1
|
Canosa A, Martino A, Manera U, Giuliani A, Vasta R, Palumbo F, Grassano M, Morbelli SD, Pardini M, Chiaravalloti A, Schillaci O, Leenders KL, Kogan RV, Polverari G, Zocco G, Pede FD, Mattei FD, Cabras S, Matteoni E, Moglia C, Calvo A, Chiò A, Pagani M. Sex-related differences in amyotrophic lateral sclerosis: A 2-[ 18F]FDG-PET study. Eur J Neurol 2025; 32:e16588. [PMID: 39655539 PMCID: PMC11629101 DOI: 10.1111/ene.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
PURPOSE We investigated sex-related brain metabolic differences in Amyotrophic Lateral Sclerosis (ALS) and healthy controls (HC). METHODS We collected two equal-sized groups of male (m-ALS) and female ALS (f-ALS) patients (n = 130 each), who underwent 2-[18F]FDG-PET at diagnosis, matched for site of onset, cognitive status and King's stage. We included 168 age-matched healthy controls, half female (f-HC) and half male (m-HC). We compared brain metabolism of males and females separately for ALS and HC, including age as covariate. A differential network analysis was performed to evaluate brain connectivity. RESULTS M-ALS showed relative hypometabolism of bilateral medial frontal, parietal and occipital cortices, and left temporal cortex, compared to f-ALS. In node-wise comparison, f-ALS showed significantly higher connectivity in right middle cingulate cortex and left superior and medial frontal gyrus. In HC we did not find any sex-related differences. CONCLUSION Sex resulted a major determinant of brain metabolism and connectivity in ALS patients.
Collapse
Affiliation(s)
- Antonio Canosa
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNeurology Unit 1UTurinItaly
- Institute of Cognitive Sciences and Technologies, C.N.RRomeItaly
| | - Alessio Martino
- Department of Business and ManagementLUISS UniversityRomeItaly
| | - Umberto Manera
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNeurology Unit 1UTurinItaly
| | | | - Rosario Vasta
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Francesca Palumbo
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Maurizio Grassano
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Silvia Daniela Morbelli
- Department of Medical SciencesUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNuclear Medicine UnitTurinItaly
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Agostino Chiaravalloti
- Department of Biomedicine and PreventionUniversity of Rome ‘Tor Vergata’RomeItaly
- IRCCS NeuromedPozzilliItaly
| | - Orazio Schillaci
- Department of Biomedicine and PreventionUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Klaus Leonard Leenders
- Department of NeurologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Rosalie Vered Kogan
- Department of Nuclear Medicine and Molecular ImagingUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Giulia Polverari
- Positron Emission Tomography Centre AFFIDEA‐IRMET S.p.ATurinItaly
| | - Grazia Zocco
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Francesca Di Pede
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Filippo De Mattei
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Sara Cabras
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Center for NeuroscienceUniversity of CamerinoCamerinoItaly
| | - Enrico Matteoni
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
| | - Cristina Moglia
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNeurology Unit 1UTurinItaly
| | - Andrea Calvo
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNeurology Unit 1UTurinItaly
- Neuroscience Institute of Turin (NIT)TurinItaly
| | - Adriano Chiò
- ALS Centre, ‘Rita Levi Montalcini’ Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città della Salute e della Scienza di TorinoNeurology Unit 1UTurinItaly
- Institute of Cognitive Sciences and Technologies, C.N.RRomeItaly
- Neuroscience Institute of Turin (NIT)TurinItaly
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, C.N.RRomeItaly
- Department of Medical Radiation Physics and Nuclear MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Manera U, Callegaro S, Canosa A, Palumbo F, Grassano M, Bombaci A, Dagliati A, Bosoni P, Daviddi M, Casale F, Cabras S, Matteoni E, De Marchi F, Mazzini L, Moglia C, Vasta R, Calvo A, Chiò A. Croplands proximity is associated with amyotrophic lateral sclerosis incidence and age at onset. Eur J Neurol 2025; 32:e16464. [PMID: 39641521 PMCID: PMC11622317 DOI: 10.1111/ene.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 08/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease resulting from an intricate interplay between genetics and environmental factors. Many studies have explored living in rural areas as a possible risk factor for ALS, without focusing simultaneously on incidence, age at onset and phenotypic features. OBJECTIVE To evaluate the effect of croplands residential proximity on ALS incidence and phenotype, focusing on age of onset, site of onset and progression rate. METHODS The address history of ALS patients belonging to the population-based Piemonte and Valle d'Aosta registry (PARALS), diagnosed between 2007 and 2014, was obtained for the 20 years prior to the onset date. The smoothed ALS incidence per year (im) was compared with the percentage of area covered by each crop for each municipality. A proximity score was calculated for each cropland by geolocation, measuring the percentage of area surrounding patients' residence for variable radii, and was used to compare croplands exposure and phenotype. RESULTS We observed an increased ALS incidence in the municipalities with a higher percentage of area covered by arable crops (R = 0.191, p < 0.001). Age at onset was significantly lower in those patients who lived near arable crops, with a median anticipation ranging from 1.8 to 3.4 years; using historical data, a significant anticipation was found also for patients living near vineyards. DISCUSSION Our study proved a direct association between arable crops and ALS risk and an inverse association between arable crops and vineyards proximity and age at onset, suggesting the possible causative role of specific environmental contaminants.
Collapse
Affiliation(s)
- Umberto Manera
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
- SC Neurologia 1U, AOU Città della Salute e della Scienza di TorinoTurinItaly
| | - Stefano Callegaro
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Antonio Canosa
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
- SC Neurologia 1U, AOU Città della Salute e della Scienza di TorinoTurinItaly
- Institute of Cognitive Sciences and Technologies, C.N.R.RomeItaly
| | - Francesca Palumbo
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Maurizio Grassano
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Alessandro Bombaci
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Arianna Dagliati
- Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
| | - Pietro Bosoni
- Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
| | - Margherita Daviddi
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Federico Casale
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Sara Cabras
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Enrico Matteoni
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Fabiola De Marchi
- ALS Center, Department of NeurologyAzienda Ospedaliera Universitaria Maggiore della CaritàNovaraItaly
- Department of Health SciencesUniversity of Eastern PiedmontNovaraItaly
| | - Letizia Mazzini
- ALS Center, Department of NeurologyAzienda Ospedaliera Universitaria Maggiore della CaritàNovaraItaly
- Department of Health SciencesUniversity of Eastern PiedmontNovaraItaly
| | - Cristina Moglia
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
- SC Neurologia 1U, AOU Città della Salute e della Scienza di TorinoTurinItaly
| | - Rosario Vasta
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
| | - Andrea Calvo
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
- SC Neurologia 1U, AOU Città della Salute e della Scienza di TorinoTurinItaly
| | - Adriano Chiò
- “Rita Levi Montalcini” Department of NeuroscienceUniversity of TurinTurinItaly
- SC Neurologia 1U, AOU Città della Salute e della Scienza di TorinoTurinItaly
- Institute of Cognitive Sciences and Technologies, C.N.R.RomeItaly
| |
Collapse
|
3
|
Levison LS, Blicher JU, Andersen H. Incidence and mortality of ALS: a 42-year population-based nationwide study. J Neurol 2024; 272:44. [PMID: 39666144 PMCID: PMC11638285 DOI: 10.1007/s00415-024-12743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND AIM Recent studies have suggested that the incidence rate (IR) and the rate of death (MR) of amyotrophic lateral sclerosis (ALS) are increasing. Still, it remains unclear whether this is due to improved case ascertainment or represents a true increase. We examined the development in the incidence and mortality of ALS in Denmark for 42 years. METHODS We retrieved individual-level data of all patients aged above 18 years with first-time ALS diagnosed at any Danish department of neurology. The IR and MR were calculated based on data from 1980 to 2021, stratified by gender and age. RESULTS We identified 5,943 patients with ALS and identified a total of 5,069 deaths in the nationwide population. Overall, the IR was 3.4 per 100,000 persons per year (95% CI 3.4-3.5). ALS incidence rose gradually during the study period, and the IR was 2.8 times higher (95% CI 2.4-3.2) when comparing the latest period (2018-2021) with the first (1980-1983). Parallel to the IR, the MR increased over time and was associated with male gender and rose with age at diagnosis, peaking in the 70-79-year age group. CONCLUSION In Denmark, the IR and MR of ALS increased threefold from 1980 to 2021, with steadily increasing risk related to male gender and in particular to higher age. Considering our aging societies, the number of elderly patients with ALS can be expected to increase considerably.
Collapse
Affiliation(s)
| | | | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Rojas-López JC, Estrada-Gualdron PI, Ramírez-Guerrero S, Velásquez-Cárdenas MJ, Redondo-Escobar J, Vargas-Arenas S, Palacios-Sánchez L, Palacios-Espinosa X. Efficacy of pain management strategies in adults with Amyotrophic Lateral Sclerosis (ALS): A Systematic Review. Neurol Sci 2024; 45:5591-5604. [PMID: 38967881 PMCID: PMC11554732 DOI: 10.1007/s10072-024-07643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness. Presence of pain in ALS patients is heterogeneously reported in studies, and mostly underrepresented in symptom scales. The aim of this study is to evaluate the efficacy of pharmacological and non-pharmacological therapeutic modalities for pain management in patients with ALS. A systematic review was conducted in four databases; PubMed, Scopus, Clinicaltrials.gov, and Cochrane-Ovid. Five randomized controlled clinical trials were included regarding pharmacological and non-pharmacological pain management interventions in adult patients with confirmed diagnosis of ALS in whom pain was objectively evaluated. Risk of bias assessment was evaluated using the RoB2.0 tool. Eligible studies were reported as a descriptive analysis. This systematic review was registered with PROSPERO ID: CRD42024495009. Five clinical trials regarding pain management strategies in ALS were eligible for analysis. Two out of five were non-pharmacological approaches whilst the remaining three provided pharmacological therapies. Of these, Mexiletine was efficient in terms of pain relief, particularly between 600 and 900 mg per day, whereas Mecasin showed no pain relief at both, high and low doses. Non-pharmacological therapies, such as exercise and osteopathic manual treatment also lacked efficacy in regard to pain management. Clinical trials focusing on pain management strategies for ALS patients are limited. Medical professionals, understandably focused on immediate life-threatening aspects, may inadvertently sideline the nuanced and intricate dimension of pain experienced by patients with ALS.
Collapse
Affiliation(s)
- Juan Camilo Rojas-López
- Neuroscience Research Seedbed (Semineuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Pablo Isaac Estrada-Gualdron
- Neuroscience Research Seedbed (Semineuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sofía Ramírez-Guerrero
- Neuroscience Research Group (Neuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Maria J Velásquez-Cárdenas
- Neuroscience Research Seedbed (Semineuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jesús Redondo-Escobar
- Neuroscience Research Seedbed (Semineuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sofía Vargas-Arenas
- Neuroscience Research Seedbed (Semineuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Palacios-Sánchez
- Neuroscience Research Group (Neuros), Center of Neuroscience - Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ximena Palacios-Espinosa
- Grupo de Investigación Individuo, Familia y Sociedad Psychology Program, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Yuan D, Jiang S, Xu R. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann Med 2024; 56:2399962. [PMID: 39624969 PMCID: PMC11616751 DOI: 10.1080/07853890.2024.2399962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the central nervous system. Despite a large number of studies, the current prognosis of ALS is still not ideal. This article briefly describes the clinical features including epidemiology, genetic structure and clinical manifestations, as well as the progress of new diagnostic criteria and treatment of ALS. Meanwhile, we also discussed further both developments and improvements to enhance understanding and accelerating the introduction of the effective treatments of ALS.
Collapse
Affiliation(s)
- Dongxiang Yuan
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| |
Collapse
|
6
|
Jellinger KA. Mild cognitive impairment in amyotrophic lateral sclerosis: current view. J Neural Transm (Vienna) 2024:10.1007/s00702-024-02850-7. [PMID: 39470847 DOI: 10.1007/s00702-024-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal multi-system neurodegenerative disorder with no effective treatment or cure. Although primarily characterized by motor degeneration, cognitive dysfunction is an important non-motor symptom that has a negative impact on patient and caregiver burden. Mild cognitive deficits are present in a subgroup of non-demented patients with ALS, often preceding motor symptoms. Detailed neuropsychological assessments reveal deficits in a variety of cognitive domains, including those of verbal fluency and retrieval, language, executive function, attention and verbal memory. Mild cognitive impairment (MCI), a risk factor for developing dementia, affects between 10% and over 50% of ALS patients. Neuroimaging revealed atrophy of frontal and temporal cortices, disordered white matter Integrity, volume reduction in amygdala and thalamus, hypometabolism in the frontal and superior temporal gyrus and anterior insula. Neuronal loss in non-motor brain areas, associated with TDP-43 deposition, one of the morphological hallmarks of ALS, is linked to functional disruption of frontostriatal and frontotemporo-limbic connectivities as markers for cognitive deficits in ALS, the pathogenesis of which is still poorly understood. Early diagnosis by increased cerebrospinal fluid or serum levels of neurofilament light/heavy chain or glial fibrillary acidic protein awaits confirmation for MCI in ALS. These fluid biomarkers and early detection of brain connectivity signatures before structural changes will be helpful not only in establishing early premature diagnosis but also in clarifying the pathophysiological mechanisms of MCI in ALS, which might serve as novel targets for prohibition/delay and future adequate treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
7
|
Laucius O, Drūteika J, Balnytė R, Palačionytė J, Ališauskienė M, Petrikonis K, Vaitkus A. Phrenic Nerve Sonography Alterations in Patients with ALS: Insight with Clinical and Neurophysiological Findings. J Clin Med 2024; 13:6302. [PMID: 39518442 PMCID: PMC11546374 DOI: 10.3390/jcm13216302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, and although the diagnosis is primarily based on clinical criteria, ENMG, as the "gold standard", does not always show detectable changes. Therefore, our study suggests that alterations in echogenicity and heterogeneity of the phrenic nerve (PN) may serve as potential additional diagnostic tools for ALS. Methods: Our study included 32 patients in the ALS group and 64 individuals in the control group. Each participant underwent an interview and completed questionnaires to collect clinical and demographic data, including age, gender, height, body mass index (BMI), hip and waist circumference, duration of illness, ALS-FRS-R score, comorbidities, and medication use. Ultrasound examinations of the PN were performed by two authors using a high-resolution "Philips EPIQ 7" ultrasound machine equipped with a linear 4-18 MHz transducer. The ALS group participants underwent PN sonography and conduction examinations, arterial blood gas (ABG) analysis, respiratory function tests (RFT), and electroneuromyography (ENMG). Results: The study demonstrated that the phrenic nerve is significantly smaller on both sides in patients with ALS compared to the control group (p < 0.01). Changes in the homogeneity and echogenicity of the PN were also observed on both sides. On the right side, 43.8% of the nerves showed heterogeneity, 40.6% were isoechoic, and 21.9% were hyperechoic. On the left side, 59.4% of the nerves exhibited heterogeneity, 34.4% were isoechoic, and 28.1% were hyperechoic. Moreover, sonography on both sides showed significant correlation with ALS-FRS-R, COMPASS-31, and ENMG results. Conclusions: Our study highlights the importance of phrenic nerve ultrasound as a promising supplementary diagnostic tool for ALS. The significant differences in phrenic nerve size, echogenicity, and homogeneity between patients with ALS and the control group demonstrate that ultrasound imaging can detect morphological changes in the phrenic nerve. Incorporating phrenic nerve ultrasound into routine diagnostic protocols could improve early detection, enhance disease monitoring, and offer a more comprehensive understanding of the neurodegenerative processes in ALS.
Collapse
Affiliation(s)
- Ovidijus Laucius
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (J.D.); (R.B.); (J.P.); (M.A.); (K.P.); (A.V.)
| | | | | | | | | | | | | |
Collapse
|
8
|
Proaño B, Cuerda-Ballester M, Daroqui-Pajares N, del Moral-López N, Seguí-Sala F, Martí-Serer L, Calisaya Zambrana CK, Benlloch M, de la Rubia Ortí JE. Clinical and Sociodemographic Factors Related to Amyotrophic Lateral Sclerosis in Spain: A Pilot Study. J Clin Med 2024; 13:5800. [PMID: 39407861 PMCID: PMC11476538 DOI: 10.3390/jcm13195800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknow etiology. Male sex is a well stablished risk factor, but other factors such as early and adult life expositions show contradictory evidence. Aim: to explore the link of clinical, sociodemographic, and occupational factors with ALS patients in Spain and the impact of these factors in functionality. Methods: A cross-sectional study was conducted with ALS patients and healthy controls. Registered variables were smoking, arterial hypertension, diabetes mellitus type 2, previous cancer to reproductive organs or breast, occupational exposure, and early life exposures. Functionality in ALS patients was compared according to each exposure. Results: The ALS group consisted of 59 participants and the control group of 90 participants. ALS patients showed a significant association with previous cancer (p = 0.011), occupational exposure (p < 0.001), and older siblings (p = 0.029). ALS patients presented significant differences in BMI according to hypertension and older-sibling factors. Moreover, respiratory function was affected in patients with previous cancer (p = 0.031). Conclusions: Occupational exposure and previous cancer to reproductive organs or breast could be linked to ALS patients. In addition, hypertension and previous cancer could affect their BMI and respiratory function. Other factors such as longer smoking periods and exposition to older siblings could also characterize ALS patients.
Collapse
Affiliation(s)
- Belén Proaño
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Cuerda-Ballester
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Noelia Daroqui-Pajares
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Noemí del Moral-López
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
- Microbiology Department, General Universitary Hospital of Valencia, 46014 Valencia, Spain
| | - Fiorella Seguí-Sala
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Laura Martí-Serer
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - Carlen Khrisley Calisaya Zambrana
- Departament of Nursing, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.C.-B.); (N.d.M.-L.); (F.S.-S.); (C.K.C.Z.)
| | - María Benlloch
- Department of Basic Biomedical Sciences, Catholic University of Valencia, 46001 Valencia, Spain; (M.B.); (J.E.d.l.R.O.)
| | - Jose Enrique de la Rubia Ortí
- Department of Basic Biomedical Sciences, Catholic University of Valencia, 46001 Valencia, Spain; (M.B.); (J.E.d.l.R.O.)
| |
Collapse
|
9
|
Pal A, Grossmann D, Glaß H, Zimyanin V, Günther R, Catinozzi M, Boeckers TM, Sterneckert J, Storkebaum E, Petri S, Wegner F, Grill SW, Pan-Montojo F, Hermann A. Glycolic acid and D-lactate-putative products of DJ-1-restore neurodegeneration in FUS - and SOD1-ALS. Life Sci Alliance 2024; 7:e202302535. [PMID: 38760174 PMCID: PMC11101837 DOI: 10.26508/lsa.202302535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.
Collapse
Affiliation(s)
- Arun Pal
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dajana Grossmann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Vitaly Zimyanin
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- https://ror.org/0153tk833 Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- https://ror.org/0153tk833 Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - René Günther
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Dresden, Germany
| | - Marica Catinozzi
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, as well as Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden as well as Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Francisco Pan-Montojo
- Department of Psychiatrie and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Xu A, Luo Y, Tang Y, Yang F, Gao X, Qiao G, Zhu X, Zhou J. Chitinases as a potential diagnostic and prognostic biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2024; 45:2489-2503. [PMID: 38194198 PMCID: PMC11081993 DOI: 10.1007/s10072-024-07301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons, and there is currently a lack of reliable diagnostic biomarkers. This meta-analysis aimed to evaluate CHIT1, CHI3L1, and CHI3L2 levels in the cerebrospinal fluid (CSF) or blood and their diagnostic potential in ALS patients. A systematic, comprehensive search was performed of peer-reviewed English-language articles published before April 1, 2023, in PubMed, Scopus, Embase, Cochrane Library, and Web of Science. After a thorough screening, 13 primary articles were included, and their chitinases-related data were extracted for systematic review and meta-analysis. In ALS patients, the CSF CHIT1 levels were significantly elevated compared to controls with healthy control (HC) (SMD, 1.92; 95% CI, 0.78 - 3.06; P < 0.001). CHIT1 levels were elevated in the CSF of ALS patients compared to other neurodegenerative diseases (ONDS) control (SMD, 0.74; 95% CI, 0.22 - 1.27; P < 0.001) and exhibited an even more substantial increase when compared to ALS-mimicking diseases (AMDS) (SMD, 1.15; 95% CI, 0.35 - 1.94, P < 0.001). Similarly, the CSF CHI3L1 levels were significantly higher in ALS patients compared to HC (SMD, 3.16; 95% CI, 1.26 - 5.06, P < 0.001). CHI3L1 levels were elevated in the CSF of ALS patients compared to ONDS (SMD, 0.75; 95% CI, 0.32 - 1.19; P = 0.017) and exhibited a more pronounced increase when compared to AMDS (SMD, 1.92; 95% CI, 0.41 - 3.42; P < 0.001). The levels of CSF chitinases in the ALS patients showed a significant increase, supporting the role of CSF chitinases as diagnostic biomarkers for ALS.
Collapse
Affiliation(s)
- Aoling Xu
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yujun Luo
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yudi Tang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Fen Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaolian Gao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Guiyuan Qiao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinhong Zhu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China.
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
12
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
13
|
Douglas AGL, Baralle D. Reduced penetrance of gene variants causing amyotrophic lateral sclerosis. J Med Genet 2024; 61:294-297. [PMID: 38123999 DOI: 10.1136/jmg-2023-109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis overlaps aetiologically and genetically with frontotemporal dementia and occurs in both familial and apparently sporadic forms. The most commonly implicated genes are C9orf72, SOD1, TARDBP and FUS. Penetrance of disease-causing variants in these genes is known to be incomplete, but has not been well studied at population level. OBJECTIVE We sought to determine the population-level penetrance of pathogenic and likely pathogenic variants in genes commonly causing amyotrophic lateral sclerosis. METHODS Published epidemiological data for amyotrophic lateral sclerosis and frontotemporal dementia were used to calculate expected frequencies of disease-causing variants per gene at population level. Variant data from gnomAD and ClinVar databases were used to ascertain observed numbers of disease-causing variants and to estimate population-level penetrance per gene. Data for C9orf72 were obtained from the published literature. RESULTS Maximum population penetrance for either amyotrophic lateral sclerosis or frontotemporal dementia was found to be 33% for C9orf72 (95% CI (20.9 to 53.2)), 54% for SOD1 (95% CI (32.7 to 88.6)), 38% for TARDBP (95% CI (21.1 to 69.8)) and 19% for FUS (95% CI (13.0 to 28.4)). CONCLUSION Population-level penetrance of amyotrophic lateral sclerosis disease genes is reduced. This finding has implications for the genetic testing and counselling of affected individuals and their unaffected relatives.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Human Development and Health, University of Southampton Faculty of Medicine, Southampton, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Diana Baralle
- Human Genetic and Genomics, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Feró O, Varga D, Nagy É, Karányi Z, Sipos É, Engelhardt J, Török N, Balogh I, Vető B, Likó I, Fóthi Á, Szabó Z, Halmos G, Vécsei L, Arányi T, Székvölgyi L. DNA methylome, R-loop and clinical exome profiling of patients with sporadic amyotrophic lateral sclerosis. Sci Data 2024; 11:123. [PMID: 38267456 PMCID: PMC10808109 DOI: 10.1038/s41597-024-02985-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the death of motor neurons, the aetiology of which is essentially unknown. Here, we present an integrative epigenomic study in blood samples from seven clinically characterised sporadic ALS patients to elucidate molecular factors associated with the disease. We used clinical exome sequencing (CES) to study DNA variants, DNA-RNA hybrid immunoprecipitation sequencing (DRIP-seq) to assess R-loop distribution, and reduced representation bisulfite sequencing (RRBS) to examine DNA methylation changes. The above datasets were combined to create a comprehensive repository of genetic and epigenetic changes associated with the ALS cases studied. This repository is well-suited to unveil new correlations within individual patients and across the entire patient cohort. The molecular attributes described here are expected to guide further mechanistic studies on ALS, shedding light on the underlying genetic causes and facilitating the development of new epigenetic therapies to combat this life-threatening disease.
Collapse
Affiliation(s)
- Orsolya Feró
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Dóra Varga
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Éva Nagy
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - Zsolt Karányi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Éva Sipos
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - József Engelhardt
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Nóra Török
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Borbála Vető
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - István Likó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ábel Fóthi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Arányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| | - Lóránt Székvölgyi
- MTA-DE Momentum, Genome Architecture and Recombination Research Group, Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary.
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, H-4032, Debrecen, Hungary.
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary.
| |
Collapse
|
16
|
Ito M, Fujii N, Kohara S, Tanaka M, Takao M, Mihara B, Saito Y, Mizuma A, Nakayama T, Netsu S, Suzuki N, Kakita A, Nagata E. Elevation of inositol pyrophosphate IP 7 in the mammalian spinal cord of amyotrophic lateral sclerosis. Front Neurol 2024; 14:1334004. [PMID: 38274887 PMCID: PMC10808411 DOI: 10.3389/fneur.2023.1334004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with progressive impairment of spinal motor neurons. Continuous research endeavor is underway to fully understand the molecular mechanisms associating with this disorder. Although several studies have implied the involvement of inositol pyrophosphate IP7 in ALS, there is no direct experimental evidence proving this notion. In this study, we analyzed inositol pyrophosphate IP7 and its precursor IP6 in the mouse and human ALS biological samples to directly assess whether IP7 level and/or its metabolism are altered in ALS disease state. Methods We used a liquid chromatography-mass spectrometry (LC-MS) protocol originally-designed for mammalian IP6 and IP7 analysis. We measured the abundance of these molecules in the central nervous system (CNS) of ALS mouse model SOD1(G93A) transgenic (TG) mice as well as postmortem spinal cord of ALS patients. Cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) from ALS patients were also analyzed to assess if IP7 status in these biofluids is associated with ALS disease state. Results SOD1(G93A) TG mice showed significant increase of IP7 level in the spinal cord compared with control mice at the late stage of disease progression, while its level in cerebrum and cerebellum remains constant. We also observed significantly elevated IP7 level and its product-to-precursor ratio (IP7/IP6) in the postmortem spinal cord of ALS patients, suggesting enhanced enzymatic activity of IP7-synthesizing kinases in the human ALS spinal cord. In contrast, human CSF did not contain detectable level of IP6 and IP7, and neither the IP7 level nor the IP7/IP6 ratio in human PBMCs differentiated ALS patients from age-matched healthy individuals. Conclusion By directly analyzing IP7 in the CNS of ALS mice and humans, the findings of this study provide direct evidence that IP7 level and/or the enzymatic activity of IP7-generating kinases IP6Ks are elevated in ALS spinal cord. On the other hand, this study also showed that IP7 is not suitable for biofluid-based ALS diagnosis. Further investigation is required to elucidate a role of IP7 in ALS pathology and utilize IP7 metabolism on the diagnostic application of ALS.
Collapse
Affiliation(s)
- Masatoshi Ito
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
- Department of Legal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsuko Fujii
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Saori Kohara
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Ban Mihara
- Department of Neurology, Mihara Memorial Hospital, Isesaki, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Atsushi Mizuma
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Taira Nakayama
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shizuka Netsu
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Naoto Suzuki
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
17
|
Ovsepian SV, O'Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct 2024; 229:1-14. [PMID: 37999738 PMCID: PMC10827929 DOI: 10.1007/s00429-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, Avda. Ramon y Cajal, 03550, San Juan de Alicante, Spain.
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
18
|
Giometto S, Finocchietti M, Paoletti O, Lombardi N, Celani MG, Sciancalepore F, Lucenteforte E, Kirchmayer U. Adherence to riluzole therapy in patients with amyotrophic lateral sclerosis in three Italian regions-The CAESAR study. Pharmacoepidemiol Drug Saf 2024; 33:e5736. [PMID: 38014926 DOI: 10.1002/pds.5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disease. Riluzole may increase survival and delay the need for mechanical ventilation. The CAESAR project ('Comparative evaluation of the efficacy and safety of drugs used in rare neuromuscular and neurodegenerative diseases', FV AIFA project 2012-2013-2014) involves evaluating prescribing patterns, and analysing effectiveness and comparative safety of drugs, in patients with neurodegenerative diseases. The aim of this study is to evaluate adherence to riluzole in patients with ALS during the first year of use, identifying adherence clusters. METHODS A retrospective cohort study was conducted using administrative data from Latium, Tuscany, and Umbria. We identified subjects with a new diagnosis of ALS between 2014 and 2019, with the first dispensation of riluzole within 180 days of diagnosis. We considered a two-year look-back period for the characterization of patients, and we followed them from the date of first dispensing of riluzole for 1 year. We calculated 12 monthly adherence measures, through a modified version of the Medication Possession Ratio, estimating drug coverage with Defined Daily Dose. Adherence trajectories were identified using a three-step method: (1) calculation of statistical measures; (2) principal component analysis; (3) cluster analysis. Patient characteristics at baseline and during follow-up were described and compared between adherence groups identified. RESULTS We included 264 ALS patients as new users of riluzole in Latium, 344 in Tuscany, and 63 in Umbria. We observed a higher frequency of males (56.2%) and a mean age of 67.4 (standard deviation, SD, 10.4) in the overall population. We identified two clusters in all regions: one more numerous, including adherent patients (60%, 74%, 88%, respectively), and another one including patients who discontinued therapy (40%, 26%, 12%, respectively). In Tuscany patients discontinuing riluzole more frequently died (28.6% vs. 15.4%, p-value <0.01). Additionally, low-adherers had a higher frequency of central nervous system disorders (69.0% vs. 52.5%, p-value 0.01), and a greater use of non-pharmacological treatments (p-values ≤0.01 for invasive ventilation and tracheostomy). We did not observe any differences in Lazio, whereas in Umbria we observed a higher use of drugs for dementia-related psychiatric problems among low-adherers (57.1% vs. 7.8%, respectively, p-value <0.01), although with small numbers. CONCLUSION Most ALS patients who start riluzole adhere to therapy during the first year. Patients who discontinue therapy early show greater fragility and mortality.
Collapse
Affiliation(s)
- Sabrina Giometto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Niccolò Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Sciancalepore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
19
|
Barnabe A, Genestet S, Gut-Gobert C, Rivalain C, Noury JB, Goret M, Barnier A, De Moreuil C, Espinasse B, Le Mao R, Leroyer C, Couturaud F, Tromeur C. Venous thromboembolism and amyotrophic lateral sclerosis: the Venous Thrombo-Embolism and Sclerosis Lateral Amyotrophic study. Res Pract Thromb Haemost 2024; 8:102287. [PMID: 38371336 PMCID: PMC10873722 DOI: 10.1016/j.rpth.2023.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/20/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease. Given the inflammatory nature of ALS and the high number of ALS-related clinical circumstances (eg, prolonged immobilization and infections), patients with ALS may have a high risk of venous thromboembolism (VTE). Objectives To determine the annual incidence rate of VTE and the predictors of VTE in patients with ALS. Methods We analyzed a prospective cohort of patients with ALS diagnosed between 2009 and 2019 followed in the Brest University Hospital ALS Centre. Results Among 227 patients with ALS, VTE occurred in 19 patients during a median follow-up period of 717 days (IQR, 488-1308), yielding an annual incidence rate of 2.93% (95% CI, 1.88%-4.53%). Predictors for VTE were a family history of VTE (hazard ratio [HR], 15.24; 95% CI, 1.72-134.84; P = .01), the presence of noninvasive ventilation at ALS diagnosis (HR, 6.98; 95% CI, 1.09-44.59; P = .04) and a short time (ie, <213 days) between first symptoms and ALS diagnosis (HR, 5.48; 95% CI, 1.57-19.11; P = .01). Recurrent VTE occurred within 3 months after stopping anticoagulation in 5 patients (26.3%). Conclusion The annual incidence of VTE in patients with ALS is high. Predictive factors of VTE were a VTE history, noninvasive ventilation, and a short time between first symptoms of ALS and ALS diagnosis.
Collapse
Affiliation(s)
- Audrey Barnabe
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
| | - Steeve Genestet
- Department of Clinical Neurophysiology, Brest University Hospital, Brest, France
| | - Christophe Gut-Gobert
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
| | - Chloé Rivalain
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
| | - Jean-Baptiste Noury
- Department of Clinical Neurophysiology, Brest University Hospital, Brest, France
| | - Marion Goret
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
| | - Aude Barnier
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
| | - Claire De Moreuil
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
| | - Benjamin Espinasse
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
| | - Raphaël Le Mao
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
- French Clinical Research Infrastruture Network Investigation Network On Venous Thrombo-Embolism Network, Saint-Etienne, France
| | - Christophe Leroyer
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
- French Clinical Research Infrastruture Network Investigation Network On Venous Thrombo-Embolism Network, Saint-Etienne, France
| | - Francis Couturaud
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
- French Clinical Research Infrastruture Network Investigation Network On Venous Thrombo-Embolism Network, Saint-Etienne, France
| | - Cécile Tromeur
- Department of Internal, Vascular and Chest Diseases, Brest University Hospital, Brest, France
- Unités mixtes de recherche 1304 Groupe d’Etude de Thrombose de Bretagne Occidentale, CIC-INSERM 1412, Univ_Brest, Brest, France
- French Clinical Research Infrastruture Network Investigation Network On Venous Thrombo-Embolism Network, Saint-Etienne, France
| |
Collapse
|
20
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Hilger A, Dunne-Platero K. The experiences of speech pathology referral and communicative participation in adults with cerebellar ataxia. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:849-860. [PMID: 36562755 DOI: 10.1080/17549507.2022.2134455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE The purpose of this study was to identify potential barriers to speech pathology referral in ataxia, as well as potential factors influencing satisfaction with speech pathology and communicative participation. METHOD An online survey study included questions about participant demographics, referral and access to speech pathology, satisfaction with speech pathology, and communicative participation via the Communicative Participation Item Bank (CPIB). RESULTS We analysed 118 eligible responses from individuals with ataxia. Results from Bayesian regression models indicated that the overall referral rate to speech pathology was 64% for the respondents with a speech impairment, predicted by lower income, less education, and greater self-perceived speech severity. Additionally, sex, self-perceived speech severity, and length of speech impairment predicted more restricted communicative participation. For the respondents who were referred for speech pathology, overall satisfaction with speech pathology was neutral to high but most individuals reported little to no improvement in their speech. CONCLUSION Referral rate to speech pathology was low given that dysarthria and dysphagia are highly likely to occur in ataxia. Considerations should be made for perceived speech severity, sex, and length of speech impairment in evaluating communicative participation. Lastly, there is a vital need for evidence-based treatment for ataxic dysarthria.
Collapse
Affiliation(s)
- Allison Hilger
- Department of Speech, Language, and Hearing Sciences, University of Colorado, Boulder, CO, USA
| | - Kylie Dunne-Platero
- Department of Speech, Language, and Hearing Sciences, University of Colorado, Boulder, CO, USA
| |
Collapse
|
22
|
Barberio J, Lally C, Kupelian V, Hardiman O, Flanders WD. Estimated Familial Amyotrophic Lateral Sclerosis Proportion: A Literature Review and Meta-analysis. Neurol Genet 2023; 9:e200109. [PMID: 38045991 PMCID: PMC10689005 DOI: 10.1212/nxg.0000000000200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder. Familial (fALS) cases are usually reported to constitute 5%-10% of all ALS cases; however, no recent literature review or meta-analysis of this proportion (referred to throughout as "proportion fALS") has been conducted. Our objective was to estimate the proportion fALS by geographic region and to assess the effect of study characteristics on the estimates. Methods A comprehensive literature review was performed to identify all original studies reporting the number of fALS cases in an ALS cohort. The results were stratified by geographic region, study design (case series or population-based), and decade of study publication. Subgroup analyses were conducted according to family history criteria used to define fALS. We report pooled estimates of the proportion fALS from random-effects meta-analyses when >2 studies are available and I2 is < 90%; weighted averages and ranges are otherwise presented. Results The overall pooled proportion fALS based on a total 165 studies was 8% (0%, 71%). The proportion fALS was 9% (0%, 71%) among 107 case series and 5% (4%, 6%) among 58 population-based studies. Among population-based studies, proportion fALS by geographic region was 6% (5%, 7%; N = 37) for Europe, 5% (3%, 7%; N = 5) for Latin America, and 5% (4%, 7%; N = 12) for North America. Criteria used to define fALS were reported by 21 population-based studies (36%), and proportion fALS was 5% (4%, 5%; N = 9) for first-degree relative, 7% (4%, 11%; N = 4) for first or second-degree relative, and 11% (N = 1) for more distant ALS family history. Population-based studies published in the 2000s or earlier generated a lower pooled proportion fALS than studies published in the 2010s or later. Discussion The results suggest that variability in the reported proportion fALS in the literature may be, in part, due to the differences in geography, study design, fALS definition, and decade of case ascertainment. Few studies outside of European ancestral populations were available. The proportion fALS was marginally higher among case series compared with population-based studies, likely because of referral bias. Criteria used to define fALS were largely unreported. Consensus criteria for fALS and additional population-based studies in non-European ancestral populations are needed.
Collapse
Affiliation(s)
- Julie Barberio
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Cathy Lally
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Varant Kupelian
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - Orla Hardiman
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| | - W Dana Flanders
- From the Epidemiologic Research and Methods LLC (J.B., C.L., W.D.F.); Rollins School of Public Health (J.B., W.D.F.), Emory University, Atlanta, GA; Biogen (V.K.), Cambridge, MA; and Trinity Biomedical Sciences Institute (O.H.), Dublin, Ireland
| |
Collapse
|
23
|
Abrahams S. Neuropsychological impairment in amyotrophic lateral sclerosis-frontotemporal spectrum disorder. Nat Rev Neurol 2023; 19:655-667. [PMID: 37828358 DOI: 10.1038/s41582-023-00878-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a rapid course, characterized by motor neuron dysfunction, leading to progressive disability and death. This Review, which is aimed at neurologists, psychologists and other health professionals who follow evidence-based practice relating to ALS and frontotemporal dementia (FTD), examines the neuropsychological evidence that has driven the reconceptualization of ALS as a spectrum disorder ranging from a pure motor phenotype to ALS-FTD. It focuses on changes in cognition and behaviour, which vary in severity across the spectrum: around 50% individuals with ALS are within the normal range, 15% meet the criteria for ALS-FTD, and the remaining 35% are in the mid-spectrum range with milder and more focal impairments. The cognitive impairments include deficits in verbal fluency, executive functions, social cognition and language, and apathy is the most prevalent behavioural change. The pattern and severity of cognitive and behavioural change predicts underlying regional cerebral dysfunction from brain imaging and post-mortem pathology. Our increased recognition of cognition and behaviour as part of the ALS phenotype has led to the development and standardization of assessment tools, which have been incorporated into research and clinical care. Measuring change over the course of the disease is vital for clinical trials, and neuropsychology is proving to be a biomarker for the earliest preclinical changes.
Collapse
Affiliation(s)
- Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
24
|
Genin EC, Abou-Ali M, Paquis-Flucklinger V. Mitochondria, a Key Target in Amyotrophic Lateral Sclerosis Pathogenesis. Genes (Basel) 2023; 14:1981. [PMID: 38002924 PMCID: PMC10671245 DOI: 10.3390/genes14111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Institute for Research on Cancer and Aging, Nice (IRCAN), Université Côte d’Azur, Inserm U1081, CNRS UMR7284, Centre Hospitalier Universitaire (CHU) de Nice, 06200 Nice, France; (M.A.-A.); (V.P.-F.)
| | | | | |
Collapse
|
25
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
26
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Jiang S, Wang X, Cao T, Kang R, Huang L. Insights on therapeutic potential of clemastine in neurological disorders. Front Mol Neurosci 2023; 16:1279985. [PMID: 37840769 PMCID: PMC10568021 DOI: 10.3389/fnmol.2023.1279985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Clemastine, a Food and Drug Administration (FDA)-approved compound, is recognized as a first-generation, widely available antihistamine that reduces histamine-induced symptoms. Evidence has confirmed that clemastine can transport across the blood-brain barrier and act on specific neurons and neuroglia to exert its protective effect. In this review, we summarize the beneficial effects of clemastine in various central nervous system (CNS) disorders, including neurodegenerative disease, neurodevelopmental deficits, brain injury, and psychiatric disorders. Additionally, we highlight key cellular links between clemastine and different CNS cells, in particular in oligodendrocyte progenitor cells (OPCs), oligodendrocytes (OLs), microglia, and neurons.
Collapse
Affiliation(s)
- Sufang Jiang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueji Wang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Cao
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongtian Kang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lining Huang
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Ministry of Education, Shijiazhuang, Hebei, China
| |
Collapse
|
28
|
Barbalho IMP, Fonseca ALA, Fernandes F, Henriques J, Gil P, Nagem D, Lindquist R, Lima T, dos Santos JPQ, Paiva J, Morais AHF, Dourado Júnior MET, Valentim RAM. Digital health solution for monitoring and surveillance of Amyotrophic Lateral Sclerosis in Brazil. Front Public Health 2023; 11:1209633. [PMID: 37693725 PMCID: PMC10485256 DOI: 10.3389/fpubh.2023.1209633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex and rare neurodegenerative disease given its heterogeneity. Despite being known for many years, few countries have accurate information about the characteristics of people diagnosed with ALS, such as data regarding diagnosis and clinical features of the disease. In Brazil, the lack of information about ALS limits data for the research progress and public policy development that benefits people affected by this health condition. In this context, this article aims to show a digital health solution development and application for research, intervention, and strengthening of the response to ALS in the Brazilian Health System. The proposed solution is composed of two platforms: the Brazilian National ALS Registry, responsible for the data collection in a structured way from ALS patients all over Brazil; and the Brazilian National ALS Observatory, responsible for processing the data collected in the National Registry and for providing a monitoring room with indicators on people diagnosed with ALS in Brazil. The development of this solution was supported by the Brazilian Ministry of Health (MoH) and was carried out by a multidisciplinary team with expertise in ALS. This solution represents a tool with great potential for strengthening public policies and stands out for being the only public database on the disease, besides containing innovations that allow data collection by health professionals and/or patients. By using both platforms, it is believed that it will be possible to understand the demographic and epidemiological data of ALS in Brazil, since the data will be able to be analyzed by care teams and also by public health managers, both in the individual and collective monitoring of people living with ALS in Brazil.
Collapse
Affiliation(s)
- Ingridy M. P. Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Aleika L. A. Fonseca
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Paulo Gil
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Raquel Lindquist
- Department of Physical Therapy, Rio Grande do Norte Federal University, Natal, Brazil
| | - Thaisa Lima
- Brazilian Ministry of Health, Brasília, Brazil
| | - João Paulo Queiroz dos Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Education Science and Technology, Natal, Brazil
| | - Jailton Paiva
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Antonio H. F. Morais
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|
29
|
Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol 2023; 14:1246768. [PMID: 37662922 PMCID: PMC10468589 DOI: 10.3389/fimmu.2023.1246768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic, progressive neurodegenerative disease characterized by the loss of motor neurons. Dysregulated peripheral immunity has been identified as a hallmark of ALS. Neutrophils, as the front-line responders of innate immunity, contribute to host defense through pathogen clearance. However, they can concurrently play a detrimental role in chronic inflammation. With the unveiling of novel functions of neutrophils in neurodegenerative diseases, it becomes essential to review our current understanding of neutrophils and to recognize the gap in our knowledge about their role in ALS. Thus, a detailed comprehension of the biological processes underlying neutrophil-induced pathogenesis in ALS may assist in identifying potential cell-based therapeutic strategies to delay disease progression.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
30
|
Wolfson C, Gauvin DE, Ishola F, Oskoui M. Global Prevalence and Incidence of Amyotrophic Lateral Sclerosis: A Systematic Review. Neurology 2023; 101:e613-e623. [PMID: 37308302 PMCID: PMC10424837 DOI: 10.1212/wnl.0000000000207474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative disorder affecting upper and lower motor neurons. Due to its rarity and rapidly progressive nature, studying the epidemiology of ALS is challenging, and a comprehensive picture of the global burden of this disease is lacking. The objective of this systematic review was to describe the global incidence and prevalence of ALS. METHODS We searched MEDLINE, Embase, Global Health, PsycInfo, Cochrane Library, and CINAHL to identify articles published between January 1, 2010, and May 6, 2021. Studies that were population based and reported estimates of prevalence, incidence, and/or mortality of ALS were eligible for inclusion. This study focuses on the incidence and prevalence. Quality assessment was performed using a tool developed to evaluate methodology relevant to prevalence and incidence studies. This review was registered with PROSPERO, CRD42021250559. RESULTS This search generated 6,238 articles, of which 140 were selected for data extraction and quality assessment. Of these, 85 articles reported on the incidence and 61 on the prevalence of ALS. Incidence ranged from 0.26 per 100,000 person-years in Ecuador to 23.46 per 100,000 person-years in Japan. Point prevalence ranged from 1.57 per 100,000 in Iran to 11.80 per 100,000 in the United States. Many articles identified cases with ALS from multiple data sources. DISCUSSION There is variation in reported incidence and prevalence estimates of ALS across the world. While registries are an important and powerful tool to quantify disease burden, such resources are not available everywhere. This results in gaps in reporting of the global epidemiology of ALS, as highlighted by the degree of variation (and quality) in estimates of incidence and prevalence reported in this review.
Collapse
Affiliation(s)
- Christina Wolfson
- From the Neuroepidemiology Research Unit (C.W., D.E.G.), Research Institute of the McGill University Health Centre; Department of Medicine (C.W.), Faculty of Medicine and Health Sciences, Department of Epidemiology (C.W., F.I.), Biostatistics and Occupational Health, School of Population and Global Health, and Department of Pediatrics (M.O.), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Danielle E Gauvin
- From the Neuroepidemiology Research Unit (C.W., D.E.G.), Research Institute of the McGill University Health Centre; Department of Medicine (C.W.), Faculty of Medicine and Health Sciences, Department of Epidemiology (C.W., F.I.), Biostatistics and Occupational Health, School of Population and Global Health, and Department of Pediatrics (M.O.), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Foluso Ishola
- From the Neuroepidemiology Research Unit (C.W., D.E.G.), Research Institute of the McGill University Health Centre; Department of Medicine (C.W.), Faculty of Medicine and Health Sciences, Department of Epidemiology (C.W., F.I.), Biostatistics and Occupational Health, School of Population and Global Health, and Department of Pediatrics (M.O.), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Maryam Oskoui
- From the Neuroepidemiology Research Unit (C.W., D.E.G.), Research Institute of the McGill University Health Centre; Department of Medicine (C.W.), Faculty of Medicine and Health Sciences, Department of Epidemiology (C.W., F.I.), Biostatistics and Occupational Health, School of Population and Global Health, and Department of Pediatrics (M.O.), Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Raymond J, Punjani R, Larson T, Berry JD, Horton DK, Mehta P. Comparing Amyotrophic lateral sclerosis (ALS) patient characteristics from the National ALS Registry and the Massachusetts ALS Registry, data through 2015. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:1-8. [PMID: 37539949 PMCID: PMC11323297 DOI: 10.1080/21678421.2023.2239301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE To compare, for completeness, ALS patients identified in the National ALS Registry (National Registry) from MA to those in the Massachusetts ALS Registry (MA Registry) through 2015. METHODS Sensitivity analyses were conducted to determine the completeness among patients reported in both registries. Patients were matched on first and last name, month and year of birth, sex, as well as Soundex name matching. Demographics for matching and nonmatching ALS patients were also examined using bivariate analyses and logistic regression. RESULTS There were 1,042 ALS patients in the MA Registry, and 642 patients matched (61.6%) in the National Registry. Sensitivity analyses found the National Registry had a sensitivity of 87.7% and specificity of 60%. For these matched patients, 522 (81.2%) came from Medicare. Of the 400 patients in the MA Registry not matched to the National Registry, 11.1% were nonwhite, compared to 6.0% in the matched group) (p = 0.0091) and 59.2% were diagnosed before age 60, compared to 28.6% in the matched group (p < 0.0001). Multivariate logistic regression analysis showed being an ALS case (p < 0.0001) and having an ALS diagnosis at age 60 or later (p < 0.0001) were associated with being more likely to match between the two registries. CONCLUSIONS These findings show that ALS's non-notifiable condition status at the national level continues to pose a challenge in identifying all ALS patients. This analysis also showed missing cases at the state level even with a reporting statute. Additional strategies are needed for better patient-ascertainment to quantify all ALS patients in the U.S.
Collapse
Affiliation(s)
- Jaime Raymond
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA and
| | - Reshma Punjani
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA and
| | - Theodore Larson
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA and
| | - James D Berry
- Sean M Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | - D Kevin Horton
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA and
| | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA and
| |
Collapse
|
32
|
Gangfuß A, Kohl Z. [Amyotrophic lateral sclerosis-Motor neuron disease with a wide clinical and genetic spectrum]. DER NERVENARZT 2023:10.1007/s00115-023-01479-3. [PMID: 37121991 DOI: 10.1007/s00115-023-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease. Besides a timely diagnosis, precise knowledge of the clinical manifestations and differential diagnoses is essential. While most patients develop the disease at an older age, hereditary causes play a more frequent role in the juvenile forms. OBJECTIVE What is the current state of ALS diagnostics, which new treatment options exist? MATERIAL AND METHOD Literature search using Pubmed.gov. RESULTS The main focus is on an individualized symptomatic treatment as no curative treatment approaches exist. However, new insights into the genetic and pathophysiological principles of the different forms of ALS open the way for future disease-modifying treatment options. CONCLUSION In cases of a clinical suspicion of ALS molecular genetic diagnostics should be considered, particularly in juvenile and young adult patients, to exclude differential diagnoses and to enable patients access to new treatment approaches.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Pädiatrische Neurologie, Zentrum für Neuromuskuläre Erkrankungen, Zentrum für Translationale Neuro- und Verhaltenswissenschaften, Universität Duisburg-Essen, Essen, Deutschland
| | - Zacharias Kohl
- Spezialambulanz Bewegungsstörungen und Motoneuronerkrankungen, Klinik und Poliklinik für Neurologie, Universität Regensburg, Regensburg, Deutschland.
| |
Collapse
|
33
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
34
|
Dhasmana S, Dhasmana A, Kotnala S, Mangtani V, Narula AS, Haque S, Jaggi M, Yallapu MM, Chauhan SC. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:1117-1138. [PMID: 36111770 PMCID: PMC10286590 DOI: 10.2174/1570159x20666220915092703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target. OBJECTIVE The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates. RESULTS In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies. CONCLUSION The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sudhir Kotnala
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Varsha Mangtani
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
| | - Acharan S. Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, North Carolina, NC 27516, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Meena Jaggi
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
35
|
Meanti R, Bresciani E, Rizzi L, Coco S, Zambelli V, Dimitroulas A, Molteni L, Omeljaniuk RJ, Locatelli V, Torsello A. Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2023; 21:2376-2394. [PMID: 36111771 PMCID: PMC10616926 DOI: 10.2174/1570159x20666220915103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Anna Dimitroulas
- Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, United Kingdom
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Robert J. Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| |
Collapse
|
36
|
Identifying Candidate Genes Associated with Sporadic Amyotrophic Lateral Sclerosis via Integrative Analysis of Transcriptome-Wide Association Study and Messenger RNA Expression Profile. Cell Mol Neurobiol 2023; 43:327-338. [PMID: 35038056 DOI: 10.1007/s10571-021-01186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis, a fatal neurodegeneration disease affecting motor neurons in the brain and spinal cord, is difficult to diagnose and treat. The objective of this study is to identify novel candidate genes related to ALS. Transcriptome-wide association study of ALS was conducted by integrating the genome-wide association study summary data (including 1234 ALS patients and 2850 controls) and pre-computed gene expression weights of different tissues. The ALS-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the mRNA expression profiles of the sporadic ALS. Functional enrichment and annotation analysis of identified genes were performed by an R package and the functional mapping and annotation software. TWAS identified 761 significant genes (PTWAS < 0.05), 627 Gene ontology terms, and 8 Kyoto Encyclopedia of Genes and Genomes pathways for ALS, such as C9orf72, with three expression quantitative trait loci were found significantly: rs2453554 (PTWAS CBRS = 4.68 × 10-10, PTWAS CBRS = 2.54 × 10-9), rs10967976 (PTWAS CBRS = 7.85 × 10-10, PTWAS CBRS = 8.91 × 10-9, PTWAS CBRS = 1.49 × 10-7, PTWAS CBRS = 5.59 × 10-7), rs3849946 (PTWAS CBRS = 7.69 × 10-4, PTWAS YBL = 4.02 × 10-2), Mitochondrion (Padj = 4.22 × 10-16), and Cell cycle (Padj = 2.04 × 10-3). Moreover, 107 common genes, 4 KEGG pathways and 41 GO terms were detected by integrating mRNA expression profiles of sALS, such as CPVL (FC = 2.06, PmRNA = 6.99 × 10-6, PTWAS CBR = 2.88 × 10-2, PTWAS CBR = 4.37 × 10-2), Pyrimidine Metabolism (Padj = 2.43 × 10-2), and Cell Activation (Padj = 5.54 × 10-3). Multiple candidate genes and pathways were detected for ALS. Our findings may provide novel clues for understanding the genetic mechanism of ALS.
Collapse
|
37
|
Kumar R, Malik Z, Singh M, Rachana R, Mani S, Ponnusamy K, Haider S. Amyotrophic Lateral Sclerosis Risk Genes and Suppressor. Curr Gene Ther 2023; 23:148-162. [PMID: 36366843 DOI: 10.2174/1566523223666221108113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Zubbair Malik
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi-110067, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - R Rachana
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| | | | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology, Sec-62, Noida, Uttar Pradesh, India
| |
Collapse
|
38
|
Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:623-632. [PMID: 36511680 DOI: 10.7705/biomedica.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis is a neurodegenerative disease with a possible multifactorial origin characterized by the progressive degeneration of motor neurons. There is a relatively high prevalence of this disease in Antioquia; however, there is no published genetic study to date in Colombia. Despite its unknown etiopathogenesis, more genetic risk factors possibly involved in the development of this disease are constantly found. OBJETIVES To evaluate G93A and D90A mutations in SOD1 gene and a short tandem repeat in C9orf72 within a cohort of amyotrophic lateral sclerosis patients from Antioquia, Colombia. Materials y methods: Thirty-four patients previously diagnosed with amyotrophic lateral sclerosis were included in the study. Peripheral blood samples were used for DNA extraction and genotyping. RESULTS No mutations were found in SOD1 (G93A and D90A) in any of the patients, while C9orf72 exhibited an allele with a statistically significant high prevalence in the study sample (8 hexanucleotide repeats of CAGCAG). CONCLUSIONS These results suggest an association between this short tandem repeat (STR) in C9orf72 and the presence of amyotrophic lateral sclerosis in the studied population. However, this association should be established in a larger sample size and with controls from the same population. In addition, there also seems to be a genetic anticipation effect for the disease regarding this locus, since patients with this genotype present an earlier onset.
Collapse
|
39
|
Boumédiene F, Marin B, Luna J, Bonneterre V, Camu W, Lagrange E, Besson G, Esselin F, De La Cruz E, Lautrette G, Preux PM, Couratier P. Spatio-temporal clustering of amyotrophic lateral sclerosis in France: A population-based study. Eur J Epidemiol 2022; 37:1181-1193. [PMID: 36098945 DOI: 10.1007/s10654-022-00904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess spatial aggregates of amyotrophic lateral sclerosis (ALS) incident cases, using a solid geo-epidemiological statistical method, in France. METHODS This population-based study (2003-2011) investigated 47.1 million person-years of follow-up (PYFU). Case ascertainment of incident ALS cases was based on multiple sources (ALS referral centers, hospital centres and health insurance data). Neurologists confirmed all ALS diagnoses. Exhaustiveness was estimated through capture-recapture. Aggregates were investigated in four steps: (a) geographical modelling (standardized incidence ratio (SIR) calculation), (b) analysis of the spatial distribution of incidence (Phothoff-Winttinghill's test, Global Moran's Index, Kulldorf's spatial scan statistic, Local Moran's Index), (c) classification of the level of certainty of spatial aggregates (i.e. definite cluster; probable over-incidence area; possible over-incidence area) and (d) evaluation of the robustness of the results. RESULTS The standardized incidence of ALS was 2.46/100,000 PYFU (95% CI 2.31-2.63, European population as reference) based on 1199 incident cases. We identified 13 areas of spatial aggregates: one cluster (stable in robustness analysis), five probable over-incidence areas (2 stable in robustness analysis) and seven possible over-incidence areas (including 4 stable areas in robustness analysis). A cluster was identified in the Rhône-Alpes region: 100 observed vs 54.07 expected cases for 2,411,514 PYFU, SIR: 1.85 (95% CI 1.50-2.25). CONCLUSION We report here one of the largest investigations of incidence and spatial aggregation of ALS ever performed in a western country. Using a solid methodology framework for case ascertainment and cluster analysis, we identified 13 areas that warrant further investigation.
Collapse
Affiliation(s)
- Farid Boumédiene
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Benoît Marin
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France
| | - Jaime Luna
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Vincent Bonneterre
- University Grenoble Alpes, CNRS, Grenoble INP, TIMC, 38000, Grenoble, France
| | - William Camu
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Emmeline Lagrange
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Gérard Besson
- Department of Neurology, CHU Grenoble-Alpes (Grenoble Teaching Hospital), Grenoble, France
| | - Florence Esselin
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Elisa De La Cruz
- Explorations Neurologiques et Centre SLA, CHU et Université de Montpellier, INSERM, Montpellier, France
| | - Géraldine Lautrette
- Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France
| | - Pierre Marie Preux
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.,CEBIMER, Centre d'Epidémiologie, de Biostatistique et de Méthodologie de la Recherche, CHU Limoges, Limoges, France
| | - Philippe Couratier
- Inserm U1094, IRD U270, USC1501 INRAE, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France. .,Department of Neurology, Centre de Reference SLA et Autres Maladies du Neurone Moteur, CHU Limoges, Limoges, France.
| | | |
Collapse
|
40
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
41
|
A new method for estimating under-recruitment of a patient registry: a case study with the Ohio Registry of Amyotrophic Lateral Sclerosis. Sci Rep 2022; 12:14721. [PMID: 36042373 PMCID: PMC9428141 DOI: 10.1038/s41598-022-18944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
We developed a disease registry to collect all incident amyotrophic lateral sclerosis (ALS) cases diagnosed during 2016–2018 in Ohio. Due to incomplete case ascertainment and limitations of the traditional capture-recapture method, we proposed a new method to estimate the number of cases not recruited by the Registry and their spatial distribution. Specifically, we employed three statistical methods to identify reference counties with normal case-population relationships to build a Poisson regression model for estimating case counts in target counties that potentially have unrecruited cases. Then, we conducted spatial smoothing to adjust outliers locally. We validated the estimates with ALS mortality data. We estimated that 119 total cases (95% CI [109, 130]) were not recruited, including 36 females (95% CI [31, 41]) and 83 males (95% CI [74, 99]), and were distributed unevenly across the state. For target counties, including estimated unrecruited cases increased the correlation between the case count and mortality count from r = 0.8494 to 0.9585 for the total, from 0.7573 to 0.8270 for females, and from 0.6862 to 0.9292 for males. The advantage of this method in the spatial perspective makes it an alternative to capture-recapture for estimating cases missed by disease registries.
Collapse
|
42
|
Wang Y, Shen D, Hou B, Sun X, Yang X, Gao J, Liu M, Feng F, Cui L. Brain structural and perfusion changes in amyotrophic lateral sclerosis-frontotemporal dementia patients with cognitive and motor onset: a preliminary study. Brain Imaging Behav 2022; 16:2164-2174. [PMID: 35838935 DOI: 10.1007/s11682-022-00686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) is rare but exhibits worse prognosis than either ALS or FTD alone. However, cognitive onset ALS-FTD (ALS-FTD-C) confers significantly better patient survival than does motor onset ALS-FTD (ALS-FTD-M), underscoring a meager understanding of pathological group differences. This study aimed to assess disparities in cortical atrophy and perfusion shown by patients with the above disease variants. A total of 38 participants (ALS-FTD-C, 8; ALS-FTD-M, 6; simultaneous-onset ALS-FTD [ALS-FTD-S], 4; healthy controls [HC], 20) qualified for the study and underwent magnetic resonance imaging scan. Three-dimensional T1-weighted structural brain imaging and 3D-pseudocontinuous arterial spin-labeled imaging were routinely collected. Gray matter volume (GMV) and cerebral blood flow (CBF) in ALS-FTD-C and ALS-FTD-M were compared through voxel-based analysis. Correlations between imaging parameters and clinical data were also assessed. Compared with HC, ALS-FTD had significant GMV reduction mainly in bilateral limbic system. GMV reduction in ALS-FTD-C was similar in pattern but less widespread, whereas ALS-FTD-M lacked any significant GMV reduction. In CBF analyses, ALS-FTD displayed hypoperfusion in bilateral motor cortex, frontotemporal lobe, and left basal ganglia. Hypoperfusion involved bilateral temporal lobe, prefrontal cortex, and putamen in ALS-FTD-C but was limited to left parahippocampal gyrus in ALS-FTD-M. Correlations between clinical data and GMV/CBF changes in specific regions were also identified in ALS-FTD. Group-specific patterns of cortical atrophy and perfusion were evident in ALS-FTD-C and ALS-FTD-M. ALS-FTD-C showed pronounced cortical atrophy and hypoperfusion, which were otherwise minimal in ALS-FTD-M. Above findings preliminarily revealed the pathological group differences that may help in classifying patients with ALS-FTD.
Collapse
Affiliation(s)
- Yanying Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaohan Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Centre, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
43
|
El Mendili MM, Grapperon AM, Dintrich R, Stellmann JP, Ranjeva JP, Guye M, Verschueren A, Attarian S, Zaaraoui W. Alterations of Microstructure and Sodium Homeostasis in Fast Amyotrophic Lateral Sclerosis Progressors: A Brain DTI and Sodium MRI Study. AJNR Am J Neuroradiol 2022; 43:984-990. [PMID: 35772800 DOI: 10.3174/ajnr.a7559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE While conventional MR imaging has limited value in amyotrophic lateral sclerosis, nonconventional MR imaging has shown alterations of microstructure using diffusion MR imaging and recently sodium homeostasis with sodium MR imaging. We aimed to investigate the topography of brain regions showing combined microstructural and sodium homeostasis alterations in amyotrophic lateral sclerosis subgroups according to their disease-progression rates. MATERIALS AND METHODS Twenty-nine patients with amyotrophic lateral sclerosis and 24 age-matched healthy controls were recruited. Clinical assessments included disease duration and the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale. Patients were clinically differentiated into fast (n = 13) and slow (n = 16) progressors according to the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale progression rate. 3T MR imaging brain protocol included 1H T1-weighted and diffusion sequences and a 23Na density-adapted radial sequence. Quantitative maps of diffusion with fractional anisotropy, mean diffusivity, and total sodium concentration were measured. The topography of diffusion and sodium abnormalities was assessed by voxelwise analyses. RESULTS Patients with amyotrophic lateral sclerosis showed significantly higher sodium concentrations and lower fractional anisotropy, along with higher sodium concentrations and higher mean diffusivity compared with healthy controls, primarily within the corticospinal tracts, corona radiata, and body and genu of the corpus callosum. Fast progressors showed wider-spread abnormalities mainly in the frontal areas. In slow progressors, only fractional anisotropy measures showed abnormalities compared with healthy controls, localized in focal regions of the corticospinal tracts, the body of corpus callosum, corona radiata, and thalamic radiation. CONCLUSIONS The present study evidenced widespread combined microstructural and sodium homeostasis brain alterations in fast amyotrophic lateral sclerosis progressors.
Collapse
Affiliation(s)
- M M El Mendili
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France .,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - A-M Grapperon
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France.,APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - R Dintrich
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France.,APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - J-P Stellmann
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - J-P Ranjeva
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - M Guye
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - A Verschueren
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| | - S Attarian
- APHM, Hôpital de la Timone (A.-M.G., R.D., S.A.), Referral Centre for Neuromuscular Diseases and ALS, Marseille, France
| | - W Zaaraoui
- From the Aix Marseille University (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), Centre national de la recherche scientifique, The Center for Magnetic Resonance in Biology and Medicine, Marseille, France.,APHM, Hopital de la Timone (M.M.E.M., A.-M.G., R.D., J.-P.S., J.-P.R., M.G., A.V., W.Z.), CEMEREM, Marseille, France
| |
Collapse
|
44
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
45
|
Kim HT, Bae JH, Shin YD, Lee JS, Kim YJ, Lee JY. Total intravenous anesthesia without muscle relaxant for pulmonary wedge resection in a patient with amyotrophic lateral sclerosis: a case report. Am J Transl Res 2022; 14:3554-3558. [PMID: 35702109 PMCID: PMC9185035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Muscle relaxants may exacerbate the symptoms of amyotrophic lateral sclerosis (ALS). Furthermore, ALS patients often experience respiratory muscle weakness. Herein, we report the case of a 63-year-old man with ALS who underwent pulmonary wedge resection using total intravenous anesthesia without muscle relaxant and single lumen endotracheal tube. After an unremarkable surgical procedure, the patient was transferred to the intensive care unit after extubation. The patient did not experience any worsening of ALS symptoms over the one-year follow-up period. Our experience shows that total intravenous anesthesia without muscle relaxants can be used as an anesthetic method for lung surgery in ALS patients. We report this case along with a brief literature review.
Collapse
|
46
|
Park J, Kim JE, Song TJ. The Global Burden of Motor Neuron Disease: An Analysis of the 2019 Global Burden of Disease Study. Front Neurol 2022; 13:864339. [PMID: 35528743 PMCID: PMC9068990 DOI: 10.3389/fneur.2022.864339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Up-to-date, accurate information on the disease burden of motor neuron disease (MND) is the cornerstone for evidence-based resource allocation and healthcare planning. We aimed to estimate the burden of MND globally from 1990 to 2019, as part of the Global Burden of Disease, Injuries and Risk Factor (GBD) study. Amyotrophic lateral sclerosis, progressive muscular atrophy, primary lateral sclerosis, pseudobulbar palsy, spinal muscular atrophy and hereditary spastic paraplegia- were included for analysis as MNDs. We measured age-standardized incidence, prevalence, death, and disability-adjusted life-years (DALYs) in 204 countries and territories worldwide from 1990 to 2019 using spatial Bayesian analyses. The effects of age, sex, and the sociodemographic index (measures of income per capita, education, and fertility) on incidence, prevalence, death, and disability-adjusted life-years due to MNDs were explored. According to 2019 GBD estimates, there were ~268,673 [95% uncertainty interval (UI), 213,893-310,663] prevalent cases and 63,700 (95% UI, 57,295-71,343) incident cases of MND worldwide. In 2019, MND caused 1,034,606 (95% UI, 979,910-1,085,401) DALYs and 39,081 (95% UI, 36,566-41,129) deaths worldwide. The age-standardized rates of prevalence, incidence, death, and DALYs for MNDs in 2019 were 3.37 (95% UI, 2.9-3.87) per 100,000 people, 0.79 (95% UI, 0.72-0.88) per 100,000 people, 0.48 (95% UI, 0.45-0.51) per 100,000 people, and 12.66 (95% UI, 11.98-13.29) per 100,000 people, respectively. The global prevalence and deaths due to MND in 2019 were increased (1.91% [95% UI, 0.61-3.42] and 12.39% [95% UI, 5.81-19.27], respectively) compared to 1990, without significant change in incidence. More than half of the prevalence and deaths due to MND occurred in three high-income regions (North America, Western Europe, and Australasia). In most cases, the prevalence, incidence, and DALYs of MNDs were high in regions with high sociodemographic index; however, in high-income East Asia, these were relatively low compared to similar sociodemographic index groups elsewhere. The burden of MND increased between 1990 and 2019. Its expected increase in the future highlights the importance of global and national healthcare planning using more objective evidence. Geographical heterogeneity in the MND burden might suggest the influences of sociodemographic status and genetic background in various regions.
Collapse
Affiliation(s)
- Jin Park
- Department of Neurology, Seoul Hospital Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jee-Eun Kim
- Department of Neurology, Seoul Hospital Ewha Womans University College of Medicine, Seoul, South Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Shaabi A. Modeling Amyotrophic Lateral Sclerosis Progression: Logic in the Logit. Cureus 2022; 14:e24887. [PMID: 35698688 PMCID: PMC9183745 DOI: 10.7759/cureus.24887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Amyotrophic lateral sclerosis functional rating scale-revised (ALSFRS-R) has emerged as a clinical prognostic marker for clinical and research purposes in amyotrophic lateral sclerosis (ALS). However, tools for predicting disease progression are still underdeveloped. The aim of this study was to mathematically model ALS progression to provide a reliable and personalized approach to the prognosis for ALS patients. Also, it aimed to provide a reliable prediction tool for the current and newly diagnosed patients. Methods Twenty patients from the South-East England Amyotrophic Lateral Sclerosis register (SEALS) database were included in the analysis. A non-linear logistic regression model was used to describe disease progression from baseline health to the theoretical maximum disease. The reliability of predicted variables and correlation between model parameters were assessed separately for each subject. Results The logistic regression model best described the disease progression in patients with a high progression rate. Most notably, the model fitted better when a patient has progressed enough to approximately the midpoint of the functional rating scale. The model failed to characterize the disease course in patients defined as slow progressors. Furthermore, the linear relationship between the rate of progression and time since onset at ALFRS-R score of 24 was evident in 65% of patients. Conclusion These results indicate that the rate of disease progression and time when ALSFRS-R declines to half the maximum score are correlated with functional outcomes. Nonetheless, the logistic model failed to describe disease course in patients with slow progression rates. Different rates of progression can be attributed to the genetic heterogeneity of ALS. Thus, clinicians and patients can benefit from adding a gene factor to the equation. With the outlined limitations, the model can provide a good prognostic tool.
Collapse
Affiliation(s)
- Afaf Shaabi
- Neurological Surgery, King Faisal Medical City, Abha, SAU
| |
Collapse
|
48
|
Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig's Disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152504. [PMID: 34971691 DOI: 10.1016/j.scitotenv.2021.152504] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The etiology of sporadic amyotrophic lateral sclerosis (ALS) is still unclear. We evaluate environmental factors suspected to be associated with ALS for their potential linkage to disease causality and to model geographic distributions of susceptible populations and expected cases worldwide. A PRISMA systematic literature review was performed 2021. Bradford Hill criteria were used to identify and rank environmental factors and a secondary review of ALS diagnoses in population studies and ALS case or cohort studies was conducted. Prevalence rate projection informed estimates of impacted regions and populations. Among 1710 papers identified, 258 met the inclusion criteria, of which 173 responded to at least one of nine Bradford Hill criteria among 83 literature-identified ALS environmental factors. Environmental determinants of ALS in order of decreasing significance were β-N-methylamino-L-alanine (BMAA), formaldehyde, selenium, and heavy metals including manganese, mercury, zinc, and copper. Murine animal models were the most common methodology for exploring environmental factors. Another line of investigation of 62 population exposure studies implicated the same group of environmental agents (mean odds ratios): BMAA (2.32), formaldehyde (1.54), heavy metals (2.99), manganese (3.85), mercury (2.74), and zinc (2.78). An age-adjusted incidence model estimated current total ALS cases globally at ~85,000 people compared to only ~1600 cases projected from the reported ALS incidence in the literature. Modeling with the prevalence microscope equation forecasted an increase in U.S. ALS cases from 16,707 confirmed in 2015 to ~22,650 projected for 2040. Two orthogonal methods employed implicate BMAA, formaldehyde, manganese, mercury, and zinc as environmental factors with strong ALS associations. ALS cases likely are significantly underreported globally, and high vulnerability exists in regions with large aging populations. Recent studies on other diseases with environmental determinants suggest the need to consider additional potential triggers and mechanisms, including exposures to microbial agents and epigenetic modifications.
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
49
|
Apreleva Kolomeytseva AT, Brylev L, Eshghi M, Bottaeva Z, Zhang J, Fachner JC, Street AJ. Home-Based Music Therapy to Support Bulbar and Respiratory Functions of Persons with Early and Mid-Stage Amyotrophic Lateral Sclerosis-Protocol and Results from a Feasibility Study. Brain Sci 2022; 12:494. [PMID: 35448025 PMCID: PMC9027911 DOI: 10.3390/brainsci12040494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Respiratory failure, malnutrition, aspiration pneumonia, and dehydration are the precursors to mortality in ALS. Loss of natural communication is considered one of the worst aspects of ALS. This first study to test the feasibility of a music therapy protocol for bulbar and respiratory rehabilitation in ALS employs a mixed-methods case study series design with repeated measures. Newly diagnosed patients meeting the inclusion criteria were invited to participate, until the desired sample size (n = 8) was achieved. The protocol was delivered to participants in their homes twice weekly for six weeks. Individualised exercise sets for independent practice were provided. Feasibility data (recruitment, retention, adherence, tolerability, self-motivation and personal impressions) were collected. Bulbar and respiratory changes were objectively measured. Results. A high recruitment rate (100%), a high retention rate (87.5%) and high mean adherence to treatment (95.4%) provide evidence for the feasibility of the study protocol. The treatment was well tolerated. Mean adherence to the suggested independent exercise routine was 53%. The outcome measurements to evaluate the therapy-induced change in bulbar and respiratory functions were defined. Findings suggest that the protocol is safe to use in early- and mid-stage ALS and that music therapy was beneficial for the participants' bulbar and respiratory functions. Mean trends suggesting that these functions were sustained or improved during the treatment period were observed for most outcome parameters: Maximal Inspiratory Pressure, Maximal Expiratory Pressure, Peak Expiratory Flow, the Center for Neurologic Study-Bulbar Function Scale speech and swallowing subscales, Maximum Phonation Time, Maximum Repetition Rate-Alternating, Maximum Repetition Rate-Sequential, Jitter, Shimmer, NHR, Speaking rate, Speech-pause ratio, Pause frequency, hypernasality level, Time-to-Laryngeal Vestibule Closure, Maximum Pharyngeal Constriction Area, Peak Position of the Hyoid Bone, Total Pharyngeal Residue C24area. Conclusion. The suggested design and protocol are feasible for a larger study, with some modifications, including aerodynamic measure of nasalance, abbreviated voice sampling and psychological screening.
Collapse
Affiliation(s)
| | - Lev Brylev
- Bujanov Moscow City Clinical Hospital, 115419 Moscow, Russia;
- Institute of Higher Nervous Activity and Neurophysiology, 115419 Moscow, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, 115419 Moscow, Russia
| | - Marziye Eshghi
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA 02129-4557, USA;
| | - Zhanna Bottaeva
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, 119180 Moscow, Russia;
| | - Jufen Zhang
- Faculty of Health, Education, Medicine & Social Care, School of Medicine, Anglia Ruskin University, Cambridge CM1 1SQ, UK;
| | - Jörg C. Fachner
- Music, Health and the Brain, Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CM1 1SQ, UK;
| | - Alexander J. Street
- Music, Health and the Brain, Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge CM1 1SQ, UK;
| |
Collapse
|
50
|
Oh J, Moon S, Park K. Amyotrophic lateral sclerosis in social media: Content analysis of YouTube videos. Health Informatics J 2022; 28:14604582221105999. [PMID: 35726700 DOI: 10.1177/14604582221105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study is to analyze the characteristics, content, and quality of information available on YouTube regarding amyotrophic lateral sclerosis (ALS), and explore the search results and number of views and quality of the videos. A search was performed on YouTube on 10 June 2020, using the search term ''Lou Gehrig's disease" in the Korean language, and the first 100 videos were targeted for analysis. General characteristics (e.g., number of views, video length, etc.) were collected, and upload source, target audience, subject of the video, and quality of the videos using a global quality score (GQS) were assessed. About two-thirds of the videos were for the general public (62.0%), while the other third were made for patients and their families with ALS (38.0%). The mean GQS was 3.70 ± 1.42, and 60 videos were classified as high-quality videos. ALS-related videos on YouTube play a role in raising awareness among the general public of this devastating disease, however, practical information regarding disease management for patients and family is relatively insufficient. The quality and characteristics of the videos varied greatly and sometimes the lowest quality videos were shown in the top pages of search results.
Collapse
Affiliation(s)
- Juyeon Oh
- College of Nursing, 65383Dankook University, Cheonan, South Korea
| | - SeolHwa Moon
- College of Nursing, 26716Hanyang University, Seoul, South Korea
| | - Kyongok Park
- Department of Nursing, 34961Gangneung-Wonju National University, Wonju-si, South Korea
| |
Collapse
|