1
|
Cases-Cunillera S, Quatraccioni A, Rossini L, Ruffolo G, Ono T, Baulac S, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Sankar R, Galanopoulou AS. WONOEP appraisal: The role of glial cells in focal malformations associated with early onset epilepsies. Epilepsia 2024. [PMID: 39401070 DOI: 10.1111/epi.18126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Epilepsy represents a common neurological disorder in patients with developmental brain lesions, particularly in association with malformations of cortical development and low-grade glioneuronal tumors. In these diseases, genetic and molecular alterations in neurons are increasingly discovered that can trigger abnormalities in the neuronal network, leading to higher neuronal excitability levels. However, the mechanisms underlying epilepsy cannot rely solely on assessing the neuronal component. Growing evidence has revealed the high degree of complexity underlying epileptogenic processes, in which glial cells emerge as potential modulators of neuronal activity. Understanding the role of glial cells in developmental brain lesions such as malformations of cortical development and low-grade glioneuronal tumors is crucial due to the high degree of pharmacoresistance characteristic of these lesions. This has prompted research to investigate the role of glial and immune cells in epileptiform activity to find new therapeutic targets that could be used as combinatorial drug therapy. In a special session of the XVI Workshop of the Neurobiology of Epilepsy (WONOEP, Talloires, France, July 2022) organized by the Neurobiology Commission of the International League Against Epilepsy, we discussed the evidence exploring the genetic and molecular mechanisms of glial cells and immune response and their implications in the pathogenesis of neurodevelopmental pathologies associated with early life epilepsies.
Collapse
Affiliation(s)
- Silvia Cases-Cunillera
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Neuronal Signaling in Epilepsy and Glioma, Paris, France
| | - Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Laura Rossini
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Tomonori Ono
- Epilepsy Center, National Hospital Organization Nagasaki Medical Center, Ōmura, Japan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stéphane Auvin
- Pediatric Neurology Department, AP-HP, Robert Debré University Hospital, CRMR épilepsies Rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Raman Sankar
- Department of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominique P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Narvaiz DA, Blandin KJ, Sullens DG, Womble PD, Pilcher JB, O'Neill G, Wiley TA, Kwok EM, Chilukuri SV, Lugo JN. NS-Pten knockout mice exhibit sex and hippocampal subregion-specific increases in microglia/macrophage density. Epilepsy Res 2024; 206:107440. [PMID: 39213710 DOI: 10.1016/j.eplepsyres.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Seizures induce hippocampal subregion dependent enhancements in microglia/macrophage phagocytosis and cytokine release that may contribute to the development of epilepsy. As a model of hyperactive mTOR induced epilepsy, neuronal subset specific phosphatase and tensin homolog (NS-Pten) knockout (KO) mice exhibit hyperactive mTOR signaling in the hippocampus, seizures that progress with age, and enhanced hippocampal microglia/macrophage activation. However, it is unknown where microglia/macrophages are most active within the hippocampus of NS-Pten KO mice. We quantified the density of IBA1 positive microglia/macrophages in the CA1, CA2/3, and dentate gyrus of NS-Pten KO and wildtype (WT) male and female mice at 4, 10, and 15 weeks of age. NS-Pten KO mice exhibited an overall increase in the number of IBA1 positive microglia/macrophages in each subregion and in the entire hippocampus. After accounting for differences in size, the whole hippocampus of NS-Pten KO mice still exhibited an increased density of IBA1 positive microglia/macrophages. Subregion analyses showed that this increase was restricted to the dentate gyrus of both male and female NS-Pten KO mice and to the CA1 of male NS-Pten KO mice. These data suggest enhanced microglia/macrophage activity may occur in the NS-Pten KO mice in a hippocampal subregion and sex-dependent manner. Future work should seek to determine whether these region-specific increases in microgliosis play a role in the progression of epilepsy in this model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience, USA; Department of Biology, USA; Institute of Biomedical Studies, USA; Baylor University, Baylor Center for Developmental Disabilities, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
3
|
Wang L, Wang K, Chen Y, Zhang X, Xu W, Dong Z, Wang Y. NLRP3 Inflammasome Inhibition After Pilocarpine-Induced Status Epilepticus Attenuates Chronic Inflammation in Epileptic Mice. J Inflamm Res 2024; 17:6143-6158. [PMID: 39262652 PMCID: PMC11389722 DOI: 10.2147/jir.s469451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
Objective To investigate the effects of inhibiting the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome on neuronal damage and chronic pro-inflammatory responses during epileptogenesis in a mouse model of pilocarpine-induced status epilepticus (SE). Methods Mice were randomly allocated into three groups: control, SE, and SE + MCC 950. The expression patterns of M1 and M2 microglial biomarkers in the hippocampus were quantified using Western blotting, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunofluorescence staining. Additionally, seizure susceptibility, video-electroencephalography recording, Morris water maze test, and brain immunofluorescence staining were performed to evaluate the epileptic brain 4 weeks post-SE. Results Within 72 hours post-SE, hippocampal microglia demonstrated a preferential polarization towards the M1 phenotype, a trend that was mitigated by NLRP3 inflammasome inhibition. During epileptogenesis, SE mice treated with NLRP3 inflammasome inhibition exhibited reduced neuronal damage, improved cognitive function, decreased seizure susceptibility, and attenuated chronic pro-inflammatory responses. Conclusion Inhibition of NLRP3 inflammasome post-SE effectively ameliorates neuronal loss, seizure susceptibility, and cognitive dysfunction during epileptogenesis. This neuroprotective effect may be mediated through the mitigation of chronic pro-inflammatory responses within the epileptic brain.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
| | - Kai Wang
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
| | - Yuwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
| | - Xiaoyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
- Department of Neurology, Anhui Public Health Clinical Center, Hefei, Anhui Province, 230000, People's Republic of China
| | - Wenhao Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
- Department of Neurology, Anhui Public Health Clinical Center, Hefei, Anhui Province, 230000, People's Republic of China
| | - Zhong Dong
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
- Department of Neurology, Anhui Public Health Clinical Center, Hefei, Anhui Province, 230000, People's Republic of China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230000, People's Republic of China
- Department of Neurology, Anhui Public Health Clinical Center, Hefei, Anhui Province, 230000, People's Republic of China
- Department of Neurology, Anqing First People's Hospital Affiliated to Anhui Medical University, Anqing, Anhui Province, 246000, People's Republic of China
| |
Collapse
|
4
|
Cai Y, Tong F, Li K, Wang Q, Ding J, Wang X. Cannabinoid receptor 2 agonist AM1241 alleviates epileptic seizures and epilepsy-associated depression via inhibiting neuroinflammation in a pilocarpine-induced chronic epilepsy mouse model. Mol Cell Neurosci 2024; 130:103958. [PMID: 39151841 DOI: 10.1016/j.mcn.2024.103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
Increasing evidence suggests that cannabinoid receptor 2 (CB2R) serves as a promising anti-inflammatory target. While inflammation is known to play crucial roles in the pathogenesis of epilepsy, the involvement of CB2R in epilepsy remains unclear. This study aimed to investigate the effects of a CB2R agonist, AM1241, on epileptic seizures and depressive-like behaviors in a mouse model of chronic epilepsy induced by pilocarpine. A chronic epilepsy mouse model was established by intraperitoneal administration of pilocarpine. The endogenous cannabinoid system (eCBs) in the hippocampus was examined after status epilepticus (SE). Animals were then treated with AM1241 and compared with a vehicle-treated control group. Additionally, the role of the AMPK/NLRP3 signaling pathway was explored using the selective AMPK inhibitor dorsomorphin. Following SE, CB2R expression increased significantly in hippocampal microglia. Administration of AM1241 significantly reduced seizure frequency, immobility time in the tail suspension test, and neuronal loss in the hippocampus. In addition, AM1241 treatment attenuated microglial activation, inhibited pro-inflammatory polarization of microglia, and suppressed NLRP3 inflammasome activation in the hippocampus after SE. Further, the therapeutic effects of AM1241 were abolished by the AMPK inhibitor dorsomorphin. Our findings suggest that CB2R agonist AM1241 may alleviate epileptic seizures and its associated depression by inhibiting neuroinflammation through the AMPK/NLRP3 signaling pathway. These results provide insight into a novel therapeutic approach for epilepsy.
Collapse
Affiliation(s)
- Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kexian Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of the State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhang X, Zhao T, Su S, Li L, Zhang Y, Yan J, Cui X, Sun Y, Zhao J, Han X, Cao J. An explanation of the role of pyroptosis playing in epilepsy. Int Immunopharmacol 2024; 136:112386. [PMID: 38850794 DOI: 10.1016/j.intimp.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Epilepsy is a severe central nervous system disorder characterized by an imbalance between neuronal excitation and inhibition, resulting in heightened neuronal excitability, particularly within the hippocampus. About one-third of individuals with epilepsy experience difficult-to-manage seizures, known as refractory epilepsy. Epilepsy is closely linked to inflammatory immune response, with elevated levels of inflammatory mediators observed in individuals with this condition. This inflammation of the brain can lead to seizures of various types and is further exacerbated by the release of inflammatory factors, which heighten the excitability of peripheral neurons and worsen the progression of epilepsy. Pyroptosis is an inflammatory programmed cell death which has been shown to be involved in the pathological process of epilepsy. Inflammatory factors released during pyroptosis increase neuronal excitability and promote abnormal discharge in epilepsy, increasing susceptibility to epilepsy. This article provides an overview of the current knowledge on cell pyroptosis and its potential mechanisms, including both canonical and noncanonical pathways. Additionally, we discuss the potential mechanisms of pyroptosis occurrence in epilepsy and the potential therapeutic drugs targeting pyroptosis as a treatment strategy. In summary, this review highlights the promising potential of pyroptosis as a target for developing innovative therapies for epilepsy.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yubing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiangyu Yan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Zhao T, Zhang X, Cui X, Su S, Li L, Chen Y, Wang N, Sun L, Zhao J, Zhang J, Han X, Cao J. Inhibiting the IRAK4/NF-κB/NLRP3 signaling pathway can reduce pyroptosis in hippocampal neurons and seizure episodes in epilepsy. Exp Neurol 2024; 377:114794. [PMID: 38685307 DOI: 10.1016/j.expneurol.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Interleukin-1 receptor-associated kinase 4 (IRAK4) plays an important role in immune modulation in various central nervous system disorders. However, IRAK4 has not been reported in epilepsy models in animal and clinical studies, nor has its involvement in regulating pyroptosis in epilepsy. METHOD First, we performed transcriptome sequencing, quantitative real-time polymerase chain reaction, and western blot analysis on the hippocampal tissues of refractory epilepsy patients to measure the mRNA and protein levels of IRAK4 and pyroptosis-related proteins. Second, we successfully established a pentylenetetrazol (PTZ)-induced seizure mouse model. We conducted behavioral tests, electroencephalography, virus injection, and molecular biology experiments to investigate the role of IRAK4 in seizure activity regulation. RESULTS IRAK4 is upregulated in the hippocampus of epilepsy patients and PTZ-induced seizure model mice. IRAK4 expression is observed in the hilar neurons of PTZ-induced mice. Knocking down IRAK4 in PTZ-induced mice downregulated pyroptosis-related protein expression and alleviated seizure activity. Overexpressing IRAK4 in naive mice upregulated pyroptosis-related protein expression and increased PTZ-induced abnormal neuronal discharges. IRAK4 and NF-κB were found to bind to each other in patient hippocampal tissue samples. Pyrrolidine dithiocarbamate reversed the pyroptosis-related protein expression increase caused by PTZ. PF-06650833 alleviated seizure activity and inhibited pyroptosis in PTZ-induced seizure mice. CONCLUSION IRAK4 plays a key role in the pathological process of epilepsy, and its potential mechanism may be related to pyroptosis mediated by the NF-κB/NLRP3 signaling pathway. PF-06650833 has potential as a therapeutic agent for alleviating epilepsy.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xuefei Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Songxue Su
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Li
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanan Chen
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Na Wang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Sun
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jiewen Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
7
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Hanin A, Zhang L, Huttner AJ, Plu I, Mathon B, Bielle F, Navarro V, Hirsch LJ, Hafler DA. Single-Cell Transcriptomic Analyses of Brain Parenchyma in Patients With New-Onset Refractory Status Epilepticus (NORSE). NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200259. [PMID: 38810181 PMCID: PMC11139018 DOI: 10.1212/nxi.0000000000200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVES New-onset refractory status epilepticus (NORSE) occurs in previously healthy children or adults, often followed by refractory epilepsy and poor outcomes. The mechanisms that transform a normal brain into an epileptic one capable of seizing for prolonged periods despite treatment remain unclear. Nonetheless, several pieces of evidence suggest that immune dysregulation could contribute to hyperexcitability and modulate NORSE sequelae. METHODS We used single-nucleus RNA sequencing to delineate the composition and phenotypic states of the CNS of 4 patients with NORSE, to better understand the relationship between hyperexcitability and immune disturbances. We compared them with 4 patients with chronic temporal lobe epilepsy (TLE) and 2 controls with no known neurologic disorder. RESULTS Patients with NORSE and TLE exhibited a significantly higher proportion of excitatory neurons compared with controls, with no discernible difference in inhibitory GABAergic neurons. When examining the ratio between excitatory neurons and GABAergic neurons for each patient individually, we observed a higher ratio in patients with acute NORSE or TLE compared with controls. Furthermore, a negative correlation was found between the ratio of excitatory to GABAergic neurons and the proportion of GABAergic neurons. The ratio between excitatory neurons and GABAergic neurons correlated with the proportion of resident or infiltrating macrophages, suggesting the influence of microglial reactivity on neuronal excitability. Both patients with NORSE and TLE exhibited increased expression of genes associated with microglia activation, phagocytic activity, and NLRP3 inflammasome activation. However, patients with NORSE had decreased expression of genes related to the downregulation of the inflammatory response, potentially explaining the severity of their presentation. Microglial activation in patients with NORSE also correlated with astrocyte reactivity, possibly leading to higher degrees of demyelination. DISCUSSION Our study sheds light on the complex cellular dynamics in NORSE, revealing the potential roles of microglia, infiltrating macrophages, and astrocytes in hyperexcitability and demyelination, offering potential avenues for future research targeting the identified pathways.
Collapse
Affiliation(s)
- Aurélie Hanin
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Le Zhang
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anita J Huttner
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Isabelle Plu
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bertrand Mathon
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Franck Bielle
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Vincent Navarro
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lawrence J Hirsch
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David A Hafler
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
9
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
11
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
12
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
13
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
14
|
Araki T, Hiragi T, Kuga N, Luo C, Andoh M, Sugao K, Nagata H, Sasaki T, Ikegaya Y, Koyama R. Microglia induce auditory dysfunction after status epilepticus in mice. Glia 2024; 72:274-288. [PMID: 37746760 DOI: 10.1002/glia.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.
Collapse
Affiliation(s)
- Tasuku Araki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Cong Luo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
16
|
Tripathi S, Nathan CL, Tate MC, Horbinski CM, Templer JW, Rosenow JM, Sita TL, James CD, Deneen B, Miller SD, Heimberger AB. The immune system and metabolic products in epilepsy and glioma-associated epilepsy: emerging therapeutic directions. JCI Insight 2024; 9:e174753. [PMID: 38193532 PMCID: PMC10906461 DOI: 10.1172/jci.insight.174753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Epilepsy has a profound impact on quality of life. Despite the development of new antiseizure medications (ASMs), approximately one-third of affected patients have drug-refractory epilepsy and are nonresponsive to medical treatment. Nearly all currently approved ASMs target neuronal activity through ion channel modulation. Recent human and animal model studies have implicated new immunotherapeutic and metabolomic approaches that may benefit patients with epilepsy. In this Review, we detail the proinflammatory immune landscape of epilepsy and contrast this with the immunosuppressive microenvironment in patients with glioma-related epilepsy. In the tumor setting, excessive neuronal activity facilitates immunosuppression, thereby contributing to subsequent glioma progression. Metabolic modulation of the IDH1-mutant pathway provides a dual pathway for reversing immune suppression and dampening seizure activity. Elucidating the relationship between neurons and immunoreactivity is an area for the prioritization and development of the next era of ASMs.
Collapse
Affiliation(s)
- Shashwat Tripathi
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | | | | | - Craig M. Horbinski
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
- Department of Pathology, and
| | | | | | - Timothy L. Sita
- Department of Neurological Surgery
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles D. James
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
17
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
18
|
Milior G, Di Chiano M, Morin-Brureau M. Specificities of Living Human Microglial Cells. ADVANCES IN NEUROBIOLOGY 2024; 37:569-578. [PMID: 39207713 DOI: 10.1007/978-3-031-55529-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are macrophages residing in the central nervous system, where they perform immune surveillance, synaptic remodeling, neurogenesis, and monitor signals arising from brain injuries or potential pathogens.Commonly, rodent models are used for studying microglia because of the available transgenic mouse lines in which specific genetic manipulations are successfully accomplished. However, human and rodents microglia showed significant differences, which are reflected in different morphological and functional properties. These differences are in genetic and transcriptomic, but also in the expression of signaling molecules and age-associated changes.Several strategies are available to study human microglia, as using surgical brain resections from epileptic and tumoral tissues and from post mortem brain samples. In addition, the generation of human-induced pluripotent stem cells (hPSCs) and the possibility to differentiate them in microglia-like cells provide unique opportunities to compare microglia functions between rodents' and human brain.The use of human ex vivo and in vitro brain models allows the study of human microglia, mimicking in vivo conditions. This will be useful for a better understanding of the real live behavior and functions of microglia in the human brain. This chapter aims to highlight significant similarities and differences between human and rodent microglia in order to re-evaluate mouse models of different human brain disorders, proposing the use of in vitro and ex vivo human brain models.Studies on living human microglia in the brain may help to define divergences from animal models and to improve clinical interventions to treat brain pathologies, using alternatives targets.
Collapse
Affiliation(s)
- Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Paris, France.
| | - Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Melanie Morin-Brureau
- INSERM, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
19
|
Dheer A, Bosco DB, Zheng J, Wang L, Zhao S, Haruwaka K, Yi MH, Barath A, Tian DS, Wu LJ. Chemogenetic approaches reveal dual functions of microglia in seizures. Brain Behav Immun 2024; 115:406-418. [PMID: 37926132 PMCID: PMC10841657 DOI: 10.1016/j.bbi.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon β signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.
Collapse
Affiliation(s)
- Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
Galvis-Montes DS, van Loo KMJ, van Waardenberg AJ, Surges R, Schoch S, Becker AJ, Pitsch J. Highly dynamic inflammatory and excitability transcriptional profiles in hippocampal CA1 following status epilepticus. Sci Rep 2023; 13:22187. [PMID: 38092829 PMCID: PMC10719343 DOI: 10.1038/s41598-023-49310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Transient brain insults including status epilepticus (SE) can initiate a process termed 'epileptogenesis' that results in chronic temporal lobe epilepsy. As a consequence, the entire tri-synaptic circuit of the hippocampus is fundamentally impaired. A key role in epileptogenesis has been attributed to the CA1 region as the last relay station in the hippocampal circuit and as site of aberrant plasticity, e.g. mediated by acquired channelopathies. The transcriptional profiles of the distinct hippocampal neurons are highly dynamic during epileptogenesis. Here, we aimed to elucidate the early SE-elicited mRNA signature changes and the respective upstream regulatory cascades in CA1. RNA sequencing of CA1 was performed in the mouse pilocarpine-induced SE model at multiple time points ranging from 6 to 72 h after the initial insult. Bioinformatics was used to decipher altered gene expression, signalling cascades and their corresponding cell type profiles. Robust transcriptomic changes were detected at 6 h after SE and at subsequent time points during early epileptogenesis. Major differentially expressed mRNAs encoded primarily immediate early and excitability-related gene products, as well as genes encoding immune signalling factors. Binding sites for the transcription factors Nfkb1, Spi1, Irf8, and two Runx family members, were enriched within promoters of differentially expressed genes related to major inflammatory processes, whereas the transcriptional repressors Suz12, Nfe2l2 and Rest were associated with hyperexcitability and GABA / glutamate receptor activity. CA1 quickly responds to SE by inducing transcription of genes linked to inflammation and excitation stress. Transcription factors mediating this transcriptomic switch represent targets for new highly selected, cell type and time window-specific anti-epileptogenic strategies.
Collapse
Grants
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- SCHO 820/4-1, SCHO 820/6-1, SCHO 820/7-1, SCHO 820/5-2, SPP1757, SFB1089, FOR 2715 Deutsche Forschungsgemeinschaft
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- Promotionskolleg 'NeuroImmunology' Else Kröner-Fresenius-Stiftung
- BONFOR program of the Medical Faculty, University of Bonn
- Rheinische Friedrich-Wilhelms-Universität Bonn (1040)
Collapse
Affiliation(s)
- Daniel S Galvis-Montes
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karen M J van Loo
- Department of Epileptology, Neurology, RWTH Aachen University, Aachen, Germany
| | | | - Rainer Surges
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Susanne Schoch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
21
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
22
|
Fan J, Dong X, Tang Y, Wang X, Lin D, Gong L, Chen C, Jiang J, Shen W, Xu A, Zhang X, Xie Y, Huang X, Zeng L. Preferential pruning of inhibitory synapses by microglia contributes to alteration of the balance between excitatory and inhibitory synapses in the hippocampus in temporal lobe epilepsy. CNS Neurosci Ther 2023; 29:2884-2900. [PMID: 37072932 PMCID: PMC10493672 DOI: 10.1111/cns.14224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND A consensus has formed that neural circuits in the brain underlie the pathogenesis of temporal lobe epilepsy (TLE). In particular, the synaptic excitation/inhibition balance (E/I balance) has been implicated in shifting towards elevated excitation during the development of TLE. METHODS Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to generate a model of TLE. Next, electroencephalography (EEG) recording was applied to verify the stability and detectability of spontaneous recurrent seizures (SRS) in rats. Moreover, hippocampal slices from rats and patients with mesial temporal lobe epilepsy (mTLE) were assessed using immunofluorescence to determine the alterations of excitatory and inhibitory synapses and microglial phagocytosis. RESULTS We found that KA induced stable SRSs 14 days after status epilepticus (SE) onset. Furthermore, we discovered a continuous increase in excitatory synapses during epileptogenesis, where the total area of vesicular glutamate transporter 1 (vGluT1) rose considerably in the stratum radiatum (SR) of cornu ammonis 1 (CA1), the stratum lucidum (SL) of CA3, and the polymorphic layer (PML) of the dentate gyrus (DG). In contrast, inhibitory synapses decreased significantly, with the total area of glutamate decarboxylase 65 (GAD65) in the SL and PML diminishing enormously. Moreover, microglia conducted active synaptic phagocytosis after the formation of SRSs, especially in the SL and PML. Finally, microglia preferentially pruned inhibitory synapses during recurrent seizures in both rat and human hippocampal slices, which contributed to the synaptic alteration in hippocampal subregions. CONCLUSIONS Our findings elaborately characterize the alteration of neural circuits and demonstrate the selectivity of synaptic phagocytosis mediated by microglia in TLE, which could strengthen the comprehension of the pathogenesis of TLE and inspire potential therapeutic targets for epilepsy treatment.
Collapse
Affiliation(s)
- Jianchen Fan
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xinyan Dong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Yejiao Tang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xuehui Wang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Donghui Lin
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Lifen Gong
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Chen Chen
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Jie Jiang
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Anyu Xu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
| | - Yicheng Xie
- Department of NeurologyThe Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child HealthHangzhouChina
| | - Xin Huang
- Department of NeurosurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Linghui Zeng
- College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
23
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
24
|
Sibarov DA, Tsytsarev V, Volnova A, Vaganova AN, Alves J, Rojas L, Sanabria P, Ignashchenkova A, Savage ED, Inyushin M. Arc protein, a remnant of ancient retrovirus, forms virus-like particles, which are abundantly generated by neurons during epileptic seizures, and affects epileptic susceptibility in rodent models. Front Neurol 2023; 14:1201104. [PMID: 37483450 PMCID: PMC10361770 DOI: 10.3389/fneur.2023.1201104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses. Because it modulates excitatory-inhibitory balance in a neuronal network, the Arc gene itself was found to be related to the pathogenesis of epilepsy. General Arc knockout rodent models develop a susceptibility to epileptic seizures. Because of activity dependence, synaptic Arc protein synthesis also is affected by seizures. Interestingly, it was found that Arc protein in synapses of active neurons self-assemble in capsids of retrovirus-like particles, which can transfer genetic information between neurons, at least across neuronal synaptic boutons. Released Arc particles can be accumulated in astrocytes after seizures. It is still not known how capsid assembling and transmission timescale is affected by seizures. This scientific field is relatively novel and is experiencing swift transformation as it grapples with difficult concepts in light of evolving experimental findings. We summarize the emergent literature on the subject and also discuss the specific rodent models for studying Arc effects in epilepsy. We summarized both to clarify the possible role of Arc-related pseudo-viral particles in epileptic disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Dmitry A. Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Janaina Alves
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Legier Rojas
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Priscila Sanabria
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | | | | | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| |
Collapse
|
25
|
Abstract
Epilepsy is a neurological disorder caused by the pathological hyper-synchronization of neuronal discharges. The fundamental research of epilepsy mechanisms and the targets of drug design options for its treatment have focused on neurons. However, approximately 30% of patients suffering from epilepsy show resistance to standard anti-epileptic chemotherapeutic agents while the symptoms of the remaining 70% of patients can be alleviated but not completely removed by the current medications. Thus, new strategies for the treatment of epilepsy are in urgent demand. Over the past decades, with the increase in knowledge on the role of glia in the genesis and development of epilepsy, glial cells are receiving renewed attention. In a normal brain, glial cells maintain neuronal health and in partnership with neurons regulate virtually every aspect of brain function. In epilepsy, however, the supportive roles of glial cells are compromised, and their interaction with neurons is altered, which disrupts brain function. In this review, we will focus on the role of glia-related processes in epileptogenesis and their contribution to abnormal neuronal activity, with the major focus on the dysfunction of astroglial potassium channels, water channels, gap junctions, glutamate transporters, purinergic signaling, synaptogenesis, on the roles of microglial inflammatory cytokines, microglia-astrocyte interactions in epilepsy, and on the oligodendroglial potassium channels and myelin abnormalities in the epileptic brain. These recent findings suggest that glia should be considered as the promising next-generation targets for designing anti-epileptic drugs that may improve epilepsy and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Weida Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Jelena Bogdanović Pristov
- Department of Life Sciences, University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
| | - Paola Nobili
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Ljiljana Nikolić
- Department of Neurophysiology, Institute for Biological Research Siniša Stanković, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Li P, Ji X, Shan M, Wang Y, Dai X, Yin M, Liu Y, Guan L, Ye L, Cheng H. Melatonin regulates microglial polarization to M2 cell via RhoA/ROCK signaling pathway in epilepsy. Immun Inflamm Dis 2023; 11:e900. [PMID: 37382264 PMCID: PMC10266134 DOI: 10.1002/iid3.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Melatonin (MEL), an endogenous hormone, has been widely investigated in neurological diseases. Microglia (MG), a resident immunocyte localizing in central nervous system is reported to play important functions in the animal model of temporal lobe epilepsy (TLE). Some evidence showed that MEL influenced activation of MG, but the detailed model of action that MEL plays in remains uncertain. METHODS In this study, we established a model of TLE in mice by stereotactic injection of kainic acid (KA). We treated the mice with MEL. Lipopolysaccharide, ROCK2-knockdown (ROCK-KD) and -overexpression (ROCK-OE) of lentivirus-treated cells were used in cell experiments to simulate an in vitro inflammatory model. RESULTS The results of electrophysiological tests showed that MEL reduced frequency and severity of seizure. The results of behavioral tests indicated MEL improved cognition, learning, and memory ability. Histological evidences demonstrated a significant reduction of neuronal death in the hippocampus. In vivo study showed that MEL changed the polarization status of MG from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype by inversely regulating the RhoA/ROCK signaling pathway. In cytological study, we found that MEL had a significant protective effect in LPS-treated BV-2 cells and ROCK-KD cells, while the protective effect of MEL was significantly attenuated in ROCK-OE cells. CONCLUSION MEL played an antiepileptic role in the KA-induced TLE modeling mice both in behavioral and histological levels, and changed MG polarization status by regulating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Pingping Li
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuefei Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ming Shan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yi Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xingliang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Mengyuan Yin
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yunlong Liu
- First Clinical Medical CollegeAnhui Medical UniversityHefeiChina
| | - Liao Guan
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Ye
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hongwei Cheng
- Department of NeurosurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
27
|
Zhao K, Bai X, Wang X, Cao Y, Zhang L, Li W, Wang S. Insight on the hub gene associated signatures and potential therapeutic agents in epilepsy and glioma. Brain Res Bull 2023; 199:110666. [PMID: 37192718 DOI: 10.1016/j.brainresbull.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The relationship between epilepsy and glioma has long been widely recognized, but the mechanisms of interaction remain unclear. This study aimed to investigate the shared genetic signature and treatment strategies between epilepsy and glioma. METHODS We subjected hippocampal tissue samples from patients with epilepsy and glioma to transcriptomic analysis to identify differential genes and associated pathways, respectively. Weight gene co-expression network (WGCNA) analysis was performed to identify conserved modules in epilepsy and glioma and to obtain differentially expressed conserved genes. Prognostic and diagnostic models were built using lasso regression. We also focused on building transcription factor-gene interaction networks and assessing the proportion of immune invading cells in epilepsy patients. Finally, drug compounds were inferred using a drug signature database (DSigDB) based on core targets. RESULTS We discovered 88 differently conserved genes, most of which are involved in synaptic signaling and calcium ion pathways. We used lasso regression model to reduce 88 characteristic genes, and finally screened out 14 genes (EIF4A2, CEP170B, SNPH, EPHA4, KLK7, GNG3, MYOP, ANKRD29, RASD2, PRRT3, EFR3A, SGIP1, RAB6B, CNNM1) as the features of glioma prognosis model whose ROC curve is 0.9. Then, we developed a diagnosis model for epilepsy patients using 8 genes (PRRT3, RASD2, MYPOP, CNNM1, ANKRD29, GNG3, SGIP1, KLK7) with area under ROC curve (AUC) values near 1. According to the ssGSEA method, we observed an increase in activated B cells, eosinophils, follicular helper T cells and type 2T helper cells, and a decrease in monocytes in patients with epilepsy. Notably, the great majority of these immune cells showed a negative correlation with hub genes. To reveal the transcriptional-level regulation mechanism, we also built a TF-gene network. In addition, we discovered that patients with glioma-related epilepsy may benefit more from gabapentin and pregabalin. CONCLUSION This study reveals the modular conserved phenotypes of epilepsy and glioma and constructs effective diagnostic and prognostic markers. It provides new biological targets and ideas for the early diagnosis and effective treatment of epilepsy.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300000, China
| | - Xuexue Bai
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xiao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yiyao Cao
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Shiyong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
28
|
Guzzo EFM, de Lima Rosa G, Domingues AM, Padilha RB, Coitinho AS. Reduction of seizures and inflammatory markers by betamethasone in a kindling seizure model. Steroids 2023; 193:109202. [PMID: 36828350 DOI: 10.1016/j.steroids.2023.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic disease characterized by an ongoing predisposition to seizures. Although inflammation has emerged as a crucial factor in the etiology of epilepsy, no approaches to anti-inflammatory treatment have been clinically proven to date. Betamethasone (a corticosteroid drug used in the clinic for its anti-inflammatory and immunosuppressive effects) has never been evaluated in attenuating the intensity of seizures in a kindling animal model of seizures. Using a kindling model in male wistar rats, this study evaluated the effect of betamethasone on the severity of seizures and levels of pro-inflammatory interleukins. Seizures were induced by pentylenetetrazole (30 mg/kg) on alternate days for 15 days. The animals were divided into four groups: a control group treated with saline, another control group treated with diazepam (2 mg/kg), and two groups treated with betamethasone (0.125 and 0.250 mg/kg, respectively). Open field test was conducted. Betamethasone treatments were effective in reducing the intensity of epileptic seizures. There were lower levels of Tumor Necrosis Factor-α and interleukin-1β in the cortex, compared to the saline group, on the other hand, levels in the hippocampus remained similar to the control groups. There was no change in the levels of interleukin-6 in the evaluated structures. Serum inflammatory mediators remained similar. Lower quantities of inflammatory mediators in the central nervous system may have been the key to the reduced severity of seizures on the Racine scale.
Collapse
Affiliation(s)
- Edson Fernando Muller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Muliterno Domingues
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas - Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Hanin A, Cespedes J, Huttner A, Strelnikov D, Gopaul M, DiStasio M, Vezzani A, Hirsch LJ, Aronica E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J Neurol 2023:10.1007/s00415-023-11726-x. [PMID: 37079033 DOI: 10.1007/s00415-023-11726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, DMU Neurosciences 6, Paris, France.
- Epilepsy Unit and Department of Clinical Neurophysiology, AP-HP, Hôpital de La Pitié-Salpêtrière, DMU Neurosciences 6, Paris, France.
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- School of Medicine, Universidad Autonoma de Centro America, San Jose, Costa Rica
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Strelnikov
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcello DiStasio
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Recerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
30
|
Hanin A, Cespedes J, Dorgham K, Pulluru Y, Gopaul M, Gorochov G, Hafler DA, Navarro V, Gaspard N, Hirsch LJ. Cytokines in New-Onset Refractory Status Epilepticus Predict Outcomes. Ann Neurol 2023. [PMID: 36871188 DOI: 10.1002/ana.26627] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE The objective of this study was to investigate inflammation using cerebrospinal fluid (CSF) and serum cytokines/chemokines in patients with new-onset refractory status epilepticus (NORSE) to better understand the pathophysiology of NORSE and its consequences. METHODS Patients with NORSE (n = 61, including n = 51 cryptogenic), including its subtype with prior fever known as febrile infection-related epilepsy syndrome (FIRES), were compared with patients with other refractory status epilepticus (RSE; n = 37), and control patients without SE (n = 52). We measured 12 cytokines/chemokines in serum or CSF samples using multiplexed fluorescent bead-based immunoassay detection. Cytokine levels were compared between patients with and without SE, and between the 51 patients with cryptogenic NORSE (cNORSE) and the 47 patients with a known-etiology RSE (NORSE n = 10, other RSE n = 37), and correlated with outcomes. RESULTS A significant increase of IL-6, TNF-α, CXCL8/IL-8, CCL2, MIP-1α, and IL-12p70 pro-inflammatory cytokines/chemokines was observed in patients with SE compared with patients without SE, in serum and CSF. Serum innate immunity pro-inflammatory cytokines/chemokines (CXCL8, CCL2, and MIP-1α) were significantly higher in patients with cNORSE compared to non-cryptogenic RSE. Patients with NORSE with elevated innate immunity serum and CSF cytokine/chemokine levels had worse outcomes at discharge and at several months after the SE ended. INTERPRETATION We identified significant differences in innate immunity serum and CSF cytokine/chemokine profiles between patients with cNORSE and non-cryptogenic RSE. The elevation of innate immunity pro-inflammatory cytokines in patients with NORSE correlated with worse short- and long-term outcomes. These findings highlight the involvement of innate immunity-related inflammation, including peripherally, and possibly of neutrophil-related immunity in cNORSE pathogenesis and suggest the importance of utilizing specific anti-inflammatory interventions. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, United States.,Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Department of Clinical Neurophysiology, Epilepsy Unit, DMU Neurosciences 6, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Universidad Autonoma de Centro America, School of Medicine, San Jose, Costa Rica
| | - Karim Dorgham
- Department of Immunology, Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yashwanth Pulluru
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Division of Epilepsy, Nebraska Medical Center, Omaha, NE, United States
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Guy Gorochov
- Department of Immunology, Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David A Hafler
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Department of Clinical Neurophysiology, Epilepsy Unit, DMU Neurosciences 6, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Center of Reference for Rare Epilepsies, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Nicolas Gaspard
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Department of Neurology, Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
31
|
Vezzani A, Di Sapia R, Kebede V, Balosso S, Ravizza T. Neuroimmunology of status epilepticus. Epilepsy Behav 2023; 140:109095. [PMID: 36753859 DOI: 10.1016/j.yebeh.2023.109095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/14/2023] [Indexed: 02/09/2023]
Abstract
Status epilepticus (SE) is a very heterogeneous clinical condition often refractory to available treatment options. Evidence in animal models shows that neuroinflammation arises in the brain during SE due to the activation of innate immune mechanisms in brain parenchyma cells. Intervention studies in animal models support the involvement of neuroinflammation in SE onset, duration, and severity, refractoriness to treatments, and long-term neurological consequences. Clinical evidence shows that neuroinflammation occurs in patients with SE of diverse etiologies likely representing a common phenomenon, thus broadening the involvement of the immune system beyond the infective and autoimmune etiologies. There is urgent need for novel therapies for refractory SE that rely upon a better understanding of the basic mechanisms underlying this clinical condition. Preclinical and clinical evidence encourage consideration of specific anti-inflammatory treatments for controlling SE and its consequences in patients.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy.
| | - Rossella Di Sapia
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Valentina Kebede
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Silvia Balosso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Teresa Ravizza
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| |
Collapse
|
32
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
34
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
35
|
Maurer-Morelli CV, de Vasconcellos JF, Bruxel EM, Rocha CS, do Canto AM, Tedeschi H, Yasuda CL, Cendes F, Lopes-Cendes I. Gene expression profile suggests different mechanisms underlying sporadic and familial mesial temporal lobe epilepsy. Exp Biol Med (Maywood) 2022; 247:2233-2250. [PMID: 36259630 PMCID: PMC9899983 DOI: 10.1177/15353702221126666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) have hippocampal sclerosis on the postoperative histopathological examination. Although most patients with MTLE do not refer to a family history of the disease, familial forms of MTLE have been reported. We studied surgical specimens from patients with MTLE who had epilepsy surgery for medically intractable seizures. We assessed and compared gene expression profiles of the tissue lesion found in patients with familial MTLE (n = 3) and sporadic MTLE (n = 5). In addition, we used data from control hippocampi obtained from a public database (n = 7). We obtained expression profiles using the Human Genome U133 Plus 2.0 (Affymetrix) microarray platform. Overall, the molecular profile identified in familial MTLE differed from that in sporadic MTLE. In the tissue of patients with familial MTLE, we found an over-representation of the biological pathways related to protein response, mRNA processing, and synaptic plasticity and function. In sporadic MTLE, the gene expression profile suggests that the inflammatory response is highly activated. In addition, we found enrichment of gene sets involved in inflammatory cytokines and mediators and chemokine receptor pathways in both groups. However, in sporadic MTLE, we also found enrichment of epidermal growth factor signaling, prostaglandin synthesis and regulation, and microglia pathogen phagocytosis pathways. Furthermore, based on the gene expression signatures, we identified different potential compounds to treat patients with familial and sporadic MTLE. To our knowledge, this is the first study assessing the mRNA profile in surgical tissue obtained from patients with familial MTLE and comparing it with sporadic MTLE. Our results clearly show that, despite phenotypic similarities, both forms of MTLE present distinct molecular signatures, thus suggesting different underlying molecular mechanisms that may require distinct therapeutic approaches.
Collapse
Affiliation(s)
- Claudia V Maurer-Morelli
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Jaira F de Vasconcellos
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Department of Biology, James Madison
University, Harrisonburg, VA 22807, USA
| | - Estela M Bruxel
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Cristiane S Rocha
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Amanda M do Canto
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil
| | - Helder Tedeschi
- Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Clarissa L Yasuda
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Fernando Cendes
- Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Department of Neurology, School of
Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine,
School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888,
Brazil,Brazilian Institute of Neuroscience and
Neurotechnology (BRAINN), Campinas 13083-888, Brazil,Iscia Lopes-Cendes.
| |
Collapse
|
36
|
Zhang Z, Li Y, Jiang S, Shi F, Shi K, Jin W. Targeting CCL5 signaling attenuates neuroinflammation after seizure. CNS Neurosci Ther 2022; 29:317-330. [PMID: 36440924 PMCID: PMC9804050 DOI: 10.1111/cns.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological condition that causes unprovoked, recurrent seizures. Accumulating evidence from clinical and experimental studies indicates that neuroinflammation exacerbates seizure activity. METHODS We investigated the transcriptional changes occurring in specific brain domains of a seizure mouse model, using 10× Genomics spatial transcriptomics. Differential gene expression and pathway analysis were applied to investigate potential signaling targets for seizure, including CCL5/CCR5 pathway. Maraviroc, an FDA-approved C-C chemokine receptor 5 (CCR5) antagonist, was used to verify the impact of CCL5/CCR5 signaling in seizure mice. RESULTS We found distinguished regional transcriptome features in the hippocampus of seizure mice. The hippocampus exhibited unique inflammatory gene signatures, including glia activation, apoptosis, and immune response in seizure mice. Especially, we observed notable expression of C-C chemokine ligand 5 (CCL5) throughout the entire seizure hippocampus. Blockade of CCL5/CCR5 signaling via maraviroc prevented microglia activation and neuron degeneration in seizure mice. CONCLUSIONS This study supports the potential of CCL5/CCR5 signaling for targeting neuroinflammation after seizure.
Collapse
Affiliation(s)
- Zhuoran Zhang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Yan Li
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Shihe Jiang
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Fu‐Dong Shi
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Department of NeurologyTianjin Medical University General HospitalTianjinChina
| | - Kaibin Shi
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wei‐Na Jin
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
37
|
Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, Gaeta A, Morano A, Anink J, Mühlebner A, Vezzani A, Aronica E, Palma E. GABA A receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022; 12:17956. [PMID: 36289354 PMCID: PMC9605959 DOI: 10.1038/s41598-022-22806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
Gangliogliomas (GGs) are low-grade brain tumours that cause intractable focal epilepsy in children and adults. In GG, as in epileptogenic focal malformations (i.e., tuberous sclerosis complex, TSC), there is evidence of sustained neuroinflammation with involvement of the pro-inflammatory cytokine IL-1β. On the other hand, anti-inflammatory mediators are less studied but bear relevance for understanding seizure mechanisms. Therefore, we investigated the effect of the key anti-inflammatory cytokine IL-10 on GABAergic neurotransmission in GG. We assessed the IL-10 dependent signaling by transcriptomic analysis, immunohistochemistry and performed voltage-clamp recordings on Xenopus oocytes microtransplanted with cell membranes from brain specimens, to overcome the limited availability of acute GG slices. We report that IL-10-related mRNAs were up-regulated in GG and slightly in TSC. Moreover, we found IL-10 receptors are expressed by neurons and astroglia. Furthermore, GABA currents were potentiated significantly by IL-10 in GG. This effect was time and dose-dependent and inhibited by blockade of IL-10 signaling. Notably, in the same tissue, IL-1β reduced GABA current amplitude and prevented the IL-10 effect. These results suggest that in epileptogenic tissue, pro-inflammatory mechanisms of hyperexcitability prevail over key anti-inflammatory pathways enhancing GABAergic inhibition. Hence, boosting the effects of specific anti-inflammatory molecules could resolve inflammation and reduce intractable seizures.
Collapse
Affiliation(s)
- Gabriele Ruffolo
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Veronica Alfano
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| | - Alessia Romagnolo
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Till Zimmer
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - James D. Mills
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.83440.3b0000000121901201Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK ,grid.452379.e0000 0004 0386 7187Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Pierangelo Cifelli
- grid.158820.60000 0004 1757 2611Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Gaeta
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Alessandra Morano
- grid.7841.aDepartment of Human Neuroscience, University of Rome Sapienza, Rome, Italy
| | - Jasper Anink
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.7692.a0000000090126352Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annamaria Vezzani
- grid.4527.40000000106678902Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eleonora Aronica
- grid.484519.5Department of (Neuro)Pathology, Amsterdam UMC Location University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands ,grid.419298.f0000 0004 0631 9143Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Eleonora Palma
- grid.7841.aDepartment of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy ,grid.18887.3e0000000417581884IRCCS San Raffaele Roma, Rome, Italy
| |
Collapse
|
38
|
Hu A, Yuan H, Qin Y, Zhu Y, Zhang L, Chen Q, Wu L. Lipopolysaccharide (LPS) increases susceptibility to epilepsy via interleukin-1 type 1 receptor signaling. Brain Res 2022; 1793:148052. [PMID: 35970265 DOI: 10.1016/j.brainres.2022.148052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Epilepsy is the most common disease of the nervous system, characterized by aberrant normal brain activity. Neuroinflammation is a prominent feature in the brain in epileptic humans and animal models of epilepsy. However, it remains elusive as to how peripheral inflammation affects epilepsy. Herein we demonstrated significantly greater seizure susceptibility and severity of epilepsy under kainic acid (KA) via intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in mouse model of epilepsy. Nissl staining was employed for assessment of the neuronal damage, immunofluorescence for staining of the microglial cells and astrocytes in the mouse brain slices, and ELISA for detection of the changes of inflammatory factors. We observed a smaller population of viable neurons in CA1 and CA3 regions, a greater population of IBA-1-positive and GFAP-positive cells, with a significant upregulation of IL-1β and IL-6 in hippocampus of epileptic mice when treated with LPS, indicating that LPS aggravates hippocampal neuron injury in epilepsy, and induces neuroinflammation in the hippocampus. In addition, we provide an evident increase in BrdU+/DCX+ and Nestin+ cell populations in dentate gyrus (DG) in LPS-treated group, versus saline group on epileptic mouse model, which demonstrated LPS treatment enhanced hippocampal neurogenesis. In order to investigate whether interleukin-1 type 1 (IL-1R1) signaling is involved in this process, we adopted IL-1R1 globally restored mice (IL-1R1GR/GR) as an IL-1R1 reporter to visualize labeling of IL-1R1 mRNA and protein by means of RFP staining. Strikingly, the RFP immunofluorescence revealed increased IL-1R1 expression in LPS-treated group, versus saline group. Further, blockage of central IL-1R1 alleviated seizure susceptibility and severity of epilepsy. In summary, our findings suggested that LPS could enhance central inflammatory response and aggravate the susceptibility to epileptic seizure, which we postulated to be mediated by IL-1R1.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Honghua Yuan
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ying Qin
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuhua Zhu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lingzhi Zhang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Quangang Chen
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lianlian Wu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
39
|
Green TRF, Murphy SM, Moreno-Montano MP, Audinat E, Rowe RK. Reactive morphology of dividing microglia following kainic acid administration. Front Neurosci 2022; 16:972138. [PMID: 36248637 PMCID: PMC9556904 DOI: 10.3389/fnins.2022.972138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The microglial response to a pathological microenvironment is hallmarked by a change in cellular morphology. Following a pathological stimulus, microglia become reactive and simultaneously divide to create daughter cells. Although a wide array of microglial morphologies has been observed, the exact functions of these distinct morphologies are unknown, as are the morphology and reactivity status of dividing microglia. In this study, we used kainic acid to trigger microglial activation and cell division. Following a cortical kainic acid injection, microglial morphology and proliferation were examined at 3 days post-injection using immunohistochemistry for ionized calcium binding adapter molecule 1 (Iba1) to stain for microglia, and KI67 as a marker of cell division. Individual microglial cells were isolated from photomicrographs and skeletal and fractal analyses were used to examine cell size and spatial complexity. We examined the morphology of microglia in both wildtype and microglia-specific tumor necrosis factor (TNF)-α knockout mice. Data were analyzed using generalized linear mixed models or a two-way ANOVA. We found that dividing microglia had a more reactive morphology (larger cell body area, longer cell perimeter, and less ramification) compared to microglia that were not dividing, regardless of microglial release of TNF-α. However, we also observed dividing microglia with a complex, more ramified morphology. Changes in microglial morphology and division were greatest near the kainic acid injection site. This study uses robust and quantitative techniques to better understand microglial cell division, morphology, and population dynamics, which are essential for the development of novel therapeutics that target microglia.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Maria P. Moreno-Montano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- *Correspondence: Rachel K. Rowe,
| |
Collapse
|
40
|
Jia Y, Tang L, Yao Y, Zhuo L, Qu D, Chen X, Ji Y, Tao J, Zhu Y. Low-intensity exercise combined with sodium valproate attenuates kainic acid-induced seizures and associated co-morbidities by inhibiting NF-κB signaling in mice. Front Neurol 2022; 13:993405. [PMID: 36212646 PMCID: PMC9534325 DOI: 10.3389/fneur.2022.993405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium valproate (VPA) is a broad-spectrum anticonvulsant that is effective both in adults and children suffering from epilepsy, but it causes psychiatric and behavioral side effects in patients with epilepsy. In addition, 30% of patients with epilepsy develop resistance to VPA. At present, regular physical exercise has shown many benefits and has become an effective complementary therapy for various brain diseases, including epilepsy. Therefore, we wondered whether VPA combined with exercise would be more effective in the treatment of seizures and associated co-morbidities. Here, we used a mouse model with kainic acid (KA)-induced epilepsy to compare the seizure status and the levels of related co-morbidities, such as cognition, depression, anxiety, and movement disorders, in each group using animal behavioral experiment and local field potential recordings. Subsequently, we investigated the mechanism behind this phenomenon by immunological means. Our results showed that low-intensity exercise combined with VPA reduced seizures and associated co-morbidities. This phenomenon seems to be related to the Toll-like receptor 4, activation of the nuclear factor kappa B (NF-κB), and release of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and IL-6. In brief, low-intensity exercise combined with VPA enhanced the downregulation of NF-κB-related inflammatory response, thereby alleviating the seizures, and associated co-morbidities.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine, Shanghai University, Shanghai, China
| | - Lele Tang
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- School of Medicine, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
41
|
Research progress on oxidative stress regulating different types of neuronal death caused by epileptic seizures. Neurol Sci 2022; 43:6279-6298. [DOI: 10.1007/s10072-022-06302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022]
|
42
|
Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia Remodelling and Neuroinflammation Parallel Neuronal Hyperactivation Following Acute Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms23158240. [PMID: 35897817 PMCID: PMC9332153 DOI: 10.3390/ijms23158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1β, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.
Collapse
|
43
|
Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022; 10:926776. [PMID: 35859905 PMCID: PMC9289522 DOI: 10.3389/fcell.2022.926776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
It is well established that temporal lobe epilepsy (TLE) is often related to oxidative stress and neuroinflammation. Both processes subserve alterations observed in epileptogenesis and ultimately involve distinct classes of cells, including astrocytes, microglia, and specific neural subtypes. For this reason, molecules associated with oxidative stress response and neuroinflammation have been proposed as potential targets for therapeutic strategies. However, these molecules can participate in distinct intracellular pathways depending on the cell type. To illustrate this, we reviewed the potential role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and myeloid differentiation primary response 88 (MyD88) in astrocytes, microglia, and neurons in epileptogenesis. Furthermore, we presented approaches to study genes in different cells, employing single-cell RNA-sequencing (scRNAseq) transcriptomic analyses, transgenic technologies and viral serotypes carrying vectors with specific promoters. We discussed the importance of identifying particular roles of molecules depending on the cell type, endowing more effective therapeutic strategies to treat TLE.
Collapse
Affiliation(s)
- Cayo Almeida
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | | - Rodrigo Ribeiro Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erika Reime Kinjo
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | | |
Collapse
|
44
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Hippocampal Cytokine Release in Experimental Epileptogenesis—A Longitudinal In Vivo Microdialysis Study. Brain Sci 2022; 12:brainsci12050677. [PMID: 35625063 PMCID: PMC9139593 DOI: 10.3390/brainsci12050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Inflammation, particularly cytokine release, contributes to epileptogenesis by influencing the cerebral tissue remodeling and neuronal excitability that occurs after a precipitating epileptogenic insult. While several cytokines have been explored in this process, release kinetics are less well investigated. Determining the time course of cytokine release in the epileptogenic zone is necessary for precisely timed preventive or therapeutic anti-inflammatory interventions. Methods: Hippocampal extracellular levels of six cytokines and chemokines (IL-1β, IL-6, IL-10, CCL2, CCL3, and CCL5) were quantified at various time points during epileptogenesis in a rat model of mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) using microdialysis (MD). Results: The analysis of microdialysates demonstrated consistent elevation at all time points during epileptogenesis for IL-1β and IL-10. IL-10 release was maximal on day 1, IL-1β release peaked at day 8. No correlation between local hippocampal IL-1β concentrations and IL-1β blood levels was found. Conclusion: The release kinetics of IL-1β are consistent with its established pro-epileptogenic properties, while the kinetics of IL-10 suggest a counter-regulatory effect. This proof-of-concept study demonstrates the feasibility of intraindividual longitudinal monitoring of hippocampal molecular inflammatory processes via repetitive MD over several weeks and sheds light on the kinetics of hippocampal cytokine release during epileptogenesis.
Collapse
|
46
|
Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis‐Tuffin L, Quicksall ZS, Lin S, Tutor‐New FQ, Ho CC, Min Y, Malphrus KG, Nguyen TT, Martin E, Garcia CA, Alkharboosh RM, Grewal S, Chaichana K, Wharen R, Guerrero‐Cazares H, Quinones‐Hinojosa A, Ertekin‐Taner N. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell 2022; 21:e13606. [PMID: 35388616 PMCID: PMC9124307 DOI: 10.1111/acel.13606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia have fundamental roles in health and disease; however, effects of age, sex, and genetic factors on human microglia have not been fully explored. We applied bulk and single-cell approaches to comprehensively characterize human microglia transcriptomes and their associations with age, sex, and APOE. We identified a novel microglial signature, characterized its expression in bulk tissue and single-cell microglia transcriptomes. We discovered microglial co-expression network modules associated with age, sex, and APOE-ε4 that are enriched for lipid and carbohydrate metabolism genes. Integrated analyses of modules with single-cell transcriptomes revealed significant overlap between age-associated module genes and both pro-inflammatory and disease-associated microglial clusters. These modules and clusters harbor known neurodegenerative disease genes including APOE, PLCG2, and BIN1. Meta-analyses with published bulk and single-cell microglial datasets further supported our findings. Thus, these data represent a well-characterized human microglial transcriptome resource and highlight age, sex, and APOE-related microglial immunometabolism perturbations with potential relevance in neurodegeneration.
Collapse
Affiliation(s)
- Tulsi Patel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Mariet Allen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Shu Lin
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Thuy T. Nguyen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Rawan M. Alkharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMinnesotaUSA
- Regenerative Sciences Training ProgramCenter for Regenerative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Sanjeet Grewal
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | - Robert Wharen
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
47
|
Campos-Bedolla P, Feria-Romero I, Orozco-Suárez S. Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: assessment of neuroinflammation. Epilepsia Open 2022; 7 Suppl 1:S68-S80. [PMID: 35247028 PMCID: PMC9340302 DOI: 10.1002/epi4.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
More than one‐third of people with epilepsy develop drug‐resistant epilepsy (DRE). Different hypotheses have been proposed to explain the origin of DRE. Accumulating evidence suggests the contribution of neuroinflammation, modifications in the integrity of the blood‐brain barrier (BBB), and altered immune responses in the pathophysiology of DRE. The inflammatory response is mainly due to the increase of cytokines and related molecules; these molecules have neuromodulatory effects that contribute to hyperexcitability in neural networks that cause seizure generation. Some patients with DRE display the presence of autoantibodies in the serum and mainly cerebrospinal fluid. These patients are refractory to the different treatments with standard antiseizure medications (ASMs), and they could be responding well to immunomodulatory therapies. This observation emphasizes that the etiopathogenesis of DRE is involved with immunology responses and associated long‐term events and chronic inflammation processes. Furthermore, multiple studies have shown that functional polymorphisms as risk factors are involved in inflammation processes. Several relevant polymorphisms could be considered risk factors involved in inflammation‐related DRE such as receptor for advanced glycation end products (RAGE) and interleukin 1β (IL‐1β). All these evidences sustained the hypothesis that the chronic inflammation process is associated with the DRE. However, the effect of the chronic inflammation process should be investigated in further clinical studies to promote the development of novel therapeutics useful in treatment of DRE.
Collapse
Affiliation(s)
- Patricia Campos-Bedolla
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
48
|
Altmann A, Ryten M, Di Nunzio M, Ravizza T, Tolomeo D, Reynolds RH, Somani A, Bacigaluppi M, Iori V, Micotti E, Di Sapia R, Cerovic M, Palma E, Ruffolo G, Botía JA, Absil J, Alhusaini S, Alvim MKM, Auvinen P, Bargallo N, Bartolini E, Bender B, Bergo FPG, Bernardes T, Bernasconi A, Bernasconi N, Bernhardt BC, Blackmon K, Braga B, Caligiuri ME, Calvo A, Carlson C, Carr SJ, Cavalleri GL, Cendes F, Chen J, Chen S, Cherubini A, Concha L, David P, Delanty N, Depondt C, Devinsky O, Doherty CP, Domin M, Focke NK, Foley S, Franca W, Gambardella A, Guerrini R, Hamandi K, Hibar DP, Isaev D, Jackson GD, Jahanshad N, Kalviainen R, Keller SS, Kochunov P, Kotikalapudi R, Kowalczyk MA, Kuzniecky R, Kwan P, Labate A, Langner S, Lenge M, Liu M, Martin P, Mascalchi M, Meletti S, Morita-Sherman ME, O’Brien TJ, Pariente JC, Richardson MP, Rodriguez-Cruces R, Rummel C, Saavalainen T, Semmelroch MK, Severino M, Striano P, Thesen T, Thomas RH, Tondelli M, Tortora D, Vaudano AE, Vivash L, von Podewils F, Wagner J, Weber B, Wiest R, Yasuda CL, Zhang G, Zhang J, Leu C, Avbersek A, Thom M, Whelan CD, Thompson P, McDonald CR, Vezzani A, Sisodiya SM. A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathol Appl Neurobiol 2022; 48:e12758. [PMID: 34388852 PMCID: PMC8983060 DOI: 10.1111/nan.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 02/03/2023]
Abstract
AIMS The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.
Collapse
Affiliation(s)
- Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Di Nunzio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Daniele Tolomeo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Alyma Somani
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK
| | - Marco Bacigaluppi
- Department of Neurology, San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Valentina Iori
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, University of Rome, Sapienza
| | - Juan A. Botía
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Departamento de Ingeniería de la Información y las Comunicaciones. Universidad de Murcia, Murcia, Spain
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Pia Auvinen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Nuria Bargallo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain.,Centre de Diagnostic Per la Imatge (CDIC), Hospital Clinic, Barcelona, Spain
| | - Emanuele Bartolini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | | | - Tauana Bernardes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C. Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Barbara Braga
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Maria Eugenia Caligiuri
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Chad Carlson
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Medical College of Wisconsin, Department of Neurology, Milwaukee, WI, USA
| | - Sarah J. Carr
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, USA
| | - Shuai Chen
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | - Andrea Cherubini
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Philippe David
- Department of Radiology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Division of Neurology, Beaumont Hospital, Dublin 9, Ireland
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Universite Libre de Bruxelles, Brussels 1070, Belgium
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA
| | - Colin P. Doherty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Neurology Department, St. James’s Hospital, Dublin 8, Ireland
| | - Martin Domin
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Niels K. Focke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Wales, UK
| | - Wendy Franca
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Khalid Hamandi
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Reetta Kalviainen
- Epilepsy Center, Department of Neurology, Kuopio University, Kuopio, Finland.,Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Maryland, USA
| | - Raviteja Kotikalapudi
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany.,Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Ruben Kuzniecky
- Department of Neurology, Zucker Hofstra School of Medicine, New York, NY 10075, USA
| | - Patrick Kwan
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia
| | - Angelo Labate
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Catanzaro, Italy.,Institute of Neurology, University ‚ “Magna Græcia”, Catanzaro, Italy
| | - Soenke Langner
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Matteo Lenge
- Pediatric Neurology Unit, Children’s Hospital A. Meyer-University of Florence, Italy
| | - Min Liu
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mario Mascalchi
- Neuroradiology Unit, Children’s Hospital A. Meyer, Florence, Italy.,“Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | | | - Terence J. O’Brien
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jose C. Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK.,Department of Neurology, King’s College Hospital, London, UK
| | - Raul Rodriguez-Cruces
- Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Querétaro, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Taavi Saavalainen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Central Finland Central Hospital, Medical Imaging Unit, Jyväskylä, Finland
| | - Mira K. Semmelroch
- The Florey Institute of Neuroscience and Mental Health, Austin Campus, Melbourne, VIC, Australia
| | - Mariasavina Severino
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York, USA.,Department of Physiology, Neuroscience and Behavioral Science, St. George’s University, Grenada, West Indies
| | - Rhys H. Thomas
- Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Maindy Road, Cardiff, UK.,Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Domenico Tortora
- Neuroradiology Unit, Department of Head and Neck and Neurosciences, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, NOCSE Hospital, Modena, Italy
| | - Lucy Vivash
- Department of Neurology, Royal Melbourne Hospital, Parkville, 3050, Australia.,Melbourne Brain Centre, Department of Medicine, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jan Wagner
- Department of Neurology, University of Ulm and Universitäts- and Rehabilitationskliniken Ulm, Germany
| | - Bernd Weber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.,Department of Neurocognition / Imaging, Life & Brain Research Centre, Bonn, Germany
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, USA
| | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China.,Fujian Key Laboratory of the Brain-like Intelligent Systems, China
| | | | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | - Maria Thom
- Division of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California, USA
| | - Carrie R McDonald
- Multimodal Imaging Laboratory, University of California San Diego, San Diego, California, USA.,Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.,To whom correspondence may be addressed
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK.,To whom correspondence may be addressed
| |
Collapse
|
49
|
Xia L, Liu L, Wang Q, Ding J, Wang X. Relationship Between the Pyroptosis Pathway and Epilepsy: A Bioinformatic Analysis. Front Neurol 2022; 12:782739. [PMID: 35095728 PMCID: PMC8795950 DOI: 10.3389/fneur.2021.782739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to analyse the correlation between the pyroptosis pathway and epilepsy using bioinformatics analysis technology. We analyzed the expression of gasdermin D (GSDMD) and gasdermin E (GSDME), the key molecules of pyroptosis, in kainic acid-induced epileptic mice.MethodsWeighted gene co-expression network analysis (WGCNA) was used to construct a signed co-expression network from expression data to screen gene sets closely related to epilepsy. The correlation between the module and epilepsy was verified through module conservative analysis, gene ontology (GO) annotation analysis, and correlation analysis with known epilepsy genes. We obtained currently recognized pyroptosis-related molecules through literature review, and correlation analysis was used to evaluate their correlation with epilepsy. Differentially expressed gene (DEG) analysis was used to analyse expression changes of pyroptosis-related molecules at the transcriptome level, compared to the sham group. We subsequently established a kainic acid-induced status epilepticus (SE) model in mice and validated the mRNA and protein expression of GSDMD and GSDME, the key molecules of pyroptosis, by quantitative reverse transcription PCR (qRT-PCR) and western blotting (WB).ResultsUsing WGCNA, module conservative analysis, and correlation analysis with known epilepsy genes, we screened out a module (a gene set of interest) closely related to epilepsy that was prominently enriched in immune and inflammatory-related biological processes. Correlation analysis results suggest that pyroptosis-related molecules are closely related to this module, but have no obvious correlation with others. DEG analysis of molecules associated with pyroptosis suggests that most of the pyroptosis-related molecules had significantly increased expression after SE, such as IL1b, Casp1, Casp4, Pycard, Gsdmd, Nlrp3, Aim2, Mefv, Tlr2, Tlr3, and Tlr4. qRT-PCR and WB analysis confirmed that the mRNA and protein levels of GSDMD in the mouse hippocampus were significantly upregulated after SE. The mRNA expression of GSDME was not different between the epilepsy group and sham group. However, the WB results showed that the expression of full-length GSDME was decreased and GSDME-N-terminus were significantly increased after SE.ConclusionsOur study highlights that the pyroptosis pathway may be closely related to epilepsy. GSDMD and GSDME, the key executive molecules of pyroptosis, will help to understand the pathogenesis of epilepsy and aid in discovering new targets for anti-epileptic drug treatments.
Collapse
Affiliation(s)
- Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Jing Ding
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of the State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- *Correspondence: Xin Wang
| |
Collapse
|
50
|
Abstract
Neuropathological examination of the temporal lobe provides a better understanding and management of a wide spectrum of diseases. We focused on inflammatory diseases, epilepsy, and neurodegenerative diseases, and highlighted how the temporal lobe is particularly involved in those conditions. Although all these diseases are not specific or restricted to the temporal lobe, the temporal lobe is a key structure to understand their pathophysiology. The main histological lesions, immunohistochemical markers, and molecular alterations relevant for the neuropathological diagnostic reasoning are presented in relation to epidemiology, clinical presentation, and radiological findings. The inflammatory diseases section addressed infectious encephalitides and auto-immune encephalitides. The epilepsy section addressed (i) susceptibility of the temporal lobe to epileptogenesis, (ii) epilepsy-associated hippocampal sclerosis, (iii) malformations of cortical development, (iv) changes secondary to epilepsy, (v) long-term epilepsy-associated tumors, (vi) vascular malformations, and (vii) the absence of histological lesion in some epilepsy surgery samples. The neurodegenerative diseases section addressed (i) Alzheimer's disease, (ii) the spectrum of frontotemporal lobar degeneration, (iii) limbic-predominant age-related TDP-43 encephalopathy, and (iv) α-synucleinopathies. Finally, inflammatory diseases, epilepsy, and neurodegenerative diseases are considered as interdependent as some pathophysiological processes cross the boundaries of this classification.
Collapse
Affiliation(s)
- Susana Boluda
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France; Neuropathology Department, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, AP-HP, Paris, France.
| |
Collapse
|