1
|
Teterina AA, Willis JH, Baer CF, Phillips PC. Pervasive conservation of intron number and other genetic elements revealed by a chromosome-level genomic assembly of the hyper-polymorphic nematode Caenorhabditis brenneri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600681. [PMID: 38979286 PMCID: PMC11230420 DOI: 10.1101/2024.06.25.600681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
With within-species genetic diversity estimates that span the gambit of that seen across the entirety of animals, the Caenorhabditis genus of nematodes holds unique potential to provide insights into how population size and reproductive strategies influence gene and genome organization and evolution. Our study focuses on Caenorhabditis brenneri, currently known as one of the most genetically diverse nematodes within its genus and metazoan phyla. Here, we present a high-quality gapless genome assembly and annotation for C. brenneri, revealing a common nematode chromosome arrangement characterized by gene-dense central regions and repeat rich peripheral parts. Comparison of C. brenneri with other nematodes from the 'Elegans' group revealed conserved macrosynteny but a lack of microsynteny, characterized by frequent rearrangements and low correlation iof orthogroup sizes, indicative of high rates of gene turnover. We also assessed genome organization within corresponding syntenic blocks in selfing and outcrossing species, affirming that selfing species predominantly experience loss of both genes and intergenic DNA. Comparison of gene structures revealed strikingly small number of shared introns across species, yet consistent distributions of intron number and length, regardless of population size or reproductive mode, suggesting that their evolutionary dynamics are primarily reflective of functional constraints. Our study provides valuable insights into genome evolution and expands the nematode genome resources with the highly genetically diverse C. brenneri, facilitating research into various aspects of nematode biology and evolutionary processes.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
2
|
Woodruff GC, Willis JH, Phillips PC. Patterns of Genomic Diversity in a Fig-Associated Close Relative of Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae020. [PMID: 38302111 PMCID: PMC10883733 DOI: 10.1093/gbe/evae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
The evolution of reproductive mode is expected to have profound impacts on the genetic composition of populations. At the same time, ecological interactions can generate close associations among species, which can in turn generate a high degree of overlap in their spatial distributions. Caenorhabditis elegans is a hermaphroditic nematode that has enabled extensive advances in developmental genetics. Caenorhabditis inopinata, the sister species of C. elegans, is a gonochoristic nematode that thrives in figs and obligately disperses on fig wasps. Here, we describe patterns of genomic diversity in C. inopinata. We performed RAD-seq on individual worms isolated from the field across three Okinawan island populations. C. inopinata is about five times more diverse than C. elegans. Additionally, C. inopinata harbors greater differences in diversity among functional genomic regions (such as between genic and intergenic sequences) than C. elegans. Conversely, C. elegans harbors greater differences in diversity between high-recombining chromosome arms and low-recombining chromosome centers than C. inopinata. FST is low among island population pairs, and clear population structure could not be easily detected among islands, suggesting frequent migration of wasps between islands. These patterns of population differentiation appear comparable with those previously reported in its fig wasp vector. These results confirm many theoretical population genetic predictions regarding the evolution of reproductive mode and suggest C. inopinata population dynamics may be driven by wasp dispersal. This work sets the stage for future evolutionary genomic studies aimed at understanding the evolution of sex as well as the evolution of ecological interactions.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
- Present address: Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
4
|
Teterina AA, Coleman-Hulbert AL, Banse SA, Willis JH, Perez VI, Lithgow GJ, Driscoll M, Phillips PC. Genetic diversity estimates for the Caenorhabditis Intervention Testing Program screening panel. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000518. [PMID: 35098051 PMCID: PMC8796004 DOI: 10.17912/micropub.biology.000518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 11/06/2022]
Abstract
The Caenorhabditis Intervention Testing Program (CITP) was founded on the principle that compounds with positive effects across a genetically diverse test-set should have an increased probability of engaging conserved biochemical pathways with mammalian translational potential. To fulfill its mandate, the CITP uses a genetic diversity panel of Caenorhabditis strains for assaying longevity effects of candidate compounds. The panel comprises 22 strains from three different species, collected globally, to achieve inter-population genetic diversity. The three represented species, C. elegans, C. briggsae, and C. tropicalis, are all sequential hermaphrodites, which simplifies experimental procedures while maximizing intra-population homogeneity. Here, we present estimates of the genetic diversity encapsulated by the constituent strains in the panel based on their most recently published and publicly available whole-genome sequences, as well as two newly generated genomic data sets. We observed average genome-wide nucleotide diversity (π) within the C. elegans (1.2e-3), C. briggsae (7.5e-3), and C. tropicalis strains (2.6e-3) greater than estimates for human populations, and comparable to that found in mouse populations. Our analysis supports the assumption that the CITP screening panel encompasses broad genetic diversity, suggesting that lifespan-extending chemicals with efficacy across the panel should be enriched for interventions that function on conserved processes that are shared across genetic backgrounds. While the diversity panel was established by the CITP for studying longevity interventions, the panel may prove useful for the broader research community when seeking broadly efficacious interventions for any phenotype with potential genetic background effects.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA,
Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | | - Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Viviana I Perez
- Division of Aging Biology, National Institute on Aging, Bethesda, MD, 20892, USA
| | - Gordon J Lithgow
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Monica Driscoll
- Rutgers University, Dept. of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA,
Correspondence to: Patrick C Phillips ()
| |
Collapse
|
5
|
Wang W, Flury AG, Garrison JL, Brem RB. Cold Survival and Its Molecular Mechanisms in a Locally Adapted Nematode Population. Genome Biol Evol 2021; 13:evab188. [PMID: 34383891 PMCID: PMC8449824 DOI: 10.1093/gbe/evab188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Since Darwin, evolutionary biologists have sought to understand the drivers and mechanisms of natural trait diversity. The field advances toward this goal with the discovery of phenotypes that vary in the wild, their relationship to ecology, and their underlying genes. Here, we established resistance to extreme low temperature in the free-living nematode Caenorhabditis briggsae as an ecological and evolutionary model system. We found that C. briggsae strains of temperate origin were strikingly more cold-resistant than those isolated from tropical localities. Transcriptional profiling revealed expression patterns unique to the resistant temperate ecotype, including dozens of genes expressed at high levels even after multiple days of cold-induced physiological slowdown. Mutational analysis validated a role in cold resistance for seven such genes. These findings highlight a candidate case of robust, genetically complex adaptation in an emerging model nematode, and shed light on the mechanisms at play.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, California, USA
- Leonard Davis School of Gerontology, University of Southern California, USA
- Department of Cellular and Molecular Pharmacology, UC San Francisco, USA
- Global Consortium for Reproductive Longevity & Equality, Novato, California, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, California, USA
- Department of Plant and Microbial Biology, UC Berkeley, USA
- Leonard Davis School of Gerontology, University of Southern California, USA
| |
Collapse
|
6
|
Teterina AA, Willis JH, Phillips PC. Chromosome-Level Assembly of the Caenorhabditis remanei Genome Reveals Conserved Patterns of Nematode Genome Organization. Genetics 2020; 214:769-780. [PMID: 32111628 PMCID: PMC7153949 DOI: 10.1534/genetics.119.303018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
The nematode Caenorhabditis elegans is one of the key model systems in biology, including possessing the first fully assembled animal genome. Whereas C. elegans is a self-reproducing hermaphrodite with fairly limited within-population variation, its relative C. remanei is an outcrossing species with much more extensive genetic variation, making it an ideal parallel model system for evolutionary genetic investigations. Here, we greatly improve on previous assemblies by generating a chromosome-level assembly of the entire C. remanei genome (124.8 Mb of total size) using long-read sequencing and chromatin conformation capture data. Like other fully assembled genomes in the genus, we find that the C. remanei genome displays a high degree of synteny with C. elegans despite multiple within-chromosome rearrangements. Both genomes have high gene density in central regions of chromosomes relative to chromosome ends and the opposite pattern for the accumulation of repetitive elements. C. elegans and C. remanei also show similar patterns of interchromosome interactions, with the central regions of chromosomes appearing to interact with one another more than the distal ends. The new C. remanei genome presented here greatly augments the use of the Caenorhabditis as a platform for comparative genomics and serves as a basis for molecular population genetics within this highly diverse species.
Collapse
Affiliation(s)
- Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
- Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 117071, Russia
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
7
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
8
|
GIBSON AMANDAK, MORRAN LEVIT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2018. [DOI: 10.21307/jofnem-2017-083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Gibson AK, Morran LT. A Model for Evolutionary Ecology of Disease: The Case for Caenorhabditis Nematodes and Their Natural Parasites. J Nematol 2017; 49:357-372. [PMID: 29353923 PMCID: PMC5770282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 06/07/2023] Open
Abstract
Many of the outstanding questions in disease ecology and evolution call for combining observation of natural host-parasite populations with experimental dissection of interactions in the field and the laboratory. The "rewilding" of model systems holds great promise for this endeavor. Here, we highlight the potential for development of the nematode Caenorhabditis elegans and its close relatives as a model for the study of disease ecology and evolution. This powerful laboratory model was disassociated from its natural habitat in the 1960s. Today, studies are uncovering that lost natural history, with several natural parasites described since 2008. Studies of these natural Caenorhabditis-parasite interactions can reap the benefits of the vast array of experimental and genetic tools developed for this laboratory model. In this review, we introduce the natural parasites of C. elegans characterized thus far and discuss resources available to study them, including experimental (co)evolution, cryopreservation, behavioral assays, and genomic tools. Throughout, we present avenues of research that are interesting and feasible to address with caenorhabditid nematodes and their natural parasites, ranging from the maintenance of outcrossing to the community dynamics of host-associated microbes. In combining natural relevance with the experimental power of a laboratory supermodel, these fledgling host-parasite systems can take on fundamental questions in evolutionary ecology of disease.
Collapse
Affiliation(s)
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
10
|
Subirana JA, Messeguer X. Evolution of Tandem Repeat Satellite Sequences in Two Closely Related Caenorhabditis Species. Diminution of Satellites in Hermaphrodites. Genes (Basel) 2017; 8:genes8120351. [PMID: 29182550 PMCID: PMC5748669 DOI: 10.3390/genes8120351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023] Open
Abstract
The availability of the genome sequence of the unisexual (male-female) Caenorhabditis nigoni offers an opportunity to compare its non-coding features with the related hermaphroditic species Caenorhabditis briggsae; to understand the evolutionary dynamics of their tandem repeat sequences (satellites), as a result of evolution from the unisexual ancestor. We take advantage of the previously developed SATFIND program to build satellite families defined by a consensus sequence. The relative number of satellites (satellites/Mb) in C. nigoni is 24.6% larger than in C. briggsae. Some satellites in C. nigoni have developed from a proto-repeat present in the ancestor species and are conserved as an isolated sequence in C. briggsae. We also identify unique satellites which occur only once and joint satellite families with a related sequence in both species. Some of these families are only found in C. nigoni, which indicates a recent appearance; they contain conserved adjacent 5′ and 3′ regions, which may favor transposition. Our results show that the number, length and turnover of satellites are restricted in the hermaphrodite C. briggsae when compared with the unisexual C. nigoni. We hypothesize that this results from differences in unequal recombination during meiotic chromosome pairing, which limits satellite turnover in hermaphrodites.
Collapse
Affiliation(s)
- Juan A Subirana
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
- Evolutionary Genomics Group, Research Program on Biomedical Informatics (GRIB)-Hospital del Mar Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Doctor Aiguader 86, 08003 Barcelona, Spain.
| | - Xavier Messeguer
- Department of Computer Science, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Mol Ecol 2017; 26:4197-4210. [DOI: 10.1111/mec.14196] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- V. Settepani
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - M. F. Schou
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - M. Greve
- Department of Plant Science; University of Pretoria; Hatfield South Africa
| | - L. Grinsted
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - J. Bechsgaard
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - T. Bilde
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| |
Collapse
|
12
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
13
|
Fontcuberta García-Cuenca A, Dumas Z, Schwander T. Extreme genetic diversity in asexual grass thrips populations. J Evol Biol 2016; 29:887-99. [PMID: 26864612 DOI: 10.1111/jeb.12843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/03/2016] [Indexed: 12/01/2022]
Abstract
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.
Collapse
Affiliation(s)
| | - Z Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Chen HY, Spagopoulou F, Maklakov AA. Evolution of male age-specific reproduction under differential risks and causes of death: males pay the cost of high female fitness. J Evol Biol 2016; 29:848-56. [DOI: 10.1111/jeb.12833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
Affiliation(s)
- H.-y. Chen
- Ageing Research Group; Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - F. Spagopoulou
- Ageing Research Group; Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - A. A. Maklakov
- Ageing Research Group; Department of Animal Ecology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
15
|
Ebel ER, Phillips PC. Intrinsic differences between males and females determine sex-specific consequences of inbreeding. BMC Evol Biol 2016; 16:36. [PMID: 26860745 PMCID: PMC4748534 DOI: 10.1186/s12862-016-0604-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inbreeding increases homozygosity and exposes deleterious recessive alleles, generally decreasing the fitness of inbred individuals. Interestingly, males and females are usually affected differently by inbreeding, though the more vulnerable sex depends on the species and trait measured. RESULTS We used the soil-dwelling nematode Caenorhabditis remanei to examine sex-specific inbreeding depression across nine lineages, five levels of inbreeding, and hundreds of thousands of progeny. Female nematodes consistently suffered greater fitness losses than their male counterparts, especially at high levels of inbreeding. CONCLUSIONS These results suggest that females experience stronger selection on genes contributing to reproductive traits. Inbreeding depression in males may be further reduced by sex chromosome hemizygosity, which affects the dominance of some mutations, as well as by the absence of sexual selection. Determining the relative contributions of sex-specific expression, genes on the sex chromosomes, and the environment they are filtered through-including opportunities for sexual selection-may explain the frequent though inconsistent records of sex differences in inbreeding depression, along with their implications for conservation and the evolution of mating systems.
Collapse
Affiliation(s)
- Emily R Ebel
- Institute of Ecology and Evolution and Department of Biology, 5289 University of Oregon, 97403, Eugene, Oregon, USA.,Present address: Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution and Department of Biology, 5289 University of Oregon, 97403, Eugene, Oregon, USA.
| |
Collapse
|
16
|
Settepani V, Bechsgaard J, Bilde T. Phylogenetic analysis suggests that sociality is associated with reduced effectiveness of selection. Ecol Evol 2016; 6:469-77. [PMID: 26843931 PMCID: PMC4729245 DOI: 10.1002/ece3.1886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 11/07/2022] Open
Abstract
The evolution of sociality in spiders is associated with female bias, reproductive skew and an inbreeding mating system, factors that cause a reduction in effective population size and increase effects of genetic drift. These factors act to decrease the effectiveness of selection, thereby increasing the fixation probability of deleterious mutations. Comparative studies of closely related species with contrasting social traits and mating systems provide the opportunity to test consequences of low effective population size on the effectiveness of selection empirically. We used phylogenetic analyses of three inbred social spider species and seven outcrossing subsocial species of the genus Stegodyphus, and compared dN/dS ratios and codon usage bias between social Inbreeding and subsocial outcrossing mating systems to assess the effectiveness of selection. The overall results do not differ significantly between the social inbreeding and outcrossing species, but suggest a tendency for lower codon usage bias and higher dN/dS ratios in the social inbreeding species compared with their outcrossing congeners. The differences in dN/dS ratio and codon usage bias between social and subsocial species are modest but consistent with theoretical expectations of reduced effectiveness of selection in species with relatively low effective population size. The modest differences are consistent with relatively recent evolution of social mating systems. Additionally, the short terminal branches and lack of speciation of the social lineages, together with low genetic diversity lend support for the transient state of permanent sociality in spiders.
Collapse
Affiliation(s)
- Virginia Settepani
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| | - Jesper Bechsgaard
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| | - Trine Bilde
- Department of BioscienceAarhus UniversityNy Munkegade 116, Building 15408000Aarhus CDenmark
| |
Collapse
|
17
|
Kasl EL, McAllister CT, Robison HW, Connior MB, Font WF, Criscione CD. Evolutionary consequence of a change in life cycle complexity: A link between precocious development and evolution toward female-biased sex allocation in a hermaphroditic parasite. Evolution 2015; 69:3156-70. [PMID: 26508113 DOI: 10.1111/evo.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/10/2015] [Indexed: 11/29/2022]
Abstract
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites.
Collapse
Affiliation(s)
- Emily L Kasl
- Department of Biology, Texas A&M University, College Station, Texas.
| | - Chris T McAllister
- Science and Mathematics Division, Eastern Oklahoma State College, Idabel, Oklahoma
| | - Henry W Robison
- Department of Biology, Southern Arkansas University, Magnolia, Arkansas
| | - Matthew B Connior
- Life Sciences, Northwest Arkansas Community College, Bentonville, Arkansas
| | - William F Font
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana
| | | |
Collapse
|
18
|
Abstract
A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety.
Collapse
Affiliation(s)
- John C Avise
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
19
|
Palopoli MF, Peden C, Woo C, Akiha K, Ary M, Cruze L, Anderson JL, Phillips PC. Natural and experimental evolution of sexual conflict within Caenorhabditis nematodes. BMC Evol Biol 2015; 15:93. [PMID: 25994934 PMCID: PMC4455605 DOI: 10.1186/s12862-015-0377-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/08/2015] [Indexed: 12/04/2022] Open
Abstract
Background Although males and females need one another in order to reproduce, they often have different reproductive interests, which can lead to conflict between the sexes. The intensity and frequency of male-male competition for fertilization opportunities is thought to be an important contributor to this conflict. The nematode genus Caenorhabditis provides an opportunity to test this hypothesis because the frequency of males varies widely among species with different mating systems. Results We find evidence that there is strong inter- and intra-sexual conflict within C. remanei, a dioecious species composed of equal frequencies of males and females. In particular, some C. remanei males greatly reduce female lifespan following mating, and their sperm have a strong competitive advantage over the sperm of other males. In contrast, our results suggest that both types of conflict have been greatly reduced within C. elegans, which is an androdioecious species that is composed of self-fertilizing hermaphrodites and rare males. Using experimental evolution in mutant C. elegans populations in which sperm production is blocked in hermaphrodites (effectively converting them to females), we find that the consequences of sexual conflict observed within C. remanei evolve rapidly within C. elegans populations experiencing high levels of male-male competition. Conclusions Together, these complementary data sets support the hypothesis that the intensity of intersexual conflict varies with the intensity of competition among males, and that male-induced collateral damage to mates can evolve very rapidly within populations.
Collapse
Affiliation(s)
| | - Colin Peden
- Institute of Ecology and Evolution, University of Oregon, OR 97403, Eugene, USA.
| | - Caitlin Woo
- Department of Biology, Bowdoin College, ME 04011, Brunswick, USA.
| | - Ken Akiha
- Department of Biology, Bowdoin College, ME 04011, Brunswick, USA.
| | - Megan Ary
- Institute of Ecology and Evolution, University of Oregon, OR 97403, Eugene, USA. .,Current address: South Lane School District, OR 97424, Cottage Grove, USA.
| | - Lori Cruze
- Institute of Ecology and Evolution, University of Oregon, OR 97403, Eugene, USA. .,Current address: Department of Obstetrics and Gynecology, Medical University of South Carolina, SC 29412, Charleston, USA.
| | - Jennifer L Anderson
- Institute of Ecology and Evolution, University of Oregon, OR 97403, Eugene, USA. .,Current address: INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, OR 97403, Eugene, USA.
| |
Collapse
|
20
|
Mayer F, Piel FB, Cassel-Lundhagen A, Kirichenko N, Grumiau L, Økland B, Bertheau C, Grégoire JC, Mardulyn P. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Mol Ecol 2015; 24:1292-310. [PMID: 25655781 DOI: 10.1111/mec.13104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/01/2022]
Abstract
While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species-specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree-killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles' entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I. typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long-standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced.
Collapse
Affiliation(s)
- François Mayer
- Lutte Biologique et Ecologie Spatiale, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Settepani V, Bechsgaard J, Bilde T. Low genetic diversity and strong but shallow population differentiation suggests genetic homogenization by metapopulation dynamics in a social spider. J Evol Biol 2014; 27:2850-5. [DOI: 10.1111/jeb.12520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 01/10/2023]
Affiliation(s)
- V. Settepani
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - J. Bechsgaard
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - T. Bilde
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| |
Collapse
|
22
|
A recent global selective sweep on the age-1 phosphatidylinositol 3-OH kinase regulator of the insulin-like signaling pathway within Caenorhabditis remanei. G3-GENES GENOMES GENETICS 2014; 4:1123-33. [PMID: 24727287 PMCID: PMC4065255 DOI: 10.1534/g3.114.010629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery that genetic pathways can be manipulated to extend lifespan has revolutionized our understanding of aging, yet their function within natural populations remains poorly characterized. In particular, evolutionary theories of aging predict tradeoffs in resource investment toward somatic maintenance vs. reproductive output that should impose strong natural selection on genetic components that influence this balance. To explore such selective pressure at the molecular level, we examine population genetic variation in the insulin-like signaling pathway of the nematode Caenorhabditis remanei. We document a recent global selective sweep on the phosphoinositide-3-kinase pathway regulator, age-1, the first life-extension gene to have been identified. In particular, we find that age-1 has 5−20 times less genetic variation than any other insulin-like signaling pathway components and that evolutionary signatures of selection center on the age-1 locus within its genomic environment. These results demonstrate that critical components of aging-related pathways can be subject to shifting patterns of strong selection, as predicted by theory. This highly polymorphic outcrossing species offers high-resolution, population-level analyses of molecular variation as a complement to functional genetic studies within the self-reproducing C. elegans model system.
Collapse
|
23
|
Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2014; 4:1103-12. [PMID: 24727288 PMCID: PMC4065253 DOI: 10.1534/g3.114.010553] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/22/2022]
Abstract
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289 Department of Biology, William Jewell College, Liberty, Missouri 64068
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| |
Collapse
|
24
|
Vergara IA, Tarailo-Graovac M, Frech C, Wang J, Qin Z, Zhang T, She R, Chu JSC, Wang K, Chen N. Genome-wide variations in a natural isolate of the nematode Caenorhabditis elegans. BMC Genomics 2014; 15:255. [PMID: 24694239 PMCID: PMC4023591 DOI: 10.1186/1471-2164-15-255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 03/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Increasing genetic and phenotypic differences found among natural isolates of C. elegans have encouraged researchers to explore the natural variation of this nematode species. Results Here we report on the identification of genomic differences between the reference strain N2 and the Hawaiian strain CB4856, one of the most genetically distant strains from N2. To identify both small- and large-scale genomic variations (GVs), we have sequenced the CB4856 genome using both Roche 454 (~400 bps single reads) and Illumina GA DNA sequencing methods (101 bps paired-end reads). Compared to previously described variants (available in WormBase), our effort uncovered twice as many single nucleotide variants (SNVs) and increased the number of small InDels almost 20-fold. Moreover, we identified and validated large insertions, most of which range from 150 bps to 1.2 kb in length in the CB4856 strain. Identified GVs had a widespread impact on protein-coding sequences, including 585 single-copy genes that have associated severe phenotypes of reduced viability in RNAi and genetics studies. Sixty of these genes are homologs of human genes associated with diseases. Furthermore, our work confirms previously identified GVs associated with differences in behavioural and biological traits between the N2 and CB4856 strains. Conclusions The identified GVs provide a rich resource for future studies that aim to explain the genetic basis for other trait differences between the N2 and CB4856 strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
25
|
Li S, Jovelin R, Yoshiga T, Tanaka R, Cutter AD. Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proc Biol Sci 2014; 281:20132858. [PMID: 24403340 DOI: 10.1098/rspb.2013.2858] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica's life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.
Collapse
Affiliation(s)
- Shuning Li
- Department of Ecology and Evolutionary Biology, University of Toronto, , Toronto, Ontario, Canada , M5S 3B2, Department of Applied Biological Sciences, Saga University, , Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Jovelin R, Cutter AD. Fine-scale signatures of molecular evolution reconcile models of indel-associated mutation. Genome Biol Evol 2013; 5:978-86. [PMID: 23558593 PMCID: PMC3673634 DOI: 10.1093/gbe/evt051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic structural alterations that vary within species, known as large copy number variants, represent an unanticipated and abundant source of genetic diversity that associates with variation in gene expression and susceptibility to disease. Even short insertions and deletions (indels) can exert important effects on genomes by locally increasing the mutation rate, with multiple mechanisms proposed to account for this pattern. To better understand how indels promote genome evolution, we demonstrate that the single nucleotide mutation rate is elevated in the vicinity of indels, with a resolution of tens of base pairs, for the two closely related nematode species Caenorhabditis remanei and C. sp. 23. In addition to indels being clustered with single nucleotide polymorphisms and fixed differences, we also show that transversion mutations are enriched in sequences that flank indels and that many indels associate with sequence repeats. These observations are compatible with a model that reconciles previously proposed mechanisms of indel-associated mutagenesis, implicating repeat sequences as a common driver of indel errors, which then recruit error-prone polymerases during DNA repair, resulting in a locally elevated single nucleotide mutation rate. The striking influence of indel variants on the molecular evolution of flanking sequences strengthens the emerging general view that mutations can induce further mutations.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
27
|
Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. OUTBREEDING DEPRESSION WITH LOW GENETIC VARIATION IN SELFINGCAENORHABDITISNEMATODES. Evolution 2013; 67:3087-101. [DOI: 10.1111/evo.12203] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Clotilde Gimond
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Shery Han
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Céline Ferrari
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
28
|
Reynolds RM, Phillips PC. Natural variation for lifespan and stress response in the nematode Caenorhabditis remanei. PLoS One 2013; 8:e58212. [PMID: 23658604 PMCID: PMC3637273 DOI: 10.1371/journal.pone.0058212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
Genetic approaches (e.g. mutation, RNA interference) in model organisms, particularly the nematode Caenorhabditis elegans, have yielded a wealth of information on cellular processes that can influence lifespan. Although longevity mutants discovered in the lab are instructive of cellular physiology, lab studies might miss important genes that influence health and longevity in the wild. C. elegans has relatively low natural genetic variation and high levels of linkage disequilibrium, and thus is not optimal for studying natural variation in longevity. In contrast, its close relative C. remanei possesses very high levels of molecular genetic variation and low levels of linkage disequilibrium. To determine whether C. remanei may be a good model system for the study of natural genetic variation in aging, we evaluated levels of quantitative genetic variation for longevity and resistance to oxidative, heat and UV stress. Heritability (and the coefficient of additive genetic variation) was high for oxidative and heat stress resistance, low (but significant) for longevity, and essentially zero for UV stress response. Our results suggest that C. remanei may be a powerful system for studying natural genetic variation for longevity and oxidative and heat stress response, as well as an informative model for the study of functional relationships between longevity and stress response.
Collapse
Affiliation(s)
- Rose M. Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
29
|
Félix MA, Jovelin R, Ferrari C, Han S, Cho YR, Andersen EC, Cutter AD, Braendle C. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evol Biol 2013; 13:10. [PMID: 23311925 PMCID: PMC3556333 DOI: 10.1186/1471-2148-13-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. METHODS Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. RESULTS Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. CONCLUSIONS The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS - ENS - INSERM, 46 rue d’Ulm, Paris cedex 05, 75230, France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Céline Ferrari
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| | - Shery Han
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Young Ran Cho
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Erik C Andersen
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS, UMR7277, Parc Valrose, Nice cedex 02, 06108, France
- INSERM, U1091, Nice cedex 02, 06108, France
- University of Nice Sophia Antipolis, UFR Sciences, Nice cedex 02, 06108, France
| |
Collapse
|
30
|
Hazzouri KM, Escobar JS, Ness RW, Killian Newman L, Randle AM, Kalisz S, Wright SI. Comparative population genomics in Collinsia sister species reveals evidence for reduced effective population size, relaxed selection, and evolution of biased gene conversion with an ongoing mating system shift. Evolution 2013; 67:1263-78. [PMID: 23617907 DOI: 10.1111/evo.12027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Selfing species experience reduced effective recombination rates and effective population size, which can lead to reductions in polymorphism and the efficacy of natural selection. Here, we use illumina transcriptome sequencing and population resequencing to test for changes in polymorphism, base composition, and selection in the selfing angiosperm Collinsia rattanii (Plantaginaceae) compared with its more outcrossing sister species Collinsia linearis. Coalescent analysis indicates intermediate species divergence (500,000-1 million years) with no ongoing gene flow, but also evidence that the C. rattanii clade remains polymorphic for floral morphology and mating system, suggesting either an ongoing shift to selfing or a potential reversal from selfing to outcrossing. We identify a significant reduction in polymorphism in C. rattanii, particularly within populations. Analysis of polymorphisms suggests an elevated ratio of unique nonsynonymous to synonymous polymorphism in C. rattanii, consistent with relaxed selection in selfing lineages. We additionally find higher linkage disequilibrium and differentiation, lower GC content at variable sites, and reduced expression of genes important in pollen production and pollinator attraction in C. rattanii compared with C. linearis. Together, our results highlight the potential for rapid shifts in the efficacy of selection, gene expression and base composition associated with ongoing evolution of selfing.
Collapse
Affiliation(s)
- Khaled M Hazzouri
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Using Caenorhabditis to Explore the Evolution of the Germ Line. GERM CELL DEVELOPMENT IN C. ELEGANS 2013; 757:405-25. [DOI: 10.1007/978-1-4614-4015-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Mos1-mediated transgenesis to probe consequences of single gene mutations in variation-rich isolates of Caenorhabditis elegans. PLoS One 2012; 7:e48762. [PMID: 23155404 PMCID: PMC3498238 DOI: 10.1371/journal.pone.0048762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022] Open
Abstract
Caenorhabditis elegans, especially the N2 isolate, is an invaluable biological model system. Numerous additional natural C. elegans isolates have been shown to have unexpected genotypic and phenotypic variations which has encouraged researchers to use next generation sequencing methodology to develop a more complete picture of genotypic variations among the isolates. To understand the phenotypic effects of a genomic variation (GV) on a single gene, in a variation-rich genetic background, one should analyze that particular GV in a well understood genetic background. In C. elegans, the analysis is usually done in N2, which requires extensive crossing to bring in the GV. This can be a very time consuming procedure thus it is important to establish a fast and efficient approach to test the effect of GVs from different isolates in N2. Here we use a Mos1-mediated single-copy insertion (MosSCI) method for phenotypic assessments of GVs from the variation-rich Hawaiian strain CB4856 in N2. Specifically, we investigate effects of variations identified in the CB4856 strain on tac-1 which is an essential gene that is necessary for mitotic spindle elongation and pronuclear migration. We show the usefulness of the MosSCI method by using EU1004 tac-1(or402) as a control. or402 is a temperature sensitive lethal allele within a well-conserved TACC domain (transforming acidic coiled-coil) that results in a leucine to phenylalanine change at amino acid 229. CB4856 contains a variation that affects the second exon of tac-1 causing a cysteine to tryptophan change at amino acid 94 also within the TACC domain. Using the MosSCI method, we analyze tac-1 from CB4856 in the N2 background and demonstrate that the C94W change, albeit significant, does not cause any obvious decrease in viability. This MosSCI method has proven to be a rapid and efficient way to analyze GVs.
Collapse
|
33
|
Agnarsson I, Avilés L, Maddison WP. Loss of genetic variability in social spiders: genetic and phylogenetic consequences of population subdivision and inbreeding. J Evol Biol 2012; 26:27-37. [PMID: 23145542 PMCID: PMC3588177 DOI: 10.1111/jeb.12022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/20/2012] [Indexed: 11/29/2022]
Abstract
The consequences of population subdivision and inbreeding have been studied in many organisms, particularly in plants. However, most studies focus on the short-term consequences, such as inbreeding depression. To investigate the consequences of both population fragmentation and inbreeding for genetic variability in the longer term, we here make use of a natural inbreeding experiment in spiders, where sociality and accompanying population subdivision and inbreeding have evolved repeatedly. We use mitochondrial and nuclear data to infer phylogenetic relationships among 170 individuals of Anelosimus spiders representing 23 species. We then compare relative mitochondrial and nuclear genetic variability of the inbred social species and their outbred relatives. We focus on four independently derived social species and four subsocial species, including two outbred–inbred sister species pairs. We find that social species have 50% reduced mitochondrial sequence divergence. As inbreeding is not expected to reduce genetic variability in the maternally inherited mitochondrial genome, this suggests the loss of variation due to strong population subdivision, founder effects, small effective population sizes (colonies as individuals) and lineage turnover. Social species have < 10% of the nuclear genetic variability of the outbred species, also suggesting the loss of genetic variability through founder effects and/or inbreeding. Inbred sociality hence may result in reduction in variability through various processes. Sociality in most Anelosimus species probably arose relatively recently (0.1–2 mya), with even the oldest social lineages having failed to diversify. This is consistent with the hypothesis that inbred spider sociality represents an evolutionary dead end. Heterosis underlies a species potential to respond to environmental change and/or disease. Inbreeding and loss of genetic variability may thus limit diversification in social Anelosimus lineages and similarly pose a threat to many wild populations subject to habitat fragmentation or reduced population sizes.
Collapse
Affiliation(s)
- I Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA.
| | | | | |
Collapse
|
34
|
More than the sum of its parts: a complex epistatic network underlies natural variation in thermal preference behavior in Caenorhabditis elegans. Genetics 2012; 192:1533-42. [PMID: 23086219 DOI: 10.1534/genetics.112.142877] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Behavior is a complex trait that results from interactions among multiple genes and the environment. Both additive and nonadditive effects are expected to contribute to broad-sense heritability of complex phenotypes, although the relative contribution of each of these mechanisms is unknown. Here, we mapped genetic variation in the correlated phenotypes of thermal preference and isothermal dispersion in the nematode Caenorhabditis elegans. Genetic variation underlying these traits is characterized by a set of linked quantitative trait loci (QTL) that interact in a complex epistatic network. In particular, two loci located on the X chromosome interact with one another to generate extreme thermophilic behavior and are responsible for ∼50% of the total variation observed in a cross between two parental lines, even though these loci individually explain very little of the among-line variation. Our results demonstrate that simultaneously considering the influence of a quantitative trait locus (QTL) on multiple scales of behavior can inform the physiological mechanism of the QTL and show that epistasis can explain significant proportions of otherwise unattributed variance within populations.
Collapse
|
35
|
Andersen HF, Jordal BH, Kambestad M, Kirkendall LR. Improbable but true: the invasive inbreeding ambrosia beetle Xylosandrus morigerus has generalist genotypes. Ecol Evol 2012; 2:247-57. [PMID: 22408740 PMCID: PMC3297192 DOI: 10.1002/ece3.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/05/2022] Open
Abstract
The wide distribution and dominance of invasive inbreeding species in many forest ecosystems seems paradoxical in face of their limited genetic variation. Successful establishment of invasive species in new areas is nevertheless facilitated by clonal reproduction: parthenogenesis, regular self-fertilization, and regular inbreeding. The success of clonal lineages in variable environments has been explained by two models, the frozen niche variation (FNV) model and the general-purpose genotype (GPG) model. We tested these models on a widely distributed forest pest that has been recently established in Costa Rica-the sibling-mating ambrosia beetle Xylosandrus morigerus. Two deeply diverged mitochondrial haplotypes coexist at multiple sites in Costa Rica. We find that these two haplotypes do not differ in their associations with ecological factors. Overall the two haplotypes showed complete overlap in their resource utilization; both genotypes have broad niches, supporting the GPG model. Thus, probable or not, our findings suggest that X. morigerus is a true ecological generalist. Clonal aspects of reproduction coupled with broad niches are doubtless important factors in the successful colonization of new habitats in distant regions.
Collapse
|
36
|
Global population genetic structure of Caenorhabditis remanei reveals incipient speciation. Genetics 2012; 191:1257-69. [PMID: 22649079 DOI: 10.1534/genetics.112.140418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.
Collapse
|
37
|
Thomas CG, Woodruff GC, Haag ES. Causes and consequences of the evolution of reproductive mode in Caenorhabditis nematodes. Trends Genet 2012; 28:213-20. [PMID: 22480920 DOI: 10.1016/j.tig.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022]
Abstract
Reproduction is directly connected to the suite of developmental and physiological mechanisms that enable it, but how it occurs also has consequences for the genetics, ecology and longer term evolutionary potential of a lineage. In the nematode Caenorhabditis elegans, anatomically female XX worms can self-fertilize their eggs. This ability evolved recently and in multiple Caenorhabditis lineages from male-female ancestors, providing a model for examining both the developmental causes and longer term consequences of a novel, convergently evolved reproductive mode. Here, we review recent work that implicates translation control in the evolution of XX spermatogenesis, with different selfing lineages possessing both reproducible and idiosyncratic features. We also discuss the consequences of selfing, which leads to a rapid loss of variation and relaxation of natural and sexual selection on mating-related traits, and may ultimately put selfing lineages at a higher risk of extinction.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
38
|
Wei DD, Yuan ML, Wang BJ, Zhou AW, Dou W, Wang JJ. Population genetics of two asexually and sexually reproducing psocids species inferred by the analysis of mitochondrial and nuclear DNA sequences. PLoS One 2012; 7:e33883. [PMID: 22479465 PMCID: PMC3313955 DOI: 10.1371/journal.pone.0033883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/19/2012] [Indexed: 02/06/2023] Open
Abstract
Background The psocids Liposcelis bostrychophila and L. entomophila (Psocoptera: Liposcelididae) are found throughout the world and are often associated with humans, food stores and habitations. These insects have developed high levels of resistance to various insecticides in grain storage systems. However, the population genetic structure and gene flow of psocids has not been well categorized, which is helpful to plan appropriate strategies for the control of these pests. Methodology/Principal Findings The two species were sampled from 15 localities in China and analyzed for polymorphisms at the mitochondrial DNA (Cytb) and ITS (ITS1-5.8S-ITS2) regions. In total, 177 individual L. bostrychophila and 272 individual L. entomophila were analysed. Both Cytb and ITS sequences showed high genetic diversity for the two species with haplotype diversities ranged from 0.154±0.126 to 1.000±0.045, and significant population differentiation (mean FST = 0.358 for L. bostrychophila; mean FST = 0.336 for L. entomophila) was also detected among populations investigated. A Mantel test indicated that for both species there was no evidence for isolation-by-distance (IBD). The neutrality test and mismatch distribution statistics revealed that the two species might have undergone population expansions in the past. Conclusion Both L. bostrychophila and L. entomophila displayed high genetic diversity and widespread population genetic differentiation within and between populations. The significant population differentiation detected for both psocids may be mainly due to other factors, such as genetic drift, inbreeding or control practices, and less by geographic distance since an IBD effect was not found.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, People's Republic of China
- * E-mail:
| |
Collapse
|
39
|
Frankham R. How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity (Edinb) 2012; 108:167-78. [PMID: 21878983 PMCID: PMC3282390 DOI: 10.1038/hdy.2011.66] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 06/21/2011] [Accepted: 06/27/2011] [Indexed: 11/09/2022] Open
Abstract
Levels of genetic diversity in finite populations are crucial in conservation and evolutionary biology. Genetic diversity is required for populations to evolve and its loss is related to inbreeding in random mating populations, and thus to reduced population fitness and increased extinction risk. Neutral theory is widely used to predict levels of genetic diversity. I review levels of genetic diversity in finite populations in relation to predictions of neutral theory. Positive associations between genetic diversity and population size, as predicted by neutral theory, are observed for microsatellites, allozymes, quantitative genetic variation and usually for mitochondrial DNA (mtDNA). However, there are frequently significant deviations from neutral theory owing to indirect selection at linked loci caused by balancing selection, selective sweeps and background selection. Substantially lower genetic diversity than predicted under neutrality was found for chromosomes with low recombination rates and high linkage disequilibrium (compared with 'normally' recombining chromosomes within species and adjusted for different copy numbers and mutation rates), including W (median 100% lower) and Y (89% lower) chromosomes, dot fourth chromosomes in Drosophila (94% lower) and mtDNA (67% lower). Further, microsatellite genetic and allelic diversity were lost at 12 and 33% faster rates than expected in populations adapting to captivity, owing to widespread selective sweeps. Overall, neither neutral theory nor most versions of the genetic draft hypothesis are compatible with all empirical results.
Collapse
Affiliation(s)
- R Frankham
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
40
|
Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, Félix MA, Kruglyak L. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet 2012; 44:285-90. [PMID: 22286215 PMCID: PMC3365839 DOI: 10.1038/ng.1050] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
The nematode Caenorhabditis elegans is central to research in molecular, cell and developmental biology, but nearly all of this research has been conducted on a single strain of C. elegans. Little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation using high-throughput selective sequencing of a worldwide collection of 200 wild strains and identified 41,188 SNPs. Notably, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of its six chromosomes, each spanning many megabases. Population genetic modeling showed that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps probably occurred in the last few hundred years. These sweeps, which we hypothesize to be a result of human activity, have drastically reshaped the global C. elegans population in the recent past.
Collapse
Affiliation(s)
- Erik C. Andersen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Justin P. Gerke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Joshua A. Shapiro
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Jonathan R. Crissman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ U.S.A
| | - Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
| | - Joshua S. Bloom
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Molecular Biology, Princeton University, Princeton, NJ U.S.A
| | - Marie-Anne Félix
- Institut Jacques Monod, CNRS–Universities of Paris 6 and 7, 75251 Paris Cedex 05, France
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ U.S.A
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ U.S.A
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ U.S.A
| |
Collapse
|
41
|
Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 2011; 108:19672-7. [PMID: 22106259 DOI: 10.1073/pnas.1108068108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pleiotropic developmental regulators have been repeatedly linked to the evolution of anatomical novelties. Known mechanisms include cis-regulatory DNA changes that alter regulator transcription patterns or modify target-gene linkages. Here, we examine the role of another form of regulation, translational control, in the repeated evolution of self-fertile hermaphroditism in Caenorhabditis nematodes. Caenorhabditis elegans hermaphrodites initiate spermatogenesis in an otherwise female body through translational repression of the gene tra-2. This repression is mediated by GLD-1, an RNA-binding protein also required for oocyte meiosis and differentiation. By contrast, we show that in the convergently hermaphroditic Caenorhabditis briggsae, GLD-1 acts to promote oogenesis. The opposite functions of gld-1 in these species are not gene-intrinsic, but instead result from the unique contexts for its action that evolved in each. In C. elegans, GLD-1 became essential for promoting XX spermatogenesis via changes in the tra-2 mRNA and evolution of the species-specific protein FOG-2. C. briggsae GLD-1 became an essential repressor of sperm-promoting genes, including Cbr-puf-8, and did not evolve a strong association with tra-2. Despite its variable roles in sex determination, the function of gld-1 in female meiotic progression is ancient and conserved. This conserved role may explain why gld-1 is repeatedly recruited to regulate hermaphroditism. We conclude that, as with transcription factors, spatially localized translational regulators play important roles in the evolution of anatomical novelties.
Collapse
|
42
|
Chandler CH, Chadderdon GE, Phillips PC, Dworkin I, Janzen FJ. Experimental evolution of the Caenorhabditis elegans sex determination pathway. Evolution 2011; 66:82-93. [PMID: 22220866 DOI: 10.1111/j.1558-5646.2011.01420.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sex determination is a critical developmental decision with major ecological and evolutionary consequences, yet a large variety of sex determination mechanisms exist and we have a poor understanding of how they evolve. Theoretical and empirical work suggest that compensatory adaptations to mutations in genes involved in sex determination may play a role in the evolution of these pathways. Here, we directly address this problem using experimental evolution in Caenorhabditis elegans lines fixed for a pair of mutations in two key sex-determining genes that jointly render sex determination temperature-sensitive and cause intersexual (but still weakly to moderately fertile) phenotypes at intermediate temperatures. After 50 generations, evolved lines clearly recovered toward wild-type phenotypes. However, changes in transcript levels of key sex-determining genes in evolved lines cannot explain their partially (or in some cases, nearly completely) rescued phenotypes, implying that wild-type phenotypes can be restored independently of the transcriptional effects of these mutations. Our findings highlight the microevolutionary flexibility of sex determination pathways and suggest that compensatory adaptation to mutations can elicit novel and unpredictable evolutionary trajectories in these pathways, mirroring the phylogenetic diversity, and macroevolutionary dynamics of sex determination mechanisms.
Collapse
Affiliation(s)
- Christopher H Chandler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
43
|
MicroRNA sequence variation potentially contributes to within-species functional divergence in the nematode Caenorhabditis briggsae. Genetics 2011; 189:967-76. [PMID: 21890738 DOI: 10.1534/genetics.111.132795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mounting evidence points to differences in gene regulation as a major source of phenotypic variation. MicroRNA-mediated post-transcriptional regulation has emerged recently as a key factor controlling gene activity during development. MicroRNA genes are abundant in genomes, acting as managers of gene expression by directing translational repression. Thus, understanding the role of microRNA sequence variation within populations is essential for fully dissecting the origin and maintenance of phenotypic diversity in nature. In this study, we investigate allelic variation at microRNA loci in the nematode Caenorhabditis briggsae, a close relative of C. elegans. Phylogeographic structure in C. briggsae partitions most strains from around the globe into a "temperate" or a "tropical" clade, with a few strains having divergent, geographically restricted genotypes. Remarkably, strains that follow this latitudinal dichotomy also differ in temperature-associated fitness. With this phylogeographic pattern in mind, we examined polymorphisms in 18 miRNAs in a global sample of C. briggsae isolates and tested whether newly isolated strains conform to this phylogeography. Surprisingly, nucleotide diversity is relatively high in this class of gene that generally experiences strong purifying selection. In particular, we find that miRNAs in C. briggsae are substantially more polymorphic than in Arabidopsis thaliana, despite similar background levels of neutral site diversity between the two species. We find that some mutations suggest functional divergence on the basis of requirements for target site recognition and computational prediction of the effects of the polymorphisms on RNA folding. These findings demonstrate the potential for miRNA polymorphisms to contribute to phenotypic variation within a species. Sequences were deposited in GenBank under accession nos. JN251323-JN251744.
Collapse
|
44
|
Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res (Camb) 2011; 92:331-48. [PMID: 21429266 DOI: 10.1017/s0016672310000601] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Over the past 30 years, the characteristics that have made the nematode Caenorhabditis elegans one of the premier animal model systems have also allowed it to emerge as a powerful model system for determining the genetic basis of quantitative traits, particularly for the identification of naturally segregating and/or lab-adapted alleles with large phenotypic effects. To better understand the genetic underpinnings of natural variation in other complex phenotypes, C. elegans is uniquely poised in the emerging field of quantitative systems biology because of the extensive knowledge of cellular and neural bases to such traits. However, perturbations in standing genetic variation and patterns of linkage disequilibrium among loci are likely to limit our ability to tie understanding of molecular function to a broader evolutionary context. Coupling the experimental strengths of the C. elegans system with the ecological advantages of closely related nematodes should provide a powerful means of understanding both the molecular and evolutionary genetics of quantitative traits.
Collapse
|
45
|
Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genet 2011; 7:e1002174. [PMID: 21779179 PMCID: PMC3136444 DOI: 10.1371/journal.pgen.1002174] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/23/2011] [Indexed: 12/16/2022] Open
Abstract
The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.
Collapse
|
46
|
Solorzano E, Okamoto K, Datla P, Sung W, Bergeron RD, Thomas WK. Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans. BMC Evol Biol 2011; 11:168. [PMID: 21679441 PMCID: PMC3151237 DOI: 10.1186/1471-2148-11-168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/16/2011] [Indexed: 11/10/2022] Open
Abstract
Background Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode Caenorhabditis elegans (CB4856 and CB4858) and the reference genome (N2). Results The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison. In both CB4856 and CB4858, based on a measure of the strength of selection (ka/ks), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, ka/ks values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, ka/ks values differ between chromosomes. Conclusions The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the ka/ks ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.
Collapse
Affiliation(s)
- Eleanne Solorzano
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Rockman MV, Skrovanek SS, Kruglyak L. Selection at linked sites shapes heritable phenotypic variation in C. elegans. Science 2010; 330:372-6. [PMID: 20947766 DOI: 10.1126/science.1194208] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mutation generates the heritable variation that genetic drift and natural selection shape. In classical quantitative genetic models, drift is a function of the effective population size and acts uniformly across traits, whereas mutation and selection act trait-specifically. We identified thousands of quantitative trait loci (QTLs) influencing transcript abundance traits in a cross of two Caenorhabditis elegans strains; although trait-specific mutation and selection explained some of the observed pattern of QTL distribution, the pattern was better explained by trait-independent variation in the intensity of selection on linked sites. Our results suggest that traits in C. elegans exhibit different levels of variation less because of their own attributes than because of differences in the effective population sizes of the genomic regions harboring their underlying loci.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, NY 10003, USA.
| | | | | |
Collapse
|
48
|
Wang GX, Ren S, Ren Y, Ai H, Cutter AD. Extremely high molecular diversity within the East Asian nematode Caenorhabditis sp. 5. Mol Ecol 2010; 19:5022-9. [PMID: 20958820 DOI: 10.1111/j.1365-294x.2010.04862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most relatives of the self-fertilizing hermaphroditic nematode model organism Caenorhabditis elegans reproduce via obligate outbreeding between males and females, which also represents the ancestral mode of reproduction within the genus. However, little is known about the scope of genetic diversity and differentiation within such gonochoristic species, especially those found outside of temperate Europe and North America. It is critical to understand the evolutionary processes operating in these species to provide a framework for deciphering the evolution of hermaphroditism and a baseline for the application of outcrossing Caenorhabditis to problems in evolutionary genetics. Here, we investigate for the first time molecular sequence variation for Caenorhabditis sp. 5, a species found commonly in eastern Asia. We identify enormous levels of standing genetic variation that approach the levels observed in the marine broadcast-spawning sea squirt, Ciona savignyi. Although we document significant isolation by distance, we demonstrate that the high polymorphism within C. sp. 5 is not because of strong differentiation among populations or to the presence of cryptic species. These findings illustrate that molecular population genetic approaches to studying obligately outbreeding species of Caenorhabditis will prove powerful in identifying and characterizing functionally and evolutionarily important features of the genome.
Collapse
Affiliation(s)
- Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, HuaZhong Normal University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
49
|
Prasad A, Croydon-Sugarman MJF, Murray RL, Cutter AD. Temperature-dependent fecundity associates with latitude in Caenorhabditis briggsae. Evolution 2010; 65:52-63. [PMID: 20731713 DOI: 10.1111/j.1558-5646.2010.01110.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Populations of organisms separated by latitude provide striking examples of local adaptation, by virtue of ecological gradients that correlate with latitudinal position on the globe. Ambient temperature forms one key ecological variable that varies with latitude, and here we investigate its effects on the fecundity of self-fertilizing nematodes of the species Caenorhabditis briggsae that exhibits strong genetically based differentiation in association with latitude. We find that isogenic strains from a Tropical phylogeographic clade have greater lifetime fecundity when reared at extreme high temperatures and lower lifetime fecundity at extreme low temperatures than do strains from a Temperate phylogeographic clade, consistent with adaptation to local temperature regimes. Further, we determine experimentally that the mechanism underlying reduced fecundity at extreme temperatures differs for low versus high temperature extremes, but that the total number of sperm produced by the gonad is unaffected by rearing temperature. Low rearing temperatures result in facultatively reduced oocyte production by hermaphrodites, whereas extreme high temperatures experienced during development induce permanent defects in sperm fertility. Available and emerging genetic tools for this organism will permit the characterization of the evolutionary genetic basis to this putative example of adaptation in latitudinally separated populations.
Collapse
Affiliation(s)
- Anisha Prasad
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | | |
Collapse
|
50
|
Cutter AD, Choi JY. Natural selection shapes nucleotide polymorphism across the genome of the nematode Caenorhabditis briggsae. Genome Res 2010; 20:1103-11. [PMID: 20508143 PMCID: PMC2909573 DOI: 10.1101/gr.104331.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 05/14/2010] [Indexed: 01/01/2023]
Abstract
The combined actions of natural selection, mutation, and recombination forge the landscape of genetic variation across genomes. One frequently observed manifestation of these processes is a positive association between neutral genetic variation and local recombination rates. Two selective mechanisms and/or recombination-associated mutation (RAM) could generate this pattern, and the relative importance of these alternative possibilities remains unresolved generally. Here we quantify nucleotide differences within populations, between populations, and between species to test for genome-wide effects of selection and RAM in the partially selfing nematode Caenorhabditis briggsae. We find that nearly half of genome-wide variation in nucleotide polymorphism is explained by differences in local recombination rates. By quantifying divergence between several reproductively isolated lineages, we demonstrate that ancestral polymorphism generates a spurious signal of RAM for closely related lineages, with implications for analyses of humans and primates; RAM is, at most, a minor factor in C. briggsae. We conclude that the positive relation between nucleotide polymorphism and the rate of crossover represents the footprint of natural selection across the C. briggsae genome and demonstrate that background selection against deleterious mutations is sufficient to explain this pattern. Hill-Robertson interference also leaves a signature of more effective purifying selection in high-recombination regions of the genome. Finally, we identify an emerging contrast between widespread adaptive hitchhiking effects in species with large outcrossing populations (e.g., Drosophila) versus pervasive background selection effects on the genomes of organisms with self-fertilizing lifestyles and/or small population sizes (e.g., Caenorhabditis elegans, C. briggsae, Arabidopsis thaliana, Lycopersicon, human). These results illustrate how recombination, mutation, selection, and population history interact in important ways to shape molecular heterogeneity within and between genomes.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada.
| | | |
Collapse
|