1
|
Lu IN, Cheung PFY, Heming M, Thomas C, Giglio G, Leo M, Erdemir M, Wirth T, König S, Dambietz CA, Schroeter CB, Nelke C, Siveke JT, Ruck T, Klotz L, Haider C, Höftberger R, Kleinschnitz C, Wiendl H, Hagenacker T, Meyer Zu Horste G. Cell-mediated cytotoxicity within CSF and brain parenchyma in spinal muscular atrophy unaltered by nusinersen treatment. Nat Commun 2024; 15:4120. [PMID: 38750052 PMCID: PMC11096380 DOI: 10.1038/s41467-024-48195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.
Collapse
Affiliation(s)
- I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Phyllis Fung-Yi Cheung
- Spatiotemporal Tumor Heterogeneity, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, DKTK, Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Giovanni Giglio
- Spatiotemporal Tumor Heterogeneity, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, DKTK, Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Markus Leo
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Hospital Essen, Essen, Germany
| | - Merve Erdemir
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Hospital Essen, Essen, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Christine A Dambietz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens T Siveke
- Spatiotemporal Tumor Heterogeneity, German Cancer Consortium (DKTK), Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, DKTK, Partner Site Essen, A Partnership Between German Cancer Research Center (DKFZ) and University Hospital Essen, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Hospital Essen, Essen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro and Behavioral Science, University Hospital Essen, Essen, Germany.
| | - Gerd Meyer Zu Horste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Chilcott EM, Muiruri EW, Hirst TC, Yáñez-Muñoz RJ. Systematic review and meta-analysis determining the benefits of in vivo genetic therapy in spinal muscular atrophy rodent models. Gene Ther 2022; 29:498-512. [PMID: 34611322 PMCID: PMC9482879 DOI: 10.1038/s41434-021-00292-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.
Collapse
Affiliation(s)
- Ellie M. Chilcott
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK ,Present Address: Institute for Women’s Health, UCL, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Evalyne W. Muiruri
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| | - Theodore C. Hirst
- grid.416232.00000 0004 0399 1866Department of Neurosurgery, Royal Victoria Hospital, Belfast, BT12 6BA UK
| | - Rafael J. Yáñez-Muñoz
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| |
Collapse
|
3
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
4
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
5
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
6
|
Wang D, Liu X, Liu Y, Li S, Wang C. The Effects of Cardiotrophin-1 on Early Synaptic Mitochondrial Dysfunction and Synaptic Pathology in APPswe/PS1dE9 Mice. J Alzheimers Dis 2017; 59:1255-1267. [DOI: 10.3233/jad-170100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Xiaozhuan Liu
- Department of Immunology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Sanqiang Li
- Department of Biochemistry and Molecular Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| | - Chenying Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luolong District, Luoyang, China
| |
Collapse
|
7
|
Schaller S, Buttigieg D, Alory A, Jacquier A, Barad M, Merchant M, Gentien D, de la Grange P, Haase G. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons. Proc Natl Acad Sci U S A 2017; 114:E2486-E2493. [PMID: 28270618 PMCID: PMC5373341 DOI: 10.1073/pnas.1615372114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.
Collapse
Affiliation(s)
- Sébastien Schaller
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Dorothée Buttigieg
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Alysson Alory
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Arnaud Jacquier
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Marc Barad
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille University, 13288 Marseille, France
| | | | - David Gentien
- Institut Curie, Translational Research Department, Genomic Platform, PSL Research University, 75248 Paris, France
| | - Pierre de la Grange
- GenoSplice Technology, Institut du Cerveau et de la Moëlle (ICM), Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France;
| |
Collapse
|
8
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Cox AA, Sagot Y, Hedou G, Grek C, Wilkes T, Vinik AI, Ghatnekar G. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy. Front Endocrinol (Lausanne) 2017; 8:89. [PMID: 28512447 PMCID: PMC5411416 DOI: 10.3389/fendo.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body's natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and provides rationale for continued investigation of IL-6 for the treatment of DPN.
Collapse
Affiliation(s)
| | - Yves Sagot
- Relief Therapeutics SA, Zurich, Switzerland
| | - Gael Hedou
- Relief Therapeutics SA, Zurich, Switzerland
| | | | | | | | - Gautam Ghatnekar
- FirstString Research, Mt. Pleasant, SC, USA
- *Correspondence: Gautam Ghatnekar,
| |
Collapse
|
10
|
López-Yoldi M, Moreno-Aliaga MJ, Bustos M. Cardiotrophin-1: A multifaceted cytokine. Cytokine Growth Factor Rev 2015; 26:523-32. [PMID: 26188636 DOI: 10.1016/j.cytogfr.2015.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines that have pleiotropic functions on different tissues and cell types. Although many effects of CT-1 have been described on the heart, there is an extensive research showing important protective effects in other organs such as liver, kidney or nervous system. Recently, several studies have pointed out that CT-1 might also play a key role in the regulation of body weight and intermediate metabolism. This paper will review many aspects of CT-1 physiological role in several organs and discuss data for consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Area of Hepatology and Gene Therapy, CIMA (Center for Applied Medical Research) University of Navarra, Pamplona, Spain.
| |
Collapse
|
11
|
Plastin 3 Expression Does Not Modify Spinal Muscular Atrophy Severity in the ∆7 SMA Mouse. PLoS One 2015; 10:e0132364. [PMID: 26134627 PMCID: PMC4489873 DOI: 10.1371/journal.pone.0132364] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Spinal muscular atrophy is caused by loss of the SMN1 gene and retention of SMN2. The SMN2 copy number inversely correlates with phenotypic severity and is a modifier of disease outcome. The SMN2 gene essentially differs from SMN1 by a single nucleotide in exon 7 that modulates the incorporation of exon 7 into the final SMN transcript. The majority of the SMN2 transcripts lack exon 7 and this leads to a SMN protein that does not effectively oligomerize and is rapidly degraded. However the SMN2 gene does produce some full-length SMN and the SMN2 copy number along with how much full-length SMN the SMN2 gene makes correlates with severity of the SMA phenotype. However there are a number of discordant SMA siblings that have identical haplotypes and SMN2 copy number yet one has a milder form of SMA. It has been suggested that Plastin3 (PLS3) acts as a sex specific phenotypic modifier where increased expression of PLS3 modifies the SMA phenotype in females. To test the effect of PLS3 overexpression we have over expressed full-length PLS3 in SMA mice. To ensure no disruption of functionality or post-translational processing of PLS3 we did not place a tag on the protein. PLS3 protein was expressed under the Prion promoter as we have shown previously that SMN expression under this promoter can rescue SMA mice. High levels of PLS3 mRNA were expressed in motor neurons along with an increased level of PLS3 protein in total spinal cord, yet there was no significant beneficial effect on the phenotype of SMA mice. Specifically, neither survival nor the fundamental electrophysiological aspects of the neuromuscular junction were improved upon overexpression of PLS3 in neurons.
Collapse
|
12
|
Cardiotrophin-1 (CT-1) Improves High Fat Diet-Induced Cognitive Deficits in Mice. Neurochem Res 2015; 40:843-53. [DOI: 10.1007/s11064-015-1535-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
|
13
|
Abi-Nader KN, Rodeck CH, David AL. Prenatal gene therapy for the early treatment of genetic disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Investigation of a recombinant SMN protein delivery system to treat spinal muscular atrophy. Transl Neurosci 2014. [DOI: 10.2478/s13380-014-0201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSpinal muscular atrophy (SMA), the most common genetic cause of infant death, is a neurodegenerative disorder affecting motor neurons. SMA results from a loss in full-length survival of motor neuron (SMN) protein due to deletions/mutations in the SMN1 gene. In this study, we assessed the ability of cell-penetrating peptides (CPP) to deliver recombinant SMN protein to cultured neurons as a prelude for a potential therapeutic to treat SMA. Firstly, we confirmed that E. coli produced recombinant GFP protein fused to TAT (YGRKKRRQRRR; TAT-GFP) transduced rat cortical neurons in a concentration dependent manner. However, due to low yields of recombinant TATSMN protein obtainable from E. coli, we investigated the potential of a modified TAT (TATκ: YARKAARQARA) or R9 (RRRRRRRRR) peptide downstream of the fibronectin (FIB) secretory signal peptide to generate recombinant CPP-fused SMN protein. While U251 cells transduced with an adenoviral vector expressing CMV-FIB-TATκ-SMN secreted recombinant TATκ-SMN protein, we did not detect TATκ-SMN protein transduction of cortical neurons. Further, purified TATκ-SMN was unable to transduce SH-SY5Y cells, nor block apoptosis following LY294002 treatment of these cells. Our findings indicate that TATκ is not a suitable CPP to deliver SMN protein to neurons. Nonetheless, we have developed a novel method to generate full-length recombinant SMN protein using a mammalian expression system, which can be used to explore the application of other CPPs to deliver SMN protein as a treatment for SMA.
Collapse
|
15
|
d’Errico P, Boido M, Piras A, Valsecchi V, De Amicis E, Locatelli D, Capra S, Vagni F, Vercelli A, Battaglia G. Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice. PLoS One 2013; 8:e82654. [PMID: 24324819 PMCID: PMC3855775 DOI: 10.1371/journal.pone.0082654] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.
Collapse
Affiliation(s)
- Paolo d’Errico
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Silvia Capra
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesco Vagni
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano (Torino), Italy
| | - Giorgio Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| |
Collapse
|
16
|
Ogier M, Kron M, Katz DM. Neurotrophic factors in development and regulation of respiratory control. Compr Physiol 2013; 3:1125-34. [PMID: 23897682 DOI: 10.1002/cphy.c120029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurotrophic factors (NTFs) are a heterogeneous group of extracellular signaling molecules that play critical roles in the development, maintenance, modulation and plasticity of the central and peripheral nervous systems. A subset of these factors, including members of three multigene families-the neurotrophins, neuropoetic cytokines and the glial cell line-derived neurotrophic factor ligands-are particularly important for development and regulation of neurons involved in respiratory control. Here, we review the functional biology of these NTFs and their receptors, as well as their roles in regulating survival, maturation, synaptic strength and plasticity in respiratory control pathways. In addition, we highlight recent progress in identifying the role of abnormal NTF signaling in the molecular pathogenesis of respiratory dysfunction in Rett syndrome and in the development of potential new NTF-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Michael Ogier
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
17
|
Dachs E, Piedrafita L, Hereu M, Esquerda J, Calderó J. Chronic treatment with lithium does not improve neuromuscular phenotype in a mouse model of severe spinal muscular atrophy. Neuroscience 2013; 250:417-33. [DOI: 10.1016/j.neuroscience.2013.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/26/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
|
18
|
Bottai D, Adami R. Spinal muscular atrophy: new findings for an old pathology. Brain Pathol 2013; 23:613-22. [PMID: 23750936 DOI: 10.1111/bpa.12071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the events that are responsible for a disease is mandatory for setting up a therapeutic strategy. Although spinal muscular atrophy (SMA) is considered a rare neurodegenerative pathology, its impact in our society is really devastating as it strikes young people from birth onward, and it affects their families either emotionally or financially. Moreover, it requires intensive care for the children, and this diverts both parents and relatives from their occupations. Each neuron is very different from one another; therefore, in a neurodegenerative disease, the population of axons, synapses and cell bodies degenerate asynchronously, and subpopulations of neurons have different vulnerabilities. The knowledge of the sequence of events along the lengths of individual neurons is crucial to understand if each synapse degenerates before the corresponding axon, or if each axon degenerates before the corresponding cell body. Early degeneration of one neuronal compartment in disease often reflects molecular defects somewhere else. Up until now, SMA is considered mostly a lower motor neuron disease caused by the loss-of-function mutations in the SMN1 gene; here, we inspect other features that can be altered by this defect, such as the cross talk between muscle and motor neuron and the role of physical inactivity.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Science Health, University of Milan, Milano, Italy
| | | |
Collapse
|
19
|
Rende D, Baysal N, Kirdar B. Complex disease interventions from a network model for type 2 diabetes. PLoS One 2013; 8:e65854. [PMID: 23776558 PMCID: PMC3679160 DOI: 10.1371/journal.pone.0065854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease's associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease's association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.
Collapse
Affiliation(s)
- Deniz Rende
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America.
| | | | | |
Collapse
|
20
|
Wang D, Li X, Gao K, Lu D, Zhang X, Ma C, Ye F, Zhang L. Cardiotrophin-1 (CTF1) ameliorates glucose-uptake defects and improves memory and learning deficits in a transgenic mouse model of Alzheimer's disease. Pharmacol Biochem Behav 2013; 107:48-57. [PMID: 23541490 DOI: 10.1016/j.pbb.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 12/25/2022]
Abstract
Cardiotrophin-1 (CTF1) has been reported to act as a trophic factor for a few neurons, such as sensory, cholinergic, dopaminergic, motor and cortical neurons. Studies have indicated that CTF1 delays degenerative disease progression in motor neuron disease. However, little is known about the effects of CTF1 on degenerative disease in the brain. We have shown that expression of CTF1 is strongly down-regulated in the brain of the APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease (AD). Transgenic mice with brain tissue-specific CTF1 expression alone or in combination with APPswe/PS1dE9 transgenic mice were produced to study the effects of CTF1 on AD. CTF1 expressing APPswe/PS1dE9 transgenic mice exhibited improvements in learning and memory, less severe abnormalities in locomotor activity, reduced scattered senile plaques and ameliorated disturbances of brain energy metabolism compared to APPswe/PS1dE9 transgenic mice. Furthermore, CTF1 inhibited the activity of glycogen synthase kinase-3β (GSK-3β) in SH-SY5Y cell line and in the brain tissues of APPswe/PS1dE9 transgenic mice. The transgenic expression of CTF1 compensated for the loss of CTF1 expression and brought about a marked improvement on cognitive functioning in the APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease, suggesting that the inhibition of GSK-3β activity might play an important role.
Collapse
Affiliation(s)
- Dongmei Wang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Anderton RS, Meloni BP, Mastaglia FL, Boulos S. Spinal muscular atrophy and the antiapoptotic role of survival of motor neuron (SMN) protein. Mol Neurobiol 2013; 47:821-32. [PMID: 23315303 DOI: 10.1007/s12035-013-8399-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/03/2013] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating and often fatal neurodegenerative disease that affects spinal motor neurons and leads to progressive muscle wasting and paralysis. The survival of motor neuron (SMN) gene is mutated or deleted in most forms of SMA, which results in a critical reduction in SMN protein. Motor neurons appear particularly vulnerable to reduced SMN protein levels. Therefore, understanding the functional role of SMN in protecting motor neurons from degeneration is an essential prerequisite for the design of effective therapies for SMA. To this end, there is increasing evidence indicating a key regulatory antiapoptotic role for the SMN protein that is important in motor neuron survival. The aim of this review is to highlight key findings that support an antiapoptotic role for SMN in modulating cell survival and raise possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia and Australian Neuromuscular Research Institute, Nedlands, Western Australia, Australia.
| | | | | | | |
Collapse
|
22
|
Abstract
Spinal muscular atrophies (SMA) are genetic disorders characterized by degeneration of lower motor neurons. The most frequent form is caused by mutations of the survival motor neuron 1 gene (SMN1). The identification of this gene greatly improved diagnostic testing and family-planning options of SMA families. SMN plays a key role in metabolism of RNA. However, the link between RNA metabolism and motor neuron degeneration remains unknown. A defect in mRNA processing likely generates either a loss of function of some critical RNA or abnormal transcripts with toxic property for motor neurons. Mutations of SMN in various organisms highlighted an essential role of SMN in motor axon and neuromuscular junction development or maintenance. The quality of life of patients has greatly improved over recent decades through the improvement of care and management of patients. In addition, major advances in translational research have been made in the field of SMA. Various therapeutic strategies have been successfully developed aiming at acting on SMN2, a partially functional copy of the SMN1 gene which remains present in patients. Drugs have been identified and some are already at preclinical stages. Identifying molecules involved in the SMA degenerative process should represent additional attractive targets for therapeutics in SMA.
Collapse
Affiliation(s)
- Louis Viollet
- Hôpital Necker-Enfants Malades and Université Paris Descartes, Paris, France
| | | |
Collapse
|
23
|
Federici T, Boulis NM. Gene therapy for amyotrophic lateral sclerosis. Neurobiol Dis 2012; 48:236-42. [DOI: 10.1016/j.nbd.2011.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/02/2011] [Accepted: 08/18/2011] [Indexed: 01/07/2023] Open
|
24
|
Abstract
Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work.
Collapse
Affiliation(s)
- Anna L David
- Prenatal Cell and Gene Therapy Group, EGA Institute for Women's Health, University College London, London, UK.
| | | |
Collapse
|
25
|
Cardiotrophin-1, an antiinflammatory cytokine; is there a therapeutic role in orthotopic liver transplantation? J Surg Res 2012; 185:e63-5. [PMID: 22940036 DOI: 10.1016/j.jss.2012.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/22/2022]
|
26
|
Therapy development for spinal muscular atrophy in SMN independent targets. Neural Plast 2012; 2012:456478. [PMID: 22701806 PMCID: PMC3369530 DOI: 10.1155/2012/456478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness, atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMN1) gene. An effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of SMN, the SMN-encoded protein, SMN is the most important therapeutic target for development of an effective treatment for SMA. In recent years, numerous SMN independent targets and therapeutic strategies have been demonstrated to have potential roles in SMA treatment. For example, some neurotrophic, antiapoptotic, and myotrophic factors are able to promote survival of motor neurons or improve muscle strength shown in SMA mouse models or clinical trials. Plastin-3, cpg15, and a Rho-kinase inhibitor regulate axonal dynamics and might reduce the influences of SMN depletion in disarrangement of neuromuscular junction. Stem cell transplantation in SMA model mice resulted in improvement of motor behaviors and extension of survival, likely from trophic support. Although most therapies are still under investigation, these nonclassical treatments might provide an adjunctive method for future SMA therapy.
Collapse
|
27
|
Cellular and molecular approaches to motor neuron therapy in amyotrophic lateral sclerosis and spinal muscular atrophy. Neurosci Lett 2012; 527:78-84. [PMID: 22579818 DOI: 10.1016/j.neulet.2012.04.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/29/2012] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are progressive fatal neurodegenerative diseases. They differ in their disease development but have in common a loss of motor neuron as they progress. Research is ongoing to further understand the origin of these diseases but this common thread of motor neuron loss has provided a target for the development of therapies for both ALS and SMA. It is the linked fields of gene and cell therapy that are providing some of the most interesting therapeutic possibilities.
Collapse
|
28
|
Wadman RI, Bosboom WMJ, van der Pol WL, van den Berg LH, Wokke JHJ, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2012:CD006282. [PMID: 22513940 DOI: 10.1002/14651858.cd006282.pub4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wadman RI, Bosboom WM, van den Berg LH, Wokke JH, Iannaccone ST, Vrancken AF. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2011:CD006282. [PMID: 22161400 DOI: 10.1002/14651858.cd006282.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Rudolf Magnus Institute for Neuroscience, Universiteitsweg 100, Utrecht, Netherlands, 3584 CG
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Spinal muscular atrophy (SMA), a potentially devastating disease marked by progressive weakness and muscle atrophy resulting from the dysfunction and loss of motor neurons of the spinal cord, has emerged in recent years as an attractive target for therapeutic intervention. Caused by a homozygous mutation to the Survival of Motor Neurons 1 (SMN1) gene on chromosome 5q, the severity of the clinical phenotype in SMA is modulated by the function of a related protein, Survival of Motor Neurons 2 (SMN2). SMN2 predominantly produces an unstable SMN transcript lacking exon 7; only about 10% of the transcription product produces a full-length, functional SMN protein. Several therapeutic strategies have targeted this gene with the goal of producing increased full-length SMN transcript, thereby modifying the underlying mechanism. Drugs that have increased SMN2 function, in vitro, are now explored for potential therapeutic benefit in this disease. Alternative approaches, including neuroprotective, muscle anabolic, gene and cell replacement strategies, also hold promise. The recent advances in preclinical research and the development of a wider range of animal models for SMA continue to provide cautious optimism that effective treatments for SMA will eventually emerge.
Collapse
Affiliation(s)
- Douglas M Sproule
- Division of Pediatric Neurosciences, Department of Neurology, SMA Clinical Research Center, Columbia University Medical Center, Harkness Pavilion, HP-514, 180 Fort Washington Avenue, New York, NY 10032-3791, USA.
| | | |
Collapse
|
31
|
Burnett BG, Crawford TO, Sumner CJ. Emerging treatment options for spinal muscular atrophy. Curr Treat Options Neurol 2011; 11:90-101. [PMID: 19210911 DOI: 10.1007/s11940-009-0012-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The motor neuron disease spinal muscular atrophy (SMA) is one of the leading genetic killers of infants worldwide. SMA is caused by mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the survival motor neuron (SMN) protein. All patients retain one or more copies of the SMN2 gene, which (by producing a small amount of the SMN protein) rescues embryonic lethality and modifies disease severity. Rapid progress continues in dissecting the cellular functions of the SMN protein, but the mechanisms linking SMN deficiency with dysfunction and loss of functioning motor units remain poorly defined. Clinically, SMA should to be distinguished from other neuromuscular disorders, and the diagnosis can be readily confirmed with genetic testing. Quality of life and survival of SMA patients are improved with aggressive supportive care including optimized respiratory and nutritional care and management of scoliosis and contractures. Because SMA is caused by inadequate amounts of SMN protein, one aim of current SMA therapeutics development is to increase SMN protein levels in SMA patients by activating SMN2 gene expression and/or increasing levels of full-length SMN2 transcripts. Several potential therapeutic compounds are currently being studied in clinical trials in SMA patients.
Collapse
Affiliation(s)
- Barrington G Burnett
- Charlotte J. Sumner, MD 600 North Wolfe Street, Meyer 5-119b, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
32
|
Passini MA, Cheng SH. Prospects for the gene therapy of spinal muscular atrophy. Trends Mol Med 2011; 17:259-65. [DOI: 10.1016/j.molmed.2011.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
33
|
Toivonen JM, Oliván S, Osta R. Tetanus toxin C-fragment: the courier and the cure? Toxins (Basel) 2010; 2:2622-44. [PMID: 22069568 PMCID: PMC3153173 DOI: 10.3390/toxins2112622] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
In many neurological disorders strategies for a specific delivery of a biological activity from the periphery to the central nervous system (CNS) remains a considerable challenge for successful therapy. Reporter assays have established that the non-toxic C-fragment of tetanus toxin (TTC), provided either as protein or encoded by non-viral naked DNA plasmid, binds pre-synaptic motor neuron terminals and can facilitate the retrograde axonal transport of desired therapeutic molecules to the CNS. Alleviated symptoms in animal models of neurological diseases upon delivery of therapeutic molecules offer a hopeful prospect for TTC therapy. This review focuses on what has been learned on TTC-mediated neuronal targeting, and discusses the recent discovery that, instead of being merely a carrier molecule, TTC itself may well harbor neuroprotective properties.
Collapse
Affiliation(s)
- Janne M Toivonen
- LAGENBIO-I3A, Veterinary School, Aragón Institute of Health Sciences (IACS), Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
| | | | | |
Collapse
|
34
|
Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, Azzouz M. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010; 2:35ra42. [PMID: 20538619 DOI: 10.1126/scitranslmed.3000830] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy is one of the most common genetic causes of death in childhood, and there is currently no effective treatment. The disease is caused by mutations in the survival motor neuron gene. Gene therapy aimed at restoring the protein encoded by this gene is a rational therapeutic approach to ameliorate the disease phenotype. We previously reported that intramuscular delivery of a lentiviral vector expressing survival motor neuron increased the life expectancy of transgenic mice with spinal muscular atrophy. The marginal efficacy of this therapeutic approach, however, prompted us to explore different strategies for gene therapy delivery to motor neurons to achieve a more clinically relevant effect. Here, we report that a single injection of self-complementary adeno-associated virus serotype 9 expressing green fluorescent protein or of a codon-optimized version of the survival motor neuron protein into the facial vein 1 day after birth in mice carrying a defective survival motor neuron gene led to widespread gene transfer. Furthermore, this gene therapy resulted in a substantial extension of life span in these animals. These data demonstrate a significant increase in survival in a mouse model of spinal muscular atrophy and provide evidence for effective therapy.
Collapse
|
35
|
Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O'Riordan CR, Klinger KW, Shihabuddin LS, Cheng SH. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120:1253-64. [PMID: 20234094 DOI: 10.1172/jci41615] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/13/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN-expressing self-complementary AAV vector - a vector that leads to earlier onset of gene expression compared with standard AAV vectors - led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.
Collapse
Affiliation(s)
- Marco A Passini
- Genzyme Corporation, 49 New York Avenue, Room 2410, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bordet T, Berna P, Abitbol JL, Pruss RM. Olesoxime (TRO19622): A Novel Mitochondrial-Targeted Neuroprotective Compound. Pharmaceuticals (Basel) 2010; 3:345-368. [PMID: 27713255 PMCID: PMC4033913 DOI: 10.3390/ph3020345] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
Olesoxime (TRO19622) is a novel mitochondrial-targeted neuroprotective compound undergoing a pivotal clinical efficacy study in Amyotrophic Lateral Sclerosis (ALS) and also in development for Spinal Muscular Atrophy (SMA). It belongs to a new family of cholesterol-oximes identified for its survival-promoting activity on purified motor neurons deprived of neurotrophic factors. Olesoxime targets proteins of the outer mitochondrial membrane, concentrates at the mitochondria and prevents permeability transition pore opening mediated by, among other things, oxidative stress. Olesoxime has been shown to exert a potent neuroprotective effect in various in vitro and in vivo models. In particular olesoxime provided significant protection in experimental animal models of motor neuron disorders and more particularly ALS. Olesoxime is orally active, crosses the blood brain barrier, and is well tolerated. Collectively, its pharmacological properties designate olesoxime as a promising drug candidate for motor neuron diseases.
Collapse
Affiliation(s)
- Thierry Bordet
- Trophos, Parc Scientifique de Luminy, Case 931, 13288 Marseille cedex 9, France.
| | - Patrick Berna
- Trophos, Parc Scientifique de Luminy, Case 931, 13288 Marseille cedex 9, France.
| | - Jean-Louis Abitbol
- Trophos, Parc Scientifique de Luminy, Case 931, 13288 Marseille cedex 9, France.
| | - Rebecca M Pruss
- Trophos, Parc Scientifique de Luminy, Case 931, 13288 Marseille cedex 9, France.
| |
Collapse
|
37
|
Abstract
AbstractProgress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.
Collapse
|
38
|
Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Simone C, Falcone M, Papadimitriou D, Locatelli F, Mezzina N, Gianni F, Bresolin N, Comi GP. Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice. ACTA ACUST UNITED AC 2009; 133:465-81. [PMID: 20032086 DOI: 10.1093/brain/awp318] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spinal muscular atrophy, characterized by selective loss of lower motor neurons, is an incurable genetic neurological disease leading to infant mortality. We previously showed that primary neural stem cells derived from spinal cord can ameliorate the spinal muscular atrophy phenotype in mice, but this primary source has limited translational value. Here, we illustrate that pluripotent stem cells from embryonic stem cells show the same potential therapeutic effects as those derived from spinal cord and offer great promise as an unlimited source of neural stem cells for transplantation. We found that embryonic stem cell-derived neural stem cells can differentiate into motor neurons in vitro and in vivo. In addition, following their intrathecal transplantation into spinal muscular atrophy mice, the neural stem cells, like those derived from spinal cord, survived and migrated to appropriate areas, ameliorated behavioural endpoints and lifespan, and exhibited neuroprotective capability. Neural stem cells obtained using a drug-selectable embryonic stem cell line yielded the greatest improvements. As with cells originating from primary tissue, the embryonic stem cell-derived neural stem cells integrated appropriately into the parenchyma, expressing neuron- and motor neuron-specific markers. Our results suggest translational potential for the use of pluripotent cells in neural stem cell-mediated therapies and highlight potential safety improvements and benefits of drug selection for neuroepithelial cells.
Collapse
Affiliation(s)
- Stefania Corti
- Department of Neurological Sciences, University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis 2009; 37:493-502. [PMID: 19833209 DOI: 10.1016/j.nbd.2009.10.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/28/2009] [Accepted: 10/02/2009] [Indexed: 01/02/2023] Open
Abstract
Indices of neuroinflammation are found in a variety of diseases of the CNS including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Over the years, neuroinflammation, in degenerative disorders of the CNS, has evolved from being regarded as an innocent bystander accomplishing its housekeeping function secondary to neurodegeneration to being considered as a bona fide contributor to the disease process and, in some situations, as a putative initiator of the disease. Herein, we will review neuroinflammation in both ALS and SMA not only from the angle of neuropathology but also from the angle of its potential role in the pathogenesis and treatment of these two dreadful paralytic disorders.
Collapse
|
40
|
Relation of Cardiotrophin-1 (CT-1) and cardiac transcription factor GATA4 expression in rat's cardiac myocytes hypertrophy and apoptosis. Pathol Res Pract 2009; 205:615-25. [DOI: 10.1016/j.prp.2009.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
|
41
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2009:CD006282. [PMID: 19160275 DOI: 10.1002/14651858.cd006282.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type II and III, and to assess if such therapy can be given safely. Drug treatment for SMA type I will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008), The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA We sought all randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type II and III. Participants had to fulfil the clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS Four randomized placebo-controlled trials on treatment for SMA type II and III were found and included in the review. The treatments were creatine, phenylbutyrate, gabapentin and thyrotropin releasing hormone. None of these trials showed any effect on the outcome measures in patients with SMA type II and III. None of the patients in any of the four trials died or reached the state of full time ventilation and serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA type II and III.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
42
|
Vitte J, Attali R, Warwar N, Gurt I, Melki J. Spinal muscular atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:237-46. [PMID: 20225030 DOI: 10.1007/978-90-481-2813-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophies (SMA) are frequent autosomal recessive disorders characterized by degeneration of lower motor neurons. SMA are caused by mutations of the survival of motor neuron gene (SMN1) leading to a reduction of the SMN protein amount. The identification of SMN interacting proteins involved in the formation of the spliceosome and splicing changes in SMN-deficient tissues of mutant mice strongly support the view that SMN is involved in the splicing reaction. However, the molecular pathway linking SMN defect to the SMA phenotype remains unclear. From a better knowledge of the genetic basis of SMA and the defects resulting from the mutations of SMN1 in cellular or animal models, several therapeutics strategies have been selected aiming at targeting SMN2, a partially functional copy of SMN1 gene which remains present in patients, or to prevent neurons from death. Refined characterization of the degenerative process in SMA and the identification of the defective molecular pathway downstream from the SMN defect will provide further exciting insight into this disease in the near future. They should contribute to clarify the pathophysiology of SMA, the function of SMN and should help in designing potential targeted or non-targeted therapeutic molecules.
Collapse
Affiliation(s)
- Jérémie Vitte
- Department of Human Genetics, Hadassah University Hospital, PO Box 91120, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
43
|
Nanou A, Azzouz M. Gene therapy for neurodegenerative diseases based on lentiviral vectors. PROGRESS IN BRAIN RESEARCH 2009; 175:187-200. [DOI: 10.1016/s0079-6123(09)17513-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Stejskal D, Ruzicka V. Cardiotrophin-1. Review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:9-19. [PMID: 18795069 DOI: 10.5507/bp.2008.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiotrophin-1 is newly discovered chemokin with a lot of functions. Aim of our work was to describe most important of them. METHODS systematically scan of available scientific resources. RESULTS Cardiotrophin-1 stimulates the proliferation of cardiomyocytes. Cardiotrophin-1 expression and plasma values are elevated in individuals with heart failure and have high diagnostic efficacy for the heart failure. Plasma values are also an independent prognostic factor. Preliminary findings suggest that the determination of plasma cardiotrophin-1 may be useful for the follow-up of hypertensive heart disease in routine clinical practice. Cardiotrophin-1 also plays an important cardioprotective effect on myocardial damage, is a potent regulator of signaling in adipocytes in vitro and in vivo and potentiates the elevation the acute-phase proteins. Cardiotrophin-1 may play also an important protective role in other organ systems (such as hematopoietic, neuronal, developmental). CONCLUSION Cardiotrophin is a newly discovered chemokin with a lot of system effects and is stable in system circulation hence permitting its development in the routine clinical investigation.
Collapse
Affiliation(s)
- David Stejskal
- Department of Laboratory Medicine, Sternberk Hospital, Czech Republic.
| | | |
Collapse
|
45
|
Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Saladino F, Bordoni A, Fortunato F, Del Bo R, Papadimitriou D, Locatelli F, Menozzi G, Strazzer S, Bresolin N, Comi GP. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008; 118:3316-30. [PMID: 18769634 DOI: 10.1172/jci35432] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 07/09/2008] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA), a motor neuron disease (MND) and one of the most common genetic causes of infant mortality, currently has no cure. Patients with SMA exhibit muscle weakness and hypotonia. Stem cell transplantation is a potential therapeutic strategy for SMA and other MNDs. In this study, we isolated spinal cord neural stem cells (NSCs) from mice expressing green fluorescent protein only in motor neurons and assessed their therapeutic effects on the phenotype of SMA mice. Intrathecally grafted NSCs migrated into the parenchyma and generated a small proportion of motor neurons. Treated SMA mice exhibited improved neuromuscular function, increased life span, and improved motor unit pathology. Global gene expression analysis of laser-capture-microdissected motor neurons from treated mice showed that the major effect of NSC transplantation was modification of the SMA phenotype toward the wild-type pattern, including changes in RNA metabolism proteins, cell cycle proteins, and actin-binding proteins. NSC transplantation positively affected the SMA disease phenotype, indicating that transplantation of NSCs may be a possible treatment for SMA.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan and IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
El-Khodor BF, Edgar N, Chen A, Winberg ML, Joyce C, Brunner D, Suárez-Fariñas M, Heyes MP. Identification of a battery of tests for drug candidate evaluation in the SMNΔ7 neonate model of spinal muscular atrophy. Exp Neurol 2008; 212:29-43. [DOI: 10.1016/j.expneurol.2008.02.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/15/2022]
|
47
|
Abstract
Spinal muscular atrophy is an autosomal recessive neurodegenerative disease characterised by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalised weakness. It is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation. Although no medical treatment is available, investigations have elucidated possible mechanisms underlying the molecular pathogenesis of the disease. Treatment strategies have been developed to use the unique genomic structure of the SMN1 gene region. Several candidate treatment agents have been identified and are in various stages of development. These and other advances in medical technology have changed the standard of care for patients with spinal muscular atrophy. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, therapeutic development, and evidence from clinical trials.
Collapse
Affiliation(s)
- Mitchell R Lunn
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
48
|
Farran I, Río-Manterola F, Iñiguez M, Gárate S, Prieto J, Mingo-Castel AM. High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:516-27. [PMID: 18384506 DOI: 10.1111/j.1467-7652.2008.00334.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Histidine-tagged human cardiotrophin-1 (hCT-1), a recently discovered cytokine with excellent therapeutic potential, was expressed in tobacco chloroplasts under the transcriptional and translational control of two different promoters (rrn and psbA) and 5'-untranslated regions (5'-UTRs) (psbA and phage T7 gene 10). The psbA 5'-UTR promotes recombinant hCT-1 (rhCT-1) accumulation in chloroplasts at higher levels (eight-fold) than those obtained for the phage T7 gene 10 5'-UTR, regardless of the promoter used, indicating that the correct choice of translational control element is most important for protein production in chloroplasts. The maximum level of rhCT-1 achieved was 1.14 mg/g fresh weight (equivalent to 5% of total soluble protein) with the psbA promoter and 5'-UTR in young leaves harvested after 32 h of continuous light, although the bioactivity was significantly lower (approximately 35%) than that of commercial hCT-1. However, harvesting in the dark or after 12 h of light did not result in a significant decrease in the bioactivity of rhCT-1, suggesting that 32 h of over-lighting affects the biological activity of rhCT-1. Because high levels of rhCT-1 accumulation took place mainly in young leaves, it is proposed that seedlings should be used in a 'closed system' unit, yielding up to 3.2 kg per year of rhCT-1. This amount would be sufficient to meet the estimated annual worldwide needs of hCT-1 for liver transplantation surgery in a cost-effective manner. Furthermore, our strategy is an environmentally friendly method for the production of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Imma Farran
- Instituto de Agrobiotecnología, UPNA-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Yang ZF, Lau CK, Ngai P, Lam SP, Ho DW, Poon RTP, Fan ST. Cardiotrophin-1 enhances regeneration of cirrhotic liver remnant after hepatectomy through promotion of angiogenesis and cell proliferation. Liver Int 2008; 28:622-31. [PMID: 18312290 DOI: 10.1111/j.1478-3231.2008.01687.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIM Hepatic resection is not applicable to a certain proportion of hepatocellular carcinoma patients owing to an insufficient liver function reserve. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on improving the function of CCl(4)-induced cirrhotic liver remnant after major hepatectomy. METHODS CT-1 was administered to rats after hepatectomy according to different protocols. RESULTS A double-dose CT-1 protocol improved liver function, enlarged the volume of liver remnant, upregulated the expression of von Willebrand factor and increased the number of BrdU(+) or Ki-67(+) hepatocytes. Administration of CT-1 enhanced the expression of nuclear factor-kappaB (P65), vascular endothelial growth factor (VEGF), CyclinD1 and p42/44 in the liver remnant. However, the effects of CT-1 were blocked by a VEGF receptor blocker, PTK787. Although the expression of gp130, a receptor of CT-1, was downregulated in the diseased hepatocytes isolated from the cirrhotic liver, CT-1 could still stimulate the cell proliferation. CT-1 administration enhanced the expression of P65 and VEGF in the diseased hepatocytes, but the augmented P65 and VEGF expression was blocked by PTK787 administration. CONCLUSION Short-term administration of CT-1 could improve the function of cirrhotic liver remnant and stimulate liver regeneration through promotion of angiogenesis and cell proliferation.
Collapse
Affiliation(s)
- Zhen Fan Yang
- Department of Surgery, Centre for Cancer Research, Queen Mary Hospital, University of Hong Kong Medical Centre, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Sola A, Peng H, Rogido M, Wen T. Animal models of neonatal stroke and response to erythropoietin and cardiotrophin‐1. Int J Dev Neurosci 2007; 26:27-35. [DOI: 10.1016/j.ijdevneu.2007.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022] Open
Affiliation(s)
- Augusto Sola
- Division of NeonatologyMANA and Atlantic Neonatal Research InstituteMorristownNJ07960United States
| | - Hui Peng
- Division of NeonatologyMANA and Atlantic Neonatal Research InstituteMorristownNJ07960United States
| | - Marta Rogido
- Division of NeonatologyMANA and Atlantic Neonatal Research InstituteMorristownNJ07960United States
| | - Tong‐Chun Wen
- Division of NeonatologyMANA and Atlantic Neonatal Research InstituteMorristownNJ07960United States
| |
Collapse
|