronal body and neurites of primary hippocampal neurons, is absent from the dendritic spines. We propose that this asymmetric distribution is of relevance for hippocampal neuronal function. We suggest that the RyR3 isoform amplifies activity-generated Ca2+ entry signals at postsynaptic dendritic spines, from where they propagate to the dendrite and activate primarily RyR2-mediated Ca2+ release, leading to Ca2+ signal propagation into the soma and the nucleus where they activate the expression of genes that mediate synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Interuniversity Center for Healthy Aging (CIES), Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Universidad de Chile, Independencia 1027, Santiago, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Center for Exercise, Metabolism, and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Robbings BM, Hass DT, Hurley JB, Sweet IR, Goodman C, Qian H, Alvisio B, Heaps S. Transducin-Deficient Rod Photoreceptors Evaluated With Optical Coherence Tomography and Oxygen Consumption Rate Energy Biomarkers. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36576748 PMCID: PMC9804021 DOI: 10.1167/iovs.63.13.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Brian M Robbings
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States.,Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Daniel T Hass
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Ian R Sweet
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Alvisio
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sam Heaps
- OSIO Bioinformatics Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
17
|
Yao J, Liu Y, Sun B, Zhan X, Estillore JP, Turner RW, Chen SRW. Increased RyR2 open probability induces neuronal hyperactivity and memory loss with or without Alzheimer's disease-causing gene mutations. Alzheimers Dement 2022; 18:2088-2098. [PMID: 34985200 DOI: 10.1002/alz.12543] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Neuronal hyperactivity is an early neuronal defect commonly observed in familial and sporadic Alzheimer's disease (AD), but the underlying mechanisms are unclear. METHODS We employed a ryanodine receptor 2 (RyR2) mutant mouse model harboring the R4496C+/- mutation that markedly increases the channel's open probability (Po) to determine the impact of increased RyR2 activity in neuronal function without AD gene mutations. RESULTS Genetically increasing RyR2 Po induced neuronal hyperactivity in vivo in anesthetized and awake mice. Increased RyR2 Po induced hyperactive behaviors, impaired learning and memory, defective dendritic spines, and neuronal cell death. Increased RyR2 Po exacerbated the onset of neuronal hyperexcitability and learning and memory impairments in 5xFAD mice. DISCUSSION Increased RyR2 Po exacerbates the onset of familial AD-associated neuronal dysfunction, and induces AD-like defects in the absence of AD-causing gene mutations, suggesting that RyR2-associated neuronal hyperactivity represents a common target for combating AD with or without AD gene mutations.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yajing Liu
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoqin Zhan
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
19
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
20
|
Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free Radic Biol Med 2021; 175:28-41. [PMID: 34461261 DOI: 10.1016/j.freeradbiomed.2021.08.231] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
22
|
Chami M, Checler F. Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy? Curr Alzheimer Res 2021; 17:313-323. [PMID: 32096743 DOI: 10.2174/1567205017666200225102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023]
Abstract
Pathologic calcium (Ca2+) signaling linked to Alzheimer's Disease (AD) involves the intracellular Ca2+ release channels/ryanodine receptors (RyRs). RyRs are macromolecular complexes where the protein-protein interactions between RyRs and several regulatory proteins impact the channel function. Pharmacological and genetic approaches link the destabilization of RyRs macromolecular complexes to several human pathologies including brain disorders. In this review, we discuss our recent data, which demonstrated that enhanced neuronal RyR2-mediated Ca2+ leak in AD is associated with posttranslational modifications (hyperphosphorylation, oxidation, and nitrosylation) leading to RyR2 macromolecular complex remodeling, and dissociation of the stabilizing protein Calstabin2 from the channel. We describe RyR macromolecular complex structure and discuss the molecular mechanisms and signaling cascade underlying neuronal RyR2 remodeling in AD. We provide evidence linking RyR2 dysfunction with β-adrenergic signaling cascade that is altered in AD. RyR2 remodeling in AD leads to histopathological lesions, alteration of synaptic plasticity, learning and memory deficits. Targeting RyR macromolecular complex remodeling should be considered as a new therapeutic window to treat/or prevent AD setting and/or progression.
Collapse
Affiliation(s)
- Mounia Chami
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Frédéric Checler
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France.,CNRS, IPMC, Sophia Antipolis, F-06560, France
| |
Collapse
|
23
|
Cascella R, Cecchi C. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22094914. [PMID: 34066371 PMCID: PMC8124842 DOI: 10.3390/ijms22094914] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that is characterized by amyloid β-protein deposition in senile plaques, neurofibrillary tangles consisting of abnormally phosphorylated tau protein, and neuronal loss leading to cognitive decline and dementia. Despite extensive research, the exact mechanisms underlying AD remain unknown and effective treatment is not available. Many hypotheses have been proposed to explain AD pathophysiology; however, there is general consensus that the abnormal aggregation of the amyloid β peptide (Aβ) is the initial event triggering a pathogenic cascade of degenerating events in cholinergic neurons. The dysregulation of calcium homeostasis has been studied considerably to clarify the mechanisms of neurodegeneration induced by Aβ. Intracellular calcium acts as a second messenger and plays a key role in the regulation of neuronal functions, such as neural growth and differentiation, action potential, and synaptic plasticity. The calcium hypothesis of AD posits that activation of the amyloidogenic pathway affects neuronal Ca2+ homeostasis and the mechanisms responsible for learning and memory. Aβ can disrupt Ca2+ signaling through several mechanisms, by increasing the influx of Ca2+ from the extracellular space and by activating its release from intracellular stores. Here, we review the different molecular mechanisms and receptors involved in calcium dysregulation in AD and possible therapeutic strategies for improving the treatment.
Collapse
|
24
|
Batista AF, Rody T, Forny-Germano L, Cerdeiro S, Bellio M, Ferreira ST, Munoz DP, De Felice FG. Interleukin-1β mediates alterations in mitochondrial fusion/fission proteins and memory impairment induced by amyloid-β oligomers. J Neuroinflammation 2021; 18:54. [PMID: 33612100 PMCID: PMC7897381 DOI: 10.1186/s12974-021-02099-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background The lack of effective treatments for Alzheimer’s disease (AD) reflects an incomplete understanding of disease mechanisms. Alterations in proteins involved in mitochondrial dynamics, an essential process for mitochondrial integrity and function, have been reported in AD brains. Impaired mitochondrial dynamics causes mitochondrial dysfunction and has been associated with cognitive impairment in AD. Here, we investigated a possible link between pro-inflammatory interleukin-1 (IL-1), mitochondrial dysfunction, and cognitive impairment in AD models. Methods We exposed primary hippocampal cell cultures to amyloid-β oligomers (AβOs) and carried out AβO infusions into the lateral cerebral ventricle of cynomolgus macaques to assess the impact of AβOs on proteins that regulate mitochondrial dynamics. Where indicated, primary cultures were pre-treated with mitochondrial division inhibitor 1 (mdivi-1), or with anakinra, a recombinant interleukin-1 receptor (IL-1R) antagonist used in the treatment of rheumatoid arthritis. Cognitive impairment was investigated in C57BL/6 mice that received an intracerebroventricular (i.c.v.) infusion of AβOs in the presence or absence of mdivi-1. To assess the role of interleukin-1 beta (IL-1β) in AβO-induced alterations in mitochondrial proteins and memory impairment, interleukin receptor-1 knockout (Il1r1−/−) mice received an i.c.v. infusion of AβOs. Results We report that anakinra prevented AβO-induced alteration in mitochondrial dynamics proteins in primary hippocampal cultures. Altered levels of proteins involved in mitochondrial fusion and fission were observed in the brains of cynomolgus macaques that received i.c.v. infusions of AβOs. The mitochondrial fission inhibitor, mdivi-1, alleviated synapse loss and cognitive impairment induced by AβOs in mice. In addition, AβOs failed to cause alterations in expression of mitochondrial dynamics proteins or memory impairment in Il1r1−/− mice. Conclusion These findings indicate that IL-1β mediates the impact of AβOs on proteins involved in mitochondrial dynamics and that strategies aimed to prevent pathological alterations in those proteins may counteract synapse loss and cognitive impairment in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02099-x.
Collapse
Affiliation(s)
- Andre F Batista
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Tayná Rody
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Suzana Cerdeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Maria Bellio
- Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, CCS, room H2-019, Rio de Janeiro, RJ, 21941-590, Brazil. .,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L3N6, Canada. .,Department of Psychiatry, Queen's University, Kingston, Ontario, K7L3N6, Canada.
| |
Collapse
|
25
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
27
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
28
|
Jara-Moreno D, Riveros AL, Barriga A, Kogan MJ, Delporte C. Inhibition of β-amyloid Aggregation of Ugni molinae Extracts. Curr Pharm Des 2020; 26:1365-1376. [PMID: 31931693 DOI: 10.2174/1381612826666200113160840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
The β-amyloid peptide (1-42) is a molecule capable of aggregating into neurotoxic structures that have been implicated as potential etiological factors of Alzheimer's Disease. The aim of this study was to evaluate the inhibition of β-amyloid aggregation of ethyl acetate and ethanolic extracts obtained from Ugni molinae leaves on neurotoxic actions of β-amyloid aggregates. Chemical analyses were carried out with the extracts in order to determine their phenolic profile and its quantification. Both extracts showed a tendency to reduce neuronal deaths caused by β-amyloid. This tendency was inversely proportional to the evaluated concentrations. Moreover, the effect of EAE and ETE on β-amyloid aggregation was studied by fluorimetric T Thioflavin assay and transmission electronic microscopy (TEM); the extracts showed a modulation in the aggregation process. Partly, it is believed that these effects can be attributed to the polyphenolic compounds present in the extracts.
Collapse
Affiliation(s)
- Daniela Jara-Moreno
- Laboratorio de Productos Naturales, Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Ana L Riveros
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Andrés Barriga
- Unidad de espectrometria de masas, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Marcelo J Kogan
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile.,Centro Avanzado de Enfermedades Crónicas (ACCDIs), Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| | - Carla Delporte
- Laboratorio de Productos Naturales, Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile. Sergio Livingston 1007, Santiago 8380492, Chile
| |
Collapse
|
29
|
Díaz-Zúñiga J, More J, Melgar-Rodríguez S, Jiménez-Unión M, Villalobos-Orchard F, Muñoz-Manríquez C, Monasterio G, Valdés JL, Vernal R, Paula-Lima A. Alzheimer's Disease-Like Pathology Triggered by Porphyromonas gingivalis in Wild Type Rats Is Serotype Dependent. Front Immunol 2020; 11:588036. [PMID: 33240277 PMCID: PMC7680957 DOI: 10.3389/fimmu.2020.588036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer’s disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aβ1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jamileth More
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Matías Jiménez-Unión
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | | | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
30
|
Promyo K, Iqbal F, Chaidee N, Chetsawang B. Aluminum chloride-induced amyloid β accumulation and endoplasmic reticulum stress in rat brain are averted by melatonin. Food Chem Toxicol 2020; 146:111829. [PMID: 33130240 DOI: 10.1016/j.fct.2020.111829] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 01/18/2023]
Abstract
Accumulation of aluminium (Al) in the brain is known to be a toxic insult that result in neurodegenerative diseases and melatonin is known to have neuroprotective role. The present study was designed to investigate the neuroprotective effects of melatonin for aluminium chloride (AlCl3)-induced neurotoxicity in rats. Twelve-week old male Wistar rats were orally received 175 mg/kg AlCl3 with or without 5 mg/kg melatonin intraperitoneal pretreatment. Group 3 intraperitoneally recieved 5 mg/kg melatonin and group 4 rats were orally treated with saline solution for 8 weeks. A series of behavioral tests, biochemical analysis and expression of AD-associated proteins in the brain were determined after 7 weeks of all treatments. Our results indicated that AlCl3 treatment tends to induce memory and cognitive impairment. However, melatonin treatment attenuated amyloid beta (Aβ) (1-42) level by decreasing β-secretase, augmented low-density lipoprotein receptor-related protein 1, and neprilysin protein expression. Moreover, AlCl3 -induced endoplasmic reticulum (ER) stress and oxidative stress was attenuated by melatonin supplementation. In conclusion, these findings demonstrate a protective role of melatonin against Aβ peptide accumulation, ER stress and oxidative stress in the AlCl3 -treated AD model. Hence, the melatonin supplement might be an alternative way to alleviate the development of AD.
Collapse
Affiliation(s)
- Kitipong Promyo
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand; School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Furhan Iqbal
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand; Institute of Pure and Applied Biology, Zoology division, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Nutthika Chaidee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
31
|
Silva A, Pereira M, Carrascal MA, Brites G, Neves B, Moreira P, Resende R, Silva MM, Santos AE, Pereira C, Cruz MT. Calcium Modulation, Anti-Oxidant and Anti-Inflammatory Effect of Skin Allergens Targeting the Nrf2 Signaling Pathway in Alzheimer's Disease Cellular Models. Int J Mol Sci 2020; 21:ijms21207791. [PMID: 33096789 PMCID: PMC7594024 DOI: 10.3390/ijms21207791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Experimental evidence highlights nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a molecular target in Alzheimer's disease (AD). The well-known effect of electrophilic cysteine-reactive skin allergens on Nrf2-activation led to the hypothesis that these compounds could have a therapeutic role in AD. This was further supported by the neuroprotective activity of the skin allergen dimethyl fumarate (DMF), demonstrated in in vivo models of neurodegenerative diseases. We evaluated the effect of the cysteine-reactive allergens 1,4-phenylenediamine (PPD) and methyl heptine carbonate (MHC) on (1) neuronal redox imbalance and calcium dyshomeostasis using N2a wild-type (N2a-wt) and human APP-overexpressing neuronal cells (wild-type, N2a-APPwt) and (2) on neuroinflammation, using microglia BV-2 cells exposed to LPS (lipopolysaccharide). Phthalic anhydride (PA, mainly lysine-reactive), was used as a negative control. DMF, PPD and MHC increased Hmox1 gene and HMOX1 protein levels in N2a-APPwt cells suggesting Nrf2-dependent antioxidant activity. MHC, but also PA, rescued N2a-APPwt mitochondrial membrane potential and calcium levels in a Nrf2-independent pathway. All the chemicals showed anti-inflammatory activity by decreasing iNOS protein in microglia. This work highlights the potential neuroprotective and anti-inflammatory role of the selected skin allergens in in vitro models of AD, and supports further studies envisaging the validation of the results using in vivo AD models.
Collapse
Affiliation(s)
- Ana Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Correspondence: (A.S.); (M.T.C.)
| | - Marta Pereira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | | | - Gonçalo Brites
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Bruno Neves
- Department of Medical Sciences and Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Patrícia Moreira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
| | - Rosa Resende
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- University of Coimbra, Institute for Interdisciplinary Research (IIIUC), 3030-789 Coimbra, Portugal
| | - Maria Manuel Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Armanda E. Santos
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Cláudia Pereira
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria Teresa Cruz
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal; (P.M.); (R.R.); (M.M.S.); (A.E.S.); (C.P.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence: (A.S.); (M.T.C.)
| |
Collapse
|
32
|
Endoplasmic reticulum Ca2+ release causes Rieske iron-sulfur protein-mediated mitochondrial ROS generation in pulmonary artery smooth muscle cells. Biosci Rep 2020; 39:221066. [PMID: 31710081 PMCID: PMC6893167 DOI: 10.1042/bsr20192414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) cause Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) in pulmonary artery smooth muscle cells (PASMCs), playing an essential role in hypoxic pulmonary vasoconstriction (HPV). Here we tested a novel hypothesis that hypoxia-induced RyR-mediated Ca2+ release may, in turn, promote mitochondrial ROS generation contributing to hypoxic cellular responses in PASMCs. Our data reveal that application of caffeine to elevate intracellular Ca2+ concentration ([Ca2+]i) by activating RyRs results in a significant increase in ROS production in cytosol and mitochondria of PASMCs. Norepinephrine to increase [Ca2+]i due to the opening of inositol 1,4,5-triphosphate receptors (IP3Rs) produces similar effects. Exogenous Ca2+ significantly increases mitochondrial-derived ROS generation as well. Ru360 also inhibits the hypoxic ROS production. The RyR antagonist tetracaine or RyR2 gene knockout (KO) suppresses hypoxia-induced responses as well. Inhibition of mitochondrial Ca2+ uptake with Ru360 eliminates N- and Ca2+-induced responses. RISP KD abolishes the hypoxia-induced ROS production in mitochondria of PASMCs. Rieske iron–sulfur protein (RISP) gene knockdown (KD) blocks caffeine- or NE-induced ROS production. Taken together, these findings have further demonstrated that ER Ca2+ release causes mitochondrial Ca2+ uptake and RISP-mediated ROS production; this novel local ER/mitochondrion communication-elicited, Ca2+-mediated, RISP-dependent ROS production may play a significant role in hypoxic cellular responses in PASMCs.
Collapse
|
33
|
Mitochondrial Calcium Deregulation in the Mechanism of Beta-Amyloid and Tau Pathology. Cells 2020; 9:cells9092135. [PMID: 32967303 PMCID: PMC7564294 DOI: 10.3390/cells9092135] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aggregation and deposition of β-amyloid and/or tau protein are the key neuropathological features in neurodegenerative disorders such as Alzheimer's disease (AD) and other tauopathies including frontotemporal dementia (FTD). The interaction between oxidative stress, mitochondrial dysfunction and the impairment of calcium ions (Ca2+) homeostasis induced by misfolded tau and β-amyloid plays an important role in the progressive neuronal loss occurring in specific areas of the brain. In addition to the control of bioenergetics and ROS production, mitochondria are fine regulators of the cytosolic Ca2+ homeostasis that induce vital signalling mechanisms in excitable cells such as neurons. Impairment in the mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) or release through the Na+/Ca2+ exchanger may lead to mitochondrial Ca2+ overload and opening of the permeability transition pore inducing neuronal death. Recent evidence suggests an important role for these mechanisms as the underlying causes for neuronal death in β-amyloid and tau pathology. The present review will focus on the mechanisms that lead to cytosolic and especially mitochondrial Ca2+ disturbances occurring in AD and tau-induced FTD, and propose possible therapeutic interventions for these disorders.
Collapse
|
34
|
Tetrapeptide Ac-HAEE-NH 2 Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci 2020; 21:ijms21176272. [PMID: 32872553 PMCID: PMC7504039 DOI: 10.3390/ijms21176272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cholinergic deficit in Alzheimer’s disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aβ peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aβ peptide mediates its interaction with α4β2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aβ-α4β2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4β2 nAChR. Indeed, we discovered a 35HAEE38 site in α4β2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aβ42-α4β2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aβ via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aβ42-induced inhibition of α4β2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aβ on α4β2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4β2 nAChR-dependent cholinergic dysfunction in AD.
Collapse
|
35
|
Salech F, Ponce DP, Paula-Lima AC, SanMartin CD, Behrens MI. Nicotinamide, a Poly [ADP-Ribose] Polymerase 1 (PARP-1) Inhibitor, as an Adjunctive Therapy for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2020; 12:255. [PMID: 32903806 PMCID: PMC7438969 DOI: 10.3389/fnagi.2020.00255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Nicotinamide (vitamin B3) is a key component in the cellular production of Nicotinamide Adenine Dinucleotide (NAD) and has long been associated with neuronal development, survival and death. Numerous data suggest that nicotinamide may offer therapeutic benefits in neurodegenerative disorders, including Alzheimer’s Disease (AD). Beyond its effect in NAD+ stores, nicotinamide is an inhibitor of Poly [ADP-ribose] polymerase 1 (PARP-1), an enzyme with multiple cellular functions, including regulation of cell death, energy/metabolism and inflammatory response. PARP-1 functions as a DNA repair enzyme but under intense DNA damage depletes the cell of NAD+ and ATP and leads to a non-apoptotic type of cell death called Parthanatos, which has been associated with the pathogenesis of neurodegenerative diseases. Moreover, NAD+ availability might potentially improve mitochondrial function, which is severely impaired in AD. PARP-1 inhibition may also exert a protective effect against neurodegeneration by its action to diminish neuroinflammation and microglial activation which are also implicated in the pathogenesis of AD. Here we discuss the evidence supporting the use of nicotinamide as adjunctive therapy for the treatment of early stages of AD based on the inhibitory effect of nicotinamide on PARP-1 activity. The data support evaluating nicotinamide as an adjunctive treatment for AD at early stages of the disease not only to increase NAD+ stores but as a PARP-1 inhibitor, raising the hypothesis that other PARP-1 inhibitors – drugs that are already approved for breast cancer treatment – might be explored for the treatment of AD.
Collapse
Affiliation(s)
- Felipe Salech
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Sección de Geriatría Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela P Ponce
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Andrea C Paula-Lima
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Facultad of Medicina, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carol D SanMartin
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile
| | - María I Behrens
- Centro de Investigación Clínica Avanzada, Facultad de Medicina and Hospital Clínico Universidad de Chile, Santiago, Chile.,Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurologiìa y Neurocirugiìa, Hospital Cliìnico Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Santiago, Chile
| |
Collapse
|
36
|
Muñoz P, Ardiles ÁO, Pérez-Espinosa B, Núñez-Espinosa C, Paula-Lima A, González-Billault C, Espinosa-Parrilla Y. Redox modifications in synaptic components as biomarkers of cognitive status, in brain aging and disease. Mech Ageing Dev 2020; 189:111250. [PMID: 32433996 DOI: 10.1016/j.mad.2020.111250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that includes several changes that gradually make organisms degenerate and die. Harman's theory proposes that aging is a consequence of the progressive accumulation of oxidative modifications mediated by reactive oxygen/nitrogen species, which plays an essential role in the development and progression of many neurodegenerative diseases. This review will focus on how abnormal redox modifications induced by age impair the functionality of neuronal redox-sensitive proteins involved in axonal elongation and guidance, synaptic plasticity, and intercellular communication. We will discuss post-transcriptional regulation of gene expression by microRNAs as a mechanism that controls the neuronal redox state. Finally, we will discuss how some brain-permeant antioxidants from the diet have a beneficial effect on cognition. Taken together, the evidence revised here indicates that oxidative-driven modifications of specific proteins and changes in microRNA expression may be useful biomarkers for aging and neurodegenerative diseases. Also, some specific antioxidant therapies have undoubtedly beneficial neuroprotective effects when administered in the correct doses, in the ideal formulation combination, and during the appropriate therapeutic window. The use of some antioxidants is, therefore, still poorly explored for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Pablo Muñoz
- Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Biomedical Research Center, Universidad de Valparaíso, Valparaíso, Chile; Thematic Task Force on Healthy Aging, CUECH Research Network.
| | - Álvaro O Ardiles
- Department of Pathology and Physiology, Medical School, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Translational Neurology Center, Faculty of Medicine, Universidad de Valparaíso, Valparaíso, Chile; Thematic Task Force on Healthy Aging, CUECH Research Network; Interdisciplinary Center of Neuroscience of Valparaíso, Universidad de Valparaíso, Valparaíso, Chile; Interdisciplinary Center for Health Studies, Universidad de Valparaíso, Valparaíso, Chile
| | - Boris Pérez-Espinosa
- Thematic Task Force on Healthy Aging, CUECH Research Network; Laboratorio biología de la Reproduccion, Departamento Biomédico, Facultad Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Thematic Task Force on Healthy Aging, CUECH Research Network; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
| | - Andrea Paula-Lima
- Thematic Task Force on Healthy Aging, CUECH Research Network; Institute for Research in Dental Sciences, Faculty of Dentistry; Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute (BNI) and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Christian González-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network; Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Healthy Aging, CUECH Research Network; School of Medicine, Universidad de Magallanes, Punta Arenas, Chile; Laboratory of Molecular Medicine - LMM, Center for Education, Healthcare and Investigation - CADI, University of Magallanes, Punta Arenas, Chile.
| |
Collapse
|
37
|
Pannaccione A, Piccialli I, Secondo A, Ciccone R, Molinaro P, Boscia F, Annunziato L. The Na +/Ca 2+exchanger in Alzheimer's disease. Cell Calcium 2020; 87:102190. [PMID: 32199208 DOI: 10.1016/j.ceca.2020.102190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022]
Abstract
As a pivotal player in regulating sodium (Na+) and calcium (Ca2+) homeostasis and signalling in excitable cells, the Na+/Ca2+ exchanger (NCX) is involved in many neurodegenerative disorders in which an imbalance of intracellular Ca2+ and/or Na+ concentrations occurs, including Alzheimer's disease (AD). Although NCX has been mainly implicated in neuroprotective mechanisms counteracting Ca2+ dysregulation, several studies highlighted its role in the neuronal responses to intracellular Na+ elevation occurring in several pathophysiological conditions. Since the alteration of Na+ and Ca2+ homeostasis significantly contributes to synaptic dysfunction and neuronal loss in AD, it is of crucial importance to analyze the contribution of NCX isoforms in the homeostatic responses at neuronal and synaptic levels. Some studies found that an increase of NCX activity in brains of AD patients was correlated with neuronal survival, while other research groups found that protein levels of two NCX subtypes, NCX2 and NCX3, were modulated in parietal cortex of late stage AD brains. In particular, NCX2 positive synaptic terminals were increased in AD cohort while the number of NCX3 positive terminals were reduced. In addition, NCX1, NCX2 and NCX3 isoforms were up-regulated in those synaptic terminals accumulating amyloid-beta (Aβ), the neurotoxic peptide responsible for AD neurodegeneration. More recently, the hyperfunction of a specific NCX subtype, NCX3, has been shown to delay endoplasmic reticulum stress and apoptotic neuronal death in hippocampal neurons exposed to Aβ insult. Despite some issues about the functional role of NCX in synaptic failure and neuronal loss require further studies, these findings highlight the putative neuroprotective role of NCX in AD and open new strategies to develop new druggable targets for AD therapy.
Collapse
Affiliation(s)
- Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| | - Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | |
Collapse
|
38
|
Bodart-Santos V, de Carvalho LRP, de Godoy MA, Batista AF, Saraiva LM, Lima LG, Abreu CA, De Felice FG, Galina A, Mendez-Otero R, Ferreira ST. Extracellular vesicles derived from human Wharton's jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem Cell Res Ther 2019; 10:332. [PMID: 31747944 PMCID: PMC6864996 DOI: 10.1186/s13287-019-1432-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton’s jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer’s disease-linked amyloid beta oligomers (AβOs). Methods We isolated and characterized EVs released by human Wharton’s jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AβOs. Results hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AβOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AβOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. Conclusions hMSC-EVs protected hippocampal neurons from damage induced by AβOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer’s disease.
Collapse
Affiliation(s)
- Victor Bodart-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiza R P de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mariana A de Godoy
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - André F Batista
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Leonardo M Saraiva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luize G Lima
- National Cancer Institute, Rio de Janeiro, RJ, 20230-240, Brazil
| | - Carla Andreia Abreu
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Centre for Neuroscience Studies and Department of Psychiatry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
39
|
Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, Lambert JP, Luongo TS, Ludtmann MH, Praticò D, Elrod JW. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease. Nat Commun 2019; 10:3885. [PMID: 31467276 PMCID: PMC6715724 DOI: 10.1038/s41467-019-11813-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Impairments in neuronal intracellular calcium (iCa2+) handling may contribute to Alzheimer’s disease (AD) development. Metabolic dysfunction and progressive neuronal loss are associated with AD progression, and mitochondrial calcium (mCa2+) signaling is a key regulator of both of these processes. Here, we report remodeling of the mCa2+ exchange machinery in the prefrontal cortex of individuals with AD. In the 3xTg-AD mouse model impaired mCa2+ efflux capacity precedes neuropathology. Neuronal deletion of the mitochondrial Na+/Ca2+ exchanger (NCLX, Slc8b1 gene) accelerated memory decline and increased amyloidosis and tau pathology. Further, genetic rescue of neuronal NCLX in 3xTg-AD mice is sufficient to impede AD-associated pathology and memory loss. We show that mCa2+ overload contributes to AD progression by promoting superoxide generation, metabolic dysfunction and neuronal cell death. These results provide a link between the calcium dysregulation and metabolic dysfunction hypotheses of AD and suggest mCa2+ exchange as potential therapeutic target in AD. Dysregulation of intracellular calcium is reported in Alzheimer’s disease. Here the authors show that loss of the mitochondrial Na+ /Ca2+ exchanger, NCLX – primary route of mitochondrial calcium efflux, precedes neuronal pathology in experimental models and contributes to Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Antonio Di Meco
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Alyssa A Lombardi
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan P Lambert
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Timothy S Luongo
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Marthe H Ludtmann
- Royal Veterinary College, 4 Royal College Street, Kings Cross, London, UK
| | - Domenico Praticò
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
40
|
Dong YT, Cao K, Tan LC, Wang XL, Qi XL, Xiao Y, Guan ZZ. Stimulation of SIRT1 Attenuates the Level of Oxidative Stress in the Brains of APP/PS1 Double Transgenic Mice and in Primary Neurons Exposed to Oligomers of the Amyloid-β Peptide. J Alzheimers Dis 2019; 63:283-301. [PMID: 29614660 DOI: 10.3233/jad-171020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the study, we examined whether the silent information regulator 1 (SIRT1) can attenuate oxidative stress in the brains of mice carrying the APP/PS1 double mutation and/or in primary neonatal rat neurons exposed to oligomers of amyloid-β peptide (AβOs). Starting at 4 or 8 months of age, the transgenic mice were treated with resveratrol (RSV, a stimulator of SIRT1) or suramin (an inhibitor) (each 20 mg/kg BW/day) for two months. The primary neurons were exposed to AβOs (0.5 μM) for 48 h and thereafter RSV (20 μM) or suramin (300 mg/ml) for 24 h. Cell viability was assessed by the CCK-8 assay; SIRT1 protein and mRNA determined by western blotting and real-time PCR, respectively; senile plaques examined immunohistochemically; ROS monitored by flow cytometry; and the contents of OH-, H2O2, O2·-, and MDA, and the activities of SOD and GSH-Px measured by standard biochemical procedures. In comparison to wild-type mice or untreated primary neurons, the expression of SIRT1 was significantly lower in the brains of APP/PS1 mice or neurons exposed to AβOs. In these same systems, increased numbers of senile plaques and a high level of oxidative stress were apparent. Interestingly, these two latter changes were attenuated by treatment with RSV, but enhanced by suramin. These findings indicate that SIRT1 may be neuroprotective.
Collapse
Affiliation(s)
- Yang-Ting Dong
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Kun Cao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Long-Chun Tan
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Yan Xiao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| |
Collapse
|
41
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Díaz-Zúñiga J, Muñoz Y, Melgar-Rodríguez S, More J, Bruna B, Lobos P, Monasterio G, Vernal R, Paula-Lima A. Serotype b of Aggregatibacter actinomycetemcomitans triggers pro-inflammatory responses and amyloid beta secretion in hippocampal cells: a novel link between periodontitis and Alzheimer´s disease? J Oral Microbiol 2019; 11:1586423. [PMID: 31044031 PMCID: PMC6484476 DOI: 10.1080/20002297.2019.1586423] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/18/2023] Open
Abstract
Introduction: Previous reports have proposed that Periodontal disease (PDis) predisposes to Alzheimer's disease (AD), both highly prevalent pathologies among the elderly. The bacteria Aggregatibacter actinomycetemcomitans (Aa), associated with the most aggressive forms of PDis, are classified in different serotypes with distinct virulence according to the antigenicity of their lipopolysaccharide (LPS). Methods: Here, we determined the effects of purified LPS, from serotypes a, b or c of Aa, on primary cultures of microglia or mixed hippocampal cells. Results: We found that both culture types exhibited higher levels of inflammatory cytokines (IL-1β, IL-6 and TNFα) when treated with serotype b-LPS, compared with controls, as quantified by qPCR and/or ELISA. Also, cultures treated with serotype a-LPS displayed increased mRNA levels of the modulatory cytokines IL-4 and IL-10. Mixed hippocampal cultures treated with serotype b-LPS exhibited severe neuronal morphological changes and displayed increased levels of secreted Aβ1-42 peptide. These results indicate that LPS from different Aa serotypes triggers discriminatory immune responses, which differentially affect primary hippocampal cells. Conclusion: Altogether, our results show that treatment with serotype b-LPS triggers the secretion of proinflammatory cytokines by microglia, induces neurite shrinking, and increases the extracellular Aβ1-42 levels, all features strongly associated with the etiology of AD.
Collapse
Affiliation(s)
- J Díaz-Zúñiga
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Y Muñoz
- Aging Cellular Laboratory, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - S Melgar-Rodríguez
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J More
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - B Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - G Monasterio
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco, Chile
| | - A Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
43
|
More J, Galusso N, Veloso P, Montecinos L, Finkelstein JP, Sanchez G, Bull R, Valdés JL, Hidalgo C, Paula-Lima A. N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model. Front Aging Neurosci 2018; 10:399. [PMID: 30574085 PMCID: PMC6291746 DOI: 10.3389/fnagi.2018.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
We have previously reported that primary hippocampal neurons exposed to synaptotoxic amyloid beta oligomers (AβOs), which are likely causative agents of Alzheimer’s disease (AD), exhibit abnormal Ca2+ signals, mitochondrial dysfunction and defective structural plasticity. Additionally, AβOs-exposed neurons exhibit a decrease in the protein content of type-2 ryanodine receptor (RyR2) Ca2+ channels, which exert critical roles in hippocampal synaptic plasticity and spatial memory processes. The antioxidant N-acetylcysteine (NAC) prevents these deleterious effects of AβOs in vitro. The main contribution of the present work is to show that AβOs injections directly into the hippocampus, by engaging oxidation-mediated reversible pathways significantly decreased RyR2 protein content but increased single RyR2 channel activation by Ca2+ and caused considerable spatial memory deficits. AβOs injections into the CA3 hippocampal region impaired rat performance in the Oasis maze spatial memory task, decreased hippocampal glutathione levels and overall content of plasticity-related proteins (c-Fos, Arc, and RyR2) and increased ERK1/2 phosphorylation. In contrast, in hippocampus-derived mitochondria-associated membranes (MAM) AβOs injections increased RyR2 levels. Rats fed with NAC for 3-weeks prior to AβOs injections displayed comparable redox potential, RyR2 and Arc protein contents, similar ERK1/2 phosphorylation and RyR2 single channel activation by Ca2+ as saline-injected (control) rats. NAC-fed rats subsequently injected with AβOs displayed the same behavior in the spatial memory task as control rats. Based on the present in vivo results, we propose that redox-sensitive neuronal RyR2 channels partake in the mechanism underlying AβOs-induced memory disruption in rodents.
Collapse
Affiliation(s)
- Jamileth More
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Nadia Galusso
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Pablo Veloso
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Gina Sanchez
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Bull
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
44
|
Arias-Cavieres A, More J, Vicente JM, Adasme T, Hidalgo J, Valdés JL, Humeres A, Valdés-Undurraga I, Sánchez G, Hidalgo C, Barrientos G. Triclosan Impairs Hippocampal Synaptic Plasticity and Spatial Memory in Male Rats. Front Mol Neurosci 2018; 11:429. [PMID: 30534053 PMCID: PMC6275195 DOI: 10.3389/fnmol.2018.00429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.
Collapse
Affiliation(s)
| | - Jamileth More
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | | | - Tatiana Adasme
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Jorge Hidalgo
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alexis Humeres
- Department of Morphofunction, Faculty of Medicine, Universidad Diego Portales, Santiago, Chile
| | | | - Gina Sánchez
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro Barrientos
- Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
More JY, Bruna BA, Lobos PE, Galaz JL, Figueroa PL, Namias S, Sánchez GL, Barrientos GC, Valdés JL, Paula-Lima AC, Hidalgo C, Adasme T. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory. Antioxid Redox Signal 2018; 29:1125-1146. [PMID: 29357673 DOI: 10.1089/ars.2017.7277] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Collapse
Affiliation(s)
- Jamileth Y More
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara A Bruna
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro E Lobos
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Galaz
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula L Figueroa
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Namias
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina L Sánchez
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Valdés
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile
| | - Andrea C Paula-Lima
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,4 Institute for Research in Dental Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile .,5 Center for Exercise , Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,6 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins , Santiago, Chile
| |
Collapse
|
46
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
47
|
Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxid Redox Signal 2018; 29:1176-1188. [PMID: 29890840 PMCID: PMC6157344 DOI: 10.1089/ars.2018.7506] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calcium (Ca2+) hypothesis of Alzheimer's disease (AD) gains popularity. It points to new signaling pathways that may underlie AD pathogenesis. Based on calcium hypothesis, novel targets for the development of potential AD therapies are identified. Recent Advances: Recently, the key role of neuronal store-operated calcium entry (nSOCE) in the development of AD has been described. Correct regulation of nSOCE is necessary for the stability of postsynaptic contacts to preserve the memory formation. Molecular identity of hippocampal nSOCE is defined. Perspective nSOCE-activating molecule, prototype of future anti-AD drugs, is described. CRITICAL ISSUES Endoplasmic reticulum Ca2+ overload happens in many but not in all AD models. The nSOCE targeting therapy described in this review may not be universally applicable. FUTURE DIRECTIONS There is a need to determine whether AD is a syndrome with one critical signaling pathway that initiates pathology, or it is a disorder with many different signaling pathways that are disrupted simultaneously or one after each other. It is necessary to validate applicability of nSOCE-activating therapy for the development of anti-AD medication. There is an experimental correlation between downregulated nSOCE and disrupted postsynaptic contacts in AD mouse models. Signaling mechanisms downstream of nSOCE which are responsible for the regulation of stability of postsynaptic contacts have to be discovered. That will bring new targets for the development of AD-preventing therapies. Antioxid. Redox Signal. 29, 1176-1188.
Collapse
Affiliation(s)
- Elena Popugaeva
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ekaterina Pchitskaya
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation
| | - Ilya Bezprozvanny
- 1 Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St.Petersburg Polytechnic University , St.Petersburg, Russian Federation.,2 Department of Physiology, UT Southwestern Medical Center at Dallas , Dallas, Texas
| |
Collapse
|
48
|
Bruna B, Lobos P, Herrera-Molina R, Hidalgo C, Paula-Lima A, Adasme T. The signaling pathways underlying BDNF-induced Nrf2 hippocampal nuclear translocation involve ROS, RyR-Mediated Ca 2+ signals, ERK and PI3K. Biochem Biophys Res Commun 2018; 505:201-207. [PMID: 30243728 DOI: 10.1016/j.bbrc.2018.09.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) induces complex neuronal signaling cascades that are critical for the cellular changes underlying synaptic plasticity. These pathways include activation of Ca2+ entry via N-methyl-D-aspartate receptors and sequential activation of nitric oxide synthase and NADPH oxidase, which via generation of reactive nitrogen/oxygen species stimulate Ca2+-induced Ca2+ release mediated by Ryanodine Receptor (RyR) channels. These sequential events underlie BDNF-induced spine remodeling and type-2 RyR up-regulation. In addition, BDNF induces the nuclear translocation of the transcription factor Nrf2, a master regulator of antioxidant protein expression that protects cells against the oxidative damage caused by injury and inflammation. To investigate the possible BDNF-induced signaling cascades that mediate Nrf2 nuclear translocation in primary hippocampal cultures, we tested here whether reactive oxygen species, RyR-mediated Ca2+ release, ERK or PI3K contribute to this response. We found that pre-incubation of cultures with inhibitory ryanodine to suppress RyR-mediated Ca2+ release, with the reducing agent N-acetylcysteine or with inhibitors of ERK or PI3K activity, prevented the nuclear translocation of Nrf2 induced by incubation for 6 h with BFNF. Based on these combined results, we propose that the key role played by BDNF as an inducer of neuronal antioxidant responses, characterized by BDNF-induced Nfr2 nuclear translocation, entails crosstalk between reactive oxygen species and RyR-mediated Ca2+ release, and the participation of ERK and PI3K activities.
Collapse
Affiliation(s)
- Bárbara Bruna
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rodrigo Herrera-Molina
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Center for Molecular Studies of the Cell, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
49
|
Latulippe J, Lotito D, Murby D. A mathematical model for the effects of amyloid beta on intracellular calcium. PLoS One 2018; 13:e0202503. [PMID: 30133494 PMCID: PMC6105003 DOI: 10.1371/journal.pone.0202503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
The accumulation of Alzheimer's disease (AD) associated Amyloid beta (Aβ) oligomers can trigger aberrant intracellular calcium (Ca2+) levels by disrupting the intrinsic Ca2+ regulatory mechanism within cells. These disruptions can cause changes in homeostasis levels that can have detrimental effects on cell function and survival. Although studies have shown that Aβ can interfere with various Ca2+ fluxes, the complexity of these interactions remains elusive. We have constructed a mathematical model that simulates Ca2+ patterns under the influence of Aβ. Our simulations shows that Aβ can increase regions of mixed-mode oscillations leading to aberrant signals under various conditions. We investigate how Aβ affects individual flux contributions through inositol triphosphate (IP3) receptors, ryanodine receptors, and membrane pores. We demonstrate that controlling for the ryanodine receptor's maximal kinetic reaction rate may provide a biophysical way of managing aberrant Ca2+ signals. The influence of a dynamic model for IP3 production is also investigated under various conditions as well as the impact of changes in membrane potential. Our model is one of the first to investigate the effects of Aβ on a variety of cellular mechanisms providing a base modeling scheme from which further studies can draw on to better understand Ca2+ regulation in an AD environment.
Collapse
Affiliation(s)
- Joe Latulippe
- Mathematics Department, Norwich University, Northfield, Vermont, United States of America
- * E-mail:
| | - Derek Lotito
- Chemistry and Biochemistry Department, Norwich University, Northfield, Vermont, United States of America
| | - Donovan Murby
- Mathematics Department, Norwich University, Northfield, Vermont, United States of America
| |
Collapse
|
50
|
Banerjee A, Paluh JL, Mukherjee A, Kumar KG, Ghosh A, Naskar MK. Modeling the neuron as a nanocommunication system to identify spatiotemporal molecular events in neurodegenerative disease. Int J Nanomedicine 2018; 13:3105-3128. [PMID: 29872297 PMCID: PMC5975603 DOI: 10.2147/ijn.s152664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM In tauopathies such as Alzheimer's disease (AD), molecular changes spanning multiple subcellular compartments of the neuron contribute to neurodegeneration and altered axonal signaling. Computational modeling of end-to-end linked events benefit mechanistic analysis and can be informative to understand disease progression and accelerate development of effective therapies. In the calcium-amyloid beta model of AD, calcium ions that are an important regulator of neuronal function undergo dysregulated homeostasis that disrupts cargo loading for neurotrophic signaling along axonal microtubules (MTs). The aim of the present study was to develop a computational model of the neuron using a layered architecture simulation that enables us to evaluate the functionalities of several interlinked components in the calcium-amyloid beta model. METHODS The elevation of intracellular calcium levels is modeled upon binding of amyloid beta oligomers (AβOs) to calcium channels or as a result of membrane insertion of oligomeric Aβ1-42 to form pores/channels. The resulting subsequent Ca2+ disruption of dense core vesicle (DCV)-kinesin cargo loading and transport of brain-derived neurotrophic factor (BDNF) on axonal MTs are then evaluated. Our model applies published experimental data on calcium channel manipulation of DCV-BDNF and incorporates organizational complexity of the axon as bundled polar and discontinuous MTs. The interoperability simulation is based on the Institute of Electrical and Electronics Engineers standard association P1906.1 framework for nanoscale and molecular communication. RESULTS Our analysis provides new spatiotemporal insights into the end-to-end signaling events linking calcium dysregulation and BDNF transport and by simulation compares the relative impact of dysregulation of calcium levels by AβO-channel interactions, oligomeric Aβ1-42 pores/channel formation, and release of calcium by internal stores. The flexible platform of our model allows continued expansion of molecular details including mechanistic and morphological parameters of axonal cytoskeleton networks as they become available to test disease and treatment predictions. CONCLUSION The present model will benefit future drug studies on calcium homeostasis and dysregulation linked to measurable neural functional outcomes. The algorithms used can also link to other multiscale multi-cellular modeling platforms to fill in molecular gaps that we believe will assist in broadening and refining multiscale computational maps of neurodegeneration.
Collapse
Affiliation(s)
- Arunima Banerjee
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Janet L Paluh
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York Polytechnic Institute, Albany, NY, USA
| | | | - K Gaurav Kumar
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Archisman Ghosh
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| | - Mrinal K Naskar
- Department of Electronics and Tele-Communication Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|