1
|
Yuan Y, Peng TY, Yu GY, Zou Z, Wu MZ, Zhu R, Wu S, Lv Z, Luo SX. Association between serum copper level and reproductive health of Women in the United States: a cross-sectional study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2441-2450. [PMID: 37725958 DOI: 10.1080/09603123.2023.2253753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Copper is an indispensable trace element in metabolism. This study aimed to investigate the relationship between copper and reproductive health, and possibly provide new insights for diagnosis and treatment. This study was based on data extracted from the NHANES database (2013-2014 and 2015-2016). The t-test, ANOVA, Chi-square test, multiple linear regression, and restricted cubic spline analysis were used. Serum copper levels were significantly higher in women with gestational diabetes than in those without gestational diabetes (P = 0.0150). Women with higher copper levels and smoking habits tended to deliver overweight babies (P = 0.028). Women with diabetes had higher serum copper and were prone to deliver overweight babies (P = 0.024). Serum copper levels showed a positive relationship with sex hormone-binding globulin (SHBG) levels (P < 0.0001). In this study, serum copper levels were found to be associated with reproductive health in women. Further studies are required to draw causal inferences.
Collapse
Affiliation(s)
- Yi Yuan
- Pediatrics College, Guangzhou Medical University, Guangzhou, China
| | - Tong-Yu Peng
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guang-Yuan Yu
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhao Zou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-Ze Wu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruofei Zhu
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- Pediatrics College, Guangzhou Medical University, Guangzhou, China
| | - Zi Lv
- Department of obstetrics and gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics, Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Su-Xin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y, Luo J. Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol 2023; 13:1123420. [PMID: 37035162 PMCID: PMC10076572 DOI: 10.3389/fonc.2023.1123420] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Copper is an essential micronutrient for human body and plays a vital role in various biological processes including cellular respiration and free radical detoxification. Generally, copper metabolism in the body is in a stable state, and there are specific mechanisms to regulate copper metabolism and maintain copper homeostasis. Dysregulation of copper metabolism may have a great connection with various types of diseases, such as Wilson disease causing copper overload and Menkes disease causing copper deficiency. Cancer presents high mortality rates in the world due to the unlimited proliferation potential, apoptosis escape and immune escape properties to induce organ failure. Copper is thought to have a great connection with cancer, such as elevated levels in cancer tissue and serum. Copper also affects tumor progression by affecting angiogenesis, metastasis and other processes. Notably, cuproptosis is a novel form of cell death that may provide novel targeting strategies for developing cancer therapy. Copper chelators and copper ionophores are two copper coordinating compounds for the treatment of cancer. This review will explore the relationship between copper metabolism and cancers, and clarify copper metabolism and cuproptosis for cancer targeted therapy.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Niujing Dong
- China Astronaut Research and Training Center, Beijing, China
| | - Yuting Ji
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| |
Collapse
|
3
|
Choi H, Oh D, Kim M, Cai L, Lee J, Kim E, Lee G, Hyun SH. Copper deficiency affects the developmental competence of porcine oocytes matured in vitro. Front Cell Dev Biol 2022; 10:993030. [PMID: 36158185 PMCID: PMC9490373 DOI: 10.3389/fcell.2022.993030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
The trace element Cu is required for the activity of various enzymes essential for physiological processes. In this study, we elucidated the copper transport system in porcine follicular cells and investigated the effect of Cu chelation during in vitro maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA). Cu chelation was induced by adding tetraethylenepentamine (TEPA) to the maturation media (TCM199-PVA). First, we identified the localization and relative levels of the copper transporter CTR1 in follicular cells. The level of CTR1 protein was the highest in mature cumulus cells; moreover, CTR1 was mainly localized in the cytoplasmic vesicular compartment in oocytes, whereas it was evenly distributed in the cytoplasm in cumulus cells. A total of 42 h after IVM, the TEPA-treated group showed reduced maturation rates compared to those of the control (p < 0.05). This negative effect of TEPA disappeared when it was added to the media with Cu (Cu + TEPA group). The TEPA treatment during IVM significantly increased the mRNA levels of the Has2 gene, which is related to cumulus expansion (p < 0.05). Both Cu supplementation and chelation significantly increased the reactive oxygen species (ROS) levels in porcine oocytes (p < 0.05). When we analyzed the transcript levels of folliculogenesis-related genes in Cu chelation conditions, only the expression of MAPK3 in cumulus cells significantly increased compared to that of the control. We also evaluated the subsequent embryonic development of PA embryos. TEPA-treated oocytes showed significantly decreased blastocyst formation rates compared to those of the control. The TEPA-induced toxic effect was alleviated when Cu was added with TEPA. Our findings suggest that the Cu transport system plays an important role in the porcine follicular development process and that the Cu deficiency negatively affects porcine oocyte maturation, as well as their subsequent developmental competence.
Collapse
Affiliation(s)
- Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Koreaa
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun,
| |
Collapse
|
4
|
Bauer KC, York EM, Cirstea MS, Radisavljevic N, Petersen C, Huus KE, Brown EM, Bozorgmehr T, Berdún R, Bernier L, Lee AHY, Woodward SE, Krekhno Z, Han J, Hancock REW, Ayala V, MacVicar BA, Finlay BB. Gut microbes shape microglia and cognitive function during malnutrition. Glia 2022; 70:820-841. [PMID: 35019164 PMCID: PMC9305450 DOI: 10.1002/glia.24139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Fecal-oral contamination promotes malnutrition pathology. Lasting consequences of early life malnutrition include cognitive impairment, but the underlying pathology and influence of gut microbes remain largely unknown. Here, we utilize an established murine model combining malnutrition and iterative exposure to fecal commensals (MAL-BG). The MAL-BG model was analyzed in comparison to malnourished (MAL mice) and healthy (CON mice) controls. Malnourished mice display poor spatial memory and learning plasticity, as well as altered microglia, non-neuronal CNS cells that regulate neuroimmune responses and brain plasticity. Chronic fecal-oral exposures shaped microglial morphology and transcriptional profile, promoting phagocytic features in MAL-BG mice. Unexpectedly, these changes occurred independently from significant cytokine-induced inflammation or blood-brain barrier (BBB) disruption, key gut-brain pathways. Metabolomic profiling of the MAL-BG cortex revealed altered polyunsaturated fatty acid (PUFA) profiles and systemic lipoxidative stress. In contrast, supplementation with an ω3 PUFA/antioxidant-associated diet (PAO) mitigated cognitive deficits within the MAL-BG model. These findings provide valued insight into the malnourished gut microbiota-brain axis, highlighting PUFA metabolism as a potential therapeutic target.
Collapse
Affiliation(s)
- Kylynda C. Bauer
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Elisa M. York
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Mihai S. Cirstea
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Nina Radisavljevic
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Charisse Petersen
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Kelsey E. Huus
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Eric M. Brown
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | | | - Rebeca Berdún
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Louis‐Philippe Bernier
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Amy H. Y. Lee
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Sarah E. Woodward
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Zakhar Krekhno
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
| | - Jun Han
- The Metabolomics Innovation CentreUniversity of VictoriaVictoriaCanada
| | - Robert E. W. Hancock
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
| | - Victoria Ayala
- Institut de Recerca Biomèdica de Lleida (IRB‐Lleida)LleidaSpain
- Department of Experimental MedicineUniversitat de Lleida (UdL)LleidaSpain
| | - Brian A. MacVicar
- Psychiatry Department, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverCanada
| | - Barton Brett Finlay
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
- Microbiology and Immunology DepartmentUniversity of British ColumbiaVancouverCanada
- Biochemistry and Molecular Biology DepartmentUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
5
|
Copper exposure for 30 days at a daily dose twice the recommended increases blood pressure and cardiac contractility. Life Sci 2022; 300:120579. [PMID: 35489564 DOI: 10.1016/j.lfs.2022.120579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Copper is an essential factor for the body's homeostasis. However, excess copper compromises organic functions. AIMS We investigated the effects of copper exposure for 30 days on blood pressure (BP) and cardiac contractility and the putative involvement of nitric oxide (NO) and reactive oxygen species. MAIN METHODS Wistar rats (12 weeks old, 280 g) were randomized to the treated group that was exposed for 30 days to copper (2000 μg/kg/day CuCl2) and the control (Ct) group that received intraperitoneal saline (0.9%). KEY FINDINGS The blood concentration of copper was ~1.26 μg/mL in the copper-exposed group and ~0.024 μg/mL in the Ct group. The main metal accumulations occurred in the liver and kidneys. Copper exposure increased systolic BP (Cu: 141 ± 3 mmHg; Ct: 133 ± 3 mmHg) (tail cuff method), left ventricular systolic pressure and papillary muscle force. Calcium release from the sarcoplasmic reticulum was reduced. The contractile response to Ca2+ was increased by copper, and the effect was not altered by L-NAME. Copper increased contractions dependent on sarcolemmal Ca2+ influx, and this effect was not altered by L-NAME. The percentage response to isoproterenol decreased in the copper-exposed group, but L-NAME did not alter this reduction. Papillary force development at the peak and plateau of tetanic contractions also increased after copper exposure, but this effect was not altered by L-NAME. In situ detection of OH local production increased. SIGNIFICANCE Copper increased BP and cardiac force, increased Ca2+ inflow, reduced Ca2+ reuptake by the sarcoplasmic reticulum, and increased OH local production. Copper exposure at doses considered tolerable affects cardiac contractility.
Collapse
|
6
|
Steffl M, Nautscher N. Subconjunctival bleedings in neonatal calves: a case series report. BMC Vet Res 2022; 18:152. [PMID: 35477564 PMCID: PMC9044613 DOI: 10.1186/s12917-022-03254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background In animals, only few reports exist about the occurrence and causes of subconjunctival bleedings, especially in newborn calves. Most case reports and studies showed that the major risk factors for subconjunctival bleedings in animals are traumatic events such as birth trauma and traffic accidents, respectively. In neonatal babies, it is suggested that compression of the thorax and abdomen during delivery or forces generated in utero during labor may raise venous pressure to conjunctival vessels and can cause subconjunctival bleedings. Results The incidence of bleedings in neonatal Holstein–Friesian calves was 2.4 per cent of 289 neonatal calves examined over a six-year period. In general, two types of subconjunctival bleedings were seen. One was usually in a semilunar fashion immediately outside the limbus of the eye. The other type was a stripe or macule of variable size at different positions of the sclera. The subconjunctival bleedings were not related to gestational time. In all cases, affected calves were born without assistance. Multiparous cows were more often involved in the calves with subconjunctival bleedings. Two calves examined haematologically did not show signs of anemia or thrombocytopenia. Conclusions Subconjunctival bleedings in neonatal calves appear not to be incidental findings. Main causes or associated conditions of subconjunctival bleedings were not found.
Collapse
Affiliation(s)
- Martin Steffl
- Faculty of Agricultural Sciences, Institute of Animal Science, University of Hohenheim, Schwerzstr. 15/4, 70599, Stuttgart, Germany.
| | - Nadine Nautscher
- Faculty of Agricultural Sciences, Institute of Animal Science, University of Hohenheim, Schwerzstr. 15/4, 70599, Stuttgart, Germany
| |
Collapse
|
7
|
Michalczyk K, Cymbaluk-Płoska A. The Role of Zinc and Copper in Gynecological Malignancies. Nutrients 2020; 12:E3732. [PMID: 33287452 PMCID: PMC7761859 DOI: 10.3390/nu12123732] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc (Zn) and copper (Cu) are essential microelements, which take part in cellular metabolism, feature in enzymatic systems, and regulate enzyme activity. Homeostasis of these micronutrients is tightly regulated by multiple compensatory mechanisms that balance their concentrations including transporters, importers, and metallothioneins. An altered intake of only one of these trace elements may cause an imbalance in their levels and result in their competition for absorption. Relatively low levels of zinc and increased levels of copper may result in an increased level of oxidative stress and impair the antioxidant properties of multiple enzymes. Altered levels of trace elements were discovered in various pathologies including immunological, degenerative, and inflammatory diseases. Moreover, due to the role of Zn and Cu in oxidative stress and chronic inflammation, they were found to influence cancerogenesis. We review the roles of zinc and copper and their mechanisms in tumor growth, metastasis potential, microenvironment remodeling, and drug resistance. We highlight their role as potential biomarkers for cancer diagnosis, treatment, and prognosis, concentrating on their impact on gynecological malignancies.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Oncology of Adults and Adolescents, Pomeranian Medical University, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
8
|
Ridlo MR, Kim GA, Taweechaipaisankul A, Kim EH, Lee BC. Zinc supplementation alleviates endoplasmic reticulum stress during porcine oocyte in vitro maturation by upregulating zinc transporters. J Cell Physiol 2020; 236:2869-2880. [PMID: 32944961 DOI: 10.1002/jcp.30052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to embryonic development failure. Mammalian oocytes have a high risk of exposure to cellular stress during in vitro embryo production. We investigated the effects of zinc supplementation during in vitro maturation under ER stress. We evaluated cumulus expansion, embryonic development derived by parthenogenetic activation, reactive oxygen species, protein expression of X-box binding protein 1 (XBP1), and expression of genes related to ER stress. Supplementation with 1 μg/ml zinc significantly increased the nuclear maturation of oocytes, cleavage and blastocyst formation rates, and total blastocyst cell number (p < .05). Under ER stress, zinc significantly reduced protein expression of XBP1, and increased cleavage and blastocyst rates (p < .05). Concomitantly, zinc supplementation upregulated the expression of zinc transporters (SLC39A14 and SLC39A10), PTGS2, and downregulated ER stress-related genes (sXBP1, uXBP1, ATF4, and PTPN1/PTP1B), and caspase 3. These results suggest that zinc supplementation alleviates ER stress by providing essential metal-ion transporters for oocyte maturation and subsequent embryonic development.
Collapse
Affiliation(s)
- Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejon, Republic of Korea
| | - Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Zhang X, Blockhuys S, Devkota R, Pilon M, Wittung-Stafshede P. The Caenorhabditis elegans homolog of human copper chaperone Atox1, CUC-1, aids in distal tip cell migration. Biometals 2020; 33:147-157. [PMID: 32506305 PMCID: PMC7295847 DOI: 10.1007/s10534-020-00239-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/01/2022]
Abstract
Cell migration is a fundamental biological process involved in for example embryonic development, immune system and wound healing. Cell migration is also a key step in cancer metastasis and the human copper chaperone Atox1 was recently found to facilitate this process in breast cancer cells. To explore the role of the copper chaperone in other cell migration processes, we here investigated the putative involvement of an Atox1 homolog in Caenorhabditis elegans, CUC-1, in distal tip cell migration, which is a key process during the development of the C. elegans gonad. Using knock-out worms, in which the cuc-1 gene was removed by CRISPR-Cas9 technology, we probed life span, brood size, as well as distal tip cell migration in the absence or presence of supplemented copper. Upon scoring of gonads, we found that cuc-1 knock-out, but not wild-type, worms exhibited distal tip cell migration defects in approximately 10–15% of animals and, had a significantly reduced brood size. Importantly, the distal tip cell migration defect was rescued by a wild-type cuc-1 transgene provided to cuc-1 knock-out worms. The results obtained here for C. elegans CUC-1 imply that Atox1 homologs, in addition to their well-known cytoplasmic copper transport, may contribute to developmental cell migration processes.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Stéphanie Blockhuys
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
10
|
Azad SK, Shariatmadari F, Torshizi MAK, Chiba LI. Comparative Effect of Zinc Concentration and Sources on Growth Performance, Accumulation in Tissues, Tibia Status, Mineral Excretion and Immunity of Broiler Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2019-1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- SK Azad
- Tarbiat Modares University, Iran
| | | | | | | |
Collapse
|
11
|
Elgammal SM, Khorshed MA, Ismail EH. Determination of heavy metal content in whey protein samples from markets in Giza, Egypt, using inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry: A probabilistic risk assessment study. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111:1593-1610. [PMID: 31385455 DOI: 10.1002/bdr2.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
13
|
Grieger JA, Grzeskowiak LE, Wilson RL, Bianco-Miotto T, Leemaqz SY, Jankovic-Karasoulos T, Perkins AV, Norman RJ, Dekker GA, Roberts CT. Maternal Selenium, Copper and Zinc Concentrations in Early Pregnancy, and the Association with Fertility. Nutrients 2019; 11:E1609. [PMID: 31315178 PMCID: PMC6683068 DOI: 10.3390/nu11071609] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/14/2019] [Indexed: 12/24/2022] Open
Abstract
Trace elements such as zinc, copper, and selenium are essential for reproductive health, but there is limited work examining how circulating trace elements may associate with fertility in humans. The aim of this study was to determine the association between maternal plasma concentrations of zinc, copper, and selenium, and time to pregnancy and subfertility. Australian women (n = 1060) who participated in the multi-centre prospective Screening for Pregnancy Endpoints study were included. Maternal plasma concentrations of copper, zinc and selenium were assessed at 15 ± 1 weeks' gestation. Estimates of retrospectively reported time to pregnancy were documented as number of months to conceive; subfertility was defined as taking more than 12 months to conceive. A range of maternal and paternal adjustments were included. Women who had lower zinc (time ratio, 1.20 (0.99-1.44)) or who had lower selenium concentrations (1.19 (1.01-1.40)) had a longer time to pregnancy, equivalent to a median difference in time to pregnancy of around 0.6 months. Women with low selenium concentrations were also at a 1.46 (1.06-2.03) greater relative risk for subfertility compared to women with higher selenium concentrations. There were no associations between copper and time to pregnancy or subfertility. Lower selenium and zinc trace element concentrations, which likely reflect lower dietary intakes, associate with a longer time to pregnancy. Further research supporting our work is required, which may inform recommendations to increase maternal trace element intake in women planning a pregnancy.
Collapse
Affiliation(s)
- Jessica A Grieger
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia.
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia.
| | - Luke E Grzeskowiak
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia
| | - Rebecca L Wilson
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia
- Current affiliation: Center for Fetal and Placental Research, Cincinnati Children's Hospital and Medical Center, Cincinnati, OH 45229, USA
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Shalem Y Leemaqz
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia
| | - Tanja Jankovic-Karasoulos
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, 4215 Southport, Queensland, Australia
| | - Robert J Norman
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Fertility SA, 5000 Adelaide, South Australia, Australia
| | - Gus A Dekker
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Women and Children's Division, Lyell McEwin Hospital, University of Adelaide, 5112 Adelaide, South Australia, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, 5005 North Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, 5005 Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Neely CLC, Lippi SLP, Lanzirotti A, Flinn JM. Localization of Free and Bound Metal Species through X-Ray Synchrotron Fluorescence Microscopy in the Rodent Brain and Their Relation to Behavior. Brain Sci 2019; 9:E74. [PMID: 30925761 PMCID: PMC6523809 DOI: 10.3390/brainsci9040074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
Biometals in the brain, such as zinc, copper, and iron, are often discussed in cases of neurological disorders; however, these metals also have important regulatory functions and mediate cell signaling and plasticity. With the use of synchrotron X-ray fluorescence, our lab localized total, both bound and free, levels of zinc, copper, and iron in a cross section of one hemisphere of a rat brain, which also showed differing metal distributions in different regions within the hippocampus, the site in the brain known to be crucial for certain types of memory. This review discusses the several roles of these metals in brain regions with an emphasis on hippocampal cell signaling, based on spatial mapping obtained from X-ray fluorescence microscopy. We also discuss the localization of these metals and emphasize different cell types and receptors in regions with metal accumulation, as well as the potential relationship between this physiology and behavior.
Collapse
Affiliation(s)
- Caroline L C Neely
- Department of Psychology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Stephen L P Lippi
- Department of Psychology & Sociology, Angelo State University, 2601 W. Avenue N, ASU Station #10907, San Angelo, TX 76909, USA.
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Argonne, IL 60439, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
15
|
Vishala T, Pitchaiah G, Pravadha D, Annapurna A. Effect of plain and fortified amla fruit powder on aluminum-induced Alzheimer's Disease in Wistar Rats. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_17_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Miska-Schramm A, Kapusta J, Kruczek M. Copper influence on bank vole's (Myodes glareolus) sexual behavior. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:385-393. [PMID: 29396672 PMCID: PMC5859705 DOI: 10.1007/s10646-018-1902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
The impact of human activity on the environment has led to a steady increase of the amounts of copper in the ecosystems. This element accumulates in plants and water, potentially exposing rodents to its harmful effects. In industrial districts, a decrease in the density of small rodent populations has been observed. This decline may be caused by many factors, including mortality, decreased fertility, or impaired sexual behavior. The decline in the reproductive abilities of small rodents after copper exposure was demonstrated in our previous work (Miska-Schramm A, Kruczek M, Kapusta J, Ecotoxicology 23:1546-1554, 2014). The aim of the presented research was to determine how copper administered at concentrations similar to those recorded in industrial districts (Cu I-150 mg/kg, Cu II-600 mg/kg, C-control) affects the sexual behavior of small rodents. The model species was the bank vole (Myodes glareolus). The behavior and vocalizations of male-female pairs were recorded during open-field tests: ♂C vs. ♀C; ♂Cu I vs. ♀C; ♂Cu II vs. ♀C while in preference tests, female behavior was assessed in the following combinations: ♀C vs. ♂C & ♂Cu I; ♀C vs. ♂C & ♂Cu II. In the presented work, we show that copper decreased the males' sexual attractiveness. Females showed suppressed preference towards males treated with 600 mg/kg copper. The number of sniffs and a number of approaches towards Cu II males was significantly lower than towards control individuals. Also, in preference test with 150 mg/kg treated animals, total activity was lower towards copper treated animals. At the same time, copper did not influence intra-sexual interactions.
Collapse
Affiliation(s)
- Agata Miska-Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Joanna Kapusta
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Małgorzata Kruczek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
17
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
18
|
Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Adv Colloid Interface Sci 2017; 242:35-58. [PMID: 28256201 DOI: 10.1016/j.cis.2016.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m2/g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical evaluation not only delivers essential contextual information to researchers in the field but also stimulates new ideas and applications to further advance post-sorbent applications.
Collapse
|
19
|
Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC. Neurotoxicants, Micronutrients, and Social Environments. Psychol Sci Public Interest 2016; 6:57-121. [DOI: 10.1111/j.1529-1006.2005.00024.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SUMMARY—Systematic research evaluating the separate and interacting impacts of neurotoxicants, micronutrients, and social environments on children's cognition and behavior has only recently been initiated. Years of extensive human epidemiologic and animal experimental research document the deleterious impact of lead and other metals on the nervous system. However, discrepancies among human studies and between animal and human studies underscore the importance of variations in child nutrition as well as social and behavioral aspects of children's environments that mitigate or exacerbate the effects of neurotoxicants. In this monograph, we review existing research on the impact of neurotoxic metals, nutrients, and social environments and interactions across the three domains. We examine the literature on lead, mercury, manganese, and cadmium in terms of dispersal, epidemiology, experimental animal studies, effects of social environments, and effects of nutrition. Research documenting the negative impact of lead on cognition and behavior influenced reductions by the Center for Disease Control in child lead-screening guidelines from 30 micrograms per deciliter (μg/dL) in 1975 to 25 μg/dL in 1985 and to 10 μg/dL in 1991. A further reduction is currently being considered. Experimental animal research documents lead's alteration of glutamate-neurotransmitter (particularly N-methyl-D-aspartate) activity vital to learning and memory. In addition, lead induces changes in cholinergic and dopaminergic activity. Elevated lead concentrations in the blood are more common among children living in poverty and there is some evidence that socioeconomic status influences associations between lead and child outcomes. Micronutrients that influence the effects of lead include iron and zinc. Research documenting the negative impact of mercury on children (as well as adults) has resulted in a reference dose (RfD) of 0.1 microgram per kilogram of body weight per day (μg/kg/day). In animal studies, mercury interferes with glutamatergic, cholinergic, and dopaminergic activity. Although evidence for interactions of mercury with children's social contexts is minimal, researchers are examining interactions of mercury with several nutrients. Research on the effects of cadmium and manganese on child cognition and behavior is just beginning. Experimental animal research links cadmium to learning deficits, manganese to behaviors characteristic of Parkinson's disease, and both to altered dopaminergic functioning. We close our review with a discussion of policy implications, and we recommend interdisciplinary research that will enable us to bridge gaps within and across domains.
Collapse
Affiliation(s)
- Laura Hubbs-Tait
- Department of Human Development and Family Science, Oklahoma State University
| | | | - Nancy F. Krebs
- Department of Pediatrics, University of Colorado School of Medicine
| | - David C. Bellinger
- Department of Neurology, Harvard Medical School; Department of Environmental Health, Harvard School of Public Health; and Children's Hospital Boston
| |
Collapse
|
20
|
Chemek M, Mimouna SB, Boughammoura S, Delbès G, Messaoudi I. Protective role of zinc against the toxicity induced by exposure to cadmium during gestation and lactation on testis development. Reprod Toxicol 2016; 63:151-60. [PMID: 27288891 DOI: 10.1016/j.reprotox.2016.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/17/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022]
Abstract
To assess the effects of exposure to Cd and Zn on rat testicular development, offspring, from mothers receiving either tap water, Cd, Zn or Cd+Zn during gestation and lactation periods, were observed on gestational day (GD) 20 and on postnatal days (PND) 12, 21 and 35. During gestation, Cd induced maternal hypozincemia and less transfer of Zn to the fetus. During lactation, progressive Cd accumulation and Zn depletion in testis at PND12 and PND21 were noted. An increase of abnormal seminiferous tubules and a decrease in testis weight and plasmatic testosterone concentration were also observed at PND21 and PND35 respectively. Interestingly, Zn supply induced a significant protection against Cd toxicity. These results suggest that the toxic effects of Cd observed during development are mediated by the disruption of Zn metabolism, which is established in mothers during pregnancy causing Zn deficiency in fetuses and continues to become more pronounced during lactation.
Collapse
Affiliation(s)
- Marouane Chemek
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000 Monastir, Tunisia
| | - Safa Ben Mimouna
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000 Monastir, Tunisia
| | - Sana Boughammoura
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000 Monastir, Tunisia
| | - Géraldine Delbès
- Institut national de la recherche scientifique, Centre INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval (Québec), Canada
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000 Monastir, Tunisia.
| |
Collapse
|
21
|
Kong BY, Duncan FE, Que EL, Xu Y, Vogt S, O'Halloran TV, Woodruff TK. The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Dev Dyn 2015; 244:935-47. [PMID: 25903945 DOI: 10.1002/dvdy.24285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Zinc is the most abundant transition metal in the mammalian oocyte, and dynamic fluxes in intracellular concentration are essential for regulating both meiotic progression and fertilization. Whether the defined pathways of zinc utilization in female meiosis directly translate to mitotic cells, including the mammalian preimplantation embryo, has not been studied previously. RESULTS We determined that zinc is the most abundant transition metal in the preimplantation embryo, with levels an order of magnitude higher than those of iron or copper. Using a zinc-specific fluorescent probe, we demonstrated that labile zinc is distributed in vesicle-like structures in the cortex of cells at all stages of preimplantation embryo development. To test the importance of zinc during this period, we induced zinc insufficiency using the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). Incubation of embryos in media containing TPEN resulted in a developmental arrest that was specific to zinc chelation and associated with compromised mitotic parameters. The developmental arrest due to zinc insufficiency was associated with altered chromatin structure in the blastomere nuclei and decreased global transcription. CONCLUSIONS These results demonstrate for the first time that the preimplantation embryo requires tight zinc regulation and homeostasis for the initial mitotic divisions of life.
Collapse
Affiliation(s)
- Betty Y Kong
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Emily L Que
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Yuanming Xu
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.,Department of Molecular Biosciences, Evanston, Illinois
| |
Collapse
|
22
|
Luo X, Li L, Ma M, Li R. Effects of low-dose cadmium exposure during gestation and lactation on development and reproduction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10569-10579. [PMID: 25735246 DOI: 10.1007/s11356-015-4249-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd) is an important toxic chemical due to its increasing levels in the environment and its resulting accumulation in humans and animals. The present study was performed to evaluate the long-term effects of low doses of Cd administered in offspring by oral route to rats during pregnancy and lactation. There were no adverse effects on the physical and sexual development in the pups, except to delay the development of offspring. The relative weights of livers and kidneys in the adult female offspring were significantly decreased after exposure to 10 ppm Cd. These results indicated that there were adverse effects on growth and development from exposure to 5 or 10 ppm Cd in utero and during lactation. The results also showed differential gender sensitivity effects on the organ weights.
Collapse
Affiliation(s)
- Xue Luo
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Lee E, Jeung EB, Hyun SH. Effect of zinc on in vitro development of porcine embryos. Theriogenology 2015; 84:531-7. [PMID: 26047708 DOI: 10.1016/j.theriogenology.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/01/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate the effect of zinc on in vitro development of porcine embryos. We evaluated the effects of zinc on blastocysts formation and investigated gene expression at zinc-deficient and supplemented conditions. Zinc-deficient in vitro condition was induced by 10-μM N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN) (zinc chelator) treatment during IVC. On parthenogenetic activated embryos, this treatment significantly decreased cleavage rate and blastocyst formation compared with the control (0.0% and 0.0% vs. 69.0% and 36.0%, respectively). And time effect of the zinc deficiency exposure is observed. Blastocyst formation rate was significantly decreased as zinc-deficient time increases (54.1%, 31.0%, 9.0%, and 1.2% for zinc deficiency during 0, 3, 5, and 7 hours). However, zinc supplementation during IVC supported in vitro embryonic development. On parthenogenetic activated embryos, supplementation of 0.8 μg/mL of zinc during IVC significantly increased blastocyst formation compared with other groups (43.9%, 57.8%, 67.1%, 51.4%, and 52.6% for zinc supplementation of 0, 0.4, 0.8, 1.2, and 1.6 μg/mL). In vitro-fertilized (IVF) embryos showed similar results. The blastocyst formation rate was significantly higher in the 0.8 μg/mL of zinc-supplemented group than in the other groups (21.3%, 24.1%, 36.1%, 25.9%, and 25.2% for zinc supplementation of 0, 0.4, 0.8, 1.2, and 1.6 μg/mL). PCNA, POU5F1, and Bcl2 messenger RNA expressions were unregulated in IVF-derived blastocysts in the 0.8 μg/mL of zinc-supplemented group compared with the control. These results suggest that zinc is required for embryonic development, and supplementation with adequate zinc concentrations during IVC improved the viability of porcine embryos, possibly by increasing PCNA, POU5F1, and Bcl2 gene expression of embryos.
Collapse
Affiliation(s)
- Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Kangwon National University, Kangwon, Republic of Korea
| | - Eui Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
24
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
25
|
Miska-Schramm A, Kruczek M, Kapusta J. Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1546-1554. [PMID: 25098774 DOI: 10.1007/s10646-014-1295-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
The amount of copper in natural ecosystems is steadily increasing, due to human activities. It accumulates in plants, posing a threat to herbivores. In polluted areas the population density of small rodents is observed to be lower. The decline in rodent numbers may be caused by increased mortality or diminished fertility. This study examined the effect of copper on the reproductive activity of the bank vole (Myodes glareolus), a small rodent which during foraging often wanders into fields where it might be exposed to pollution. The animals were treated with solutions of 0, 150 or 600 ppm Cu. After 12 weeks of exposure the quality and quantity of the male's sperm was tested. To assess morphological development we compared the experimental groups for body weight, the weight of the male's testes and accessory sex glands, the female's uterus, and the number of matured ovary follicles in tested females. At both doses, copper administration led to lower sperm count and caused sperm head anomalies. The higher dose compromised sperm tail membrane integrity, viability and motility. No effect of copper on morphological development was observed in males, and only the lower dose increased testes weight. In females the higher dose had a negative effect on morphological development, and the lower dose increased uterus weight. No effect of copper on ovarian follicle number was found. For the first time, the morphology of the most typical ovarian follicles of the bank vole is presented.
Collapse
Affiliation(s)
- Agata Miska-Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland,
| | | | | |
Collapse
|
26
|
Hu H, Liu Z, Li J, Li S, Tian X, Lin Y, Chen X, Yang J, Deng Y, Li N, Wang Y, Yuan P, Li X, Zhu J. Correlation between Congenital Heart Defects and maternal copper and zinc concentrations. ACTA ACUST UNITED AC 2014; 100:965-72. [PMID: 25131520 DOI: 10.1002/bdra.23284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Hu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- West China School of Public Health, Sichuan University; Chengdu Sichuan China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Jun Li
- Department of Ultrasound; Xijing Hospital, Fourth Military Medical University; Xi'an Shanxi China
| | - Shengli Li
- Department of Ultrasound; Shenzhen Maternity and Child Healthcare Hospital; Shenzhen Guangdong China
| | - Xiaoxian Tian
- Department of Ultrasound; Maternal and Child Healthcare Hospital of Guangxi Zhuang Autonomous Region; Nanning Guangxi China
| | - Yuan Lin
- Department of Obstetrics & Gynecology; Fujian Provincial Maternal and Child Healthcare Hospital; Fuzhou Fujian China
| | - Xinlin Chen
- Department of Ultrasound; Hubei Provincial Maternal and Child Healthcare Hospital; Wuhan Hubei China
| | - Jiaxiang Yang
- Department of Ultrasound; Sichuan Provincial Maternal and Child Healthcare Hospital; Chengdu Sichuan China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Ping Yuan
- West China School of Public Health, Sichuan University; Chengdu Sichuan China
| | - Xiaohong Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Laboratory of Molecular Epidemiology for Birth Defects, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| |
Collapse
|
27
|
|
28
|
Kancherla V, Romitti PA, Sun L, Carey JC, Burns TL, Siega-Riz AM, Druschel CM, Lin AE, Olney RS. Descriptive and risk factor analysis for choanal atresia: The National Birth Defects Prevention Study, 1997-2007. Eur J Med Genet 2014; 57:220-9. [PMID: 24576610 PMCID: PMC4520237 DOI: 10.1016/j.ejmg.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/09/2014] [Indexed: 12/13/2022]
Abstract
Choanal atresia causes serious posterior nasal obstruction. This defect is the leading cause of nasal surgery in newborns, although its etiology is largely unknown. Data from the National Birth Defects Prevention Study, a population-based case-control study, were used to examine associations between maternal self-reports of exposures and occurrence of choanal atresia in their offspring. Overall, 117 case and 8350 control mothers with deliveries from 1997 through 2007 provided telephone interview reports of pre-pregnancy (one year before conception) and periconceptional (one month before through three months after conception) exposures. The exposures analyzed were pre-pregnancy dietary intake, pre-pregnancy and periconceptional caffeine consumption, and periconceptional cigarette smoking, alcohol drinking, and medication use. Independent associations between each exposure and all choanal atresia cases combined (n = 117) and isolated choanal atresia cases (those without additional unrelated major defects; n = 61) were examined. Odds ratios (ORs), both unadjusted (uORs) and adjusted (aORs) for potential confounders, and 95% confidence intervals (CIs) were estimated using unconditional logistic regression analysis. For all choanal atresia cases combined, positive associations were observed with maternal pre-pregnancy intake in the highest quartile for vitamin B-12 (aOR = 1.9; CI = 1.1,3.1), zinc (aOR = 1.7; CI = 1.0,3.1), and niacin (aOR = 1.8; CI = 1.0,3.1), and intake in the lowest quartile for methionine (aOR = 1.6; CI = 1.0,2.6) and vitamin D (aOR = 1.6; CI = 1.0,2.4) compared to intake in the two intermediate quartiles combined. Further, a positive association was observed with periconceptional use of thyroid medications (uOR = 2.6; CI = 1.0,6.3) compared to no use of such medications. Among isolated choanal atresia cases, negative associations were observed for pantothenic acid (aOR = 0.4; CI = 0.2,0.9) and fat (aOR = 0.5; 95% CI = 0.2,1.0) intake in the lowest quartile compared to that in the intermediate quartiles, and positive associations were observed for periconceptional cigarette smoking (aOR = 2.3; CI = 1.1,4.7) compared to no smoking and pre-pregnancy daily coffee intake of 3 or more cups (aOR = 2.5; CI = 1.1,5.6) compared to intake of less than 1 cup per day. The positive association for periconceptional exposure to thyroid medications also persisted for isolated choanal atresia cases (uOR = 4.0; CI = 1.1,11.2). Because of the large number of associations tested, these findings may be due to chance. Alternatively, they may contribute new hypotheses regarding the etiology of choanal atresia; thus, requiring replication in additional studies.
Collapse
Affiliation(s)
- Vijaya Kancherla
- Department of Epidemiology, The University of Iowa, Iowa City, IA, USA
| | - Paul A Romitti
- Department of Epidemiology, The University of Iowa, Iowa City, IA, USA.
| | - Lixian Sun
- Department of Epidemiology, The University of Iowa, Iowa City, IA, USA
| | - John C Carey
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Trudy L Burns
- Department of Epidemiology, The University of Iowa, Iowa City, IA, USA
| | - Anna Maria Siega-Riz
- Department of Epidemiology and Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | | | - Angela E Lin
- Medical Genetics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Richard S Olney
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
29
|
Paul S, Prashant A, T R C, Suma MN, Vishwanath P, R N D. The micronutrient levels in the third trimester of pregnancy and assessment of the neonatal outcome: a pilot study. J Clin Diagn Res 2013; 7:1572-5. [PMID: 24086842 DOI: 10.7860/jcdr/2013/5729.3211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022]
Abstract
CONTEXT During pregnancy, an adequate intake of vitamins and minerals is recommended, to prevent the occurrence of adverse effects in the mother and the foetus. AIM In our study, we aimed to study the levels of the micronutrients like iron, zinc and copper in the third trimester of pregnancy and to assess the neonatal outcome in them. MATERIAL AND METHODS Fifty pregnant women who were aged 20-30 years, who had completed 24 weeks of gestation, who were on regular antenatal checkups, were included. The collected venous blood samples were used for the estimation of haemoglobin, serum ferritin, zinc and copper. They were followed up till their deliveries and the neonatal outcomes were noted. The gestational ages, weight of the babies, the lengths of the babies and their head circumferences and any complications which had occurred during and after the deliveries, were noted in the proforma. RESULTS The serum ferritin levels did not significantly correlate with the other study parameters. The zinc levels decreased with an increase in the parity (p<0.05). The copper levels decreased with an increase in the BMI (p<0.05). With an increase in haemoglobin, there was an increase in the levels of zinc and ferritin (p<0.05). With an increase in the parity, there was a decrease in the neonatal birth weight. CONCLUSION Our study clearly brought out a correlation between the microminerals such as iron, zinc and copper during late pregnancies. An improvement in the iron status brings out a positive effect on the ferritin and zinc levels, thus indicating better outcomes of the pregnancies.
Collapse
Affiliation(s)
- Sheuli Paul
- 2 Year MBBS Student, JSS Medical College, JSS University , Mysore, India
| | | | | | | | | | | |
Collapse
|
30
|
Wong CP, Magnusson KR, Ho E. Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. J Nutr Biochem 2012; 24:353-9. [PMID: 22981370 DOI: 10.1016/j.jnutbio.2012.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/25/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022]
Abstract
Aging is a complex process associated with physiological changes in numerous organ systems. In particular, aging of the immune system is characterized by progressive dysregulation of immune responses, resulting in increased susceptibility to infectious diseases, impaired vaccination efficacy and systemic low-grade chronic inflammation. Increasing evidence suggest that intracellular zinc homeostasis, regulated by zinc transporter expression, is critically involved in the signaling and activation of immune cells. We hypothesize that epigenetic alterations and nutritional deficits associated with aging may lead to zinc transporter dysregulation, resulting in decreases in cellular zinc levels and enhanced inflammation with age. The goal of this study was to examine the contribution of age-related zinc deficiency and zinc transporter dysregulation on the inflammatory response in immune cells. The effects of zinc deficiency and age on the induction of inflammatory responses were determined using an in vitro cell culture system and an aged mouse model. We showed that zinc deficiency, particularly the reduction in intracellular zinc in immune cells, was associated with increased inflammation with age. Furthermore, reduced Zip 6 expression enhanced proinflammatory response, and age-specific Zip 6 dysregulation correlated with an increase in Zip 6 promoter methylation. Furthermore, restoring zinc status via dietary supplementation reduced aged-associated inflammation. Our data suggested that age-related epigenetic dysregulation in zinc transporter expression may influence cellular zinc levels and contribute to increased susceptibility to inflammation with age.
Collapse
Affiliation(s)
- Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, OR 97331, USA
| | | | | |
Collapse
|
31
|
Behie AM, Pavelka MSM. The role of minerals in food selection in a black howler monkey (Alouatta pigra) population in Belize following a major hurricane. Am J Primatol 2012; 74:1054-63. [PMID: 22851375 DOI: 10.1002/ajp.22059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022]
Abstract
As plants may contain low levels of some minerals including sodium, copper, and phosphorous, herbivores may become deficient in these nutrients. In 2001, Hurricane Iris hit the Monkey River Forest in Belize causing substantial damage to the food supply of the black howler monkey population (Alouatta pigra) living there. This included an 18-month absence in fruit production and a complete loss of figs that are high in calcium. In this article, we describe the post-hurricane diet of this monkey population and compare the mineral content of food items to each other and to recommendations for non-human primates [NRC 2003]. We also investigate food selection in relation to potentially limiting minerals. Behavioral data from four groups of howlers (2002-2006) and samples of all ingested food items were collected and a sample of 99 plant from 18 food species was analyzed for mineral content. Unexpectedly, the post-hurricane diet contained more mature leaves than new leaves despite the availability of new leaves. Leaves contained higher amounts of minerals than reproductive parts and with the exception of Cecropia peltata stems, plant parts were low in sodium. Cecropia peltata is a pioneer species that grows following habitat disturbance thus the ingestion of these stems may be a potential mechanism to avoid sodium deficiency in this damaged forest. Calcium and zinc were found above recommended values in most food items; however, both positively predicted food selection, which may reflect a difference between their abundance and their bioavailability. However, as mature leaves contained more calcium than other plant parts, their high post-hurricane consumption may also be a response to the absence of figs and the need to find an alternate calcium source. This study highlights how habitat disturbance may affect mineral abundance and the dietary choices of primates.
Collapse
Affiliation(s)
- Alison M Behie
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, Australia.
| | | |
Collapse
|
32
|
McClave SA. Drivers of oxidative stress in acute pancreatitis: the role of nutrition therapy. JPEN J Parenter Enteral Nutr 2012; 36:24-35. [PMID: 22235106 DOI: 10.1177/0148607111424410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe acute pancreatitis is a disease process distinguished by increasing oxidative stress and potential destruction of the pancreatic gland. An initial injury to the acinar cell initiates a sentinel event, which leads to a vicious cycle of inflammation and cell death by either apoptosis or necrosis. Whether the acute inflammation resolves or goes on to a pattern of chronicity may be related to genetic predisposition, failure to remove injurious agents, and innate systems for antioxidant defense. The degree to which nutrition therapy can modulate oxidative stress, maintain intestinal function, and preserve the structure of the acinar cell is truly amazing. Understanding the mechanisms involved in this complex disease process and the manner in which these mechanisms are influenced by dietary agents affords new and exciting therapeutic options for the future.
Collapse
Affiliation(s)
- Stephen A McClave
- Department of Medicine, Division of Gastroenterology/Hepatology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
33
|
Ozkul IA, Alcigir G, Sepici-Dincel A, Yonguc AD, Akcora A, Turkaslan J. Histopathological and biochemical findings of congenital copper deficiency: are these similar to those of caprine arthritis-encephalitis? J Vet Sci 2012; 13:107-9. [PMID: 22437544 PMCID: PMC3317451 DOI: 10.4142/jvs.2012.13.1.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was done after identifying animals with a twisted carpal joint in goat herd. These included a kid goat walking on its articulus carpii and a newborn goat with a stiff leg. Necropsies of the diseased goats revealed swollen carpal joints that were twisted backwards. Arthritis was observed during microscopic examination of the carpal joints. Very low levels of eosinophil, leucocyte, and lymphocyte cell infiltration were found in the central nervous system and meninges. Serum copper levels were significantly decreased in most of the animals. All of these results led us to diagnose the animals with swayback disease.
Collapse
Affiliation(s)
- I Ayhan Ozkul
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, 06110 Diskapi, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
34
|
Wong CP, Ho E. Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res 2011; 56:77-87. [PMID: 22076675 DOI: 10.1002/mnfr.201100511] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/09/2011] [Accepted: 09/26/2011] [Indexed: 12/27/2022]
Abstract
Zinc is an essential micronutrient required for many cellular processes, especially for the normal development and function of the immune system. Zinc homeostasis and signaling are critical in immune activation, and an imbalance in zinc homeostasis is associated with the development of chronic diseases. Zinc deficiency causes significant impairment in both adaptive and innate immune responses, and promotes systemic inflammation. The elderly are a population particularly susceptible to zinc deficiency. National surveys indicate that a significant portion of the aged population has inadequate zinc intake, and a decline in zinc status is observed with age. There are remarkable similarities between the hallmarks of zinc deficiency and immunological dysfunction in aged individuals. Both zinc deficiency and the aging process are characterized by impaired immune responses and systemic low grade chronic inflammation. It has been hypothesized that age-related zinc deficiency may be an important factor contributing to immune dysfunction and chronic inflammation during the aging process. In this review, we discuss the effects of zinc status on aging, potential molecular and epigenetic mechanisms contributing to age-related decline in zinc status, and the role of zinc in age-related immune dysfunction and chronic inflammation.
Collapse
Affiliation(s)
- Carmen P Wong
- School of Biological & Population Health Sciences, Oregon State University, OR 97331, USA
| | | |
Collapse
|
35
|
Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:841749. [PMID: 21918714 PMCID: PMC3171895 DOI: 10.1155/2011/841749] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/06/2011] [Indexed: 01/26/2023]
Abstract
Pregnancy places increased demands on the mother to provide adequate nutrition to the growing conceptus. A number of micronutrients function as essential cofactors for or themselves acting as antioxidants. Oxidative stress is generated during normal placental development; however, when supply of antioxidant micronutrients is limited, exaggerated oxidative stress within both the placenta and maternal circulation occurs, resulting in adverse pregnancy outcomes. The present paper summarises the current understanding of selected micronutrient antioxidants selenium, copper, zinc, manganese, and vitamins C and E in pregnancy. To summarise antioxidant activity of selenium is via its incorporation into the glutathione peroxidase enzymes, levels of which have been shown to be reduced in miscarriage and preeclampsia. Copper, zinc, and manganese are all essential cofactors for superoxide dismutases, which has reduced activity in pathological pregnancy. Larger intervention trials are required to reinforce or refute a beneficial role of micronutrient supplementation in disorders of pregnancies.
Collapse
Affiliation(s)
- Hiten D. Mistry
- Division of Women's Health, Maternal and Fetal Research Unit, King's College London, St. Thomas' Hospital, London SE1 7EH, UK
| | - Paula J. Williams
- Human Genetics, School of Molecular and Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
36
|
Gambling L, Kennedy C, McArdle HJ. Iron and copper in fetal development. Semin Cell Dev Biol 2011; 22:637-44. [DOI: 10.1016/j.semcdb.2011.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
37
|
Bao YM, Choct M, Iji PA, Bruerton K. Trace mineral interactions in broiler chicken diets. Br Poult Sci 2010; 51:109-17. [PMID: 20390575 DOI: 10.1080/00071660903571904] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. The aim of the present study was to demonstrate trace mineral interactions among organic copper, iron, manganese and zinc (Cu, Fe, Mn and Zn) in broiler chickens. 2. Three experiments were conducted using a control diet which was deficient in Cu, Fe, Mn and Zn. 3. In experiment 1, the control diet, supplemental organic Cu, Fe alone and combined diets, were randomly fed to 4 groups of one-day-old Cobb broilers (each group had 6 replicates of 4 birds). 4. In experiment 2, the control diet, supplemental organic Mn and Zn alone or combined with Cu, Fe diets and corresponding inorganic combined diet, were randomly fed to 6 groups (each group had 8 replicates of 6 birds). 5. In experiment 3, the depletion of organic Zn, the depletion of inorganic Zn and normal Zn treatments were carried out in three groups of one-day-old Cobb broilers (each group had 8 replicates of 6 birds). 6. Adding organic Cu, Fe and Mn alone or combined to Zn deficient diets did not significantly improve bird performance and were mostly excreted. Supplemental organic Zn alone or combined with other elements significantly increased feed intake, body weight gain and tibia bone length. However, supplemental organic Fe alone or combined with Cu significantly increased feed intake but had no obvious effect on body weight gain. The organic Fe supplementation resulted in a wider tibia. 7. Depletion of organic and inorganic Zn resulted in decreased feed intake, body weight gain and total tibia bone Zn content. Zinc deficiency did not affect the uptake of organic Fe by tibia bone but reduced its total Fe content. 8. Zinc is the first limiting element among these 4 trace minerals. Adding Mn, Cu and Fe to Zn deficient diets did not stimulate bird performance. Surplus organic Fe and Cu resulted in increased feed intake and increased tibia bone Fe content but did not contribute to bird performance.
Collapse
Affiliation(s)
- Y M Bao
- School of Environmental and Rural Science, University of New England, Armidale, Australia.
| | | | | | | |
Collapse
|
38
|
Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats. Br J Nutr 2010; 104:382-9. [PMID: 20338072 DOI: 10.1017/s0007114510000759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We had previously shown that prenatal exposure to Zn-deficient diets induces an increase in blood pressure and impairs renal function in adult rats. The aim of the present study was to investigate if moderate Zn restriction during early growth periods, fetal life and lactation would induce impairment in the vascular and renal NO system and alterations in plasma lipid profile. We also investigated if these effects persisted into adult life, even when a Zn-replete diet was provided after weaning. Pregnant rats were fed control (30 parts per million (ppm)) or low (8 ppm) Zn diets throughout gestation up to weaning. Afterwards, male offspring from low-Zn mothers were assigned to low- or control-Zn diets during 60 d. Male offspring from control mothers were fed a control diet. Animals exposed to Zn restriction showed low birth weight, increased systolic blood pressure and serum TAG levels, and decreased glomerular filtration rate in adulthood. Zn restriction induced a decrease in vascular and renal NO synthase activity and a reduced expression of the endothelial NO synthase isoform in aorta. A control-Zn diet during post-weaning growth returned TAG levels to normal but was unsuccessful in normalising systolic blood pressure, glomerular filtration rate or NO system activity in Zn-deficient offspring. Zn restriction during fetal life, lactation and/or post-weaning growth induced alterations in the vascular and renal NO system and in lipid metabolism that could contribute to the programming of hypertension and renal dysfunction in adulthood.
Collapse
|
39
|
Lanoue L, Green KK, Kwik-Uribe C, Keen CL. Dietary factors and the risk for acute infant leukemia: evaluating the effects of cocoa-derived flavanols on DNA topoisomerase activity. Exp Biol Med (Maywood) 2010; 235:77-89. [DOI: 10.1258/ebm.2009.009184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is cumulative strong evidence that diets rich in flavanols can provide certain positive health benefits, particularly with respect to the cardiovascular system. Consequently, it has been suggested that increasing one's dietary intake of flavanols may be of benefit. Complicating this idea, there are reports that high intakes of certain flavonoids during pregnancy are associated with an increased risk for acute infant leukemia due to a poison effect of select polyphenolic compounds on DNA topoisomerase (topo) II activity that promotes aberrant chromosomal translocations. In the current study, we characterized the effects of select flavanols (epicatechin and catechin monomers), and select flavanol dimers and longer oligomers, on topo II activity, and on cellular toxicity in vitro. In contrast to the chemotherapeutic drug etoposide (VP16) and the flavonol quercetin, which strongly inhibited topo II activity and increased the formation of cleavage complexes demonstrating a poison effect, the flavanols epicatechin and catechin had little effect on topo II enzyme activity. Accordingly, several fold greater concentrations of the flavanols were required to achieve cellular toxicity similar to that of quercetin and VP16 in cultures of myeloid and lymphoid cells. Low cellular toxicity and limited topo II inhibition were also observed with a procyanidin-rich cocoa extract. Of all the flavanols tested, the dimers (B2, B5 and a mix of both) exerted the greatest inhibition of topo II and inhibited cellular proliferation rates at concentrations similar to quercetin. However, in contrast to quercetin, the dimers did not function as topo II poisons. Collectively, our in vitro data show that cocoa-derived flavanols have limited effects on topo II activity and cellular proliferation in cancer cell lines. We predict that these compounds are likely to have limited leukemogenic potential at physiological concentrations.
Collapse
Affiliation(s)
- Louise Lanoue
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
| | - Kerri K Green
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
| | | | - Carl L Keen
- Department of Nutrition, University of California, Davis, One Shields Ave Davis, CA 95616
- Department of Internal Medicine, University of California, Davis, One Shields Ave Davis, CA 95616, USA
| |
Collapse
|
40
|
McElwee MK, Song MO, Freedman JH. Copper activation of NF-kappaB signaling in HepG2 cells. J Mol Biol 2009; 393:1013-21. [PMID: 19747488 DOI: 10.1016/j.jmb.2009.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/19/2009] [Accepted: 08/27/2009] [Indexed: 12/16/2022]
Abstract
Copper is a persistent environmental contaminant, and exposure to elevated levels of this transition metal can result in a variety of pathologies. Copper affects the transcription of multiple defense and repair genes to protect against metal-induced pathologies. HepG2 cells were treated with copper under multiple conditions and microarray analyses were previously performed to better understand the mechanisms by which copper affects the transcription of stress-responsive genes. Analysis of the microarray data indicated that copper modulates multiple signal transduction pathways, including those mediated by NF-kappaB. Luciferase assays, quantitative reverse transcription real-time PCR, and chemical inhibition in HepG2 cells validated the microarray results and confirmed that NF-kappaB was activated by stress-inducible concentrations of copper. In addition, two novel NF-kappaB-regulated genes, SRXN1 (sulfiredoxin 1 homolog) and ZFAND2A (zinc-finger, AN1-type domain 2A), were identified. Our results indicate that the activation of NF-kappaB may be important for survival under elevated concentrations of copper.
Collapse
Affiliation(s)
- Matthew K McElwee
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Box 12233, MD E1-05, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
41
|
Padmavathi IJN, Kishore YD, Venu L, Ganeshan M, Harishankar N, Giridharan NV, Raghunath M. Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol 2009; 94:761-9. [PMID: 19251982 DOI: 10.1113/expphysiol.2008.045856] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal undernutrition increases the risk of adult chronic diseases, such as obesity and type 2 diabetes. This study evaluated the effect of maternal zinc restriction in predisposing the offspring to adiposity and altered insulin response in later life. Seventy-day-old female Wistar/NIN rats received a control (ZnC) or zinc-restricted (ZnR) diet for 2 weeks. Following mating with control males, a subgroup of the ZnR dams were rehabilitated with ZnC diet from parturition. Half the offspring born to the remaining ZnR dams were weaned onto the ZnC diet and the other half continued on the ZnR diet throughout their life. Body composition, glucose tolerance, insulin response and plasma lipid profile were assessed in male and female offspring at 3 and 6 months of age. The ZnR offspring weighed less than control offspring at birth and weaning and continued so until 6 months of age. Rehabilitation regimens corrected the body weights of male but not female offspring. Maternal zinc restriction increased the percentage of body fat and decreased lean mass, fat-free mass and fasting plasma insulin levels in both male and female offspring at 6 months of age. Also, glucose-induced insulin secretion was decreased in female but not male offspring. Despite the differences in fasting insulin and the area under the curve for insulin, the fasting glucose and the area under the curve for glucose were in general comparable among offspring of different groups. Rehabilitation from parturition or weaning partly corrected the changes in the percentage of body fat but had no such effect on other parameters. Changes in plasma lipid profile were inconsistent among the offspring of different groups. Thus chronic maternal zinc restriction altered the body composition and impaired the glucose-induced insulin secretion in the offspring.
Collapse
|
42
|
Abstract
During development, the fetus is entirely dependent on the mother for its nutrient requirements. Subsequently, it is a period when both are vulnerable to changes in dietary supply, especially of those nutrients that are marginal under normal circumstances. In developed countries, this applies mainly to micronutrients. Even now, iron deficiency is a common disorder, especially in pregnancy. Similarly, copper intake in the U.K. population is rarely above adequate levels. It is now becoming clear that nutrient deficiencies during pregnancy can result in problems for the offspring, in both the short- and long-term. Early studies showed that lambs born to mothers on copper-deficient pastures developed 'swayback', with neurological and muscular symptoms that could not be reversed by postnatal supplementation. Our own findings have shown that prenatal iron deficiency results in increased postnatal blood pressure, even though the offspring have normal dietary iron levels from birth. These observations emphasize the importance of iron and copper in growth and development. Complicating the situation further is the fact that copper and iron are known to interact with each other in many ways, including absorption and intracellular transport. However, their interactions during the pregnancy appear to be more complex than during the non-pregnant state. In the present review, we examine the importance of these metals and their interactions, the consequences, both short- and long-term, of deficiency and consider some possible mechanisms whereby these effects may be generated.
Collapse
|
43
|
DeSesso JM, Watson RE, Keen CL, Hazelden KP, Haws LC, Li AA. Analysis and integration of developmental neurotoxicity and ancillary data into risk assessment: a case study of dimethoate. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:94-109. [PMID: 19034799 DOI: 10.1080/15287390802477452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dimethoate is an organophosphate (OP) pesticide used to control a wide variety of insects on agricultural crops and ornamentals. To ensure that dimethoate is used safely, it is important to determine exposure levels that protect against adverse effects at all life stages, including the developing fetus, infant, and child. Based on an analysis of a developmental neurotoxicity (DNT) study, a cholinesterase (ChE) sensitivity study, a cross-fostering study, and several single- and multigenerational reproductive toxicity studies, two potential critical endpoints for dimethoate were identified: brain ChE inhibition (ChEI) in adult females, and pup mortality. An initial evaluation concluded that pup mortality was a preferable endpoint, based on an increased number of pup deaths born to dams dosed with > or =3 mg/kg dimethoate via oral gavage. Closer examination, however, revealed that the pup deaths were clustered in a small number of litters in which the dams providing postnatal care exhibited maternal care deficits. When the data were analyzed using the dam as the unit of statistical significance, a significant increase in the average litter proportion of pup deaths was observed only when the dams were dosed postnatally with 6 mg/kg dimethoate while they were raising the pups. Gestational exposure (i.e., during pregnancy only) to 6 mg/kg dimethoate exerted no effect on pup survival. This leads to the conclusion that it is postnatal exposure of the nursing dams that is associated with pup mortality. Furthermore, a previous benchmark dose (BMD) meta-analysis approach revealed that BMDL(10) for adult females (the lower 95% bound of the dose resulting in a 10% reduction in the parameter of interest) for ChEI was > 3-fold lower than the BMDL(10) for pup mortality (0.19 and 0.68 mg/kg, respectively). Overall, this study underscores the importance of using the dam as the unit of statistical significance when assessing data collected in the perinatal period, and it is concluded that adult brain ChEI is the correct critical endpoint for assessing risk of dimethoate toxicity.
Collapse
|
44
|
Bao YM, Choct M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: a review. ANIMAL PRODUCTION SCIENCE 2009. [DOI: 10.1071/ea08204] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review critically examines the literature on the current status of trace mineral nutrition and the effect of organically complexed trace minerals, focusing on copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), on broiler chicken production. The requirements of Cu, Fe, Mn and Zn by broiler chickens need to be redefined due to today’s fast growing birds and the availability of organic trace minerals. Zn is one of the key trace minerals for chickens and although it maintains a relatively stable tissue concentration, dietary deficiency of Zn strongly depresses the feed intake, and hence the growth, of broiler chickens. Based on studies using a semiconventional diet, it is reasonable to conclude that the total Zn requirement for broiler chickens is around 60 mg/kg up until day 14 and 70 mg/kg from 14 day onwards, including the Zn content in the basal diet. However, it is difficult to determine the requirements of other organic trace minerals such as Cu, Fe and Mn because under a Zn adequate condition, it is impossible to produce deficient symptoms of these minerals on the basis of growth response. It also identifies gaps in knowledge of inorganic and organic trace mineral nutrition for the modern broiler chicken.
Collapse
|
45
|
Lopez V, Keen CL, Lanoue L. Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model. Biol Trace Elem Res 2008; 122:238-55. [PMID: 18224284 DOI: 10.1007/s12011-007-8079-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/25/2007] [Accepted: 11/23/2007] [Indexed: 12/22/2022]
Abstract
The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle alpha-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.
Collapse
Affiliation(s)
- Veronica Lopez
- Department of Nutrition, University of California, Davis, One Shields Ave., Meyer Hall, Davis, CA 95616, USA
| | | | | |
Collapse
|
46
|
Yang SJ, Keen CL, Lanoue L, Rucker RB, Uriu-Adams JY. Low nitric oxide: a key factor underlying copper-deficiency teratogenicity. Free Radic Biol Med 2007; 43:1639-48. [PMID: 18037129 PMCID: PMC2289431 DOI: 10.1016/j.freeradbiomed.2007.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 08/27/2007] [Accepted: 08/30/2007] [Indexed: 02/07/2023]
Abstract
Copper (Cu)-deficiency-induced teratogenicity is characterized by major cardiac, brain, and vascular anomalies; however, the underlying mechanisms are poorly understood. Cu deficiency decreases superoxide dismutase activity and increases superoxide anions, which can interact with nitric oxide (NO), reducing the NO pool size. Given the role of NO as a developmental signaling molecule, we tested the hypothesis that low NO levels, secondary to Cu deficiency, represent a developmental challenge. Gestation day 8.5 embryos from Cu-adequate (Cu+) or Cu-deficient (Cu-) dams were cultured for 48 h in Cu+ or Cu- medium, respectively. We report that NO levels were low in conditioned medium from Cu-/Cu- embryos and yolk sacs, compared to Cu+/Cu+ controls under basal conditions and with NO synthase (NOS) agonists. The low NO production was associated with low endothelial NOS phosphorylation at serine 1177 and cyclic guanosine-3',5'-monophosphate (cGMP) concentrations in the Cu-/Cu- group. The altered NO levels in Cu-deficient embryos are functionally significant, as the administration of the NO donor DETA/NONOate increased cGMP and ameliorated embryo and yolk sac abnormalities. These data support the concept that Cu deficiency limits NO availability and alters NO-dependent signaling, which contributes to abnormal embryo and yolk sac development.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
| | - Carl L. Keen
- Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
- Department of Internal Medicine, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
| | - Louise Lanoue
- Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
| | - Robert B. Rucker
- Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
| | - Janet Y. Uriu-Adams
- Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA, 95616, USA
- *Corresponding author: Janet Y. Uriu-Adams, Department of Nutrition, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA. Phone: (530) 752-4658, Fax: (530) 752-8966. E-mail:
| |
Collapse
|
47
|
Pyatskowit JW, Prohaska JR. Multiple mechanisms account for lower plasma iron in young copper deficient rats. Biometals 2007; 21:343-52. [PMID: 18038202 DOI: 10.1007/s10534-007-9123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Copper deficiency lowers brain copper and iron during development. The reduced iron content could be due to hypoferremia. Experiments were conducted to evaluate plasma iron and "ferroxidase" hypotheses by determining copper and iron status of Holtzman albino rats following gestational/lactational copper deficiency. Copper deficient (Cu-) dams on treatment for 5 weeks, two of gestation and three of lactation, had markedly lower copper content of milk and mammary tissue, and lower milk iron. Newborn pups from Cu- dams had lower copper and iron concentrations. Compared to Cu+ pups, Cu- pups, analyzed between postnatal age (P) 0 and P26, were smaller, anemic, had lower plasma iron, cardiac hypertrophy, and near zero ceruloplasmin activity. Liver copper in Cu+ pups increased then decreased during development and major reductions were evident in Cu- pups. Liver iron in Cu+ pups decreased with age while nursing but increased after eating solid food. Liver iron was lower in Cu- pups at P0 and P13 and normal at P20 and P26. Small intestinal copper decreased with age in Cu+ pups and was lower in Cu- pups. Intestinal iron levels in Cu- pups were higher than Cu+ pups postweaning in some experiments. Reduction in plasma iron in Cu- pups is likely due to a decreased "ferroxidase" function leading to lower placental iron transport, a lower milk iron diet, and partial block in iron uptake from intestine but is not due to failure to mobilize hepatic iron, in contrast to older rats eating diet with adequate iron.
Collapse
Affiliation(s)
- Joshua W Pyatskowit
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | | |
Collapse
|
48
|
Danzeisen R, Araya M, Harrison B, Keen C, Solioz M, Thiele D, McArdle HJ. How reliable and robust are current biomarkers for copper status? Br J Nutr 2007; 98:676-83. [PMID: 17666147 DOI: 10.1017/s0007114507798951] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.
Collapse
Affiliation(s)
- Ruth Danzeisen
- International Copper Association, 260 Madison Avenue (FL 16), New York, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Yang SJ, Uriu-Adams JY, Keen CL, Rucker RB, Lanoue L. Effects of copper deficiency on mouse yolk sac vasculature and expression of angiogenic mediators. ACTA ACUST UNITED AC 2007; 77:445-54. [PMID: 17066430 DOI: 10.1002/bdrb.20096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cu deficiency results in embryonic defects and yolk sac (YS) vasculature abnormalities. In diverse model systems, Cu treatment modulates angiogenesis, perhaps by influencing the activity of angiogenic mediators such as vascular endothelial growth factor (VEGF). Conversely, Cu chelators can suppress angiogenesis. METHODS Gestation day (GD) 8.5 embryos from mice fed Cu-adequate (Cu+) or Cu-deficient (Cu-) diets were cultured in Cu+ or Cu- medium for 48 hr. Growth and development were evaluated, and YS vessel diameters were measured. Using RT-PCR and immunohistochemistry, the mRNA and protein expressions of VEGF, Flt-1, Flk-1, Angiopoietin-1 (Ang-1), and Tie-2 were analyzed. RESULTS Cu+/Cu+ embryos developed normally, whereas Cu-/Cu- embryos showed a high incidence of developmental anomalies. Cu-/Cu- YS had a high proportion of vessels that were large in diameter compared to the Cu+/Cu+ YS. The mRNA expression of angiogenic mediators in Cu-/Cu- YS was similar to that in Cu+/Cu+ YS. The protein expression of VEGF in the Cu-/Cu- YS without any vessel defects, and Tie-2 in the Cu-/Cu- YS with both vessel defects and blood islands was significantly lower than that in the Cu+/Cu+ YS. The protein expression of Flt-1, Flk-1 and Ang-1 was similar among groups regardless of the presence, or type, of vessel defects. CONCLUSIONS Results from the current study support the concept that Cu is required for the normal development of YS vasculature. Our data suggest that the impaired vascularization of Cu-deficient YS cannot be explained fully by the altered protein expression of the angiogenic growth factors reported here.
Collapse
Affiliation(s)
- Soo Jin Yang
- Department of Nutrition, University of California-Davis Department of Nutrition, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
50
|
Relton CL, Pearce MS, Parker L. The influence of erythrocyte folate and serum vitamin B12status on birth weight. Br J Nutr 2007; 93:593-9. [PMID: 15975157 DOI: 10.1079/bjn20041395] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extent to which maternal folate and vitamin B12modulate infant birth weight is unclear. The present study investigated mothers in early gestation (mean 11·5 (sd 5·8) weeks) and neonates, at delivery. Erythrocyte (RBC) folate (mothers:n683; neonates:n614) and vitamin B12(mothers:n534; neonates:n614) were measured. Data on smoking habits were available for 44 % of pregnancies (n443). The relationship between vitamin levels and birth weight standardized for gender and gestational age was investigated, using linear regression and adjusting for possible confounding variables (maternal age, parity). Results are presented as standardized regression coefficients (b). Increasing maternal age was associated with elevated RBC folate (b0·11 (95 % CI 0·08, 0·15),P<0·001;n674) and smoking was associated with a decrease in maternal RBC folate (b−1·38 (95 % CI −1·92, −0·86),P=0·001;n319). Neonatal RBC folate was predicted by maternal RBC folate (b0·08 (95 % CI 0·04, 0·11),P=0·001;n315) and maternal vitamin B12(b0·08 (95 % CI 0·01, 0·16),P=0·02;n252). Smoking influenced maternal vitamin B12status (b−0·88 (95 % CI −1·49, −0·27),P=0·005;n231). Using univariate regression, smoking significantly influenced infant birth weight (b−2·15 (95 % CI −3·24, −1·04),P<0·001;n437). However, the effect of smoking on birth weight was statistically non-significant when considered in a multivariate regression model, leaving maternal RBC folate as the only significant predictor of birth weight (b0·25 (95 % CI 0·08, 0·42),P=0·005;n145). These findings suggest that maternal folate status is an important determinant of infant birth weight. The combined effects of smoking and reduced RBC status on birth weight require further investigation.
Collapse
Affiliation(s)
- Caroline L Relton
- Paediatric and Lifecourse Epidemiology Research Group, School of Clinical Medical Sciences (Child Health), Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK.
| | | | | |
Collapse
|