1
|
Twible C, Abdo R, Zhao C, Zhang Q. Hippocampal dentate granule cells in temporal lobe epilepsy: A morphometry and transcriptomic study. Neuropathol Appl Neurobiol 2024; 50:e13008. [PMID: 39375854 DOI: 10.1111/nan.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The dentate gyrus (DG) plays a critical role in hippocampal circuitry, providing a "gate-like" function to the downstream cornu ammonis (CA) sectors. Despite this critical role, pathologies in DG are less commonly described than those in the CA sectors in the diagnosis of mesial temporal lobe epilepsy (mTLE). To elucidate the role of the DG in mTLE, we analysed hippocampal sclerosis (HS), no-HS, non-TLE epilepsy control, and non-epilepsy control cohorts using morphometry and gene expression profiling techniques. Morphometry techniques analysed DG cell spacing, nucleus size, and nucleus circularity. Our data show distinct DG morphometry and RNA expression profiles between HS and No-HS. Dentate granule cells are more dispersed in patients with HS, and the DG shows an elevated expression of the complement system, apoptosis, and extracellular matrix remodelling-related RNA. We also observe an overall decrease in neurogenesis-related RNA in HS DG. Interestingly, regardless of the pathological diagnosis, the DG morphometry correlates with post-operative outcomes. Increased cell spacing is observed in the DG of mTLE cases that achieve seizure freedom post-operatively. This study reveals the possible prognostic value of DG morphometry, as well as supporting the notion that HS and no-HS TLE may be distinct disease entities with differing contributing mechanisms.
Collapse
Affiliation(s)
- Carolyn Twible
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Rober Abdo
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Chelsey Zhao
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Qi Zhang
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
- Department of Oncology, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
2
|
Middlebrooks EH, Gupta V, Agarwal AK, Freund BE, Messina SA, Tatum WO, Sabsevitz DS, Feyissa AM, Mirsattari SM, Galan FN, Quinones-Hinojosa A, Grewal SS, Murray JV. Radiologic Classification of Hippocampal Sclerosis in Epilepsy. AJNR Am J Neuroradiol 2024; 45:1185-1193. [PMID: 38383054 PMCID: PMC11392372 DOI: 10.3174/ajnr.a8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Temporal lobe epilepsy is a common form of epilepsy that is often associated with hippocampal sclerosis (HS). Although HS is commonly considered a binary assessment in radiologic evaluation, it is known that histopathologic changes occur in distinct clusters. Some subtypes of HS only affect certain subfields, resulting in minimal changes to the overall volume of the hippocampus. This is likely a major reason why whole hippocampal volumetrics have underperformed versus expert readers in the diagnosis of HS. With recent advancements in MRI technology, it is now possible to characterize the substructure of the hippocampus more accurately. However, this is not consistently addressed in radiographic evaluations. The histologic subtype of HS is critical for prognosis and treatment decision-making, necessitating improved radiologic classification of HS. The International League Against Epilepsy (ILAE) has issued a consensus classification scheme for subtyping HS histopathologic changes. This review aims to explore how the ILAE subtypes of HS correlate with radiographic findings, introduce a grading system that integrates radiologic and pathologic reporting in HS, and outline an approach to detecting HS subtypes by using MRI. This framework will not only benefit current clinical evaluations, but also enhance future studies involving high-resolution MRI in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit K Agarwal
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| | - Brin E Freund
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Steven A Messina
- Department of Radiology (S.A.M.), Mayo Clinic, Rochester, Minnesota
| | - William O Tatum
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - David S Sabsevitz
- Department of Psychiatry and Psychology (D.S.S.), Mayo Clinic, Jacksonville, Florida
| | - Anteneh M Feyissa
- Department of Neurology (B.E.F., W.O.T., A.M.F.), Mayo Clinic, Jacksonville, Florida
| | - Seyed M Mirsattari
- Departments of Clinical Neurological Sciences, Medical Imaging, Medical Biophysics, and Psychology (S.M.M.), University of Western Ontario, London, Ontario, Canada
| | - Fernando N Galan
- Department of Neurology (F.N.G.), Nemours Children's Health, Jacksonville, Florida
| | | | - Sanjeet S Grewal
- Department of Neurosurgery (A.Q.-H., S.S.G.), Mayo Clinic, Jacksonville, Florida
| | - John V Murray
- From the Department of Radiology (E.H.M., V.G., A.K.A., J.V.M.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
3
|
Mukaino T. [Memory impairments in temporal lobe epilepsy]. Rinsho Shinkeigaku 2024; 64:453-459. [PMID: 38910118 DOI: 10.5692/clinicalneurol.cn-001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Temporal lobe epilepsy is known to present with various cognitive impairments, among which memory deficits are frequently reported by patients. Memory deficits can be classified into two types: classical hippocampal amnesia, which is characterized by abnormalities detected in neuropsychological assessments, and atypical memory deficits, such as accelerated long-term amnesia and autobiographical memory impairment, which cannot be identified using standard testing methods. These deficits are believed to arise from a complex interplay among structural brain abnormalities, interictal epileptic discharges, pharmacological factors, and psychological states. While fundamental treatments are limited, there are opportunities for interventions such as environmental adjustments and rehabilitation. This review article aims to provide a comprehensive overview of the types, underlying pathophysiology, and intervention methods for memory disorders observed in patients with temporal lobe epilepsy.
Collapse
|
4
|
Jud J, Stefanits H, Gelpi E, Quinot V, Aull-Watschinger S, Czech T, Dorfer C, Rössler K, Baumgartner C, Kasprian G, Watschinger C, Moser D, Brugger J, Pataraia E. Which parameters influence cognitive, psychiatric and long-term seizure outcome in mesial temporal lobe epilepsy after selective amygdalohippocampectomy? J Neurol 2024; 271:4249-4257. [PMID: 38619597 PMCID: PMC11233333 DOI: 10.1007/s00415-024-12343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND We aimed to analyze potentially prognostic factors which could have influence on postoperative seizure, neuropsychological and psychiatric outcome in a cohort of patients with mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS) after selective amygdalohippocampectomy (SAHE) via transsylvian approach. METHODS Clinical variables of 171 patients with drug-resistant MTLE with HS (88 females) who underwent SAHE between 1994 and 2019 were evaluated using univariable and multivariable logistic regression models, to investigate which of the explanatory parameters can best predict the outcome. RESULTS At the last available follow-up visit 12.3 ± 6.3 years after surgery 114 patients (67.9%) were seizure-free. Left hemispheric MTLE was associated with worse postoperative seizure outcome at first year after surgery (OR = 0.54, p = 0.01), female sex-with seizure recurrence at years 2 (OR = 0.52, p = 0.01) and 5 (OR = 0.53, p = 0.025) and higher number of preoperative antiseizure medication trials-with seizure recurrence at year 2 (OR = 0.77, p = 0.0064), whereas patients without history of traumatic brain injury had better postoperative seizure outcome at first year (OR = 2.08, p = 0.0091). All predictors lost their predictive value in long-term course. HS types had no prognostic influence on outcome. Patients operated on right side performed better in verbal memory compared to left (VLMT 1-5 p < 0.001, VLMT 7 p = 0.001). Depression occurred less frequently in seizure-free patients compared to non-seizure-free patients (BDI-II Z = - 2.341, p = 0.019). CONCLUSIONS SAHE gives an improved chance of achieving good postoperative seizure, psychiatric and neuropsychological outcome in patients with in MTLE due to HS. Predictors of short-term outcome don't predict long-term outcome.
Collapse
Affiliation(s)
- Judith Jud
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Harald Stefanits
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ellen Gelpi
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Valérie Quinot
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Susanne Aull-Watschinger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing With Neurological Center Rosenhügel, Vienna, Austria
- Karl Landsteiner Institute of Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
- Department of Neuroradiology, Medical University of Vienna, Vienna, Austria
| | - Clara Watschinger
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Vienna General Hospital, Vienna, Austria
| | - Jonas Brugger
- Institute of Medical Statistics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Ekaterina Pataraia
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Mardones MD, Rostam KD, Nickerson MC, Gupta K. Canonical Wnt activator Chir99021 prevents epileptogenesis in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2024; 376:114767. [PMID: 38522659 PMCID: PMC11058011 DOI: 10.1016/j.expneurol.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.
Collapse
Affiliation(s)
- Muriel D Mardones
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| | - Kevin D Rostam
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Margaret C Nickerson
- Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America.
| | - Kunal Gupta
- Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Medical College of Wisconsin, Neuroscience Research Center, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America; Indiana University, Stark Neurosciences Research Institute, W 15th St, Indianapolis, IN 46202, United States of America; Indiana University, Department of Neurosurgery, W 16th St, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
6
|
Schwarz M, Badstübner AS, Meyn K, Walther K, Hamer H. [Neurorehabilitation after epilepsy surgery in the temporal lobe in patients with specific neurocognitive risk profiles]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024. [PMID: 38653457 DOI: 10.1055/a-2284-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
INTRODUCTION In case of pharmacoresistant focal epilepsy, surgery is often the only way to achieve seizure freedom. These operations may result in cognitive deficits, especially with surgery in the left temporal lobe. The aim of this study was to determine whether patients operated in the left or right temporal lobe, respectively, have different cognitive outcomes. Furthermore, it was investigated if there was a positive influence of occupational therapy on neurorehabilitation in epilepsy patients. METHODS In all patients cognitive performance was assessed preoperatively and six months postoperatively. Patient groups with surgery in the right and left temporal lobe were compared. Additionally, single cases of patients who had undergone extensive pre- and postoperative occupational therapy were analyzed. RESULTS There was a significantly better cognitive outcome in patients who underwent surgery in their right temporal lobe. Occupational therapy was highly beneficial in patients after left temporal lobe surgery. CONCLUSION Occupational therapy after left temporal lobe surgery is adapted to find individual solutions for the patient's problems and to implement effective cognitive training strategies.
Collapse
Affiliation(s)
- Michael Schwarz
- Epilepsiezentrum Erlangen, Universitatsklinikum Erlangen Neurologische Klinik, Erlangen, Germany
| | | | - Karlotta Meyn
- Epilepsiezentrum Erlangen, Universitatsklinikum Erlangen Neurologische Klinik, Erlangen, Germany
| | - Katrin Walther
- Epilepsiezentrum Erlangen, Universitatsklinikum Erlangen Neurologische Klinik, Erlangen, Germany
| | - Hajo Hamer
- Epilepsiezentrum Erlangen, Universitatsklinikum Erlangen Neurologische Klinik, Erlangen, Germany
| |
Collapse
|
7
|
Aljishi A, Sherman BE, Huberdeau DM, Obaid S, Khan K, Lamsam L, Zibly Z, Sivaraju A, Turk-Browne NB, Damisah EC. Statistical learning in epilepsy: Behavioral and anatomical mechanisms in the human brain. Epilepsia 2024; 65:753-765. [PMID: 38116686 PMCID: PMC10948305 DOI: 10.1111/epi.17871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe (MTL) in the healthy brain. This leads to the hypothesis that statistical learning (SL) may be impaired in patients with epilepsy (PWE) involving the temporal lobe, and that this impairment could contribute to their varied memory deficits. In turn, studies done in collaboration with PWE, that evaluate the necessity of MTL circuitry through disease and causal perturbations, provide an opportunity to advance basic understanding of SL. METHODS We implemented behavioral testing, volumetric analysis of the MTL substructures, and direct electrical brain stimulation to examine SL across a cohort of 61 PWE and 28 healthy controls. RESULTS We found that behavioral performance in an SL task was negatively associated with seizure frequency irrespective of seizure origin. The volume of hippocampal subfields CA1 and CA2/3 correlated with SL performance, suggesting a more specific role of the hippocampus. Transient direct electrical stimulation of the hippocampus disrupted SL. Furthermore, the relationship between SL and seizure frequency was selective, as behavioral performance in an episodic memory task was not impacted by seizure frequency. SIGNIFICANCE Overall, these results suggest that SL may be hippocampally dependent and that the SL task could serve as a clinically useful behavioral assay of seizure frequency that may complement existing approaches such as seizure diaries. Simple and short SL tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.
Collapse
Affiliation(s)
- Ayman Aljishi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
| | - Brynn E. Sherman
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Sami Obaid
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kamren Khan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Layton Lamsam
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zion Zibly
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicholas B. Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Yang L, Peng B, Gao W, A R, Liu Y, Liang J, Zhu M, Hu H, Lu Z, Pang C, Dai Y, Sun Y. Automated detection of MRI-negative temporal lobe epilepsy with ROI-based morphometric features and machine learning. Front Neurol 2024; 15:1323623. [PMID: 38356879 PMCID: PMC10864571 DOI: 10.3389/fneur.2024.1323623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Objective Temporal lobe epilepsy (TLE) predominantly originates from the anteromedial basal region of the temporal lobe, and its prognosis is generally favorable following surgical intervention. However, TLE often appears negative in magnetic resonance imaging (MRI), making it difficult to quantitatively diagnose the condition solely based on clinical symptoms. There is a pressing need for a quantitative, automated method for detecting TLE. Methods This study employed MRI scans and clinical data from 51 retrospective epilepsy cases, dividing them into two groups: 34 patients in TLE group and 17 patients in non-TLE group. The criteria for defining the TLE group were successful surgical removal of the epileptogenic zone in the temporal lobe and a favorable postoperative prognosis. A standard procedure was used for normalization, brain extraction, tissue segmentation, regional brain partitioning, and cortical reconstruction of T1 structural MRI images. Morphometric features such as gray matter volume, cortical thickness, and surface area were extracted from a total of 20 temporal lobe regions in both hemispheres. Support vector machine (SVM), extreme learning machine (ELM), and cmcRVFL+ classifiers were employed for model training and validated using 10-fold cross-validation. Results The results demonstrated that employing ELM classifiers in conjunction with specific temporal lobe gray matter volume features led to a better identification of TLE. The classification accuracy was 92.79%, with an area under the curve (AUC) value of 0.8019. Conclusion The method proposed in this study can significantly assist in the preoperative identification of TLE patients. By employing this method, TLE can be included in surgical criteria, which could alleviate patient symptoms and improve prognosis, thereby bearing substantial clinical significance.
Collapse
Affiliation(s)
- Lin Yang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan, China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rixi A
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yan Liu
- Suzhou Institute of Biomedical Engineering, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan, China
| | - Jiawei Liang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- International Laboratory for Children’s Medical Imaging Research, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiyang Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zuhong Lu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunying Pang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering, Chinese Academy of Sciences, Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co., Ltd, Jinan, China
| | - Yu Sun
- International Laboratory for Children’s Medical Imaging Research, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Li Y, Liu P, Lin Q, Zhou D, An D. Postoperative seizure and memory outcome of temporal lobe epilepsy with hippocampal sclerosis: A systematic review. Epilepsia 2023; 64:2845-2860. [PMID: 37611927 DOI: 10.1111/epi.17757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
We conducted a systematic review and meta-analysis to evaluate postoperative seizure and memory outcomes of temporal lobe epilepsy with different hippocampal sclerosis (HS) subtypes classified by International League Against Epilepsy (ILAE) Consensus Guidelines in 2013. Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-Analysis of Observational Studies in Epidemiology) guidelines, we searched PubMed, Embase, Web of Science, and Cochrane Library from January 1, 2013 to August 6, 2023. Observational studies reporting seizure and memory outcomes among different HS subtypes were included. We used the Newcastle-Ottawa scale to assess the risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to grade the quality of evidence. Seizure freedom and improved outcome (Engel 1 or ILAE class 1-2) ≥1 year after surgery were defined as the primary and secondary seizure outcome. A random-effects meta-analysis by DerSimonian and Laird method was performed to obtain pooled risk ratio (RRs) with 95% confidence interval (CIs). The memory impairment was narratively reviewed because of various evaluation tools. Fifteen cohort studies with 2485 patients were eligible for the meta-analysis of seizure outcome. Six cohorts with detailed information on postoperative memory outcome were included. The pooled RRs of seizure freedom, with moderate to substantial heterogeneity, were .98 (95% CI = .84-1.15) between HS type 2 and type 1, 1.11 (95% CI = .82-1.52) between type 3 and type 1, and .80 (95% CI = .62-1.03) between the no-HS and HS groups. No significant difference of improved outcome was found between different subtypes (p > .05). The quality of evidence was deemed to be low to very low according to GRADE. The long-term seizure outcome (≥5 years after surgery) and memory impairment remained controversial.
Collapse
Affiliation(s)
- Yuming Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Peiwen Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuxing Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tsalouchidou PE, Müller CJ, Belke M, Zahnert F, Menzler K, Trinka E, Knake S, Thomschewski A. Verbal memory depends on structural hippocampal subfield volume. Front Neurol 2023; 14:1209941. [PMID: 37900611 PMCID: PMC10613087 DOI: 10.3389/fneur.2023.1209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To investigate correlates in hippocampal subfield volume and verbal and visual memory function in patients with temporal lobe epilepsy (TLE), mild amnestic cognitive impairment (MCI) and heathy participants (HP). Methods 50 right-handed participants were included in this study; 11 patients with temporal lobe epilepsy (TLE), 18 patients with mild amnestic cognitive impairment (MCI) and 21 healthy participants (HP). Verbal memory performance was evaluated via the verbal memory test (VLMT) and visual memory performance via the diagnosticum for cerebral damage (DCM). Hippocampal subfield volumes of T1-weighted Magnetic Resonance Imaging (MRI) scans were computed with FreeSurfer version 7.1. Stepwise correlation analyses were performed between the left hippocampal subfield volumes and learning, free recall, consolidation and recognition performance scores of the VLMT as well as between right hippocampal subfield volumes and visual memory performance. Results The volume of the left subicular complex was highly correlated to learning performance (β = 0.284; p = 0.042) and free recall performance in the VLMT (β = 0.434; p = 0.001). The volume of the left CA3 subfield showed a significant correlation to the consolidation performance in the VLMT (β = 0.378; p = 0.006) and recognition performance in the VLMT (β = 0.290; p = 0.037). There was no significant correlation identified between the right hippocampal subfields and the visual memory performance. Conclusion The results of this study show verbal memory correlates with hippocampal subfields and support the role of left subiculum and left CA2/CA3 in verbal memory performance.
Collapse
Affiliation(s)
| | - Christina-Julia Müller
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Felix Zahnert
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Aljoscha Thomschewski
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
11
|
Dyomina AV, Smolensky IV, Zaitsev AV. Refinement of the Barnes and Morris water maze protocols improves characterization of spatial cognitive deficits in the lithium-pilocarpine rat model of epilepsy. Epilepsy Behav 2023; 147:109391. [PMID: 37619464 DOI: 10.1016/j.yebeh.2023.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.
Collapse
Affiliation(s)
- Alexandra V Dyomina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia
| | - Ilya V Smolensky
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Department of Community Health, University of Fribourg, Chemin du Musée 4, 1700 Fribourg, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4056 Basel, Switzerland
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia.
| |
Collapse
|
12
|
Lerond J, Mathon B, Scopin M, Nichelli L, Guégan J, Bertholle C, Izac B, Andrieu M, Gareau T, Donneger F, Mohand Oumoussa B, Letourneur F, Tran S, Bertrand M, Le Roux I, Touat M, Dupont S, Poncer JC, Navarro V, Bielle F. Hippocampal and neocortical BRAF mutant non-expansive lesions in focal epilepsies. Neuropathol Appl Neurobiol 2023; 49:e12937. [PMID: 37740653 DOI: 10.1111/nan.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.
Collapse
Affiliation(s)
- Julie Lerond
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Bertrand Mathon
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Department of Neurosurgery, Sorbonne Université, Paris, France
| | - Mélina Scopin
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
| | - Lucia Nichelli
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Department of Neuroradiology, Sorbonne Université, Paris, France
| | - Justine Guégan
- Institut du Cerveau-Paris Brain Institute-ICM-Data Analysis Core platform, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Céline Bertholle
- CNRS, INSERM, Institut Cochin, Université Paris Cité, Paris, France
| | - Brigitte Izac
- CNRS, INSERM, Institut Cochin, Université Paris Cité, Paris, France
| | - Muriel Andrieu
- CNRS, INSERM, Institut Cochin, Université Paris Cité, Paris, France
| | - Thomas Gareau
- Institut du Cerveau-Paris Brain Institute-ICM-Data Analysis Core platform, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Florian Donneger
- Institut du Fer à Moulin, Inserm, Sorbonne Université, Paris, France
| | - Badreddine Mohand Oumoussa
- Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | | | - Suzanne Tran
- AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Department of Neuropathology, Sorbonne Université, Paris, France
| | - Mathilde Bertrand
- Institut du Cerveau-Paris Brain Institute-ICM-Data Analysis Core platform, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Isabelle Le Roux
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Mehdi Touat
- AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Sorbonne Université, Paris, France
| | - Sophie Dupont
- IAP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière, Rehabilitation Unit, Sorbonne Université, Paris, France
| | | | - Vincent Navarro
- AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Epilepsy Unit, Department of Neurology and EEG Unit, Department of Clinical Neurophysiology, Reference Center for Rare Epilepsies, Sorbonne Université, Paris, France
| | - Franck Bielle
- AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Department of Neuropathology, Sorbonne Université, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Onconeurotek, Paris, France
| |
Collapse
|
13
|
Manmatharayan A, Kogan M, Matias C, Syed M, Shelley I, Chinni A, Kang K, Talekar K, Faro SH, Mohamed FB, Sharan A, Wu C, Alizadeh M. Automated subfield volumetric analysis of amygdala, hippocampus, and thalamic nuclei in mesial temporal lobe epilepsy. World Neurosurg X 2023; 19:100212. [PMID: 37304157 PMCID: PMC10250154 DOI: 10.1016/j.wnsx.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose Identifying relationships between clinical features and quantitative characteristics of the amygdala-hippocampal and thalamic subregions in mesial temporal lobe epilepsy (mTLE) may offer insights into pathophysiology and the basis for imaging prognostic markers of treatment outcome. Our aim was to ascertain different patterns of atrophy or hypertrophy in mesial temporal sclerosis (MTS) patients and their associations with post-surgical seizure outcomes. To assess this aim, this study is designed in 2 folds: (1) hemispheric changes within MTS group and (2) association with postsurgical seizure outcomes. Methods and materials 27 mTLE subjects with mesial temporal sclerosis (MTS) were scanned for conventional 3D T1w MPRAGE images and T2w scans. With respect to 12 months post-surgical seizure outcomes, 15 subjects reported being seizure free (SF) and 12 reported continued seizures. Quantitative automated segmentation and cortical parcellation were performed using Freesurfer. Automatic labeling and volume estimation of hippocampal subfields, amygdala, and thalamic subnuclei were also performed. The volume ratio (VR) for each label was computed and compared between (1) between contralateral and ipsilateral MTS using Wilcoxon rank-sum test and (2) SF and not seizure free (NSF) groups using linear regression analysis. False Discovery rate (FDR) with significant level of 0.05 were used in both analyses to correct for multiple comparisons. Results Amygdala: The medial nucleus of the amygdala was the most significantly reduced in patients with continued seizures when compared to patients who remained seizure free. Hippocampus: Comparison of ipsilateral and contralateral volumes with seizure outcomes showed volume loss was most evident in the mesial hippocampal regions such as CA4 and hippocampal fissure. Volume loss was also most explicit in the presubiculum body in patients with continued seizures at the time of their follow-up. Ipsilateral MTS compared to contralateral MTS analysis showed the heads of the ipsilateral subiculum, presubiculum, parasubiculum, dentate gyrus, CA4, and CA3 were more significantly affected than their respective bodies. Volume loss was most noted in mesial hippocampal regions. Thalamus: VPL and PuL were the most significantly reduced thalamic nuclei in NSF patients. In all statistically significant areas, volume reduction was observed in the NSF group. No significant volume reductions were noted in the thalamus and amygdala when comparing ipsilateral to contralateral sides in mTLE subjects. Conclusions Varying degrees of volume loss were demonstrated in the hippocampus, thalamus, and amygdala subregions of MTS, especially between patients who remained seizure-free and those who did not. The results obtained can be used to further understand mTLE pathophysiology. Clinical relevance/application In the future, we hope these results can be used to deepen the understanding of mTLE pathophysiology, leading to improved patient outcomes and treatments.
Collapse
Affiliation(s)
- Arichena Manmatharayan
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Caio Matias
- Department of Neurosurgery, Thomas Jefferson University, 909 Walnut Street, 2nd Floor, Philadelphia, PA, 19107, USA
| | - Mashaal Syed
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - India Shelley
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Amar Chinni
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Kichang Kang
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Kiran Talekar
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Scott H. Faro
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Feroze B. Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| | - Mahdi Alizadeh
- Department of Neurosurgery, Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut St, Philadelphia, PA, 19107, USA
| |
Collapse
|
14
|
Li G, Chen MH, Li G, Wu D, Lian C, Sun Q, Rushmore RJ, Wang L. Volumetric Analysis of Amygdala and Hippocampal Subfields for Infants with Autism. J Autism Dev Disord 2023; 53:2475-2489. [PMID: 35389185 PMCID: PMC9537344 DOI: 10.1007/s10803-022-05535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated abnormal brain overgrowth in children with autism spectrum disorder (ASD), but the development of specific brain regions, such as the amygdala and hippocampal subfields in infants, is incompletely documented. To address this issue, we performed the first MRI study of amygdala and hippocampal subfields in infants from 6 to 24 months of age using a longitudinal dataset. A novel deep learning approach, Dilated-Dense U-Net, was proposed to address the challenge of low tissue contrast and small structural size of these subfields. We performed a volume-based analysis on the segmentation results. Our results show that infants who were later diagnosed with ASD had larger left and right volumes of amygdala and hippocampal subfields than typically developing controls.
Collapse
Affiliation(s)
- Guannan Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunfeng Lian
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA
| | - Quansen Sun
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - R Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Morphometric Analysis, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, Bioinformatics Building, University of North Carolina at Chapel Hill, 130 Mason Farm Rd, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Aljishi A, Sherman BE, Huberdeau DM, Obaid S, Sivaraju A, Turk-Browne NB, Damisah EC. Statistical learning in epilepsy: Behavioral, anatomical, and causal mechanisms in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538321. [PMID: 37162937 PMCID: PMC10168289 DOI: 10.1101/2023.04.25.538321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Statistical learning, the fundamental cognitive ability of humans to extract regularities across experiences over time, engages the medial temporal lobe in the healthy brain. This leads to the hypothesis that statistical learning may be impaired in epilepsy patients, and that this impairment could contribute to their varied memory deficits. In turn, epilepsy patients provide a platform to advance basic understanding of statistical learning by helping to evaluate the necessity of medial temporal lobe circuitry through disease and causal perturbations. We implemented behavioral testing, volumetric analysis of the medial temporal lobe substructures, and direct electrical brain stimulation to examine statistical learning across a cohort of 61 epilepsy patients and 28 healthy controls. Behavioral performance in a statistical learning task was negatively associated with seizure frequency, irrespective of where seizures originated in the brain. The volume of hippocampal subfields CA1 and CA2/3 correlated with statistical learning performance, suggesting a more specific role of the hippocampus. Indeed, transient direct electrical stimulation of the hippocampus disrupted statistical learning. Furthermore, the relationship between statistical learning and seizure frequency was selective: behavioral performance in an episodic memory task was impacted by structural lesions in the medial temporal lobe and by antiseizure medications, but not by seizure frequency. Overall, these results suggest that statistical learning may be hippocampally dependent and that this task could serve as a clinically useful behavioral assay of seizure frequency distinct from existing neuropsychological tests. Simple and short statistical learning tasks may thus provide patient-centered endpoints for evaluating the efficacy of novel treatments in epilepsy.
Collapse
Affiliation(s)
- Ayman Aljishi
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Brynn E. Sherman
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | | | - Sami Obaid
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicholas B. Turk-Browne
- Department of Psychology, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Eyiyemisi C. Damisah
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Toscano ECB, Vieira ÉLM, Grinberg LT, Rocha NP, Brant JAS, Paradela RS, Giannetti AV, Suemoto CK, Leite REP, Nitrini R, Rachid MA, Teixeira AL. Hyperphosphorylated Tau in Mesial Temporal Lobe Epilepsy: a Neuropathological and Cognitive Study. Mol Neurobiol 2023; 60:2174-2185. [PMID: 36622561 PMCID: PMC10084588 DOI: 10.1007/s12035-022-03190-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
Temporal lobe epilepsy (TLE) often courses with cognitive deficits, but its underlying neuronal basis remains unclear. Confluent data suggest that epilepsy share pathophysiological mechanisms with neurodegenerative diseases. However, as most studies analyze subjects 60 years old and older, it is challenging to rule out that neurodegenerative changes arise from age-related mechanisms rather than epilepsy in these individuals. To fill this gap, we conducted a neuropathological investigation of the hippocampal formation of 22 adults with mesial TLE and 20 age- and sex-matched controls (both younger than 60 years). Moreover, we interrogated the relationship between these neuropathological metrics and cognitive performance. Hippocampal formation extracted from patients with drug-resistant mesial TLE undergoing surgery and postmortem non-sclerotic hippocampal formation of clinically and neuropathologically controls underwent immunohistochemistry against amyloid β (Aβ), hyperphosphorylated tau (p-tau), and TAR DNA-binding protein-43 (TDP-43) proteins, followed by quantitative analysis. Patients underwent a comprehensive neuropsychological evaluation prior to surgery. TLE hippocampi showed a significantly higher burden of p-tau than controls, whereas Aβ deposits and abnormal inclusions of TDP-43 were absent in both groups. Patients with hippocampal sclerosis (HS) type 2 had higher immunostaining for p-tau than patients with HS type 1. In addition, p-tau burden was associated with impairment in attention tasks and seizures frequency. In this series of adults younger than 60 years-old, the increase of p-tau burden associated with higher frequency of seizures and attention impairment suggests the involvement of tau pathology as a potential contributor to cognitive deficits in mesial TLE.
Collapse
Affiliation(s)
- Eliana C B Toscano
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Av. Eugênio do Nascimento, s/no. - 36038-330 - Dom Bosco, Juiz de Fora, MG, Brazil.
| | - Érica L M Vieira
- Centre for Addiction and Mental Healthy (CAMH), Toronto, ON, Canada
| | - Lea T Grinberg
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
- Departments of Neurology and Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Natalia P Rocha
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseane A S Brant
- Departamento de Neurocirurgia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Regina S Paradela
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre V Giannetti
- Departamento de Neurocirurgia, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudia K Suemoto
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renata E P Leite
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Nitrini
- Biobank for Aging Studies, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Milene A Rachid
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Faculdade Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
17
|
Metodiev D, Minkin K, Ruseva M, Ganeva R, Parvanov D, Nachev S. Pathomorphological Diagnostic Criteria for Focal Cortical Dysplasias and Other Common Epileptogenic Lesions—Review of the Literature. Diagnostics (Basel) 2023; 13:diagnostics13071311. [PMID: 37046529 PMCID: PMC10092959 DOI: 10.3390/diagnostics13071311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Focal cortical dysplasia (FCD) represents a heterogeneous group of morphological changes in the brain tissue that can predispose the development of pharmacoresistant epilepsy (recurring, unprovoked seizures which cannot be managed with medications). This group of neurological disorders affects not only the cerebral cortex but also the subjacent white matter. This work reviews the literature describing the morphological substrate of pharmacoresistant epilepsy. All illustrations presented in this study are obtained from brain biopsies from refractory epilepsy patients investigated by the authors. Regarding classification, there are three main FCD types, all of which involve cortical dyslamination. The 2022 revision of the International League Against Epilepsy (ILAE) FCD classification includes new histologically defined pathological entities: mild malformation of cortical development (mMCD), mild malformation of cortical development with oligodendroglial hyperplasia in frontal lobe epilepsy (MOGHE), and “no FCD on histopathology”. Although the pathomorphological characteristics of the various forms of focal cortical dysplasias are well known, their aetiologic and pathogenetic features remain elusive. The identification of genetic variants in FCD opens an avenue for novel treatment strategies, which are of particular utility in cases where total resection of the epileptogenic area is impossible.
Collapse
|
18
|
Comino Garcia-Munoz A, Alemán-Gómez Y, Toledano R, Poch C, García-Morales I, Aledo-Serrano Á, Gil-Nagel A, Campo P. Morphometric and microstructural characteristics of hippocampal subfields in mesial temporal lobe epilepsy and their correlates with mnemonic discrimination. Front Neurol 2023; 14:1096873. [PMID: 36864916 PMCID: PMC9972498 DOI: 10.3389/fneur.2023.1096873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Pattern separation (PS) is a fundamental aspect of memory creation that defines the ability to transform similar memory representations into distinct ones, so they do not overlap when storing and retrieving them. Experimental evidence in animal models and the study of other human pathologies have demonstrated the role of the hippocampus in PS, in particular of the dentate gyrus (DG) and CA3. Patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HE) commonly report mnemonic deficits that have been associated with failures in PS. However, the link between these impairments and the integrity of the hippocampal subfields in these patients has not yet been determined. The aim of this work is to explore the association between the ability to perform mnemonic functions and the integrity of hippocampal CA1, CA3, and DG in patients with unilateral MTLE-HE. Method To reach this goal we evaluated the memory of patients with an improved object mnemonic similarity test. We then analyzed the hippocampal complex structural and microstructural integrity using diffusion weighted imaging. Results Our results indicate that patients with unilateral MTLE-HE present alterations in both volume and microstructural properties at the level of the hippocampal subfields DG, CA1, CA3, and the subiculum, that sometimes depend on the lateralization of their epileptic focus. However, none of the specific changes was found to be directly related to the performance of the patients in a pattern separation task, which might indicate a contribution of various alterations to the mnemonic deficits or the key contribution of other structures to the function. Discussion we established for the first time the alterations in both the volume and the microstructure at the level of the hippocampal subfields in a group of unilateral MTLE patients. We observed that these changes are greater in the DG and CA1 at the macrostructural level, and in CA3 and CA1 in the microstructural level. None of these changes had a direct relation to the performance of the patients in a pattern separation task, which suggests a contribution of various alterations to the loss of function.
Collapse
Affiliation(s)
- Alicia Comino Garcia-Munoz
- Centre de Résonance Magnétique Biologique et Médicale-Unité Mixte de Recherche 7339, Aix-Marseille Université, Marseille, France
| | - Yasser Alemán-Gómez
- Connectomics Lab, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain,Epilepsy Unit, Neurology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - Claudia Poch
- Facultad de Lenguas y Educación, Universidad de Nebrija, Madrid, Spain
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain,Epilepsy Unit, Neurology Department, University Hospital of San Carlos, Madrid, Spain
| | - Ángel Aledo-Serrano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, Madrid, Spain,*Correspondence: Pablo Campo ✉
| |
Collapse
|
19
|
Bruzsa AK, Walther K, Kasper BS, Gollwitzer S, Hamer H, Schwarz M. WADA test for postoperative memory prediction in left TLE. Is it still useful in the 21st century? Clin Neurol Neurosurg 2023; 225:107580. [PMID: 36638639 DOI: 10.1016/j.clineuro.2022.107580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epilepsy surgery offers an effective treatment to achieve seizure freedom in refractory temporal lobe epilepsy. Since left temporal lobe surgery can be associated with verbal memory deterioration, control of cognitive decline is a main goal of therapy. This study analyzes the prognostic value of intracarotid amobarbital procedure (Wada test) in addition to specific neuropsychological and clinical variables for postoperative memory changes. METHOD Between 2013 and 2021 thirty-six patients (18 females, 18 males, mean age 41.0 years) from the Epilepsy Center Erlangen (ECE) with left hemispheric temporal lobe epilepsy underwent neuropsychological assessment preoperatively - including the Wada test - and six months postoperatively. In addition, a group of 92 patients (40 females, 52 males, mean age 36.1 years) with left or right hemispheric focus who underwent Wada test and surgery before 2013 was included as a standardization group. In all patients Wada test was carried out preoperatively to determine language dominance and memory capacity. RESULTS Postoperative verbal memory scores showed no significant difference from preoperative performance. Preoperative verbal memory performance as well as the hippocampal resection extent is particularly important in predicting postoperative verbal memory change. After left temporal lobe surgery, a significantly higher postoperative functional level was shown for figural memory. Specifically, a good contralateral hemispheric performance level assessed by the Wada test proved to be a compensatory factor for postoperative losses. CONCLUSION The Wada test is no longer necessary as a diagnostic tool for a broad group of patients with temporal lobe epilepsy. However, it can be useful for a subgroup of patients with clinical indicators such as nonspecific or incongruent preoperative verbal and figural memory impairments. In this study, Wada test data about the functional level of the contralateral hemisphere specifically allowed estimation of postoperative figural memory changes.
Collapse
Affiliation(s)
- Ann-Kathrin Bruzsa
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany
| | - Katrin Walther
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany
| | - Burkhard S Kasper
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany
| | - Stefanie Gollwitzer
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany
| | - Michael Schwarz
- Department of Neurology, Epilepsy Center Erlangen, University Hospital Erlangen, Germany; Full member of ERN EpiCARE, Germany.
| |
Collapse
|
20
|
Lippmann K, Klaft ZJ, Salar S, Hollnagel JO, Valero M, Maslarova A. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum. Neurobiol Dis 2022; 175:105929. [DOI: 10.1016/j.nbd.2022.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
21
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
22
|
Mol P, Gopalakrishnan L, Chatterjee O, Mangalaparthi KK, Kumar M, Durgad SS, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of Adult Human Hippocampal Subfields Demonstrates Regional Heterogeneity in the Protein Expression. J Proteome Res 2022; 21:2293-2310. [PMID: 36039803 DOI: 10.1021/acs.jproteome.2c00143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Distinct hippocampal subfields are known to get affected during aging, psychiatric disorders, and various neurological and neurodegenerative conditions. To understand the biological processes associated with each subfield, it is important to understand its heterogeneity at the molecular level. To address this lacuna, we investigated the proteomic analysis of hippocampal subfields─the cornu ammonis sectors (CA1, CA2, CA3, CA4) and dentate gyrus (DG) from healthy adult human cohorts. Findings: Microdissection of hippocampal subfields from archived formalin-fixed paraffin-embedded tissue sections followed by TMT-based multiplexed proteomic analysis resulted in the identification of 5,593 proteins. Out of these, 890 proteins were found to be differentially abundant among the subfields. Further bioinformatics analysis suggested proteins related to gene splicing, transportation, myelination, structural activity, and learning processes to be differentially abundant in DG, CA4, CA3, CA2, and CA1, respectively. A subset of proteins was selected for immunohistochemistry-based validation in an independent set of hippocampal samples. Conclusions: We believe that our findings will effectively pave the way for further analysis of the hippocampal subdivisions and provide awareness of its subfield-specific association to various neurofunctional anomalies in the future. The current mass spectrometry data is deposited and publicly made available through ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029697.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India.,Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore 560066,India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Shwetha S Durgad
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Susarla K Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | |
Collapse
|
23
|
Mukaino T, Uehara T, Yokohama J, Okadome T, Arakawa T, Yokoyama S, Sakata A, Takase KI, Togao O, Akamatsu N, Shigeto H, Isobe N, Kira JI. Atrophy of the hippocampal CA1 subfield relates to long-term forgetting in focal epilepsy. Epilepsia 2022; 63:2623-2636. [PMID: 35892321 DOI: 10.1111/epi.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The mechanisms underlying accelerated long-term forgetting (ALF) in patients with epilepsy are still under investigation. We examined the contribution of hippocampal subfields and their morphology to long-term memory performance in patients with focal epilepsy. METHODS We prospectively assessed long-term memory and performed magnetic resonance imaging in 80 patients with focal epilepsy (61 with temporal lobe epilepsy and 19 with extratemporal lobe epilepsy) and 30 healthy controls. The patients also underwent electroencephalography recording. Verbal and visuospatial memory was tested 30 seconds, 10 minutes, and 1 week after learning. We assessed the volumes of the whole hippocampus and seven subfields and deformation of the hippocampal shape. The contributions of the hippocampal volumes and shape deformation to long-term forgetting, controlling for confounding factors, including the presence of interictal epileptiform discharges, were assessed by multiple regression analyses. RESULTS Patients with focal epilepsy had lower intelligence quotients and route recall scores at 10 minutes than controls. The focal epilepsy group had smaller volumes of both the right and left hippocampal tails than the control group, but there were no significant group differences for the volumes of the whole hippocampus or other hippocampal subfields. Multiple regression analyses showed a significant association between the left CA1 volume and the 1-week story retention (β = 7.76; Bonferroni-corrected P = 0.044), but this was not found for the whole hippocampus or other subfield volumes. Hippocampal shape analyses revealed that atrophy of the superior-lateral, superior-central, and inferior-medial regions of the left hippocampus, corresponding to CA1 and CA2/3, was associated with the verbal retention rate. SIGNIFICANCE Our results suggest that atrophy of the hippocampal CA1 region and its associated structures disrupts long-term memory consolidation in focal epilepsy. Neuronal cell loss in specific hippocampal subfields could be a key underlying cause of ALF in patients with epilepsy.
Collapse
Affiliation(s)
- Takahiko Mukaino
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taira Uehara
- Department of Neurology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Jun Yokohama
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiki Okadome
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Arakawa
- Department of Rehabilitation Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Ayumi Sakata
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Akamatsu
- Department of Neurology, School of Medicine, International University of Health and Welfare, Narita, Japan.,Sleep and Epilepsy Disorders Center, Fukuoka, Fukuoka, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan.,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
24
|
Rozhkova IN, Okotrub SV, Brusentsev EY, Uldanova EE, Chuyko EА, Lipina TV, Amstislavskaya TG, Amstislavsky SY. Neuronal density in the brain cortex and hippocampus in Clsnt2-KO mouse strain modeling autistic spectrum disorder. Vavilovskii Zhurnal Genet Selektsii 2022; 26:365-370. [PMID: 35975241 PMCID: PMC9333157 DOI: 10.18699/vjgb-22-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Autistic spectrum disorders (ASD) represent conditions starting in childhood, which are characterized by diff iculties with social interaction and communication, as well as non-typical and stereotyping models of behavior. The mechanisms and the origin of these disorders are not yet understood and thus far there is a lack of prophylactic measures for these disorders. The current study aims to estimate neuronal density in the prefrontal cortex and four hippocampal subf ields, i. e. СA1, СA2, СA3, and DG in Clstn2-KO mice as a genetic model of ASD. In addition, the level of
neurogenesis was measured in the DG area of the hippocampus. This mouse strain was obtained by a knockout of the
calsinthenin-2 gene (Clsnt2) in C57BL/6J mice; the latter (wild type) was used as controls. To estimate neuronal density,
serial sections were prepared on a cryotome for the above-mentioned brain structures with the subsequent immunohistochemical
labeling and confocal microscopy; the neuronal marker (anti-NeuN) was used as the primary antibody.
In addition, neurogenesis was estimated in the DG region of the hippocampus; for this purpose, a primary antibody
against doublecortin (anti-DCX) was used. In all cases Goat anti-rabbit IgG was used as the secondary antibody. The
density of neurons in the CA1 region of the hippocampus was lower in Clstn2-KO mice of both sexes as compared with
controls. Moreover, in males of both strains, neuronal density in this region was lower as compared to females. Besides,
the differences between males and females were revealed in two other hippocampal regions. In the CA2 region, a lower
density of neurons was observed in males of both strains, and in the CA3 region, a lower density of neurons was also
observed in males as compared to females but only in C57BL/6J mice. No difference between the studied groups was
revealed in neurogenesis, nor was it in neuronal density in the prefrontal cortex or DG hippocampal region. Our new
f indings indicate that calsyntenin-2 regulates neuronal hippocampal density in subf ield-specif ic manner, suggesting
that the CA1 neuronal subpopulation may represent a cellular target for early-life preventive therapy of ASD.
Collapse
Affiliation(s)
- I. N. Rozhkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - S. V. Okotrub
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | - E. Yu. Brusentsev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. E. Uldanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. А. Chuyko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | | | | | - S. Ya. Amstislavsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
25
|
Lalani SJ, Reyes A, Kaestner E, Stark SM, Stark CEL, Lee D, Kansal L, Shih JJ, Smith CN, Paul BM, McDonald CR. Impaired Behavioral Pattern Separation in Refractory Temporal Lobe Epilepsy and Mild Cognitive Impairment. J Int Neuropsychol Soc 2022; 28:550-562. [PMID: 34078506 PMCID: PMC8965747 DOI: 10.1017/s1355617721000734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Episodic memory impairment and hippocampal pathology are hallmark features of both temporal lobe epilepsy (TLE) and amnestic mild cognitive impairment (aMCI). Pattern separation (PS), which enables the distinction between similar but unique experiences, is thought to contribute to successful encoding and retrieval of episodic memories. Impaired PS has been proposed as a potential mechanism underling episodic memory impairment in aMCI, but this association is less established in TLE. In this study, we examined behavioral PS in patients with TLE and explored whether profiles of performance in TLE are similar to aMCI. METHOD Patients with TLE, aMCI, and age-matched, healthy controls (HCs) completed a modified recognition task that relies on PS for the discrimination of highly similar lure items, the Mnemonic Similarity Task (MST). Group differences were evaluated and relationships between clinical characteristics, California Verbal Learning Test-Second Edition scores, and MST performance were tested in the TLE group. RESULTS Patients with TLE and aMCI demonstrated poorer PS performance relative to the HCs, but performance did not differ between the two patient groups. Neither the side of seizure focus nor having hippocampal sclerosis affected performance in TLE. However, TLE patients with clinically defined memory impairment showed the poorest performance. CONCLUSION Memory performance on a task that relies on PS was disrupted to a similar extent in TLE and aMCI. The MST could provide a clinically useful tool for measuring hippocampus-dependent memory impairments in TLE and other neurological disorders associated with hippocampal damage.
Collapse
Affiliation(s)
- Sanam J Lalani
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Anny Reyes
- San Diego State University, University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Shauna M Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - David Lee
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Leena Kansal
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Jerry J Shih
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Christine N Smith
- Department of Psychiatry, University of California, San Diego, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Brianna M Paul
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Carrie R McDonald
- San Diego State University, University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
26
|
Ruggiero RN, Peixoto-Santos JE, Bueno-Junior LS, Valente KD, Leite JP. Editorial: Psychiatric Comorbidities in the Epilepsies: Extensive Mechanisms and Broad Questions. Front Integr Neurosci 2022; 16:951170. [PMID: 35784497 PMCID: PMC9249385 DOI: 10.3389/fnint.2022.951170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rafael Naime Ruggiero
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
- *Correspondence: Rafael Naime Ruggiero
| | - Jose Eduardo Peixoto-Santos
- Neuroscience Sector, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kette D. Valente
- Institute and Department of Psychiatry, Faculty of Medicine of the University of São Paulo (HCFMUSP), São Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, Brazil
| |
Collapse
|
27
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
28
|
Fixemer S, Ameli C, Hammer G, Salamanca L, Uriarte Huarte O, Schwartz C, Gérardy JJ, Mechawar N, Skupin A, Mittelbronn M, Bouvier DS. Microglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2022; 10:36. [PMID: 35296366 PMCID: PMC8925098 DOI: 10.1186/s40478-022-01342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer’s disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration pattern of the hippocampus differs between AD and DLB with the CA1 subfield being more severely affected in AD. The activation of microglia, the brain immune cells, could play a role in its selective volume loss. How subregional microglia populations vary within AD or DLB and across these conditions remains poorly understood. Furthermore, how the nature of the hippocampal local pathological imprint is associated with microglia responses needs to be elucidated. To this purpose, we employed an automated pipeline for analysis of 3D confocal microscopy images to assess CA1, CA3 and DG/CA4 subfields microglia responses in post-mortem hippocampal samples from late-onset AD (n = 10), DLB (n = 8) and age-matched control (CTL) (n = 11) individuals. In parallel, we performed volumetric analyses of hyperphosphorylated tau (pTau), amyloid-β (Aβ) and phosphorylated α-synuclein (pSyn) loads. For each of the 32,447 extracted microglia, 16 morphological features were measured to classify them into seven distinct morphological clusters. Our results show similar alterations of microglial morphological features and clusters in AD and DLB, but with more prominent changes in AD. We identified two distinct microglia clusters enriched in disease conditions and particularly increased in CA1 and DG/CA4 of AD and CA3 of DLB. Our study confirms frequent concomitance of pTau, Aβ and pSyn loads across AD and DLB but reveals a specific subregional pattern for each type of pathology, along with a generally increased severity in AD. Furthermore, pTau and pSyn loads were highly correlated across subregions and conditions. We uncovered tight associations between microglial changes and the subfield pathological imprint. Our findings suggest that combinations and severity of subregional pTau, Aβ and pSyn pathologies transform local microglia phenotypic composition in the hippocampus. The high burdens of pTau and pSyn associated with increased microglial alterations could be a factor in CA1 vulnerability in AD.
Collapse
|
29
|
Giachetti I, Padelli F, Aquino D, Garbelli R, De Santis D, Rossini L, Deleo F, Pascuzzo R, Coras R, Marucci G, Tringali G, Maccagnano C, De Curtis M, Bruzzone MG, Didato G. Role of NODDI in the MRI Characterization of Hippocampal Abnormalities in Temporal Lobe Epilepsy: Clinico-histopathologic Correlations. Neurology 2022; 98:e1771-e1782. [PMID: 35256485 PMCID: PMC9071371 DOI: 10.1212/wnl.0000000000200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The identification of possible hippocampal alterations is a crucial point for the diagnosis and therapy of patients with unilateral temporal lobe epilepsy (TLE). OBJECTIVE To investigate the role of Neurite Orientation Dispersion and Density Imaging (NODDI), compared to Diffusion Tensor Imaging (DTI), in the comprehension of hippocampal microstructure in TLE. METHODS DTI and NODDI metrics were calculated in the hippocampi of adult patients with TLE, with and without histology-confirmed hippocampal sclerosis (HS), and in age/sex-matched healthy controls (HC). Diffusion metrics and hippocampal volumes of pathologic side were compared within subjects and between subjects among HS, non-HS, and HC groups. Diffusion metrics were also correlated with hippocampal volume and patients' clinical features. After surgery, hippocampal specimens were processed for neuropathology examinations. RESULTS Fifteen patients with TLE (9 with and 6 without HS) and 11 HC were included. Hippocampal analyses resulted in significant increase in FA (fractional anisotropy) and MD (mean diffusivity, mm2/s × 10-3), decrease in ODI (orientation dispersion index) comparing the pathologic side of patients with HS vs: (1) their relative non-pathological side (0.203 vs 0.183, 0.825 vs 0.724, 0.366 vs 0.443, respectively); (2) the pathologic side of patients without HS (0.203 vs 0.169, 0.825 vs 0.745, 0.366 vs 0.453, respectively); (3) HC (0.203 vs 0.172, 0.825 vs 0.729, 0.366 vs 0.447, respectively). Moreover, ND (neurite density) was significantly decreased comparing both hippocampi of patients with HS (0.416 vs 0.460). A significant increase in fiso (free-water isotropic volume fraction) was found in the comparison of pathologic hippocampi of patients with HS vs: (1) non-pathological hippocampi of patients with HS (0.323 vs 0.258); (2) HC (0.323 vs 0.226). Hippocampal volume of all patients with TLE negatively correlated with MD (r = -0.746, p = 0.0145) and positively correlated with ODI (r = 0.719, p = 0.0145). Fiso and ND of sclerotic hippocampi positively correlated with disease duration (r = 0.684, p = 0.0424 and r = 0.670, p = 0.0486, respectively). Immunohistochemistry in sclerotic hippocampal specimens revealed neuronal loss in pyramidal layer and fiber reorganization at the level of stratum lacunosum-moleculare confirming ODI and ND metrics. DISCUSSION This study shows the capability of diffusion-MRI metrics to detect hippocampal microstructural alterations. Among them, ODI seems to better highlight the fiber reorganization observed by neuropathology in sclerotic hippocampi.
Collapse
Affiliation(s)
- Isabella Giachetti
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Padelli
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.,Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Domenico Aquino
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dalia De Santis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Francesco Deleo
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Riccardo Pascuzzo
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanni Tringali
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Carmelo Maccagnano
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maria Grazia Bruzzone
- From the Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giuseppe Didato
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
30
|
Abstract
Neuropathological examination of the temporal lobe provides a better understanding and management of a wide spectrum of diseases. We focused on inflammatory diseases, epilepsy, and neurodegenerative diseases, and highlighted how the temporal lobe is particularly involved in those conditions. Although all these diseases are not specific or restricted to the temporal lobe, the temporal lobe is a key structure to understand their pathophysiology. The main histological lesions, immunohistochemical markers, and molecular alterations relevant for the neuropathological diagnostic reasoning are presented in relation to epidemiology, clinical presentation, and radiological findings. The inflammatory diseases section addressed infectious encephalitides and auto-immune encephalitides. The epilepsy section addressed (i) susceptibility of the temporal lobe to epileptogenesis, (ii) epilepsy-associated hippocampal sclerosis, (iii) malformations of cortical development, (iv) changes secondary to epilepsy, (v) long-term epilepsy-associated tumors, (vi) vascular malformations, and (vii) the absence of histological lesion in some epilepsy surgery samples. The neurodegenerative diseases section addressed (i) Alzheimer's disease, (ii) the spectrum of frontotemporal lobar degeneration, (iii) limbic-predominant age-related TDP-43 encephalopathy, and (iv) α-synucleinopathies. Finally, inflammatory diseases, epilepsy, and neurodegenerative diseases are considered as interdependent as some pathophysiological processes cross the boundaries of this classification.
Collapse
Affiliation(s)
- Susana Boluda
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France.
| |
Collapse
|
31
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:1502-1514. [DOI: 10.1093/arclin/acac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
|
32
|
Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J, Liu L, Shen H, Na M, Lin Z. Study of Neuronal Apoptosis ceRNA Network in Hippocampal Sclerosis of Human Temporal Lobe Epilepsy by RNA-Seq. Front Neurosci 2021; 15:770627. [PMID: 34867172 PMCID: PMC8633546 DOI: 10.3389/fnins.2021.770627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.
Collapse
Affiliation(s)
- Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aoweng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Said ES, Elsayed AM, Rashed LA, Nadwa EH, Alsuhaibani NA, Alfuraih BS, Mahmoud RH. Evaluation of nootropic activity of telmisartan and metformin on diazepam-induced cognitive dysfunction in mice through AMPK pathway and amelioration of hippocampal morphological alterations. Eur J Pharmacol 2021; 912:174511. [PMID: 34547248 DOI: 10.1016/j.ejphar.2021.174511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Cognitive impairments such as dementia are considered the biggest challenges for public health. Benzodiazepines are often prescribed for treatment of anxiety disorder but they are associated with elevated risk of dementia. The present study has been designed to evaluate the neuroprotective effect of telmisartan and metformin on diazepam-induced cognitive dysfunction in mice. Piracetam was used as an established nootropic agent. Mice were divided into 8 groups, group1; control group which received normal saline. groups 2, 3 and 4 were received telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. group 5; DZP group that injected with diazepam 2.5 mg/kg, groups 6, 7 and 8 were received diazepam 2.5 mg/kg + telmisartan 0.3 mg/kg/day, metformin 100 mg/kg/day and piracetam 200 mg/kg/day respectively. All drugs were administrated for 15 successive days. Cognitive skills of the animals were examined with Elevated plus maze and Passive Shock Avoidance tests. Investigations of oxidative stress markers were performed. Gene expression levels of TNF-α, NFκB, Caspase 3 and AMPK were analyzed using RT-PCR. Histological and immunohistochemical techniques were performed in hippocampus using H&E, cresyl violet stain, anti GFAP and anti COX-2 immunostain. The study revealed that administration of diazepam increased initial and retention transfer latency as well as it decreased step down latency that means it caused memory impairment. There was a significant increase in hippocampal expression levels of TNF-α, NFκB, and Caspase 3 and downregulation of AMPK expression levels associated with increased neurodegeneration, astrocytes activation and COX-2 immunohistochemical staining. This study indicates that diazepam caused a decline in cognitive function depending on hippocampal activity. Telmisartan, a common antihypertensive agent and metformin, a traditional antidiabetic drug improved this cognitive dysfunction through their anti-oxidant and anti-inflammatory effect as they decreased initial and retention transfer latency as well as it increased step down latency. Also they decreased TNF-α, NFκB, and Caspase 3 and upregulated AMPK expression, moreover they ameliorated the hippocampal morphological alterations, GFAP and COX-2 immunoexpression.
Collapse
Affiliation(s)
- Eman S Said
- Department of Clinical Pharmacology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia.
| | - Asmaa M Elsayed
- Department of Histology, Faculty of Medicine, Fayoum University, Egypt
| | - Laila A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Eman H Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia; Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| |
Collapse
|
34
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
35
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
36
|
Lv Z, Chen Z, Ye W, Pang X, Nie L, Chang W, Long Q, Zheng J. Disruption in Surface-Based Functional Connectivity in the Right Posterior Hippocampal CA3 Subfield: A Probable Neural Basis of Visuospatial Working Memory Impairment in Patients With Right Temporal Lobe Epilepsy. Front Neurol 2021; 12:735689. [PMID: 34712198 PMCID: PMC8545809 DOI: 10.3389/fneur.2021.735689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Visuospatial working memory (VSWM) impairment is common in patients with right temporal lobe epilepsy (rTLE). The posterior hippocampus is critical for spatial memory, but the contributions of the different subfields to VSWM deficits remain unclear. Forty-six rTLE patients and 42 healthy controls (HCs) were recruited. Resting-state fMRI (rsfMRI) and structural MRI scans were administered, followed by a VSWM_Nback test. The right posterior hippocampus was automatically segmented, and the surface-based functional connectivity (SBFC) of the subiculum (Sub), CA1, CA3, dentate gyrus (DG), hippocampal tail, and right entorhinal cortex (EC) were compared between groups. Correlation analysis was performed between the altered SBFC and VSWM_Nback scores for rTLE patients. The results showed that rTLE patients underperformed in the VSWM_Nback test, with longer mean reaction time of accurate response (ACCmeanRT) in 0back and 2back condition, lower hit rate (HR) and higher false alarm rate (FAR) in 2back condition. Compared with HCs, the rCA3 in the rTLE group exhibited decreased SBFC with inferior parietal cortex (IPC), temporal lateral cortex (TLC), and posterior visual cortex (PVC) in the right hemisphere as well as the bilateral dorsolateral prefrontal cortex (DLPFC). The SBFC of the rEC and right anterior cingulate cortex (rACC) increased in the rTLE group. Within the rTLE group, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC were correlated with worse VSWM performance. Therefore, the decreased SBFC of the rCA3-rIPC and rCA3-rLTC might be the critical aberrant FC pattern reflecting VSWM impairment in rTLE patients. The mechanism might involve functional disruption between the core subsystem and the medial temporal subsystem of the default mode network (DMN).
Collapse
Affiliation(s)
- Zongxia Lv
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zirong Chen
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Ye
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liluo Nie
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Chang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qijia Long
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Brandner S, Schroeter S, Çalışkan G, Salar S, Kobow K, Coras R, Blümcke I, Hamer H, Schwarz M, Buchfelder M, Maslarova A. Glucocorticoid modulation of synaptic plasticity in the human temporal cortex of epilepsy patients: Does chronic stress contribute to memory impairment? Epilepsia 2021; 63:209-221. [PMID: 34687218 DOI: 10.1111/epi.17107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Memory impairment is common in patients with temporal lobe epilepsy and seriously affects life quality. Chronic stress is a recognized cofactor in epilepsy and can also impair memory function. Furthermore, increased cortisol levels have been reported in epilepsy patients. Animal models have suggested that aggravating effects of stress on memory and synaptic plasticity were mediated via glucocorticoids. The aim of this study was, therefore, to investigate the effect of glucocorticoid receptor (GR) modulation on synaptic plasticity in the human cortex of epilepsy patients. METHODS We performed field potential recordings in acute slices from the temporal neocortex of patients who underwent surgery for drug-resistant temporal lobe epilepsy. Synaptic plasticity was investigated by a theta-burst stimulation (TBS) protocol for induction of long-term potentiation (LTP) in the presence of GR modulators. RESULTS LTP was impaired in temporal cortex from epilepsy patients. Pretreatment of the slices with the GR antagonist mifepristone (RU486) improved LTP induction, suggesting that LTP impairment was due to baseline GR activation in the human cortex. The highly potent GR agonist dexamethasone additionally weakened synaptic strength in an activity-dependent manner when applied after TBS. SIGNIFICANCE Our results show a direct negative glucocorticoid effect on synaptic potentiation in the human cortex and imply chronic activation of GRs. Chronic stress may therefore contribute to memory impairment in patients with temporal lobe epilepsy. Furthermore, the activity-dependent acute inhibitory effect of dexamethasone suggests a mechanism of synaptic downscaling by which postictally increased cortisol levels may prevent pathologic plasticity upon seizures.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Schroeter
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Orthopedic, Trauma, and Hand Surgery, Osnabrück Clinic, Osnabrück, Germany
| | - Gürsel Çalışkan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Seda Salar
- Department of Psychiatry and Psychotherapy, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katja Kobow
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Schwarz
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Maslarova
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
38
|
Mizutani M, Sone D, Sano T, Kimura Y, Maikusa N, Shigemoto Y, Goto Y, Takao M, Iwasaki M, Matsuda H, Sato N, Saito Y. Histopathological validation and clinical correlates of hippocampal subfield volumetry based on T2-weighted MRI in temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Res 2021; 177:106759. [PMID: 34521044 DOI: 10.1016/j.eplepsyres.2021.106759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022]
Abstract
The objectives of this study were 1) to histologically validate the hippocampal subfield volumetry based on T2-weighted MRI, and 2) to explore its clinical impact on postsurgical memory function and seizure outcome in temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS). We analyzed the cases of 24 patients with medial TLE (12 left, 12 right) and HS who were preoperatively examined with T2-weighted high-resolution MRI. The volume of each hippocampal subfield was calculated with an automatic segmentation of hippocampal subfields (ASHS) program. Hippocampal sclerosis patterns were determined pathologically, and the cross-sectional area and neuronal cell density of the CA1 and CA4 subfields were calculated using tissue specimens. Pre- and postoperative memory evaluations based on the Wechsler Memory Scale-Revised (WMS-R) were performed. We compared the presurgical MRI-based volumes with the pathological measurements in each subfield and then compared them with the change in the patients' neurocognitive function. As a result, there was a significant relationship between the presurgical MRI-based volume of CA4/dentate gyrus (DG) and the cross-sectional area of CA4 calculated with tissue specimens (Spearman's rs = 0.482, p = 0.023), and a similar trend-level correlation was observed in CA1 (rs = 0.455, p = 0.058). Some of MRI-based or pathology-based parameters in the subfields preliminarily showed relationships with the postsurgical memory changes. In conclusion, automated subfield volumetry for patients with hippocampal sclerosis moderately reflects their subfield atrophy and might be useful to predict the postsurgical change of memory function in these patients.
Collapse
Affiliation(s)
- Masashi Mizutani
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Department of Psychiatry, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato, Tokyo, 105-8461, Japan.
| | - Terunori Sano
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Norihide Maikusa
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yuichi Goto
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Masaki Takao
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Yuko Saito
- Department of Laboratory Medicine, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
39
|
Ohi K, Nemoto K, Kataoka Y, Sugiyama S, Muto Y, Shioiri T, Kawasaki Y. Alterations in hippocampal subfield volumes among schizophrenia patients, their first-degree relatives and healthy subjects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110291. [PMID: 33662534 DOI: 10.1016/j.pnpbp.2021.110291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Reduced hippocampal volumes feature prominently in schizophrenia patients (SCZ). Although several studies have investigated hippocampal volume alterations between unaffected first-degree relatives (FR) of SCZ and healthy controls (HC), the results were inconsistent. Furthermore, it remains unclear whether FR have specific alterations in hippocampal subfield volumes. Three-Tesla T1-weighted MP-RAGE brain scans were collected from 347 subjects (138 SCZ, 47 FR and 162 HC) and processed using the hippocampal subfields algorithm in FreeSurfer v6.0. We investigated volumetric differences in the twelve hippocampal subfields bilaterally among SCZ, FR and HC. SCZ displayed bilateral reductions in whole hippocampal volume compared with FR and HC. The hippocampal volumes of FR did not differ from those of HC but exceeded those observed in SCZ. We found volumetric differences in specific hippocampal subfields, including the CA1, hippocampal fissure, presubiculum, molecular layer, fimbria and hippocampal-amygdala transitional area, among diagnostic groups. These alterations arose from differences in the hippocampal subfield volumes between SCZ and the other two diagnostic groups. However, right hippocampal fissure volumes linearly increased among the groups. In contrast, no significant volumetric differences were found in other hippocampal subfields between HC and FR. There were no significant intergroup differences in laterality in any hippocampal subfield volumes and no significant correlations between hippocampal subfield volumes and illness duration, psychiatric symptoms, antipsychotics or premorbid IQ in SCZ. Our findings suggest that volumetric alterations in hippocampal subfields (except the hippocampal fissure) in SCZ could be stable phenomena that are present at illness onset and minimally affected by antipsychotics.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan.
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuzuru Kataoka
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukimasa Muto
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuhiro Kawasaki
- Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
40
|
Cacciaguerra L, Valsasina P, Meani A, Riccitelli GC, Radaelli M, Rocca MA, Filippi M. Volume of hippocampal subfields and cognitive deficits in neuromyelitis optica spectrum disorders. Eur J Neurol 2021; 28:4167-4177. [PMID: 34415660 DOI: 10.1111/ene.15073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Aquaporin-4 (AQP4) water channel is involved in hippocampal plasticity and is the target of neuromyelitis optica spectrum disorders (NMOSD) autoimmunity. We measured volumes of hippocampal subfields and their association with cognitive performance in AQP4-seropositive NMOSD patients. METHODS Global and regional hippocampal volumes were derived from 28 AQP4-seropositive NMOSD patients and 101 healthy controls (HC) from 3D-T1-weighted images. Normalized brain volumes were also calculated. A neuropsychological evaluation, including the Brief Repeatable Battery of Neuropsychological Tests, was performed in patients. Based on HC data, we estimated mean z-scores of volumes in the whole NMOSD group and compared them according to the status of global and domain-selective cognitive impairment. RESULTS Global cognitive impairment was detected in 46.4% of NMOSD patients, with attentive (60.7%) and executive (21.4%) domains being the most affected. NMOSD patients had left hippocampal atrophy at global (p = 0.012) and regional level (fimbria, Cornu Ammonis [CA] 3, molecular layer, dentate gyrus [DG], and subicular complex, p values ranging between 0.033 and <0.001). On the right side the fimbria and hippocampal tail were atrophic (p = 0.024 for both). Cognitively impaired patients showed atrophy in the left CA3 and CA4 (p = 0.025-0.028), while patients presenting verbal and visual memory impairment had significant CA3 and DG atrophy. Those patients with attentive or executive impairment had preserved brain and hippocampal volumes. CONCLUSIONS NMOSD patients showed hippocampal atrophy associated with verbal and visual memory impairment. Such damage did not explain attention and executive function alterations, which were the most common cognitive deficits in this population.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianna C Riccitelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Radaelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
41
|
Peixoto-Santos JE, Blumcke I. Neuropathology of the 21st century for the Latin American epilepsy community. Seizure 2021; 90:51-59. [DOI: 10.1016/j.seizure.2021.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
|
42
|
Leite JP, Peixoto-Santos JE. Glia and extracellular matrix molecules: What are their importance for the electrographic and MRI changes in the epileptogenic zone? Epilepsy Behav 2021; 121:106542. [PMID: 31884121 DOI: 10.1016/j.yebeh.2019.106542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
Glial cells and extracellular matrix (ECM) molecules are crucial for the maintenance of brain homeostasis. Especially because of their actions regarding neurotransmitter and ionic control, and synaptic function, these cells can potentially contribute to the hyperexcitability seen in the epileptogenic, while ECM changes are linked to synaptic reorganization. The present review will explore glial and ECM homeostatic roles and their potential contribution to tissue plasticity. Finally, we will address how glial, and ECM changes in the epileptogenic zone can be seen in magnetic resonance imaging (MRI), pointing out their importance as markers for the extension of the epileptogenic area. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Joao Pereira Leite
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Jose Eduardo Peixoto-Santos
- Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Neurology and Neurosurgery, Paulista School of Medicine, UNIFESP, Sao Paulo, Brazil
| |
Collapse
|
43
|
Saute RL, Peixoto-Santos JE, Velasco TR, Leite JP. Improving surgical outcome with electric source imaging and high field magnetic resonance imaging. Seizure 2021; 90:145-154. [PMID: 33608134 DOI: 10.1016/j.seizure.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
While most patients with focal epilepsy present with clear structural abnormalities on standard, 1.5 or 3 T MRI, some patients are MRI-negative. For those, quantitative MRI techniques, such as volumetry, voxel-based morphometry, and relaxation time measurements can aid in finding the epileptogenic focus. High-field MRI, just recently approved for clinical use by the FDA, increases the resolution and, in several publications, was shown to improve the detection of focal cortical dysplasias and mild cortical malformations. For those cases without any tissue abnormality in neuroimaging, even at 7 T, scalp EEG alone is insufficient to delimitate the epileptogenic zone. They may benefit from the use of high-density EEG, in which the increased number of electrodes helps improve spatial sampling. The spatial resolution of even low-density EEG can benefit from electric source imaging techniques, which map the source of the recorded abnormal activity, such as interictal epileptiform discharges, focal slowing, and ictal rhythm. These EEG techniques help localize the irritative, functional deficit, and seizure-onset zone, to better estimate the epileptogenic zone. Combining those technologies allows several drug-resistant cases to be submitted to surgery, increasing the odds of seizure freedom and providing a must needed hope for patients with epilepsy.
Collapse
Affiliation(s)
- Ricardo Lutzky Saute
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista School of Medicine, Unifesp, Brazil
| | - Tonicarlo R Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
44
|
Jehi L, Braun K. Does etiology really matter for epilepsy surgery outcome? Brain Pathol 2021; 31:e12965. [PMID: 34196987 PMCID: PMC8412085 DOI: 10.1111/bpa.12965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple factors influence the outcomes of epilepsy surgery. Prognostic indicators varying from clinical characteristics, imaging findings, ictal, and interictal electrophysiological activity have been linked to surgical outcomes. In this review, we focus on the relatively under‐studied role of the underlying epilepsy histopathology in driving post‐surgical outcomes, specifically focusing on the broad categories of seizure outcomes and cognitive outcomes. For each of these two outcomes of interest, we answer two questions: 1)‐ does etiology matter? and 2)‐ how could it matter? The goal is to review the existing literature on the relationship between etiology and surgical outcomes to provide the best possible judgment as to whether a causal relationship exists between histopathology and the ultimate surgical outcome as an initial step. Then, we delve into the possible mechanisms via which such relationships can be explained. We conclude with a call to action to the epilepsy surgery and histopathology research community to push the mechanistic understanding of the pathology‐outcome interaction and identify actionable knowledge and biomarkers that could inform patient care in a timely fashion. In this review, we focus on the relatively under‐studied role of the underlying epilepsy histopathology in driving post‐surgical outcomes, specifically focusing on the broad categories of seizure outcomes and cognitive outcomes. For each of these two outcomes of interest, we answer two questions: (1) does etiology matter? and (2) how could it matter? We then delve into the mechanisms of these answers.
Collapse
Affiliation(s)
- Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Kees Braun
- Dept. of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
45
|
Relationship between hippocampal subfields and Verbal and Visual memory function in Mesial Temporal Lobe Epilepsy patients. Epilepsy Res 2021; 175:106700. [PMID: 34175793 DOI: 10.1016/j.eplepsyres.2021.106700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE High-resolution protocols used in magnetic resonance imaging (MRI) currently enable the detailed analysis of the hippocampus along with its subfield segmentation. The relationship between episodic memory and the hippocampus is well established, and there is growing evidence that some specific memory processing steps are associated with individual hippocampal segments, but there are inconsistencies in the literature. We focused our analysis on hippocampal subfield volumetry and neuropsychological visual and verbal memory tests in patients with temporal lobe epilepsy (TLE) presenting with unilateral hippocampal atrophy. METHODS The study involved a cohort of 62 patients with unilateral TLE, including unilateral hippocampal atrophy (29 on the left side) based on MRI and unequivocal ipsilateral ictal onsets based on surface video electroencephalography recordings. The hippocampal subfield volumes were evaluated using FreeSurfer version 7.1. We used the Rey-Auditory Verbal Learning Test to evaluate short-term (A1), learning (ΣA1-A5), immediate (A6), and delayed (A7) recall of episodic verbal memory. We used the Rey-Osterrieth Complex Figure Test to evaluate the immediate and delayed recall of visual memory. We analyzed the correlations between the asymmetry index scores for the hippocampal subfield volumes of thecornu ammonis (CA)1, CA2/3, and CA4 and memory test performance. RESULTS Moderate associations were established between the CA2/3 asymmetry index scores and visual memory in TLE (both right and left hippocampal atrophy), as well as visual memory and CA4 in the right atrophy cases. The CA1 asymmetry index scores did not correlate with any of the memory test results. We did not find any significant correlation between verbal memory tests and specific hippocampal subfields. CONCLUSIONS The use of high-resolution MRI protocols andin vivo automated segmentation processing revealed moderate associations between hippocampal subfields and memory parameters. Further investigations are needed to establish the utility of these results for clinical decisions.
Collapse
|
46
|
Roessler K, Kasper BS, Shawarba J, Walther K, Coras R, Brandner S, Winter F, Hamer H, Blumcke I, Buchfelder M. Operative variations in temporal lobe epilepsy surgery and seizure and memory outcome in 226 patients suffering from hippocampal sclerosis. Neurol Res 2021; 43:884-893. [PMID: 34156329 DOI: 10.1080/01616412.2021.1942407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: The aim of this retrospective cohort study was to assess seizure and memory outcomes following temporal lobe surgery in patients suffering from medically refractory temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS).Methods: A retrospective monocentric data analysis was performed in consecutive patients who were operated on during 2002-2018. In the first decennium, standard temporal lobe resections (TLR) were predominately performed, and later, antero-temporal lobe resections (ATLR) were mainly performed. Seizure and memory outcomes over time were assessed according to ILAE/Engel classification and the Berlin Amnesia Test (BTA), respectively.Results: Altogether, 231 surgeries were performed on 226 patients (mean age, 40 years [range, 10-68 years]; male: female, 1:1.4; mean seizure duration, 25 years; and mean follow-up duration, 4.75 years [range, 1-16]). Recently, outcomes of 78.3% of the patients in the total cohort were classified as Engel class I, with 54.9% of patients being completely seizure free. The recent cohort of ATLR since 2012 showed significant more completely seizure-free patients than before 2012 (Engel IA 46.6% versus 67.7%, p < 0.0025, χ2), although the Kaplan Meier analysis of all patients favors TLR for better seizure outcome (61% ATLR vs 73% TLR seizure free after 5 yrs, log rank p < 0.001). Verbal memory improved significantly in non-dominant patients. Minor neurological complications were noted (permanent severe complications, 0.4%; temporary severe complications, 4.8%).Conclusion: Significant improvements in seizure and memory outcomes were observed over time, with surgical technique and seizure duration as important prognostic factors. Early admittance for surgery may favor an excellent seizure outcome in patients undergoing temporal lobe resection for HS.
Collapse
Affiliation(s)
- Karl Roessler
- Department of Neurosurgery, Vienna Medical University/AKH Wien, Vienna, Austria.,Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Burkhard S Kasper
- Department of Neurology, University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Nuremberg, Germany
| | - Julia Shawarba
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Katrin Walther
- Department of Neurology, University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Nuremberg, Germany
| | - Roland Coras
- Department of Neurosurgery, Institute of Neuropathology, University Hospital Erlangen Nuremberg, Nuremberg, Germany
| | | | - Fabian Winter
- Department of Neurosurgery, Vienna Medical University/AKH Wien, Vienna, Austria
| | - Hajo Hamer
- Department of Neurology, University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Nuremberg, Germany
| | - Ingmar Blumcke
- Department of Neurosurgery, Institute of Neuropathology, University Hospital Erlangen Nuremberg, Nuremberg, Germany
| | | |
Collapse
|
47
|
Xu K, Wang X, Guan Y, Zhao M, Tang C, Zhou J, Zhai F, Wang M, Duan Z, Qi X, Li T, Luan G. Prognostic value of histopathologic pattern for long-term surgical outcomes of 198 patients with confirmed mesial temporal lobe epilepsy. Hum Pathol 2021; 115:47-55. [PMID: 34119513 DOI: 10.1016/j.humpath.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022]
Abstract
Hippocampal sclerosis (HS) is the most common neuropathologic findings in patients with intractable temporal lobe epilepsy (TLE). The international league against epilepsy has proposed a new classification of HS based on pyramidal cell loss on different subfields to facilitate the study of HS pathology in patients after anterior temporal lobectomy (ATL), and the influence of these HS patterns on the prognosis of patients with TLE is contradictory. This study aims to investigate the relationship between different HS subtypes and postoperative seizure outcomes for intractable patients with TLE. From January 2008 to December 2018, we retrospectively reviewed 198 TLE patients with ATL surgery, and all patients had a complete preoperative evaluation, a specimen of hippocampal tissue after surgery, cognitive test after surgery, and more than 2 years of postoperative follow-up. The main findings were as follows: 1) temporal neocortical gray matter heterotopia were more common in the no-HS group; 2) HS type 1 was associated with a longer duration of epilepsy; 3) history of meningitis was the independent predictor of HS type 1; 4) no-HS patients experienced worse postoperative seizure outcomes than those with HS type1 and type 2, whereas no difference in seizure outcomes was obtained between HS type 1 and type 2; 5) no-HS patients were at increased risk for verbal memory decline after left hippocampal resection. The HS subtypes were associated with the prognosis of patients with TLE, and other variables were the predictors of different HS types. `Further study was to identify the HS subtypes by noninvasive evaluation to approve better postoperative outcomes.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Meng Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | | | - Jian Zhou
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Mengyang Wang
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathlogy, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xueling Qi
- Department of Pathlogy, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Tianfu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China
| | - Guoming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Beijing Key Laboratory of Epilepsy, 100093, China.
| |
Collapse
|
48
|
Cid E, Marquez-Galera A, Valero M, Gal B, Medeiros DC, Navarron CM, Ballesteros-Esteban L, Reig-Viader R, Morales AV, Fernandez-Lamo I, Gomez-Dominguez D, Sato M, Hayashi Y, Bayés À, Barco A, Lopez-Atalaya JP, de la Prida LM. Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis. Cell Rep 2021; 35:109229. [PMID: 34107264 DOI: 10.1016/j.celrep.2021.109229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis.
Collapse
Affiliation(s)
- Elena Cid
- Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, 28002 Madrid, Spain; Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Madrid, Spain
| | | | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | - Rita Reig-Viader
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | | | | | | | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan
| | - Yasunori Hayashi
- RIKEN Brain Science Institute, Wako, 351-0198 Saitama, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Àlex Bayés
- Institut d'Investigació Biomèdica San Pau, 08041 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d'Alacant, Alicante, Spain.
| | | |
Collapse
|
49
|
Ding SL, Yao Z, Hirokawa KE, Nguyen TN, Graybuck LT, Fong O, Bohn P, Ngo K, Smith KA, Koch C, Phillips JW, Lein ES, Harris JA, Tasic B, Zeng H. Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum along the Dorsal-Ventral Axis. Cell Rep 2021; 31:107648. [PMID: 32433957 DOI: 10.1016/j.celrep.2020.107648] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
Subicular regions play important roles in spatial processing and many cognitive functions, and these are mainly attributed to the subiculum (Sub) rather than the prosubiculum (PS). Using single-cell RNA sequencing, we identify 27 transcriptomic cell types residing in sub-domains of the Sub and PS. Based on in situ expression of reliable transcriptomic markers, the precise boundaries of the Sub and PS are consistently defined along the dorsoventral axis. Using these borders to evaluate Cre-line specificity and tracer injections, we find bona fide Sub projections topographically to structures important for spatial processing and navigation. In contrast, the PS sends its outputs to widespread brain regions crucial for motivation, emotion, reward, stress, anxiety, and fear. The Sub and PS, respectively, dominate dorsal and ventral subicular regions and receive different afferents. These results reveal two molecularly and anatomically distinct circuits centered in the Sub and PS, respectively, providing a consistent explanation for historical data and a clearer foundation for future studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
50
|
Conde-Blanco E, Pascual-Diaz S, Carreño M, Muñoz-Moreno E, Pariente JC, Boget T, Manzanares I, Donaire A, Centeno M, Graus F, Bargalló N. Volumetric and shape analysis of the hippocampus in temporal lobe epilepsy with GAD65 antibodies compared with non-immune epilepsy. Sci Rep 2021; 11:10199. [PMID: 33986308 PMCID: PMC8119423 DOI: 10.1038/s41598-021-89010-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 11/09/2022] Open
Abstract
Glutamic acid decarboxylase 65 antibodies (anti-GAD65) have been found in patients with late-onset chronic temporal lobe epilepsy (TLE). No prior neuroimaging studies have addressed how they affect hippocampal volume and shape and how they relate to cognitive abnormalities. We aimed to investigate both brain structure and function in patients with isolated TLE and high anti-GAD65 levels (RIA ≥ 2000 U/ml) compared to 8 non-immune mesial TLE (niTLE) and 8 healthy controls (HC). Hippocampal subfield volume properties were correlated with the duration of the disease and cognitive test scores. The affected hippocampus of GAD-TLE patients showed no volume changes to matched HC whereas niTLE volumes were significantly smaller. Epilepsy duration in GAD-TLE patients correlated negatively with volumes in the presubiculum, subiculum, CA1, CA2-3, CA4, molecular layer and granule cell-molecular layer of the dentate nucleus. We found differences by advanced vertex-wise shape analysis in the anterior hippocampus of the left GAD-TLE compared to HC whereas left niTLE showed bilateral posterior hippocampus deformation. Verbal deficits were similar in GAD-TLE and niTLE but did not correlate to volume changes. These data might suggest a distinct expression of hippocampal structural and functional abnormalities based on the immune response.
Collapse
Affiliation(s)
- Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036, Barcelona, Spain.
| | | | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | | | | | - Teresa Boget
- Epilepsy Program, Neuropsychology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Isabel Manzanares
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - María Centeno
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - Francesc Graus
- Clinical and Experimental Neuroimmunology Research Team of IDIBAPS, Barcelona, Spain
| | - Nuria Bargalló
- Magnetic Resonance Imaging Core Facility, IDIBAPS, Barcelona, Spain.,Epilepsy Program, Neuroradiology Section, Radiology Department, Center of Image Diagnosis (CDIC), Barcelona, Spain
| |
Collapse
|