1
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
2
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
3
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Angelopoulou A, Theocharous G, Valakos D, Polyzou A, Magkouta S, Myrianthopoulos V, Havaki S, Fiorillo M, Tremi I, Vachlas K, Nisotakis T, Thanos DF, Pantazaki A, Kletsas D, Bartek J, Petty R, Thanos D, McCrimmon RJ, Papaspyropoulos A, Gorgoulis VG. Loss of the tumour suppressor LKB1/STK11 uncovers a leptin-mediated sensitivity mechanism to mitochondrial uncouplers for targeted cancer therapy. Mol Cancer 2024; 23:147. [PMID: 39048991 PMCID: PMC11270803 DOI: 10.1186/s12943-024-02061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes one of the deadliest and most common malignancies. The LKB1/STK11 tumour suppressor is mutated in ∼ 30% of NSCLCs, typically lung adenocarcinomas (LUAD). We implemented zebrafish and human lung organoids as synergistic platforms to pre-clinically screen for metabolic compounds selectively targeting LKB1-deficient tumours. Interestingly, two kinase inhibitors, Piceatannol and Tyrphostin 23, appeared to exert synthetic lethality with LKB1 mutations. Although LKB1 loss alone accelerates energy expenditure, unexpectedly we find that it additionally alters regulation of the key energy homeostasis maintenance player leptin (LEP), further increasing the energetic burden and exposing a vulnerable point; acquired sensitivity to the identified compounds. We show that compound treatment stabilises Hypoxia-inducible factor 1-alpha (HIF1A) by antagonising Von Hippel-Lindau (VHL)-mediated HIF1A ubiquitination, driving LEP hyperactivation. Importantly, we demonstrate that sensitivity to piceatannol/tyrphostin 23 epistatically relies on a HIF1A-LEP-Uncoupling Protein 2 (UCP2) signaling axis lowering cellular energy beyond survival, in already challenged LKB1-deficient cells. Thus, we uncover a pivotal metabolic vulnerability of LKB1-deficient tumours, which may be therapeutically exploited using our identified compounds as mitochondrial uncouplers.
Collapse
Affiliation(s)
- Andriani Angelopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- "Thorax" Foundation - Research Center of Intensive Care and Emergency Thoracic Medicine, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Ioanna Tremi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Theodoros Nisotakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris-Foivos Thanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, 15341, Greece
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Stockholm, 171 77, Sweden
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rory J McCrimmon
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
5
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
6
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
7
|
Koshak AE, Elfaky MA, Albadawi DAI, Abdallah HM, Mohamed GA, Ibrahim SRM, Alzain AA, Khafagy ES, Elsayed EM, Hegazy WAH. Piceatannol: a renaissance in antibacterial innovation unveiling synergistic potency and virulence disruption against serious pathogens. Int Microbiol 2024:10.1007/s10123-024-00532-8. [PMID: 38767683 DOI: 10.1007/s10123-024-00532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina A I Albadawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Batterjee Medical College, Preparatory Year Program, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Eslam M Elsayed
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, 35043, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman
| |
Collapse
|
8
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
9
|
Park JE, Han JS. Improving the Effect of Ferulic Acid on Inflammation and Insulin Resistance by Regulating the JNK/ERK and NF-κB Pathways in TNF-α-Treated 3T3-L1 Adipocytes. Nutrients 2024; 16:294. [PMID: 38257186 PMCID: PMC10819237 DOI: 10.3390/nu16020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, ferulic acid was investigated for its potential in suppressing TNF-α-treated inflammation and insulin resistance in adipocytes. Ferulic acid suppressed TNF-α, IL-6, IL-1β, and MCP-1. TNF-α increased p-JNK and ERK1/2, but treatment with ferulic acid (1, 10, and 50 μM) decreased p-JNK and ERK1/2. TNF-α induced the activation of IKK, IκBα, and NF-κB p65 compared to the control, but ferulic acid inhibited the activation of IKK, IκBα, and NF-κB p65. Following treatment with TNF-α, pIRS-1ser307 increased and pIRS-1tyr612 decreased compared to the control. Conversely, as a result of treatment with 1, 10, and 50 μM ferulic acid, pIRS-1ser307 was suppressed, and pIRS-1tyr612 was increased. Therefore, ferulic acid reduced inflammatory cytokine secretion by regulating JNK, ERK, and NF-κB and improved insulin resistance by suppressing pIRS-1ser. These findings indicate that ferulic acid can improve inflammation and insulin resistance in adipocytes.
Collapse
Affiliation(s)
| | - Ji-Sook Han
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea;
| |
Collapse
|
10
|
Yao L, Cai H, Fang Q, Liu D, Zhan M, Chen L, Du J. Piceatannol alleviates liver ischaemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 in hepatic macrophages. Eur J Pharmacol 2023; 960:176149. [PMID: 37866744 DOI: 10.1016/j.ejphar.2023.176149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Macrophages present strong immunomodulatory ability and are considered to be core immune cells in the process of hepatic ischaemia‒reperfusion (I/R). The NLRP3 inflammasome is a kind of intracellular multimolecular complex that actively participates in innate immune responses and proinflammatory signalling pathways. Piceatannol (PIC) is a derivative of the natural phenolic compound resveratrol and has antioxidant and anti-inflammatory effects. The purpose of this study was to examine whether pretreatment with PIC can alleviate hepatic I/R injury by targeting NLRP3 inflammasome-induced macrophage pyroptosis. METHODS PIC-pretreated primary hepatic macrophages were subjected to hypoxia/reoxygenation, and liver ischaemia/reperfusion was performed in mice. RESULTS PIC pretreatment ameliorated histopathological changes, oxidative stress and inflammation while enhancing antioxidant and anti-inflammasome markers through downregulation of Toll-like receptor 4 (TLR4), p-IκBα (S32), p-NF-κBp65 (S536), NLRP3, caspase-1 (p20), IL-1β, IL-18 and GSDMD-N expression during liver ischaemia‒reperfusion. Moreover, PIC inhibited the translocation of NF-κB p65 after stimulation with hypoxia/reoxygenation in primary hepatic macrophages. CONCLUSIONS The results indicated that PIC protected the liver against hepatic I/R injury, which was mediated by targeting TLR4-NF-κB-NLRP3-mediated hepatic macrophage pyroptosis.
Collapse
Affiliation(s)
- Lei Yao
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China
| | - Haijian Cai
- Center for Scientific Research of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Qi Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Deng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Mengting Zhan
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jian Du
- Department of Biochemistry and Molecular Biology, Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Wang J, Lin Y, Xu X, Wang Y, Xie Q. Identification of tau-tubulin kinase 1 inhibitors by microfluidics-based mobility shift assay from a kinase inhibitor library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:385-393. [PMID: 37399991 DOI: 10.1016/j.slasd.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Tau tubulin kinase 1 (TTBK1) is a serine/threonine/tyrosine kinase that phosphorylates multiple residues in tau protein. Hyperphosphorylated tau is the main cause of tauopathy, such as Alzheimer's disease (AD). Therefore, preventing tau phosphorylation by inhibiting TTBK1 has been proposed as a therapeutic strategy for AD. However, few substrates of TTBK1 are reported for a biochemical assay and few inhibitors targeting TTBK1 have been reported so far. In this study, we identified a fluorescein amidite (FAM)-labeled peptide 15 from a small peptide library as the optimal peptide substrate for human TTBK1 (hTTBK1). We then developed and validated a microfluidics-based mobility shift assay (MMSA) with peptide 15. We further confirmed that peptide 15 could also be used in the ADP-Glo kinase assay. The established MMSA was applied for screening of a 427-compound kinase inhibitor library, yielding five compounds with IC50s of several micro molars against hTTBK1. Among them, three compounds, AZD5363, A-674,563 and GSK690693 inhibited hTTBK1 in an ATP competitive manner and molecular docking simulations revealed that they enter the ATP pocket and form one or two hydrogen bonds to the hinge region with hTTBK1. Another hit compound, piceatannol, showed non-ATP competitive inhibitory effect on hTTBK1 and may serve as a starting point to develop highly selective hTTBK1 inhibitors. Altogether, this study provided a new in vitro platform for the development of novel hTTBK1 inhibitors that might have potential applications in AD prevention.
Collapse
Affiliation(s)
- Jinlei Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China; Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Ying Lin
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoyu Xu
- Shanghai ChemPartner Co. Ltd., 2727/2728 Jinke Road, Shanghai 201203, PR China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| | - Qiong Xie
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Sharma A, Singh AK. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023; 24:679-708. [PMID: 37428308 DOI: 10.1007/s10522-023-10045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
13
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
14
|
Carreon-Gonzalez M, Alvarez-Idaboy JR. The Synergy between Glutathione and Phenols-Phenolic Antioxidants Repair Glutathione: Closing the Virtuous Circle-A Theoretical Insight. Antioxidants (Basel) 2023; 12:antiox12051125. [PMID: 37237991 DOI: 10.3390/antiox12051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) and phenols are well-known antioxidants, and previous research has suggested that their combination can enhance antioxidant activity. In this study, we used Quantum Chemistry and computational kinetics to investigate how this synergy occurs and elucidate the underlying reaction mechanisms. Our results showed that phenolic antioxidants could repair GSH through sequential proton loss electron transfer (SPLET) in aqueous media, with rate constants ranging from 3.21 × 106 M-1 s-1 for catechol to 6.65 × 108 M-1 s-1 for piceatannol, and through proton-coupled electron transfer (PCET) in lipid media with rate constants ranging from 8.64 × 106 M-1 s-1 for catechol to 5.53 × 107 M-1 s-1 for piceatannol. Previously it was found that superoxide radical anion (O2•-) can repair phenols, thereby completing the synergistic circle. These findings shed light on the mechanism underlying the beneficial effects of combining GSH and phenols as antioxidants.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
15
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
16
|
Rakib A, Mandal M, Showkat A, Kiran S, Mazumdar S, Singla B, Bajwa A, Kumar S, Park F, Singh UP. Piceatannol induces regulatory T cells and modulates the inflammatory response and adipogenesis. Biomed Pharmacother 2023; 161:114514. [PMID: 36921534 PMCID: PMC10071559 DOI: 10.1016/j.biopha.2023.114514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The beneficial effects of the polyphenolic compound piceatannol (PC) has been reported for metabolic diseases, antiproliferative, antioxidant, and anti-cancer properties. Despite its beneficial effects on inflammatory diseases, little is known about how PC regulates inflammatory responses and adipogenesis. Therefore, this study was designed to determine the effects of PC on the inflammatory response and adipogenesis. The effect of PC on splenocytes, 3T3-L1 adipocytes, and RAW264.7 macrophages was analyzed by flow cytometry, qRT-PCR, morphometry, and western blot analysis. PC induced apoptosis in activated T cells in a dose-dependent manner using stimulated splenocytes and reduced the activation of T cells, altered T cell frequency, and interestingly induced the frequency of regulatory T (Treg) cells as compared to controls. PC suppressed the expression of TNF-α, iNOS, IL-6R, and NF-κB activation in RAW264.7 macrophages after lipopolysaccharides (LPS)-induction as compared to the control. Interestingly, PC altered the cell morphology of 3T3-L1 adipocytes with a concomitant decrease in cell volume, lipid deposition, and TNF-α expression, but upregulation of leptin and IL-1β. Our findings suggested that PC induced apoptosis in activated T cells, decreased immune cell activation and inflammatory response, and hindered adipogenesis. This new set of data provides promising hope as a new therapeutic to treat both inflammatory disease and obesity.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anaum Showkat
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Soumi Mazumdar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aman Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA; Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
17
|
Zhang X, Wang Q, Li F, Li S, Lin H, Huo Y. Piceatannol Protects against High Glucose-Induced Injury of Renal Tubular Epithelial Cells via Regulating Carbonic Anhydrase 2. Nephron Clin Pract 2023; 147:496-509. [PMID: 36716737 DOI: 10.1159/000529212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/15/2022] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION We here evaluated the efficacy of piceatannol (PIC) in high glucose (HG)-induced injury of renal tubular epithelial cells HK-2. METHODS After the establishment of an HG-induced cell injury model and the treatment with PIC at both high and low concentrations and/or acetazolamide (ACZ, the inhibitor of carbonic anhydrase 2 [CA2]), MTT and flow cytometry assays were carried out to confirm the viability and apoptosis of HK-2 cells. The levels of oxidative stress markers lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS), the ratio of glutathione/oxidized glutathione (GSH/GSSG), and the CA2 activity were determined. Both quantitative reverse-transcription polymerase chain reaction and Western blot were used to calculate the expressions of CA2 (the predicted target gene of PIC via intersecting the data from bioinformatic analyses) and AKT pathway-related (phosphatase and tensin homolog [PTEN], phosphorylated [p]-AKT, AKT) and apoptosis-related proteins (Bcl-2 and cleaved caspase-3). RESULTS HG suppressed cell viability and the levels of GSH/GSSG ratio, CA2, pThr308-AKT/AKT, pSer473-AKT/AKT, and Bcl-2, while promoting cell apoptosis, the levels of LDH, MDA, and ROS, and the expressions of PTEN and cleaved caspase-3. All effects of HG were reversed by PIC at a high concentration. CA2 was predicted and identified as the target of PIC. In HG-treated HK-2 cells, additionally, ACZ reversed the effects of PIC on the viability, apoptosis, and levels of both oxidative stress markers and AKT pathway- and apoptosis-related factors. CONCLUSION PIC protects against HG-induced injury of HK-2 cells via regulating CA2.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Fagen Li
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Suna Li
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hepu Lin
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yanhong Huo
- Department of Nephrology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
The Potential of Stilbene Compounds to Inhibit M pro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr Issues Mol Biol 2022; 45:12-32. [PMID: 36661488 PMCID: PMC9857500 DOI: 10.3390/cimb45010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.
Collapse
|
19
|
Utilizing Nutritional and Polyphenolic Compounds in Underutilized Plant Seeds for Health Application. Molecules 2022; 27:molecules27206813. [PMID: 36296406 PMCID: PMC9612334 DOI: 10.3390/molecules27206813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Plants represent a significant part of the human diet. Humans have utilized every part of plants for survival, and seeds are no exception. Seeds offer high protein, unsaturated fats, fibre, essential vitamins, and minerals for various food applications. They are also a promising reservoir of bioactive compounds, where various phytochemicals, such as polyphenolic compounds, capable of maintaining and improving well-being, are present in abundant quantities. Plants from Malvaceae and Cannabaceae families are known for their fibre-rich stems that benefit humankind by serving numerous purposes. For many centuries they have been exploited extensively for various commercial and industrial uses. Their seeds, which are often regarded as a by-product of fibre processing, have been scientifically discovered to have an essential role in combating hypercholesterolemia, diabetes, cancer, and oxidative stress. Maximizing the use of these agricultural wastes can be a promising approach to creating a more sustainable world, in accordance with the concept of Sustainable Development Goals (SDGs).
Collapse
|
20
|
Rodríguez-Vera D, Abad-García A, Vargas-Mendoza N, Pinto-Almazán R, Farfán-García ED, Morales-González JA, Soriano-Ursúa MA. Polyphenols as potential enhancers of stem cell therapy against neurodegeneration. Neural Regen Res 2022; 17:2093-2101. [PMID: 35259814 PMCID: PMC9083162 DOI: 10.4103/1673-5374.335826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.
Collapse
Affiliation(s)
- Diana Rodríguez-Vera
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Antonio Abad-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Nancy Vargas-Mendoza
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal México-Puebla km 34.5, State of México, México
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - José A. Morales-González
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
- Correspondence to: José A. Morales-González, ;
Marvin A. Soriano-Ursúa, .
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
- Correspondence to: José A. Morales-González, ;
Marvin A. Soriano-Ursúa, .
| |
Collapse
|
21
|
Recent Green Technologies in Natural Stilbenoids Production and Extraction: The Next Chapter in the Cosmetic Industry. COSMETICS 2022. [DOI: 10.3390/cosmetics9050091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stilbenoids are well-known phytoalexins in the group of polyphenolic compounds. Because of their potent bioactivities, including antioxidant, antityrosinase, photoprotective, and antibacterial activities, stilbenoids are utilized as pharmaceutical active ingredient in cosmetic products. Thus, the demand for stilbenoids in the cosmetic industry is increasing. The main sources of stilbenoids are plants. Although plants are green and sustainable source materials, some of them do not allow a regular and constant supply due to seasonal and geographic reasons. Stilbenoids typically have been extracted by conventional organic solvent extraction, and then purified by separation techniques. This method is unfriendly to the environment and may deteriorate human health. Hence, the procedures called “green technologies” are focused on novel extraction methods and sustainable stilbenoids production by using biotechnology. In this review, the chemical structures together with the biosynthesis and current plant sources of resveratrol, oxyresveratrol, and piceatannol are described. Furthermore, recent natural deep eutectic solvents (NADES) for green extraction as well as plant cell cultures for the production of those stilbene compounds are updated.
Collapse
|
22
|
Aidhen IS, Srikanth S, Lal H. The Emerging Promise with O/C‐Glycosides of Important Dietary Phenolic Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Indrapal Singh Aidhen
- Indian Institute of Technology Madras Department of Chemistry Adyar 600036 Chennai INDIA
| | | | - Heera Lal
- Indian Institute of Technology Madras Chemistry 600036 Chennai INDIA
| |
Collapse
|
23
|
Wang S, Wang G, Wu W, Xu Z, Yang J, Cao M, Wang Q, Wang J, Yang C, Zhang W. Autophagy activation by dietary piceatannol enhances the efficacy of immunogenic chemotherapy. Front Immunol 2022; 13:968686. [PMID: 35979349 PMCID: PMC9376326 DOI: 10.3389/fimmu.2022.968686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immunogenic cell death (ICD) promotes the immune antitumor response via releasing damage-associated molecular patterns (DAMPs) from dying tumor cells. The induction of autophagy improves the efficacy of multiple immunogenic chemotherapies. Here, we show that piceatannol, a dietary phenolic compound that is widely distributed in multiple fruits and vegetables such as grapes, blueberries, and mushrooms, induces autophagy and enhances oxaliplatin (OXA)-induced anticancer immune response. Specifically, piceatannol enhanced OXA-induced release of DAMPs, several key hallmarks of ICD including ATP release, cell surface exposure of calreticulin, and high-mobility group box 1 (HMGB1) release. Mechanistically, piceatannol promoted autophagy via activating TFEB/TFE3, two key transcription factors of the autophagy-lysosome pathway, and inhibiting autophagy attenuated piceatannol plus OXA-induced ATP release. Furthermore, piceatannol induced endoplasmic reticulum stress, which is critical for its role in enhancing OXA-induced cell surface exposure of calreticulin, another key hallmark of ICD. Consistently, the combination of piceatannol with OXA promoted the anticancer effects in immunocompetent mice. Taken together, our results indicate the importance and great potential of dietary piceatannol in cancer immunotherapy. Therefore, piceatannol may be used as an ICD enhancer that improves the efficacy of chemotherapeutics such as OXA in cancer treatment with minimized toxicity.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhenglei Xu
- Department of Gastroenterology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Min Cao
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Qi Wang
- Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| | - Wei Zhang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Wei Zhang, ; Chuanbin Yang, ; Jigang Wang, ; Qi Wang,
| |
Collapse
|
24
|
Emerging Lipids from Arecaceae Palm Fruits in Brazil. Molecules 2022; 27:molecules27134188. [PMID: 35807433 PMCID: PMC9268242 DOI: 10.3390/molecules27134188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
Arecaceae palm tree fruits (APTFs) with pulp or kernel rich in oil are widely distributed in six Brazilian biomes. APTFs represent a great potential for the sustainable exploitation of products with high added value, but few literature studies have reported their properties and industrial applications. The lack of information leads to underutilization, low consumption, commercialization, and processing of these fruit species. This review presents and discusses the occurrence of 13 APTFs and the composition, physicochemical properties, bioactive compounds, and potential applications of their 25 oils and fats. The reported studies showed that the species present different lipid profiles. Multivariate analysis based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) indicated a correlation between the composition of pulp and kernel oils. Myristic, caprylic, capric, and lauric acids are the main saturated fatty acids, while oleic acid is the main unsaturated. Carotenoids and phenolic compounds are the main bioactive compounds in APTFs, contributing to their high oxidative stability. The APTFs oils have a potential for use as foods and ingredients in the cosmetic, pharmaceutical, and biofuel industries. However, more studies are still necessary to better understand and exploit these species.
Collapse
|
25
|
Antidiabetic, Antiglycation, and Antioxidant Activities of Ethanolic Seed Extract of Passiflora edulis and Piceatannol In Vitro. Molecules 2022; 27:molecules27134064. [PMID: 35807309 PMCID: PMC9267955 DOI: 10.3390/molecules27134064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this work was to investigate the antidiabetic, antiglycation, and antioxidant potentials of ethanolic extract of seeds of Brazilian Passiflora edulis fruits (PESE), a major by-product of the juice industry, and piceatannol (PIC), one of the main phytochemicals of PESE. PESE, PIC, and acarbose (ACB) exhibited IC50 for alpha-amylase, 32.1 ± 2.7, 85.4 ± 0.7, and 0.4 ± 0.1 µg/mL, respectively, and IC50 for alpha-glucosidase, 76.2 ± 1.9, 20.4 ± 7.6, and 252 ± 4.5 µg/mL, respectively. The IC50 of PESE, PIC, and sitagliptin (STG) for dipeptidyl-peptidase-4 (DPP-4) was 71.1 ± 2.6, 1137 ± 120, and 0.005 ± 0.001 µg/mL, respectively. PESE and PIC inhibited the formation of advanced glycation end-products (AGE) with IC50 of 366 ± 1.9 and 360 ± 9.1 µg/mL for the initial stage and 51.5 ± 1.4 and 67.4 ± 4.6 µg/mL for the intermediate stage of glycation, respectively. Additionally, PESE and PIC inhibited the formation of β-amyloid fibrils in vitro up to 100%. IC50 values for 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) scavenging activity of PESE and PIC were 20.4 ± 2.1, and 6.3 ± 1.3 µg/mL, respectively. IC50 values for scavenging hypochlorous acid (HOCl) were similar in PESE, PIC, and quercetin (QCT) with values of 1.7 ± 0.3, 1.2 ± 0.5, and 1.9 ± 0.3 µg/mL, respectively. PESE had no cytotoxicity to the human normal bronchial epithelial (BEAS-2B), and alpha mouse liver (AML-12) cells up to 100 and 50 µg/mL, respectively. However, 10 µg/mL of the extract was cytotoxic to non-malignant breast epithelial cells (MCF-10A). PESE and PIC were found to be capable of protecting cultured human cells from the oxidative stress caused by the carcinogen NNKOAc at 100 µM. The in vitro evidence of the inhibition of alpha-amylase, alpha-glucosidase, and DPP-4 enzymes as well as antioxidant and antiglycation activities, warrants further investigation of the antidiabetic potential of P. edulis seeds and PIC.
Collapse
|
26
|
Ferulic Acid, Pterostilbene, and Tyrosol Protect the Heart from ER-Stress-Induced Injury by Activating SIRT1-Dependent Deacetylation of eIF2α. Int J Mol Sci 2022; 23:ijms23126628. [PMID: 35743074 PMCID: PMC9224298 DOI: 10.3390/ijms23126628] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Disturbances in Endoplasmic Reticulum (ER) homeostasis induce ER stress, which has been involved in the development and progression of various heart diseases, including arrhythmias, cardiac hypertrophy, ischemic heart diseases, dilated cardiomyopathy, and heart failure. A mild-to-moderate ER stress is considered beneficial and adaptative for heart functioning by engaging the pro-survival unfolded protein response (UPR) to restore normal ER function. By contrast, a severe or prolonged ER stress is detrimental by promoting cardiomyocyte apoptosis through hyperactivation of the UPR pathways. Previously, we have demonstrated that the NAD+-dependent deacetylase SIRT1 is cardioprotective in response to severe ER stress by regulating the PERK pathway of the UPR, suggesting that activation of SIRT1 could protect against ER-stress-induced cardiac damage. The purpose of this study was to identify natural molecules able to alleviate ER stress and inhibit cardiomyocyte cell death through SIRT1 activation. Several phenolic compounds, abundant in vegetables, fruits, cereals, wine, and tea, were reported to stimulate the deacetylase activity of SIRT1. Here, we evaluated the cardioprotective effect of ten of these phenolic compounds against severe ER stress using cardiomyoblast cells and mice. Among the molecules tested, we showed that ferulic acid, pterostilbene, and tyrosol significantly protect cardiomyocytes and mice heart from cardiac alterations induced by severe ER stress. By studying the mechanisms involved, we showed that the activation of the PERK/eIF2α/ATF4/CHOP pathway of the UPR was reduced by ferulic acid, pterostilbene, and tyrosol under ER stress conditions, leading to a reduction in cardiomyocyte apoptosis. The protection afforded by these phenolic compounds was not directly related to their antioxidant activity but rather to their ability to increase SIRT1-mediated deacetylation of eIF2α. Taken together, our results suggest that ferulic acid, pterostilbene, and tyrosol are promising molecules to activate SIRT1 to protect the heart from the adverse effects of ER stress.
Collapse
|
27
|
Hu WH, Zhang XY, Leung KW, Duan R, Dong TX(T, Qin QW, Tsim KWK. Resveratrol, an Inhibitor Binding to VEGF, Restores the Pathology of Abnormal Angiogenesis in Retinopathy of Prematurity (ROP) in Mice: Application by Intravitreal and Topical Instillation. Int J Mol Sci 2022; 23:ijms23126455. [PMID: 35742898 PMCID: PMC9223486 DOI: 10.3390/ijms23126455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a severe eye disease leading to blindness. Abnormal vessel formation is the pathological hallmark of neovascular ROP. In forming vessels, vascular endothelial growth factor (VEGF) is an important stimulator. The current anti-ROP therapy has focused on bevacizumab, a monoclonal antibody against VEGF, and pazopanib, a tyrosine kinase inhibitor on the VEGF receptor (VEGFR). Several lines of evidence have proposed that natural compounds may be more effective and safer for anti-VEGF function. Resveratrol, a common natural compound, binds to VEGF and blocks its interaction with VEGFR, thereafter suppressing angiogenesis. Here, we evaluate the efficacy of intravitreal injection, or topical instillation (eye drops), of resveratrol into the eyes of mice suffering from oxygen-induced retinopathy, i.e., developing ROP. The treatment of resveratrol significantly relieved the degree of vascular distortion, permeability and hyperplasia; the efficacy could be revealed by both methods of resveratrol application. In parallel, the treatments of resveratrol inhibited the retinal expressions of VEGF, VEGFR and CD31. Moreover, the applied resveratrol significantly relieved the damage caused by oxygen radicals through upregulating the level of superoxide dismutase (SOD) and downregulating the level of malondialdehyde (MDA) in the retina. Taken together, the potential therapeutic benefit of resveratrol in pro-angiogenic diseases, including retinopathy, can be considered.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Ka-Wing Leung
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting-Xia (Tina) Dong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Karl Wah-Keung Tsim
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: ; Tel.: +852-2358-7332; Fax: +852-2358-1559
| |
Collapse
|
28
|
Kershaw JC, Elzey BD, Guo XX, Kim KH. Piceatannol, a Dietary Polyphenol, Alleviates Adipose Tissue Loss in Pre-Clinical Model of Cancer-Associated Cachexia via Lipolysis Inhibition. Nutrients 2022; 14:nu14112306. [PMID: 35684106 PMCID: PMC9183120 DOI: 10.3390/nu14112306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia (CAC) is the nutrition-independent loss of lean muscle and adipose tissues, and results in reduced chemotherapy effectiveness and increased mortality. Preventing adipose loss is considered a key target in the early stages of cachexia. Lipolysis is considered the central driver of adipose loss in CAC. We recently found that piceatannol, but not its analogue resveratrol, exhibits an inhibitory effect on lipolysis. The objective of this study was to investigate the role of piceatannol in cancer-associated lipolysis and cachexia-induced weight loss. Cancer cell-induced lipolysis in adipocytes was stimulated using cancer-conditioned media (CCM) or co-culture with human pancreatic cancer cells and the cachexia-associated cytokines TNF-α and interleukin-6 in 3T3-L1 adipocytes. C26 colon carcinoma-bearing mice were modeled using CAC in vivo. Piceatannol reduced cancer-associated lipolysis by at least 50% in both CCM and cytokine-induced lipolysis in vitro. Further gene and protein analysis confirmed that piceatannol modulated the stability of lipolytic proteins. Moreover, piceatannol protected tumor-bearing mice against weight-loss in early stages of CAC largely through preserving adipose tissue, with no effect on survival. This study demonstrates the use of a dietary compound to preserve adipose in models of early stage CAC and provides groundwork for further investigation of piceatannol or piceatannol-rich foods as alternative medicine in the preservation of body fat mass and future CAC therapy.
Collapse
Affiliation(s)
- Jonathan C. Kershaw
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Bennett D. Elzey
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
| | - Xiao-Xuan Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: ; Tel.: +1-765-496-2330
| |
Collapse
|
29
|
Alghamdi SA, Mugri MH, Elamin NMH, Kamil MA, Osman H, Eid BG, Shaik RA, Shaker SS, Alrafiah A. A Possible Novel Protective Effect of Piceatannol against Isoproterenol (ISO)-Induced Histopathological, Histochemical, and Immunohistochemical Changes in Male Wistar Rats. Curr Issues Mol Biol 2022; 44:2505-2528. [PMID: 35735612 PMCID: PMC9221942 DOI: 10.3390/cimb44060171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Dry mouth is characterized by lower saliva production and changes in saliva composition. In patients with some salivary gland function remaining, pharmaceutical treatments are not recommended; therefore, new, more effective methods of promoting saliva production are needed. Hence, this study aimed to provide an overview of the histological changes in the salivary gland in the model of isoproterenol (ISO)-induced degenerative changes in male Wistar rats and to evaluate the protective effect of piceatannol. Thirty-two male Wistar rats were randomly divided into four groups: the control group, the ISO group, and the piceatannol (PIC)-1, and -2 groups. After the third day of the experiment, Iso (0.8 mg/100 g) was injected intraperitoneally (IP) twice daily into the animals. PIC was given IP in different daily doses (20 and 40 mg/kg) for three days before ISO and seven days with ISO injection. The salivary glands were rapidly dissected and processed for histological, histochemical, immunohistochemical (Ki-67), and morphometric analysis. Upon seven days of treatment with ISO, marked hypertrophy was observed, along with an increased number of positive Ki-67 cells. Proliferation was increased in some endothelial cells as well as in ducts themselves. Despite the significant decrease in proliferation activity, the control group did not return to the usual activity level after treatment with low-dose PIC. Treatment with a high dose of PIC reduced proliferative activity to the point where it was substantially identical to the results seen in the control group. An ISO-driven xerostomia model showed a novel protective effect of piceatannol. A new era of regenerative medicine is dawning around PIC’s promising role.
Collapse
Affiliation(s)
- Samar A. Alghamdi
- Department of Oral Biology, Faculty of Dentistry, King AbdulAziz University, Jeddah 22254, Saudi Arabia;
| | - Maryam H. Mugri
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Nahid M. H. Elamin
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.H.M.); (N.M.H.E.)
| | - Mona Awad Kamil
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Hind Osman
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (M.A.K.); (H.O.)
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University, Jeddah 22254, Saudi Arabia; (B.G.E.); (R.A.S.)
| | - Soad S. Shaker
- Department of Histology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Aziza Alrafiah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 22254, Saudi Arabia
- Correspondence: ; Tel.: +966-0126401000 (ext. 23495); Fax: +966-0126401000 (ext. 21686)
| |
Collapse
|
30
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
31
|
Jeong S, Chung Y, Park S, Lee S, Choi N, Park JK. Combined treatment of ginsenoside Rg2 and piceatannol mixture reduces the apoptosis and DNA damage induced by UVB in HaCaT cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Piceatannol Antagonizes Lipolysis by Promoting Autophagy-Lysosome-Dependent Degradation of Lipolytic Protein Clusters in Adipocytes. J Nutr Biochem 2022; 105:108998. [PMID: 35346829 DOI: 10.1016/j.jnutbio.2022.108998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
Overly elevated circulating non-esterified fatty acids (NEFAs) is an emerging health concern of obesity-associated energy disorders. However, methods to reduce circulating NEFAs remain elusive. The present study determined the effect of piceatannol, a naturally occurring stilbene, on adipocyte lipolysis and its underlying mechanism. Differentiated 3T3-L1 adipocytes and brown adipocytes and isolated white adipose tissue were treated with various concentrations of piceatannol for 1.5-hr both in the basal and stimulated lipolysis conditions. Piceatannol significantly inhibited NEFAs and glycerol release with a concomitant reduction of ATGL, CGI-58 and PLIN1 expression in adipocytes. Using a series of inhibitor assays, piceatannol-induced degradation of these proteins was found to be mediated by upregulation of the autophagy-lysosome pathway. Moreover, we demonstrated that piceatannol is capable of stimulating autophagy in vitro. Importantly, piceatannol administration tended to lower fasting-induced serum glycerol levels in healthy mice. Furthermore, piceatannol administration lowered lipolysis, central adiposity and hyperinsulinemia in diet-induced obese mice. Our study provides profound evidence of a novel inhibitory role of piceatannol in lipolysis through autophagy-lysosome-dependent degradation of the key lipolytic proteins in adipocytes. This study offers a mechanistic foundation for investigating the potential of piceatannol-containing foods in reducing lipolysis and its associated metabolic disorders.
Collapse
|
33
|
Navarro-Orcajada S, Conesa I, Vidal-Sánchez FJ, Matencio A, Albaladejo-Maricó L, García-Carmona F, López-Nicolás JM. Stilbenes: Characterization, bioactivity, encapsulation and structural modifications. A review of their current limitations and promising approaches. Crit Rev Food Sci Nutr 2022; 63:7269-7287. [PMID: 35234546 DOI: 10.1080/10408398.2022.2045558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stilbenes are phenolic compounds naturally synthesized as secondary metabolites by the shikimate pathway in plants. Research on them has increased in recent years due to their therapeutic potential as antioxidant, antimicrobial, anti-inflammatory, anticancer, cardioprotective and anti-obesity agents. Amongst them, resveratrol has attracted the most attention, although there are other natural and synthesized stilbenes with enhanced properties. However, stilbenes have some physicochemical and pharmacokinetic problems that need to be overcome before considering their applications. Human clinical evidence of their bioactivity is still controversial due to this fact and hence, exhaustive basis science on stilbenes is needed before applied science. This review gathers the main physicochemical and biological properties of natural stilbenes, establishes structure-activity relationships among them, emphasizing the current problems that limit their applications and presenting some promising approaches to overcome these issues: the encapsulation in different agents and the structural modification to obtain novel stilbenes with better features. The bioactivity of stilbenes should move from promising to evident.
Collapse
Affiliation(s)
- Silvia Navarro-Orcajada
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Irene Conesa
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco José Vidal-Sánchez
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | | | - Lorena Albaladejo-Maricó
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Francisco García-Carmona
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - José Manuel López-Nicolás
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia-Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
34
|
Piceatannol Affects Gastric Ulcers Induced by Indomethacin: Association of Antioxidant, Anti-Inflammatory and Angiogenesis Mechanisms in Rats. Life (Basel) 2022; 12:life12030356. [PMID: 35330107 PMCID: PMC8953771 DOI: 10.3390/life12030356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
One of the major aggressive factors that affect gastric injury is non-steroidal anti-inflammatory drugs (NSAIDs). Indomethacin (Indo) showed higher potentiality in gastric injury over conventional NSAIDs. Piceatannol (PIC) is a natural polyphenolic stilbene that possesses potent antioxidant and anti-inflammatory properties. The gastroprotective properties of PIC have been overlooked previously. Hence, we aim to study gastric injury induced by Indo and the protective action manifested by PIC, as well as to elucidate the likely underlying mechanisms of action in a rat model. The rats have been treated with vehicle, Indo alone, combined treatment with Indo, and PIC at (5 mg/kg or 10 mg/kg), respectively. The rats were also treated with Indo and omeprazole. In our study, we found that PIC at both 5 and 10 mg/kg doses was effective by averting the rise in ulcer and lesion indices, acid production, and histological variations persuaded by Indo. Mechanistically, PIC significantly reduced lipid peroxidation product (MDA), increased the GSH content, and enhanced SOD and CAT activity. In addition, PIC exhibits a distinct reduction in the levels of inflammatory parameters (Cox-2, IL-6, TNF-α, and NFκB). Contrastingly, PIC augmented both mucin and PGE2 content. Moreover, PIC fostered angiogenesis by increasing the expression of proangiogenic factors (VEGF, bFGF, and PDGF). Overall, the above results suggest PIC exhibits a potential protective effect against Indo-induced gastric ulcers by the antioxidant, anti-inflammatory, and angiogenic mechanisms.
Collapse
|
35
|
Majeed M, Nagabhushanam K, Bhat B, Ansari M, Pandey A, Bani S, Mundkur L. The Anti-Obesity Potential of Cyperus rotundus Extract Containing Piceatannol, Scirpusin A and Scirpusin B from Rhizomes: Preclinical and Clinical Evaluations. Diabetes Metab Syndr Obes 2022; 15:369-382. [PMID: 35177914 PMCID: PMC8843772 DOI: 10.2147/dmso.s348412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Obesity is a complex medical problem that increases the risk of other diseases like diabetes, cardiovascular diseases, and fatty liver disease. The present study evaluated the efficacy and safety of Cyperus rotundus rhizome extract (CRE), standardized to contain Piceatannol, Scirpusin A, and Scirpusin B (5% total Stilbenoids) in overweight individuals. The mechanism of activity was evaluated in a diet-induced mice model of obesity and adipocytes in vitro. MATERIALS AND METHODS The efficacy, safety, and tolerability of CRE were evaluated in 30 obese individuals with a BMI of 30 to 40 kg/m2 for 90 days in a randomized, double-blind, parallel-group, placebo-controlled study. In vitro studies were carried out in differentiated 3T3 L1 adipocytes, and the therapeutic efficacy was evaluated in high-fat diet-induced obese mice. RESULTS The pilot clinical study showed a reduction in body weight with a significant decrease in waist circumference and BMI. The serum lipid profile showed a significant improvement in CRE-treated individuals. The extract was well tolerated, and no adverse effects were reported at the end of the study. CRE showed a dose-dependent adipogenesis reduction in vitro with an IC50 value of 9.39 μg/mL, while oral administration of CRE reduced weight gain in diet-induced obese mice. The efficacy in mice was associated with reduced levels of leptin, corticosteroids, and serum lipid levels, with no adverse effects. CONCLUSION CRE has anti-adipogenic properties, is safe for human consumption, and effectively manages weight and hypercholesterolemia in overweight individuals.
Collapse
Affiliation(s)
- Muhammed Majeed
- Research and Development, Sami-Sabinsa Group Limited, Bangalore, India
- Research and Development, Sabinsa Corporation, East Windsor, NJ, USA
| | - Kalyanam Nagabhushanam
- Research and Development, Natural Product Chemistry Sabinsa Corporation, East Windsor, NJ, USA
| | - Beena Bhat
- Research and Development, Phytochemistry, Sami-Sabinsa Group Limited, Bangalore, India
| | - Mohammad Ansari
- Research and Development, Phytochemistry, Sami-Sabinsa Group Limited, Bangalore, India
| | - Anjali Pandey
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
| | - Sarang Bani
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
| | - Lakshmi Mundkur
- Research and Development, Biological Research, Sami-Sabinsa Group Limited, Bangalore, India
- Correspondence: Lakshmi Mundkur, Sami-Sabinsa Group Limited, 19/1, 19/2, 1st Main, 2nd Phase, Peenya Industrial Area Bangalore, Bengaluru, Karnataka, 560058, India, Tel +80 2839 7973, Email
| |
Collapse
|
36
|
Shazmeen, Haq I, Rajoka MSR, Asim Shabbir M, Umair M, llah I, Manzoor MF, Nemat A, Abid M, Khan MR, Aadil RM. Role of stilbenes against insulin resistance: A review. Food Sci Nutr 2021; 9:6389-6405. [PMID: 34760269 PMCID: PMC8565239 DOI: 10.1002/fsn3.2553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
Insulin resistance (IR) is a state characterized by the inability of tissues to utilize blood glucose particularly liver, muscle, and adipose tissues resulting in hyperglycemia and hyperinsulinemia. A close relationship exists between IR and the development of type 2 diabetes (T2D). Therefore, therapeutic approaches to treat IR also improve T2D simultaneously. Scientific evidence has highlighted the major role of inflammatory cytokines, reactive oxygen species (ROS), environmental & genetic factors, and auto-immune disorders in the pathophysiology of IR. Among therapeutic remedies, nutraceuticals like polyphenols are being used widely to ameliorate IR due to their safer nature compared to pharmaceutics. Stilbenes are considered important metabolically active polyphenols currently under the limelight of research to cope with IR. In this review, efforts are made to elucidate cellular and subcellular mechanisms influenced by stilbenes including modulating insulin signaling cascade, correcting glucose transport pathways, lowering postprandial glucose levels, and protecting β-cell damage and its effects on the hyperactive immune system and proinflammatory cytokines to attenuate IR. Furthermore, future directions to further the research in stilbenes as a strong candidate against IR are included so that concrete recommendation for their use in humans is made.
Collapse
Affiliation(s)
- Shazmeen
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Iahtisham‐Ul Haq
- School of Food and NutritionFaculty of Allied Health SciencesMinhaj UniversityLahorePakistan
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology GroupLaboratory of Animal Food FunctionGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Muhmmad Asim Shabbir
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Umair
- Department of Food Science and EngineeringCollege of Chemistry and EngineeringShenzhen UniversityShenzhenChina
| | - Inam‐u llah
- Department of Food Science and TechnologyThe University of HaripurKhyber‐PakhtunkhwaPakistan
| | - Muhammad Faisal Manzoor
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityFaisalabadPakistan
| | - Arash Nemat
- Department of MicrobiologyKabul University of Medical SciencesKabulAfghanistan
| | - Muhammad Abid
- Institute of Food and Nutritional SciencesArid Agriculture UniversityRawalpindiPakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
37
|
Ganguly S, Arora I, Tollefsbol TO. Impact of Stilbenes as Epigenetic Modulators of Breast Cancer Risk and Associated Biomarkers. Int J Mol Sci 2021; 22:ijms221810033. [PMID: 34576196 PMCID: PMC8472542 DOI: 10.3390/ijms221810033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
With the recent advancement of genetic screening for testing susceptibility to mammary oncogenesis in women, the relevance of the gene−environment interaction has become progressively apparent in the context of aberrant gene expressions. Fetal exposure to external stressors, hormones, and nutrients, along with the inherited genome, impact its traits, including cancer susceptibility. Currently, there is increasing interest in the role of epigenetic biomarkers such as genomic methylation signatures, plasma microRNAs, and alterations in cell-signaling pathways in the diagnosis and primary prevention of breast cancer, as well as its prognosis. Polyphenols like natural stilbenes have been shown to be effective in chemoprevention by exerting cytotoxic effects that can stall cell proliferation. Besides possessing antioxidant properties against the DNA-damaging effects of reactive oxygen species, stilbenes have also been observed to modulate cell-signaling pathways. With the increasing trend of early-life screening for hereditary breast cancer risks, the potency of different phytochemicals in harnessing the epigenetic biomarkers of breast cancer risk demand more investigation. This review will explore means of exploiting the abilities of stilbenes in altering the underlying factors that influence breast cancer risk, as well as the appearance of associated biomarkers.
Collapse
Affiliation(s)
- Sebanti Ganguly
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.G.); (I.A.)
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Cell Senescence Culture Facility, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573
| |
Collapse
|
38
|
de Freitas Laiber Pascoal G, de Almeida Sousa Cruz MA, Pimentel de Abreu J, Santos MCB, Bernardes Fanaro G, Júnior MRM, Freitas Silva O, Moreira RFA, Cameron LC, Simões Larraz Ferreira M, Teodoro AJ. Evaluation of the antioxidant capacity, volatile composition and phenolic content of hybrid Vitis vinifera L. varieties sweet sapphire and sweet surprise. Food Chem 2021; 366:130644. [PMID: 34311234 DOI: 10.1016/j.foodchem.2021.130644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Bioactive compounds were extracted using two different extraction solvents (acetone and water) from pulp and whole grape berries derived from hybrid Vitis vinifera L. varieties Sweet sapphire (SP) and Sweet surprise (SU) and were characterised based on a comprehensive metabolomic approach by chromatography coupled with mass spectrometry (UPLC-QTOF-MSE and GC-FID/MS). GC-FID/MS analysis was performed with two different extraction methods (solvent extraction method and solid-phase extraction). Anthocyanins were characterised and quantified by HPLC-UV. The antioxidant potential was assessed by different assays. SP acetone extract from grape skin had the highest mean to DPPH, FRAP, ORAC and phenolic content SP samples, also showed higher anthocyanin content. Globally, 87 phenolic compounds were identified. The relative quantification by UPLC-MSE showed flavonoids the most abundant class. Forty two compounds were found in the volatile fraction of SU, while only thirty one volatile compounds were found in the SP samples.
Collapse
Affiliation(s)
- Gabriela de Freitas Laiber Pascoal
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil; Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of Sao Paulo, Food Research Center - FORC, 580 Professor Lineu Prestes Ave, Sao Paulo, SP, Brazil
| | - Marta Angela de Almeida Sousa Cruz
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil
| | - Joel Pimentel de Abreu
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil
| | - Millena Cristina Barros Santos
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil
| | - Gustavo Bernardes Fanaro
- Laboratory of Nutrition and Metabolism, FEA, University of Campinas, Brazil; Federal University of Amazonas, Health and Biotechnology Institute, 305 Coari-Mamiá Ave, Coari, Amazonas, Brazil
| | | | - Otniel Freitas Silva
- Brazilian Agricultural Research Corporation, EMBRAPA Food Agroindustry, 29501 Americas Ave, 23020470 Rio de Janeiro, Brazil
| | - Ricardo Felipe Alves Moreira
- Laboratory of Evaluation of the Composition and Aroma of Food Products (LACAPA), Department of Collective Health, UNIRIO, Frei Caneca Street, 94, Lab. 412-A, New City, CEP: 20211-010, Rio de Janeiro, Brazil
| | - Luiz Claudio Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil
| | - Mariana Simões Larraz Ferreira
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil
| | - Anderson Junger Teodoro
- Center of Nutritional Biochemistry, Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro, UNIRIO, 296 Pasteur Ave, Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Development of a new nano arginase HPLC capillary column for the fast screening of arginase inhibitors and evaluation of their binding affinity. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122751. [PMID: 33991957 DOI: 10.1016/j.jchromb.2021.122751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
A simple and rapid Nano LC method has been developed for the screening of arginase inhibitors. The method is based on the immobilization of biotinylated arginase on a neutravidin functionalized nano HPLC capillary column. The arginase immobilization step performed by frontal analysis is very fast and only takes a few minutes. The miniaturized capillary column of 170 nL (length 5 cm, internal diameter 75 μm) significantly decreased the required amount of used enzyme (25 pmol). This was of significance importance when working with less available or expensive purified enzyme. Non-selective adsorption of the organic monolith matrix was reduced (<6%) and the arginase efficient yield was high (92%). The resultant affinity capillary columns showed excellent repeatability and long lifetime. The arginase reaction product was achieved within 60 s and the immobilized arginase retained 97% of the initial activity beyond 90 days. This novel approach can thus be used for the fast evaluation of recognition assay induced bya series of inhibitor molecules (caffeic acid phenylamide, chlorogenic acid, piceatannol, nor-NOHA acetate) and plant extracts.
Collapse
|
40
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
41
|
Silva C, Câmara JS, Perestrelo R. A high-throughput analytical strategy based on QuEChERS-dSPE/HPLC–DAD–ESI-MSn to establish the phenolic profile of tropical fruits. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
de Souza Silva AP, Rosalen PL, de Camargo AC, Lazarini JG, Rocha G, Shahidi F, Franchin M, de Alencar SM. Inajá oil processing by-product: A novel source of bioactive catechins and procyanidins from a Brazilian native fruit. Food Res Int 2021; 144:110353. [PMID: 34053546 DOI: 10.1016/j.foodres.2021.110353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
Agro-industrial activities generate large amounts of solid residues, which are generally discarded or used as animal feed. Interestingly, some of these by-products could serve as natural sources of bioactive compounds with great potential for industrial exploitation. This study aimed to optimize the extraction of phenolic antioxidants from the pulp residue (oil processing by-product) of inajá (Maximiliana maripa, a native species found in the Brazilian Amazon). The antioxidant properties of the optimized extract and its phenolic profile by high-resolution mass spectrometry (LC-ESI-QTOF-MS) were further determined. Central composite rotatable design and statistical analysis demonstrated that the temperature of 70 °C and 50% (v/v) ethanol concentration improved the extraction of phenolic compounds with antioxidant properties. The optimized extract also showed scavenging activity against the ABTS radical cation and reactive oxygen species (ROS; peroxyl and superoxide radical, and hypochlorous acid). Moreover, the optimized extract was able to reduce NF-κB activation and TNF-α release, which are modulated by ROS. Flavan-3-ols were the major phenolics present in the optimized extract. Collectively, our findings support the use of inajá cake as a new source of bioactive catechins and procyanidins. This innovative approach adds value to this agro-industrial by-product in the functional food, nutraceutical, pharmaceutical, and/or cosmetic industries and complies with the circular economy agenda.
Collapse
Affiliation(s)
- Anna Paula de Souza Silva
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil
| | - Gabriela Rocha
- Citróleo Industry and Commerce of Essential Oils, LTDA, Research, Development and Innovation Department, Torrinha, São Paulo, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, NL A1B 3X9, Canada
| | - Marcelo Franchin
- Department of Biosciences, Piracicaba Dental School, University of Campinas, UNICAMP, São Paulo, Brazil; Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Severino Matias de Alencar
- Agri-food Industry, Food and Nutrition Department, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ/USP, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
43
|
Sanada Y, Tan SJO, Adachi N, Miyaki S. Pharmacological Targeting of Heme Oxygenase-1 in Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10030419. [PMID: 33803317 PMCID: PMC8001640 DOI: 10.3390/antiox10030419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a common aging-associated disease that clinically manifests as joint pain, mobility limitations, and compromised quality of life. Today, OA treatment is limited to pain management and joint arthroplasty at the later stages of disease progression. OA pathogenesis is predominantly mediated by oxidative damage to joint cartilage extracellular matrix and local cells such as chondrocytes, osteoclasts, osteoblasts, and synovial fibroblasts. Under normal conditions, cells prevent the accumulation of reactive oxygen species (ROS) under oxidatively stressful conditions through their adaptive cytoprotective mechanisms. Heme oxygenase-1 (HO-1) is an iron-dependent cytoprotective enzyme that functions as the inducible form of HO. HO-1 and its metabolites carbon monoxide and biliverdin contribute towards the maintenance of redox homeostasis. HO-1 expression is primarily regulated at the transcriptional level through transcriptional factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), specificity protein 1 (Sp1), transcriptional repressor BTB-and-CNC homology 1 (Bach1), and epigenetic regulation. Several studies report that HO-1 expression can be regulated using various antioxidative factors and chemical compounds, suggesting therapeutic implications in OA pathogenesis as well as in the wider context of joint disease. Here, we review the protective role of HO-1 in OA with a focus on the regulatory mechanisms that mediate HO-1 activity.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Sho Joseph Ozaki Tan
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 7348551, Japan;
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 7348551, Japan; (S.J.O.T.); (N.A.)
- Correspondence: ; Tel.: +81-82-257-5231
| |
Collapse
|
44
|
Peluzio MDCG, Martinez JA, Milagro FI. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Mahmoud Moustafa E, Rashed ER, Rashed RR, Omar NN. Piceatannol promotes hepatic and renal AMPK/SIRT1/PGC-1α mitochondrial pathway in rats exposed to reserpine or gamma-radiation. Int J Immunopathol Pharmacol 2021; 35:20587384211016194. [PMID: 33985371 PMCID: PMC8127740 DOI: 10.1177/20587384211016194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 01/20/2023] Open
Abstract
Human exposure to radio-therapeutic doses of gamma rays can produce late effects, which negatively affect cancer patients' quality of life, work prospects, and general health. This study was performed to explore the role of Piceatannol (PIC) in the process of "mitochondrial biogenesis" signaling pathway as possible management of disturbances induced in stressed animal model(s) either by gamma-irradiation (IR) or administration of reserpine (RES); as a mitochondrial complex-I inhibitor. PIC (10 mg/kg BW/day; orally) were given to rats for 7 days, after exposure to an acute dose of γ-radiation (6 Gy), or after a single reserpine injection (1 g/kg BW; sc). Compared to reserpine or γ-radiation, PIC has attenuated hepatic and renal mitochondrial oxidative stress denoted by the significant reduction in the content of lipid peroxides and NO with significant induction of SOD, CAT, GSH-PX, and GR activities. PIC has also significantly alleviated the increase of the inflammatory markers, TNF-α and IL-6 and apoptotic markers, cytochrome c, and caspase-3. The decrease of oxidative stress, inflammation, and apoptotic responses were linked to a significant amelioration in mitochondrial biogenesis demonstrated by the increased expression and proteins' tissue contents of SIRT1/p38-AMPK, PGC-1α signaling pathway. The results are substantiated by the significant amelioration in mitochondrial function verified by the higher levels of ATP content, and complex I activity, besides the improvement of hepatic and renal functions. Additionally, histopathological examinations of hepatic and renal tissues showed that PIC has modulated tissue architecture after reserpine or gamma-radiation-induced tissue damage. Piceatannol improves mitochondrial functions by regulating the oxidant/antioxidant disequilibrium, the inflammatory and apoptotic responses, suggesting its possible use as adjuvant therapy in radio-therapeutic protocols to attenuate hepatic and renal injuries.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rasha Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nesreen Nabil Omar
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
46
|
Eid BG, Abdel-Naim AB. Piceatannol Attenuates Testosterone-Induced Benign Prostatic Hyperplasia in Rats by Modulation of Nrf2/HO-1/NFκB Axis. Front Pharmacol 2020; 11:614897. [PMID: 33519479 PMCID: PMC7845651 DOI: 10.3389/fphar.2020.614897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a serious illness affecting middle-aged and elderly male patients. It is a complication of several diseases including metabolic syndrome. BPH has been associated with inflammation and increased oxidative stress in prostatic tissues. Piceatannol (PIC) is an active natural polyhydroxylated stilbene found in many plants. It has profound anti-inflammatory as well as antioxidant activities. However, it suffers relatively poor pharmacokinetic properties. Nanoformulation is an acknowledged approach to improve PIC bioavailability. The goal was to evaluate the ability of PIC in preventing testosterone-induced benign prostatic hyperplasia in rats. PIC was prepared in a self-nanoemulsifying drug delivery system (SNEDDS). Animals were placed into seven groups: 1) control (vehicle), 2) PIC SNEDDS (20 mg/kg), 3) testosterone (3 mg/kg), 4) testosterone + PIC SNEDDS (5 mg/kg), 5) testosterone + PIC (10 mg/kg), 6) testosterone + PIC SNEDDS (20 mg/kg) and 7) testosterone + finasteride (5 mg/kg). Testosterone was injected SC while PIC SNEDDS and finasteride were given orally. All treatments were given once daily, 5 days/week for four consecutive weeks. PIC administration ameliorated increased prostate weights and indices in addition to histopathological alterations. Further it inhibited accumulation of lipid peroxidation, depletion of glutathione (GSH) and exhaustion of catalase (CAT). PIC SNEDDS exhibited anti-proliferative activities as demonstrated by the inhibition of cyclin D1 protein expression and Bcl2 mRNA expression in addition to enhancement of Bax mRNA expression and caspase-3 content. Immunohistochemically, PIC SNEDDS protected against the testosterone-induced increased expression of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NFκB) and also offered protection against the decline in Nrf2 expression. Further, a significant enhancement of Nfe212 and Homx1 mRNA expression was detected in PIC SNEDDS-treated animals in comparison to the testosterone group. Conclusively, PIC prepared in SNEDDS protects against experimentally induced BPH via modulation of, at least partly, Nrf2/HO-1/NFκB axis.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
48
|
Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf B Biointerfaces 2020; 193:111057. [DOI: 10.1016/j.colsurfb.2020.111057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 04/12/2020] [Indexed: 01/14/2023]
|
49
|
Hu WH, Dai DK, Zheng BZY, Duan R, Dong TTX, Qin QW, Tsim KWK. Piceatannol, a Natural Analog of Resveratrol, Exerts Anti-angiogenic Efficiencies by Blockage of Vascular Endothelial Growth Factor Binding to Its Receptor. Molecules 2020; 25:molecules25173769. [PMID: 32824997 PMCID: PMC7504081 DOI: 10.3390/molecules25173769] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Piceatannol is also named as trans-3,4,3′,5′-tetrahydroxy-stilbene, which is a natural analog of resveratrol and a polyphenol existing in red wine, grape and sugar cane. Piceatannol has been proved to possess activities of immunomodulatory, anti-inflammatory, antiproliferative and anticancer. However, the effect of piceatannol on VEGF-mediated angiogenesis is not known. Here, the inhibitory effects of piceatannol on VEGF-induced angiogenesis were tested both in vitro and in vivo models of angiogenesis. In human umbilical vein endothelial cells (HUVECs), piceatannol markedly reduced the VEGF-induced cell proliferation, migration, invasion, as well as tube formation without affecting cell viability. Furthermore, piceatannol significantly inhibited the formation of subintestinal vessel in zebrafish embryos in vivo. In addition, we identified the underlying mechanism of piceatannol in triggering the anti-angiogenic functions. Piceatannol was proposed to bind with VEGF, thus attenuating VEGF in activating VEGF receptor and blocking VEGF-mediated downstream signaling, including expressions of phosphorylated eNOS, Erk and Akt. Furthermore, piceatannol visibly suppressed ROS formation, as triggered by VEGF. Moreover, we further determined the outcome of piceatannol binding to VEGF in cancer cells: piceatannol significantly suppressed VEGF-induced colon cancer proliferation and migration. Thus, these lines of evidence supported the conclusion that piceatannol could down regulate the VEGF-mediated angiogenic functions with no cytotoxicity via decreasing the amount of VEGF binding to its receptors, thus affecting the related downstream signaling. Piceatannol may be developed into therapeutic agents or health products to reduce the high incidence of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (Q.-W.Q.)
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Diana Kun Dai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Brody Zhong-Yu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (Q.-W.Q.)
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China; (D.K.D.); (B.Z.-Y.Z.); (R.D.); (T.T.-X.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2358-7332; Fax: +852-2358-1559
| |
Collapse
|
50
|
Regioselective Hydroxylation of Naringin Dihydrochalcone to Produce Neoeriocitrin Dihydrochalcone by CYP102A1 (BM3) Mutants. Catalysts 2020. [DOI: 10.3390/catal10080823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Naringin dihydrochalcone (DC) is originally derived from the flavonoid naringin, which occurs naturally in citrus fruits, especially in grapefruit. It is used as an artificial sweetener with a strong antioxidant activity with potential applications in food and pharmaceutical fields. At present, enzymatic and chemical methods to make products of naringin DC by hydroxylation reactions have not been developed. Here, an enzymatic strategy for the efficient synthesis of potentially valuable products from naringin DC, a glycoside of phloretin, was developed using Bacillus megaterium CYP102A1 monooxygenase. The major product was identified to be neoeriocitrin DC by NMR and LC-MS analyses. Sixty-seven mutants of CYP102A1 were tested for hydroxylation of naringin DC to produce neoeriocitrin DC. Six mutants with high activity were selected to determine the kinetic parameters and total turnover numbers (TTNs). The kcat value of the most active mutant was 11 min−1 and its TTN was 315. The productivity of neoeriocitrin DC production increased up to 1.1 mM h−1, which corresponds to 0.65 g L−1 h−1. In this study, we achieved a regioselective hydroxylation of naringin DC to produce neoeriocitrin DC.
Collapse
|