1
|
Arcos J, Grunenwald F, Sepulveda D, Jerez C, Urbina V, Huerta T, Troncoso-Escudero P, Tirado D, Perez A, Diaz-Espinoza R, Nova E, Kubitscheck U, Rodriguez-Gatica JE, Hetz C, Toledo J, Ahumada P, Rojas-Rivera D, Martín-Montañez E, Garcia-Fernandez M, Vidal RL. IGF2 prevents dopaminergic neuronal loss and decreases intracellular alpha-synuclein accumulation in Parkinson's disease models. Cell Death Discov 2023; 9:438. [PMID: 38042807 PMCID: PMC10693583 DOI: 10.1038/s41420-023-01734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Parkinson's disease (PD) is the second most common late-onset neurodegenerative disease and the predominant cause of movement problems. PD is characterized by motor control impairment by extensive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). This selective dopaminergic neuronal loss is in part triggered by intracellular protein inclusions called Lewy bodies, which are composed mainly of misfolded alpha-synuclein (α-syn) protein. We previously reported insulin-like growth factor 2 (IGF2) as a key protein downregulated in PD patients. Here we demonstrated that IGF2 treatment or IGF2 overexpression reduced the α-syn aggregates and their toxicity by IGF2 receptor (IGF2R) activation in cellular PD models. Also, we observed IGF2 and its interaction with IGF2R enhance the α-syn secretion. To determine the possible IGF2 neuroprotective effect in vivo we used a gene therapy approach in an idiopathic PD model based on α-syn preformed fibrils intracerebral injection. IGF2 gene therapy revealed a significantly preventing of motor impairment in idiopathic PD model. Moreover, IGF2 expression prevents dopaminergic neuronal loss in the SN together with a decrease in α-syn accumulation (phospho-α-syn levels) in the striatum and SN brain region. Furthermore, the IGF2 neuroprotective effect was associated with the prevention of synaptic spines loss in dopaminergic neurons in vivo. The possible mechanism of IGF2 in cell survival effect could be associated with the decrease of the intracellular accumulation of α-syn and the improvement of dopaminergic synaptic function. Our results identify to IGF2 as a relevant factor for the prevention of α-syn toxicity in both in vitro and preclinical PD models.
Collapse
Affiliation(s)
- Javiera Arcos
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Felipe Grunenwald
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepulveda
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Carolina Jerez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Valentina Urbina
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Tomas Huerta
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniel Tirado
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Angela Perez
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Esteban Nova
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jorge Toledo
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
| | - Pablo Ahumada
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Diego Rojas-Rivera
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile
- Center for Biomedicine, Universidad Mayor, Santiago, Chile
| | - Elisa Martín-Montañez
- Department of Pharmacology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - María Garcia-Fernandez
- Department of Human Physiology, Faculty of Medicine, Biomedical Research Institute of Malaga, University of Malaga, Malaga, Spain
| | - René L Vidal
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile.
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Escuela de Tecnología Médica, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
2
|
Zhang Q, Qin S, Huai J, Yang H, Wei Y. Overexpression of IGF2 affects mouse weight and glycolipid metabolism and IGF2 is positively related to macrosomia. Front Endocrinol (Lausanne) 2023; 14:1030453. [PMID: 37152930 PMCID: PMC10154688 DOI: 10.3389/fendo.2023.1030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Objective To investigate the effects of insulin-like growth factor 2 (IGF2) on growth and glycolipid metabolism, as well as the underlying mechanism. Methods A mouse model of IGF2 overexpression was constructed to measure weight gain before adulthood, to obtain the values of adult glycolipid metabolism indicators in the peripheral blood and to detect the expression of genes in the IGF2 signaling pathway in different mouse tissues. The present study also explored the independent association between the IGF2 gene and macrosomia by detecting and comparing the expression levels of IGF2 mRNA/H19 RNA in maternal peripheral blood and fetal cord blood of 26 human pregnancies. Results In the mouse model, weights of the IGF2-overexpressing mice were significantly higher than those of the control mice at the age of 5-10 weeks. The glucose concentration, total cholesterol and high-density lipoprotein cholesterol (HDL-C) levels of IGF2-overexpressing mice were significantly lower than those of wild-type (WT) mice. Compared with the WT mice, the expression of H19 was significantly decreased in the pancreas and IGF1R was significantly decreased in the muscle of mice with IGF2 overexpression. The expression levels of STAT3 and AKT2 showed significant decrease in liver, muscle and increase in muscle of IGF2-overexpressing mice, respectively. GLUT2 expression showed significant increase in liver, kidney, muscle and decrease in pancreas of mice with IGF2 overexpression. This study also found that in normal mothers with the similar clinical characteristics, IGF2 expression in the maternal peripheral blood and fetal cord blood is an independent factor influencing macrosomia. Conclusion IGF2 expression was independently correlated with the occurrence of macrosomia, and overexpression of IGF2 significantly increased the weights of mice at the age of 5-10 weeks and significantly affected the values of adult glycolipid metabolism indicators, which might be the result of changes in the IGF2-IGF1R-STAT3/AKT2-GLUT2/GLUT4 pathway. These findings might suggest that IGF2 plays an important role in growth and glycolipid metabolism during both pregnancy and postnatal development.
Collapse
|
3
|
Beatty A, Rubin AM, Wada H, Heidinger B, Hood WR, Schwartz TS. Postnatal expression of IGF2 is the norm in amniote vertebrates. Proc Biol Sci 2022; 289:20212278. [PMID: 35193406 PMCID: PMC8864354 DOI: 10.1098/rspb.2021.2278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The insulin and insulin-like signalling (IIS) network plays an important role in mediating several life-history traits, including growth, reproduction and senescence. Although insulin-like growth factors (IGFs) 1 and 2 are both key hormones in the vertebrate IIS network, research on IGF2 in juveniles and adults has been largely neglected because early biomedical research on rodents found negligible IGF2 postnatal expression. Here, we challenge this assumption and ask to what degree IGF2 is expressed during postnatal life across amniotes by quantifying the relative gene expression of IGF1 and IGF2 using publicly available RNAseq data for 82 amniote species and quantitative polymerase chain reaction on liver cDNA at embryonic, juvenile and adult stages for two lizard, bird and mouse species. We found that (i) IGF2 is expressed postnatally across amniote species and life stages-often at a higher relative expression than IGF1, contradicting rodent models; (ii) the lack of rodent postnatal IGF2 expression is due to phylogenetic placement, not inbreeding or artificial selection; and (iii) adult IGF2 expression is sex-biased in some species. Our results demonstrate that IGF2 expression is typical for amniotes throughout life, suggesting that a comprehensive understanding of the mechanisms mediating variation in life-history traits will require studies that measure both IGFs.
Collapse
Affiliation(s)
- Abby Beatty
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Alexander M. Rubin
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Britt Heidinger
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tonia S. Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
4
|
Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Sci Rep 2022; 12:2038. [PMID: 35132125 PMCID: PMC8821705 DOI: 10.1038/s41598-022-05941-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson’s disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.
Collapse
|
5
|
Beatty AE, Schwartz TS. Gene expression of the IGF hormones and IGF binding proteins across time and tissues in a model reptile. Physiol Genomics 2020; 52:423-434. [PMID: 32776803 PMCID: PMC7509249 DOI: 10.1152/physiolgenomics.00059.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) network regulates cellular processes including pre- and postnatal growth, cellular development, wound healing, reproduction, and longevity. Despite their importance in the physiology of vertebrates, the study of the specific functions of the top regulators of the IIS network, insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs), has been mostly limited to a few model organisms. To expand our understanding of this network, we performed quantitative gene expression of IGF hormones in liver and qualitative expression of IGFBPs across tissues and developmental stages in a model reptile, the brown anole lizard (Anolis sagrei). We found that lizards express IGF2 across all life stages (preoviposition embryos to adulthood) and at a higher level than IGF1, which is opposite to patterns seen in laboratory rodents but similar to those seen in humans and other vertebrate models. IGFBP expression was ubiquitous across tissues (brain, gonad, heart, liver, skeletal muscle, tail, and regenerating tail) in adults, apart from IGFBP5, which was variable. These findings provide an essential foundation for further developing the anole lizard as a physiological and biomedical reptile model, as well as expanding our understanding of the function of the IIS network across species.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
6
|
Rotwein P. Similarity and variation in the insulin-like growth factor 2 - H19 locus in primates. Physiol Genomics 2018; 50:425-439. [PMID: 29602297 PMCID: PMC6032289 DOI: 10.1152/physiolgenomics.00030.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2), a small, secreted protein, is critical for fetal and prenatal growth in humans and other mammals. The IGF2 gene and its mouse homolog comprise part of a conserved linkage group that is regulated by parental imprinting, with IGF2/ Igf2 being expressed from the paternal chromosome, and the adjacent H19 gene from the maternal chromosome. By using information extracted from public genomic and gene expression databases, I have now analyzed this locus in nine nonhuman primate species representing over 60 million years of evolutionary divergence from a common progenitor. Both IGF2 and H19 genes and the entire locus have been conserved among these primates. Each primate IGF2 gene except for gibbon and marmoset is composed of 10 exons and contains five potential promoters, each with distinctive 5'-untranslated exons. Similarly, except for marmoset and mouse lemur, H19 consists of six exons and has two promoters. DNA sequence conservation is high, not only in orthologous exons and promoters, but also in a putative imprinting control region located 5' to H19 and in multiple potential distal enhancer elements found 3' to H19. Collectively, these results support the hypothesis that common regulatory processes shaped the IGF2 - H19 locus before the onset of primate speciation more than 85 million years ago. This study also leads to the conclusion that inaccuracies in data presentation in genetic repositories could limit our ability to develop novel insights about roles of individual genes and multigene loci in mammalian physiology and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center , El Paso, Texas
| |
Collapse
|
7
|
Rotwein P. The complex genetics of human insulin-like growth factor 2 are not reflected in public databases. J Biol Chem 2018; 293:4324-4333. [PMID: 29414792 DOI: 10.1074/jbc.ra117.001573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
Recent advances in genetics present unique opportunities for enhancing knowledge about human physiology and disease susceptibility. Understanding this information at the individual gene level is challenging and requires extracting, collating, and interpreting data from a variety of public gene repositories. Here, I illustrate this challenge by analyzing the gene for human insulin-like growth factor 2 (IGF2) through the lens of several databases. IGF2, a 67-amino acid secreted peptide, is essential for normal prenatal growth and is involved in other physiological and pathophysiological processes in humans. Surprisingly, none of the genetic databases accurately described or completely delineated human IGF2 gene structure or transcript expression, even though all relevant information could be found in the published literature. Although IGF2 shares multiple features with the mouse Igf2 gene, it has several unique properties, including transcription from five promoters. Both genes undergo parental imprinting, with IGF2/Igf2 being expressed primarily from the paternal chromosome and the adjacent H19 gene from the maternal chromosome. Unlike mouse Igf2, whose expression declines after birth, human IGF2 remains active throughout life. This characteristic has been attributed to a unique human gene promoter that escapes imprinting, but as shown here, it involves several different promoters with distinct tissue-specific expression patterns. Because new testable hypotheses could lead to critical insights into IGF2 actions in human physiology and disease, it is incumbent that our fundamental understanding is accurate. Similar challenges affecting knowledge of other human genes should promote attempts to critically evaluate, interpret, and correct human genetic data in publicly available databases.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
8
|
|
9
|
Abstract
The search for therapeutic targets to prevent neurons from dying is ongoing and involves the exploration of a long list of neurotrophic factors. Insulin-like growth factor 2 (IGF2) is a member of the insulin family with known neurotrophic properties. In this study, we used Igf2 knockout (Igf2) neonate mice to determine whether Igf2 deficiency is detrimental to motor neuron survival after axonal injury. Results show that Igf2 neonatal mice are more susceptible to motor neuron damage than Igf2 mice, as they have a significantly lower percentage of motor neuron survival after a sciatic nerve transection. Neuronal survival was significantly improved in Igf2 mice when IGF2 was administered. These results support the role of IGF2 in neonatal motor neuron survival.
Collapse
|
10
|
Moriyama S, Yamaguchi K, Takasawa T, Chiba H, Kawauchi H. Identification of two insulin-like growth factor IIs in the Japanese eel, Anguilla japonica: Cloning, tissue distribution, and expression after growth hormone treatment and seawater acclimation. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:47-57. [PMID: 17855139 DOI: 10.1016/j.cbpb.2007.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
To better understand the role of IGFs in Japanese eel, Anguilla japonica, we cloned insulin-like growth factor-II (IGF-II) cDNAs and examined their mRNA expression in several tissues. Two eel IGF-II cDNAs, eIGF-II-1 and eIGF-II-2, were cloned from the liver. A signal peptide and a mature peptide of both preproIGF-IIs were composed of 47 amino acids (aa) and 69 aa, but they differed at 17 aa and 13 aa, respectively. The E domain of eIGF-II-1 was 49 aa longer than that of eIGF-II-2, and differed at 22 aa within 52 aa. The highest eIGF-II-1 and II-2 mRNA levels were observed in the liver, with detectable levels also found in all tissues examined. The eIGF-II-1 mRNA levels in the liver, heart, and muscle were higher in females than in males, whereas those in the stomach and intestine were lower in the females. The eIGF-II-2 mRNA levels in the liver and swim-bladder were also higher in females than in males whereas those in the stomach, spleen, and intestine were lower in the females. The eIGF-II-1 mRNA levels in the liver were higher in large compared to small glass eels, while the eIGF-II-2 mRNA levels did not correlate with body weight. Both eIGF-II mRNA levels in the liver increased after eel GH treatments in vivo and in vitro. No differences in both eIGF-II mRNA levels were observed in the gills, liver, stomach and whole kidney between seawater- and freshwater-reared eels.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | |
Collapse
|
11
|
Engström W, Shokrai A, Otte K, Granérus M, Gessbo A, Bierke P, Madej A, Sjölund M, Ward A. Transcriptional regulation and biological significance of the insulin like growth factor II gene. Cell Prolif 2007; 31:173-89. [PMID: 9925986 PMCID: PMC6647699 DOI: 10.1111/j.1365-2184.1998.tb01196.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The insulin like growth factors I and II are the most ubiquitous in the mammalian embryo. Moreover they play a pivotal role in the development and growth of tumours. The bioavailability of these growth factors is regulated on a transcriptional as well as on a posttranslational level. The expression of non-signalling receptors as well as binding proteins does further tune the local concentration of IGFs. This paper aims at reviewing how the transcription of the IGF genes is regulated. The biological significance of these control mechanisms will be discussed.
Collapse
Affiliation(s)
- W Engström
- Department of Pathology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dikkes P, Hawkes C, Kar S, Lopez MF. Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Res 2006; 1131:77-87. [PMID: 17184742 DOI: 10.1016/j.brainres.2006.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor-2 (IGF2) is a member of the insulin gene family with known neurotrophic properties. The actions of IGF2 are mediated via the IGF type 1 and type 2 receptors as well as through the insulin receptors, all of which are widely expressed throughout the brain. Since IGF2 is up-regulated in the brain after injury, we wanted to determine whether the absence of IGF2 can lead to any alteration on brain morphology and/or in the response of its receptor binding sites following a neurotoxic insult. No morphological differences were observed between the brains of IGF2 knockout (IGF2(-/-)) and wild-type control (IGF2(+/+)) mice. However, our in vitro receptor autoradiography results indicate that IGF2(-/-) mice had lower endogenous levels of [(125)I]IGF1 and [(125)I]insulin receptor binding sites in the hippocampus and cerebellum as compared to IGF2(+/+) mice, while endogenous [(125)I]IGF2 receptor binding showed a decrease only in the cerebellum. Seven days after kainic acid administration, the [(125)I]insulin receptor binding sites were significantly decreased in all brain regions of the IGF2(+/+) mice, while the levels of [(125)I]IGF1 and [(125)I]IGF2 binding sites were decreased only in select brain areas. The IGF2(-/-) mice, on the other hand, showed increased [(125)I]IGF1 and [(125)I]IGF2 and [(125)I]insulin receptor binding sites in selected regions such as the hippocampus and cerebellum. These results, taken together, suggest that deletion of IGF2 gene does not affect gross morphology of the brain but does selectively alter endogenous [(125)I]IGF1, [(125)I]IGF2 and [(125)I]insulin receptor binding sites and their response to neurotoxicity.
Collapse
MESH Headings
- Age Factors
- Animals
- Binding Sites/drug effects
- Binding Sites/physiology
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Brain/drug effects
- Brain/embryology
- Brain/metabolism
- Brain Damage, Chronic/genetics
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cerebellum/drug effects
- Cerebellum/embryology
- Cerebellum/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Drug Resistance/genetics
- Hippocampus/drug effects
- Hippocampus/embryology
- Hippocampus/metabolism
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor II/genetics
- Iodine Radioisotopes
- Kainic Acid/pharmacology
- Male
- Mice
- Mice, Knockout
- Neurotoxins/pharmacology
- Radioligand Assay
- Receptor, IGF Type 2/drug effects
- Receptor, IGF Type 2/metabolism
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- P Dikkes
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Mukherjee B, Ghosh S, Das T, Doloi M. Characterization of insulin-like-growth factor II (IGF II) mRNA positive hepatic altered foci and IGF II expression in hepatocellular carcinoma during diethylnitrosamine-induced hepatocarcinogenesis in rats. J Carcinog 2005; 4:12. [PMID: 16092956 PMCID: PMC1199609 DOI: 10.1186/1477-3163-4-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin-like-growth factor II (IGF II) has been implicated in the pathogenesis of neoplasm of different tissues, including liver of rats and men. This growth factor is believed to exert its effect during cellular proliferation. During the process of development of hepatocellular carcinoma (HCC), different hepatic altered foci appear. They are believed to be the putative precursors of HCC in rats and in men. Thus, to study the role of the gene in a defined model of hepatocarcinogenesis was the target to elucidate its role in various cancer phenotypes during the entire development stage of cancer, right from earlier preneoplastic lesions to HCC. METHODS Antisense in situ hybridization technique was used here to characterize the type(s) of foci in which IGF II mRNA had expressed during the development of hepatocarcinogenesis-induced by diethylnitrosamine and promoted by phenobarbital in rats. Various focal lesions have been categorized depending on the stages and sizes along with IGF II expression patterns in them. Immunohistochemical detection for proliferating cell nuclear antigen (PCNA) was made to detect the role of the gene in preneoplastic and neoplastic cellular proliferation. RESULTS IGF II expression was located in the glycogen-storage acidophilic cell foci maximally followed by mixed cell lesions and the least in basophilic lesions. The expression of IGF II was found to be predominant in the HCC. The expression of gene was also located at the peripheral cells of spongiosis hepatis which are believed to be the precursor of ito cell carcinoma. It was noted that there is a direct correlation between IGF II expression and immunohistochemical detection for PCNA. CONCLUSION It may be concluded that IGF II gene expression plays an important role during the development of neoplasia and the gene expresses in the sequence of events leading from glycogen-rich-acidophilic lesions to glycogen poor basophilic lesions to HCC with an expression pattern of "high-low-high" in terms of degree of expression. Moreover, the essential role of the gene at the immediate initiation stage of carcinogenesis (first few weeks) and during HCC development cannot be ignored. Thus this expression can be used as a suitable marker for very early detection of the cancerous process and can save numbers of future cancer victims by very early detection of this disease.
Collapse
Affiliation(s)
- Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | - Shampa Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | - Tanushree Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India
| | - Manika Doloi
- Department of Biochemistry and Nutrition, All India Institute of Hygiene and Public Health, C.R. Avenue, Kolkata 700 073, India
| |
Collapse
|
14
|
Fan ZR, Yang DH, Cui J, Qin HR, Huang CC. Expression of insulin like growth factor II and its receptor in hepatocellular carcinogenesis. World J Gastroenterol 2001; 7:285-8. [PMID: 11819776 PMCID: PMC4723538 DOI: 10.3748/wjg.v7.i2.285] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Z R Fan
- Department of Gastroenterology, Zhujiang Hospital, The First Military Medical University, Guangzhou 510282 Guangdong Province, China
| | | | | | | | | |
Collapse
|
15
|
Kecha-Kamoun O, Achour I, Martens H, Collette J, Lefebvre PJ, Greiner DL, Geenen V. Thymic expression of insulin-related genes in an animal model of autoimmune type 1 diabetes. Diabetes Metab Res Rev 2001; 17:146-52. [PMID: 11307180 DOI: 10.1002/dmrr.182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Insulin and multiple other autoantigens have been implicated in the pathogenesis of autoimmune type 1 diabetes, but the origin of immunological self-reactivity specifically oriented against insulin-secreting islet beta-cells remains obscure. The primary objective of the present study was to investigate the hypothesis that a defect in thymic central T-cell self-tolerance of the insulin hormone family could contribute to the pathophysiology of type 1 diabetes. This hypothesis was investigated in a classic animal model of type 1 diabetes, the Bio-Breeding (BB) rat. METHODS The expression of the mammalian insulin-related genes (Ins, Igf1 and Igf2) was analysed in the thymus of inbred Wistar Furth rats (WF), diabetes-resistant BB (BBDR) and diabetes-prone BB (BBDP) rats. RESULTS RT-PCR analyses of total RNA from WF, BBDP and BBDR thymi revealed that Igf1 and Ins mRNAs are present in 15/15 thymi from 2-day-old, 5-day-old and 5-week-old WF, BBDR and BBDP rats. In contrast, a complete absence of Igf2 mRNA was observed in more than 80% of BBDP thymi. The absence of detectable Igf2 transcripts in the thymus of BBDP rats is tissue-specific, since Igf2 mRNAs were detected in all BBDP brains and livers examined. Using a specific immunoradiometric assay, the concentration of thymic IGF-2 protein was significantly lower in BBDP than in BBDR rats (p<0.01). CONCLUSIONS The present study suggests an association between the emergence of autoimmune diabetes and a defect in Igf2 expression in the thymus of BBDP rats. This tissue-specific defect in gene expression could contribute both to the lymphopenia of these rats (by impaired T-cell development) and the absence of central T-cell self-tolerance of the insulin hormone family (by defective negative selection of self-reactive T-cells).
Collapse
MESH Headings
- Aging
- Animals
- Animals, Newborn
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Immunity, Innate
- Immunoradiometric Assay
- Insulin/analysis
- Insulin/genetics
- Insulin-Like Growth Factor I/analysis
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor II/analysis
- Insulin-Like Growth Factor II/genetics
- Proinsulin/analysis
- Proinsulin/genetics
- RNA, Messenger/genetics
- Rats
- Rats, Inbred BB
- Rats, Inbred WF
- Reverse Transcriptase Polymerase Chain Reaction
- Thymus Gland/growth & development
- Thymus Gland/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- O Kecha-Kamoun
- University of Liège, Department of Medicine & Center of Immunology, Institute of Pathology CHU-B23, B-4000 Liège 1-Sart Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Saunders MC, Gemmell RT, Curlewis JD. Insulin-like growth factor 2 cDNA cloning and ontogeny of gene expression in the liver of the marsupial brushtail possum (Trichosurus vulpecula). Gen Comp Endocrinol 2001; 121:114-24. [PMID: 11161776 DOI: 10.1006/gcen.2000.7581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2 cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial.
Collapse
Affiliation(s)
- M C Saunders
- Department of Physiology and Pharmacology, The University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
17
|
Armstrong CS, Wuarin L, Ishii DN. Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-II mRNA content in diabetic rat brain. J Neurosci Res 2000; 59:649-60. [PMID: 10686593 DOI: 10.1002/(sici)1097-4547(20000301)59:5<649::aid-jnr8>3.0.co;2-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain injury has been prevented recently by systemic administration of human insulin-like growth factor-I (hIGF-I). It is widely believed that protein neurotrophic factors do not enter the brain from blood, and the mechanism by which circulating hIGF-I may be neuroprotective is uncertain. This investigation tested the hypothesis that hIGF-I is taken up into cerebrospinal fluid (CSF) from the circulation. (125)I-hIGF-I was injected subcutaneously into rats. The (125)I-IGF-I recovered from CSF and plasma were indistinguishable in size from authentic (125)I-hIGF-I on SDS-PAGE. An ELISA was used that detected immunoreactive hIGF-I, but not rat IGF-I, rat IGF-II, human IGF-II, or insulin. Osmotic minipumps were implanted for constant subcutaneous infusion of various hIGF-I doses. Uptake into CSF reached a plateau at plasma concentrations above approximately 150 ng/ml hIGF-I; the plateau was consistent with carrier-mediated uptake. The plasma, but not CSF, hIGF-I level was significantly reduced in streptozotocin diabetic vs. nondiabetic rats, and uptake of hIGF-I into CSF was nonlinear with respect to plasma hIGF-I concentrations. Nonlinear uptake excluded leakage or transmembrane diffusion of IGF-I from blood into CSF as a dominant route for entry, but the site and mechanism of uptake remain to be established. The IGF-II mRNA content per milligram brain (P < 0.02) as well as per poly(A)(+) RNA (P < 0.05) was significantly increased towards normal in diabetic rats treated by subcutaneous administration of hIGF-I vs. vehicle. This effect of circulating hIGF-I may have been due to regulation of IGF-II gene expression in the choroid plexus and leptomeninges, structures at least in part outside of the blood-central nervous system barrier. These data support the hypothesis that circulating IGF-I supports the brain indirectly through regulation of IGF-II gene expression as well as by uptake into the CSF.
Collapse
Affiliation(s)
- C S Armstrong
- Department of Biochemistry and Molecular Biology and Department of Physiology, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|
18
|
|
19
|
Pu SF, Zhuang HX, Marsh DJ, Ishii DN. Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:207-16. [PMID: 9878740 DOI: 10.1016/s0169-328x(98)00250-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Insulin-like growth factors (IGFs) increase the rate of motor axon elongation, prevent motoneuron death, and may support the reestablishment of synapses following nerve injury. In situ hybridization was used in the present study to examine the temporal and spatial distribution of IGF gene expression in soleus muscle following sciatic nerve crush in rats. In intact muscle, IGF-II gene expression was generally low, and localized to interstitial cells, possibly fibroblast and Schwann cells. These cells were found in the middle of muscle which is enriched in neuromuscular junctions. IGF-II gene expression, 4-6 days postcrush, was increased in interstitial cells. Thereafter, IGF-II gene expression was also increased in muscle cells or cells closely associated with muscle fibers, such as satellite cells. IGF-II gene expression was increased to a much greater extent in the midregion of muscle enriched in end-plates than in the two ends of muscle, but returned towards normal following the reestablishment of functional synapses. On the other hand, IGF-I gene expression was only slightly increased following nerve crush, and this increase was associated with interstitial, but not muscle cells. These results show that the IGF-I and IGF-II genes are regulated by independent signals and may play separate roles during nerve regeneration. For example, a regional increase in IGF-II gene expression may support preferential nerve terminal sprouting in the middle of muscle enriched in neuromuscular junctions, thereby increasing the probability for the reestablishment of synapses.
Collapse
Affiliation(s)
- S F Pu
- Department of Physiology and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
20
|
Wolf E, Hoeflich A, Lahm H. What is the function of IGF-II in postnatal life? Answers from transgenic mouse models. Growth Horm IGF Res 1998; 8:185-93. [PMID: 10984306 DOI: 10.1016/s1096-6374(98)80110-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- E Wolf
- Institute of Molecular Animal Breeding, Gene Center, Munich, Germany.
| | | | | |
Collapse
|
21
|
Brown DL, Kane CD, Chernausek SD, Greenhalgh DG. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 151:715-24. [PMID: 9284820 PMCID: PMC1857837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factor (IGF)-I has profound effects on tissue repair. IGF-II is felt to exert its influence predominately during fetal development. The purpose of this study was to localize and quantify the expression of IGF-I and IGF-II mRNA and protein during early wound healing in diabetic and nondiabetic mice. The hypothesis is that IGF-I and IGF-II are up-regulated in the healing wound, but their expression is inhibited in diabetics. Full-thickness cutaneous wounds were made on genetically diabetic (C57BL/ KsJ-db/db) mice and their nondiabetic littermates. At various times after wounding, one-half of each wound was fixed and paraffin embedded for immunohistochemistry and in situ hybridization. The other half was flash-frozen for quantification of IGF mRNA by competitive reverse transcriptase polymerase chain reaction and protein by radioimmunoassay. IGF-I mRNA rose sharply in nondiabetics at day 3. Expression in diabetic wounds was significantly delayed until 14 days after wounding. Even then, diabetic IGF-I mRNA levels were 50% less than those in the nondiabetics at their peak. Although not usually considered active in adult life, IGF-II mRNA expression was augmented after wounding, peaking at 3 days in nondiabetics. As with IGF-I, diabetic wounds exhibited a delay in IGF-II mRNA expression, with maximal levels at 10 days after wounding. Interestingly, peak concentrations of IGF-II mRNA were four times greater in diabetics versus nondiabetics. Trends in IGF-I protein expression followed the patterns of mRNA expression. IGF-I levels in nondiabetics were initially double those in diabetics and peaked at 5 days. Diabetic wound concentrations of IGF-I did not peak until 21 days after wounding, at which time they rose to nondiabetic levels. IGF-I and IGF-II proteins were localized to the advancing epithelial edge, to the epithelial cells of adjacent hair follicles, and to the granulation tissue of the wounds. IGF-I and IGF-II mRNA expression was noted in the epithelial edge and in the hair follicles adjacent to the wound, paralleling protein expression. Both IGF-I and IGF-II are up-regulated in the healing wound. A delay in IGF-I and -II presence is noted in the diabetic wound. The impairment in tissue repair in diabetic animals is at least partially due to a deficiency in the production of the IGFs.
Collapse
Affiliation(s)
- D L Brown
- Shriners Burns Institute, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
22
|
Chen JY, Chang CY, Chen JC, Shen SC, Wu JL. Production of biologically active recombinant tilapia insulin-like growth factor-II polypeptides in Escherichia coli cells and characterization of the genomic structure of the coding region. DNA Cell Biol 1997; 16:883-92. [PMID: 9260931 DOI: 10.1089/dna.1997.16.883] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a fetal growth factor in humans, but has not been clearly identified in fish up to now. For a detailed understanding of the physiological response of fish IGF-II, the first step was to clone tilapia IGF-II cDNA from the brain cDNA library, coding the region of genomic DNA, and also expressing tilapia IGF-II polypeptides from Escherichia coli. Tilapia cDNA sequences total 1,977 bp, and predicted nucleotide sequences and amino acid sequences of tilapia share 77.9% and 90.7% homology identity with rainbow trout IGF-II, respectively. The genomic structure of the tilapia prepro-IGF-II coding region is very difficult to sequence in mammals and birds. The cloned tilapia IGF-II gene coding region appears much more complex than in other vertebrates. In tilapia IGF-II, the first coding exon I encoding part of the signal peptide sequence is 25 amino acids shorter than the first coding exon of mammals and birds. The other 23 amino acids of the signal peptide, and the first amino acids of the B domain and C domain are encoded by tilapia coding exon 2. The C, A, and D domains, and the first 20 amino acids of the E peptide are encoded by tilapia coding exon 3. The other E peptides and the 3' untranslated region (UTR) region are encoded by tilapia coding exon 4. These data show that the IGF-II genes have significantly differing structures in vertebrate evolution, and there are differences of interrupting introns in the IGF-I genomic structure compared with mammals. To obtain recombinant biologically active polypeptides, tilapia IGF-II B-C-A-D domains were amplified using the polymerase chain reaction (PCR), then ligated with glutathione S-transferase (GST, pGEX-2T vector). Tilapia recombinant IGF-II protein was purified and characterized in E. coli. The fusion protein was also digested with thrombin and appeared as a recombinant IGF-II polypeptide single band with a molecular mass of 7 kD. The recombinant tilapia IGF-II protein biological function was measured by stimulation of [3H]thymidine incorporation. The assay concentration was set up from 0 to 120 nM to stimulate tilapia ovary cell line (TO-2) significantly to uptake thymidine. The results suggest that the recombinant IGF-II protein was dose dependent.
Collapse
Affiliation(s)
- J Y Chen
- Institute of Zoology, National Taiwan University, Taipei, R.O.C
| | | | | | | | | |
Collapse
|
23
|
Ripoche MA, Kress C, Poirier F, Dandolo L. Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 1997; 11:1596-604. [PMID: 9203585 DOI: 10.1101/gad.11.12.1596] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distal region of mouse chromosome 7 contains a cluster of imprinted genes that includes H19 and Igf2 (insulin-like growth factor 2). H19 is expressed as an untranslated RNA found at high levels in endodermal and mesodermal embryonic tissues. This gene is imprinted and exclusively expressed from the allele of maternal origin. The Igf2 gene shows a similar pattern of expression but is expressed from the paternal allele. We have generated a targeted deletion of the H19 transcription unit by insertion of a neo replacement cassette. The homozygous mutant animals are viable and fertile and display an overgrowth phenotype of 8% compared with wild-type littermates. This is associated with the disruption of Igf2 imprinting and the consequent biallelic expression of this gene. A striking feature of the recombinant H19 allele is the occurrence of a parental imprint set on the neo replacement cassette. Therefore imprinting of the H19 locus is independent of the H19 gene itself. Taken together with the results of a larger H19 mutation described previously, this indicates that an imprinting control element is located within the region 10 kb upstream of H19.
Collapse
Affiliation(s)
- M A Ripoche
- Institut Cochin de Génétique Moleculaire (ICGM), Institut National dela Santé et de la Recherche Médicale (INSERM) U257, Paris, France
| | | | | | | |
Collapse
|
24
|
Feitelson MA, Duan LX. Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 1997; 150:1141-57. [PMID: 9094970 PMCID: PMC1858185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic infection with hepatitis B virus is associated with a high incidence of liver diseases, including hepatocellular carcinoma. Hepatitis-B-virus-encoded X antigen (HBxAg) stimulates virus gene expression and replication, which may be important for the establishment and maintenance of the chronic carrier state. Integration of viral DNA encoding HBxAg during chronic infection results in increased X antigen expression. HBxAg overexpression may alter signal transduction pathways important for the regulation of cell growth during hepatocellular regeneration. The finding that HBxAg binds to and inactivates negative growth-regulatory molecules, such as the tumor suppressor p53, suggests additional ways that HBxAg may act in hepatocarcinogenesis. HBxAg may also stimulate the expression of positive growth regulators, such as insulin-like growth factor II and the insulin-like growth factor I receptor. The finding that HBxAg may compromise DNA repair and that it may effect the normal turnover of growth-regulatory molecules in the proteasome may also contribute to its carcinogenic properties. Hence, HBxAg may contribute to the pathogenesis of chronic infection and development of hepatocellular carcinoma in a variety of ways.
Collapse
Affiliation(s)
- M A Feitelson
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | |
Collapse
|
25
|
Chapter 4 Molecular aspects of the insulin-like growth factor (IGF) genes. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2566(97)80035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Pu SF, Zhuang HX, Ishii DN. Differential spatio-temporal expression of the insulin-like growth factor genes in regenerating sciatic nerve. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:18-28. [PMID: 8750857 DOI: 10.1016/0169-328x(95)00116-a] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have demonstrated that the regeneration of mammalian peripheral nerves is dependent on endogenous insulin-like growth factors (IGFs). In the present study, in situ hybridization was used to examine the temporal and spatial expression of the IGF-I and IGF-II genes in rat sciatic nerve after crush. Such expression was characterized in relation to Schwann cell proliferation and the presence of neurofilaments in returning axons during regeneration. The results show that both IGF-I and IGF-II mRNAs were increased in the sciatic nerve distal to the crush site. However, each transcript had a distinctly different temporal and spatial distribution during regeneration. IGF-I gene expression was intensely increased at the crush site within 4 days after nerve crush. Along the portion of the nerve distal to the crush site, a moderate increase was observed to reach maximal levels 10 days postcrush, and was decreased thereafter back towards baseline at 20 days postcrush. Furthermore, this increase was associated with the proliferation of Schwann cells, and the return toward baseline with the regeneration of axons containing neurofilaments. By contrast, IGF-II gene expression was unchanged at or near the site of injury, but unexpectedly was increased in more distal, intramuscular reaches of the nerves. This had a slower time course beginning 10 days postcrush, and was further increased at 20 days postcrush. These results show that the IGF-I and IGF-II genes are regulated by independent signals and probably play different roles during nerve regeneration. They support the hypotheses that IGF-I contributes to the initial sprouting and subsequent elongation of axons in nerves, whereas IGF-II enhances the regeneration of certain axons into neuromuscular branches of nerves, and/or the re-establishment of neuromuscular synapses.
Collapse
Affiliation(s)
- S F Pu
- Department of Physiology, Colorado State University, Fort Collins 80523, USA
| | | | | |
Collapse
|
27
|
Glazner GW, Ishii DN. Insulinlike growth factor gene expression in rat muscle during reinnervation. Muscle Nerve 1995; 18:1433-42. [PMID: 7477067 DOI: 10.1002/mus.880181214] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Because insulinlike growth factors (IGFs) support motor axon regeneration, we tested whether the IGF genes expressed during the development of neuromuscular synapses are reexpressed in adult rat muscles during synapse regeneration. Following sciatic nerve crush, IGF-II mRNAs per poly(A)+ RNA, as well as per poly(A)+ RNA per milligram muscle, were significantly up-regulated in denervated relative to intact contralateral gastrocnemius muscles. IGF-II mRNAs were down-regulated after the reestablishment of functional neuromuscular synapses, but remained up-regulated when nerves were transected to prevent the reestablishment of synapses. These data are consistent with a model in which the IGF-II gene is reexpressed during regeneration due to loss of nerve-dependent feedback inhibition. There was a slight but significant increase in IGF-I mRNAs per poly(A)+ RNA per milligram muscle, probably as a consequence of muscle atrophy. These results show that IGF-II gene expression is up-regulated in muscle during the reestablishment of synapses.
Collapse
Affiliation(s)
- G W Glazner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|
28
|
Menke AL, van Ham RC, Sonneveld E, Shvarts A, Stanbridge EJ, Miyagawa K, van der Eb AJ, Jochemsen AG. Human chromosome 11 suppresses the tumorigenicity of adenovirus transformed baby rat kidney cells: involvement of the Wilms' tumor 1 gene. Int J Cancer 1995; 63:76-85. [PMID: 7558457 DOI: 10.1002/ijc.2910630115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human chromosome 11 was introduced into adenovirus-transformed baby rat kidney (BRK) cells by microcell-mediated chromosome transfer. The resulting microcell hybrids (MCHs) showed a reduced ability to form tumors upon s.c. injection into athymic mice. Further analysis, with the use of defined deletion chromosomes of 11p, indicated that the presence of region 11p13-p12 is necessary for the suppression of tumorigenicity. In contrast, the presence of region 11p15-14.1 appeared to increase the rate of tumor growth. Expression studies on the human Wilms' tumor I (WTI) and the insulin-like growth factor II (IGF-II) genes, which lie in regions 11p13 and 11p15, respectively, suggested the involvement of both genes in determining the degree of suppression of tumorigenicity. Finally, stable expression of a murine WTI protein in the adenovirus-transformed cells resulted in almost complete suppression of tumorigenicity, establishing the WTI protein as a tumor suppressor in this cell system.
Collapse
Affiliation(s)
- A L Menke
- Laboratory for Molecular Carcinogenesis, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang RW, Supowit SC, Xu X, Li H, Christensen MD, Lozano R, Simmons DJ. Expression of selected osteogenic markers in the fibroblast-like cells of rat marrow stroma. Calcif Tissue Int 1995; 56:283-91. [PMID: 7767839 DOI: 10.1007/bf00318048] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast-like cells in the marrow stromal system were separated from endothelial cells and macrophages by negative selection of magnetic beads. Immunocytochemistry confirmed that these fibroblast-like cells expressed fibronectin and collagen Type III, but not Factor VIII and epithelial membrane antigen (endothelial cell markers) or Mac I (macrophage marker). The fibroblast-like stromal cells (FSC) synthesized the insulin-like growth factors (IGF)-I and -II in amounts equivalent to that produced by unfractionated marrow stromal cells (UMSC); in both, the concentration of IGF-II was 10 times higher than that of IGF-I. Northern analysis revealed that FSC and UMSC expressed identical patterns of mRNAs for IGF-I and transforming growth factor (TGF) -beta 2, for osteopontin, and for procollagen Types I and III (Type I > Type III). Type II procollagen mRNA was not expressed in both cell populations. The TGF-beta 2 gene mRNA was expressed at a lower level by the FSC than UMSC. The pattern of gene expression in these cells is consistent with an osteoprogenitor phenotype. Both FSCs and UMSCs express parathyroid hormone (PTH) and estrogen receptor genes (rtPCR technique). The study provides additional evidence that fibroblast-like marrow stromal cells have an osteoblast signature, and that they are largely responsible for the osteogenic performance of cells in unfractionated marrow.
Collapse
Affiliation(s)
- R W Zhang
- Department of Orthopedics and Rehabilitation, University of Texas Medical Branch at Galveston 77555, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang R, Supowit SC, Klein GL, Lu Z, Christensen MD, Lozano R, Simmons DJ. Rat tail suspension reduces messenger RNA level for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells. J Bone Miner Res 1995; 10:415-23. [PMID: 7785463 DOI: 10.1002/jbmr.5650100312] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We previously reported that bone marrow stromal cells produce insulin-like growth factors (IGF-I and -II), and that medium conditioned by marrow stromal cells stimulates osteoblast proliferation in vitro. The present study employed the rat tail-suspension model to unload the hindlimbs. It was designed to test the hypothesis that the development of osteopenia or osteoporosis could be due to a deficit in the osteogenic function of marrow stromal cells. Although tail suspension suppressed body weight during the first 3 days of an 11-day pair-fed study, the overall weight gain recorded by these animals was normal. Nevertheless, bone growth was inhibited by suspension. Similarly, the total adherent marrow stromal cell population harvested from the femurs and tibias was decreased by tail suspension, and only half the normal number of fibroblastic stromal cell colonies grew when they were cultured. The proliferation of alkaline-phosphatase-positive cells in the stroma was also inhibited. Northern hybridization revealed that the messenger RNA level for transforming growth factor-beta 2 and IGF-II in stromal cell was reduced by tail suspension. The production of IGF-II by marrow stromal cells was also decreased. The steady-state level of five different transcript sizes of IGF-I mRNA was altered differentially by tail suspension. Osteopontin mRNA was also reduced in marrow stromal cells from tail-suspended rats compared with the normal rats. These data suggest that skeletal unloading not only alters the mRNA level for growth factors and peptide production, but also affects the proliferation and osteogenic differentiation of marrow stromal cells. These changes may be responsible for the reduced bone formation in osteopenia and osteoporosis.
Collapse
Affiliation(s)
- R Zhang
- Department of Orthopedics and Rehabilitation, University of Texas Medical Branch at Galveston, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ishii DN, Lupien SB. Insulin-like growth factors protect against diabetic neuropathy: effects on sensory nerve regeneration in rats. J Neurosci Res 1995; 40:138-44. [PMID: 7714922 DOI: 10.1002/jnr.490400116] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuropathy is an enigmatic and debilitating complication of diabetes. A consensus as to the pathogenesis of this disorder has yet to emerge. Recently, it has been found that the insulin-like growth factors (IGFs) regulate peripheral nerve regeneration, and IGF content is reduced in various diabetic tissues. We tested herein the hypothesis that IGF administration can prevent or ameliorate the impairment of sensory nerve regeneration in streptozotocin diabetic rats. Miniosmotic pumps released small local doses of IGF-I from a catheter routed near a site of sciatic nerve crush or larger systemic doses of IGF-I or IGF-II from a distant subcutaneous site. Whether administered locally or systemically, IGFs protected against the impairment of sensory nerve regeneration. Surprisingly, this protection was obtained despite unabated hyperglycemia. Therefore, the neuropathy involving sensory nerve regeneration in diabetes can be ameliorated or prevented by IGF treatment, independently of hyperglycemia.
Collapse
Affiliation(s)
- D N Ishii
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
32
|
Glazner GW, Morrison AE, Ishii DN. Elevated insulin-like growth factor (IGF) gene expression in sciatic nerves during IGF-supported nerve regeneration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:265-72. [PMID: 7808226 DOI: 10.1016/0169-328x(94)90162-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nerve regeneration is augmented by neurotrophic activity, which has long been known to be increased in lesioned nerves. Of identified soluble nerve-derived neurotrophic factors, to date only insulin-like growth factors (IGFs) have been observed to increase the rate of axon regeneration in peripheral nerves. We report that IGF-I and IGF-II mRNA contents were significantly increased (P < 0.0005) distal to the site of crush in rat sciatic nerves, and decreased following axon regeneration. In transected nerves in which axon regeneration was prevented, IGF mRNAs remained elevated. IGF-I mRNAs per mg tissue were increased more in lesioned nerves than denervated muscles, whereas IGF-II mRNAs were increased more in denervated muscles than lesioned nerves. This suggested that IGF-I and IGF-II each play distinct regulatory roles during regeneration. These data bolster the hypothesis that increased IGF mRNA content in nerves supports the rate of nerve regeneration in mammals.
Collapse
Affiliation(s)
- G W Glazner
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
33
|
Abstract
Prolonged denervation results in atrophy of target organs and increased risk of permanent paralysis. A better understanding of the mechanism responsible for nerve regeneration may one day lead to improved rates of nerve regeneration and diminished risk of loss of function. Neurobiologists have known for decades that soluble neurotrophic activity is present in nerves and nerve targets. Until recently, the soluble molecules that regulate the rate of nerve regeneration have eluded identification. Insulin-like growth factor (IGF) gene expression is correlated with synapse formation during development and regeneration. IGFs are now identified as the first soluble nerve- and muscle-derived neurotrophic factors found to regulate the rate of peripheral nerve regeneration. The roles of IGFs and other neurotrophic factors in peripheral nerve regeneration, motor nerve terminal sprouting and synapse formation are reviewed.
Collapse
Affiliation(s)
- D N Ishii
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
34
|
Han Z, Chatterjee D, Bakker A, Wyche JH. Negative and positive regulation of IGF-II mRNA expression in cultured rat cells by chicken serum. Mol Cell Endocrinol 1994; 99:293-300. [PMID: 8206336 DOI: 10.1016/0303-7207(94)90020-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the possibility that some serum factors might negatively regulate the expression of the insulin-like growth factor-II (IGF-II) gene in 18-54, SF cells. Northern blot analyses indicated that there were three major transcripts (3.8 kb, 1.8 kb, and 1.2 kb) of the IGF-II gene in these cells. We found that incubation of 18-54, SF cells in medium containing very high concentrations (50-100%) of chicken serum greatly inhibited the steady-state level of all three IGF-II mRNA species. In addition, we also found that incubation of 18-54, SF cells in medium containing lower concentrations (10-50%) of chicken serum induced a 3.5 kb IGF-II mRNA. The inhibitory effect of high concentrations of chicken serum on IGF-II mRNA expression was not due to a cytotoxic effect of the serum, because these cells were maintained in 100% chicken serum for up to two weeks without loss of cell viability. The inhibitory effect of chicken serum on IGF-II mRNA was reversible after withdrawal of the serum. Nuclear run-on assays suggested that this negative regulation of IGF-II mRNA in 18-54, SF cells by chicken serum was not the result of transcriptional inhibition. Treatment of 18-54, SF cells that had been previously incubated in 100% chicken serum for 24 h with actinomycin D resulted in a partial restoration of the expression of the 3.8 kb and 1.2 kb IGF-II mRNA in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Z Han
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | |
Collapse
|
35
|
Werner H, Adamo M, Roberts CT, LeRoith D. Molecular and cellular aspects of insulin-like growth factor action. VITAMINS AND HORMONES 1994; 48:1-58. [PMID: 7524243 DOI: 10.1016/s0083-6729(08)60495-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- H Werner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
36
|
Lund PK. Insulin-like growth factor I: molecular biology and relevance to tissue-specific expression and action. RECENT PROGRESS IN HORMONE RESEARCH 1994; 49:125-48. [PMID: 7511825 DOI: 10.1016/b978-0-12-571149-4.50010-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P K Lund
- Department of Physiology, University of North Carolina at Chapel Hill 27541
| |
Collapse
|
37
|
Ishii DN, Glazner GW, Whalen LR. Regulation of peripheral nerve regeneration by insulin-like growth factors. Ann N Y Acad Sci 1993; 692:172-82. [PMID: 8215021 DOI: 10.1111/j.1749-6632.1993.tb26215.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D N Ishii
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
38
|
Glazner GW, Lupien S, Miller JA, Ishii DN. Insulin-like growth factor II increases the rate of sciatic nerve regeneration in rats. Neuroscience 1993; 54:791-7. [PMID: 8332262 DOI: 10.1016/0306-4522(93)90248-e] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A slow rate of nerve regeneration conspires together with atrophy and degeneration of denervated organs to increase the risk of permanent disability following injury to the mammalian peripheral nervous system. Therefore, it is of both practical and theoretical interest to identify those endogenous factors that determine the spontaneous velocity of nerve regeneration, and to discover exogenous factors which hold promise for augmenting the rate. We report that locally infused insulin-like growth factor II significantly increases the speed of sensory axon regeneration in rat sciatic nerves. It appeared that 1 microgram/ml insulin-like growth factor II acted through insulin-like growth factor receptors, because a comparable concentration of insulin had little effect. Furthermore, there was a sustained reduction in regeneration rate when an anti-insulin-like growth factor II antiserum was continuously infused near a window in the epineurium located just below a site of nerve crush, indicating that the spontaneous regeneration rate was continuously dependent on endogenous insulin-like growth factor activity. These results show that exogenously administered insulin-like growth factor II can increase the rate of peripheral nerve regeneration, and that the endogenous insulin-like growth factors in nerves are required to maintain the normal rate of regeneration. These in vivo data complement previous observations showing that insulin-like growth factors can increase neurite outgrowth in cultured neurons, and that insulin-like growth factor II gene expression is correlated with synapse development. They further support the hypothesis that insulin-like growth factors play a role in nerve regeneration.
Collapse
Affiliation(s)
- G W Glazner
- Department of Physiology, Colorado State University, Fort Collins 80523
| | | | | | | |
Collapse
|
39
|
Gluckman PD, Ambler GR. What is the function of circulating insulin-like growth factor-2 in postnatal life? Mol Cell Endocrinol 1993; 92:C1-3. [PMID: 8472860 DOI: 10.1016/0303-7207(93)90067-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P D Gluckman
- Research Centre for Developmental Medicine and Biology, School of Medicine, University of Auckland, New Zealand
| | | |
Collapse
|
40
|
Joseph BK, Savage NW, Young WG, Gupta GS, Breier BH, Waters MJ. Expression and regulation of insulin-like growth factor-I in the rat incisor. Growth Factors 1993; 8:267-75. [PMID: 8347344 DOI: 10.3109/08977199308991572] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Growth factors play an important role in the regulation of cell growth, division and differentiation. In this study the distribution and regulation of insulin-like growth factor-I (IGF-I) in the continuously erupting rat incisor was determined by immunohistochemistry. Results were evaluated both visually and with a computer-based image analysis system. The distribution and intensity of IGF-I immunoreactivity varied with developmental stage of the rat incisor. Strong IGF-I immunoreactivity was observed in differentiating odontoblasts and ameloblasts. The most intense immunoreactivity was observed in secretory ameloblasts, secretory odontoblasts and in maturation ameloblasts. Staining was weak or absent in post-secretory ameloblasts but persisted in post-secretory odontoblasts. Weak to moderate immunoreactivity was also seen in cells of the stratum intermedium and in the reduced enamel epithelium. Surrounding alveolar bone showed strong IGF-I immunoreactivity in osteoblasts and in the stratum basale and stratum spinosum of the adjacent labial gingival epithelium. In order to assess the role of GH in IGF-I expression, GH (65 micrograms/100 g bw) was administered for six days to dwarf GH deficient rats, producing a significant increase in body weight (P < 0.01). Measurements at different stages of odontogenesis showed that the staining intensity of secretory ameloblasts (P < 0.01) and maturation ameloblasts (P < 0.001) was significantly different between untreated and treated animals. These results indicate that IGF-I is present in cell populations of the enamel organ of the rat incisor found previously to exhibit growth hormone receptors, and that expression of IGF is GH dependent.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B K Joseph
- Department of Dentistry, University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Near SL, Whalen LR, Miller JA, Ishii DN. Insulin-like growth factor II stimulates motor nerve regeneration. Proc Natl Acad Sci U S A 1992; 89:11716-20. [PMID: 1465388 PMCID: PMC50627 DOI: 10.1073/pnas.89.24.11716] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Injury to mammalian motor nerves can lead to paralysis, but relatively successful regeneration may occur when conditions are favorable. Elucidation of the mechanism upholding successful regeneration is of theoretical and clinical interest. In this study, the hypothesis that insulin-like growth factor II (IGF-II) can stimulate motor nerve regeneration was tested. When IGF-II was infused continuously near a site of crush on the sciatic nerve, the distance of motor axon regeneration was increased significantly in rats. In contrast, spontaneous regeneration was inhibited when an anti-IGF-II antiserum was infused through a "window" in the epineurium. Thus, infused IGF-II can increase, and endogenous IGFs can support, the regeneration of motor axons in lesioned nerves.
Collapse
Affiliation(s)
- S L Near
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523
| | | | | | | |
Collapse
|
42
|
Mahida YR, Ciacci C, Podolsky DK. Peptide growth factors: role in epithelial-lamina propria cell interactions. Ann N Y Acad Sci 1992; 664:148-56. [PMID: 1456646 DOI: 10.1111/j.1749-6632.1992.tb39757.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Y R Mahida
- Gastrointestinal Unit, Massachusetts General Hospital, Boston 02114
| | | | | |
Collapse
|
43
|
Klempt ND, Klempt M, Gunn AJ, Singh K, Gluckman PD. Expression of insulin-like growth factor-binding protein 2 (IGF-BP 2) following transient hypoxia-ischemia in the infant rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:55-61. [PMID: 1279350 DOI: 10.1016/0169-328x(92)90151-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia-ischemia induced by unilateral carotid ligation followed by either 15 (moderate) or 90 (severe) min exposure to 8% oxygen was associated with induction of IGF-BP 2 mRNA expression. A specific rat IGF-BP 2 cDNA probe was used to determine the IGF-BP 2 mRNA distribution in brain sections using in situ hybridization. Untreated control rats and the non-ligated hemisphere in experimental rats expressed IGF-BP 2 mRNA in the choroid plexus, meninges and more weakly in the thalamus, hippocampus and cortical layer 5. Increased expression in experimental rats was limited to regions known to have neuronal damage. Three days after the moderate insult the signal was increased in the CA1/2 region of the hippocampus and thalamus of the ligated side. Three days after the severe insult IGF-BP 2 expression was found surrounding the infarcted regions while by 5 days after severe insult the whole infarcted volume showed induction. The results suggest a role for the IGFs in the post-asphyxial response. IGF-BP 2 may alter the bio-availability of IGF 1 or 2 or modulate their actions in the area of infarction, and thus promote cerebral repair and recovery.
Collapse
Affiliation(s)
- N D Klempt
- Department of Paediatrics, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|
44
|
Levy A, Matovelle MC, Lightman SL, Young WS. The effects of pituitary stalk transection, hypophysectomy and thyroid hormone status on insulin-like growth factor 2-, growth hormone releasing hormone-, and somatostatin mRNA prevalence in rat brain. Brain Res 1992; 579:1-7. [PMID: 1352477 DOI: 10.1016/0006-8993(92)90735-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have used in situ hybridization histochemistry to determine the effects of pituitary stalk transection, hypophysectomy and drug-induced changes in thyroid status on mRNA levels encoding insulin-like growth factor 2, somatostatin, and growth hormone-releasing factor in the choroid plexus, hypothalamic periventricular nucleus, and arcuate nucleus, respectively. Pituitary stalk transection and hypophysectomy in Sprague-Dawley rats decreased insulin-like growth factor 2 and somatostatin mRNA and increased growth hormone-releasing factor mRNA. In each case, the effect of hypophysectomy exceeded that of pituitary stalk transection. Treatment with propylthiouracil for 10 days decreased somatostatin mRNA, markedly increased growth hormone-releasing factor mRNA but had no significant effect on insulin-like growth factor 2 mRNA. Treatment with triiodothyronine had no effect on the mRNAs measured. These findings corroborate the clinical observation of abnormal somatic growth in disturbances of thyroid and growth hormone status and provide further evidence of the effects of these metabolic disturbances and of pituitary disconnection and hypophysectomy on insulin-like growth factor 2 mRNA prevalence.
Collapse
Affiliation(s)
- A Levy
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
45
|
Schirmacher P, Geerts A, Pietrangelo A, Dienes HP, Rogler CE. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 1992; 15:5-11. [PMID: 1530788 DOI: 10.1002/hep.1840150103] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor/hepatopoietin A is a complete mitogen for parenchymal liver cells, and its expression is increased as an early response to acute liver injury. To identify the liver cell population responsible for hepatocyte growth factor gene expression, we investigated tissue sections and isolated and purified cell fractions from normal rat liver by in situ and Northern blot hybridization. Hepatocyte growth factor transcripts were present in sinusoidal liver cells, which were preferentially located in the periportal parenchyma. Northern hybridization analysis of RNA isolated from purified liver cell fractions demonstrated that HGF messenger RNA is present only in fat-storing cells. No specific hepatocyte growth factor gene expression was detected in parenchymal cells, endothelial cells and Kupffer cells. Myofibroblast-like transition of fat-storing cells, which is linked to fibrogenesis in chronic liver disease, results in the loss of hepatocyte growth factor expression. Hepatocyte growth factor gene expression in the normal liver, a new function of fat-storing cells, suggests that this growth factor may play a role in the physiological balance between cell death and replacement in the liver and that hepatocyte growth factor may also act in a paracrine manner. Furthermore, loss of hepatocyte growth factor expression in myofibroblast-like cells derived from fat-storing cells may be responsible for reduced parenchymal cell regeneration in chronic liver disease.
Collapse
Affiliation(s)
- P Schirmacher
- Institute of Pathology, University of Mainz, Germany
| | | | | | | | | |
Collapse
|
46
|
Zindy F, Lamas E, Schmidt S, Kirn A, Brechot C. Expression of insulin-like growth factor II (IGF-II) and IGF-II, IGF-I and insulin receptors mRNAs in isolated non-parenchymal rat liver cells. J Hepatol 1992; 14:30-4. [PMID: 1310705 DOI: 10.1016/0168-8278(92)90127-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The insulin-like growth factor II (IGF-II) is involved in embryonic growth. Modifications of its expression might play a role in the development of primary liver cancer in humans and woodchucks. In the liver, little information is available on the cell types involved in its synthesis. We have investigated the expression of IGF-II as well as IGF-II, IGF-I and insulin receptor mRNAs in non parenchymal liver cell preparations in rats of various ages. The results indicate that Kupffer cells, endothelial cells and fat-storing cells express both IGF-II and the three different receptor mRNAs. Furthermore, a switch from a fetal to an adult IGF-II mRNA profile was obtained in the different cell preparations. Therefore, our results indicate that regulation of IGF-II gene expression can be analyzed through these isolated liver cell preparations. These results might also be important in investigating the potential role of IGF-II in liver carcinogenesis.
Collapse
Affiliation(s)
- F Zindy
- INSERM U.75, CHU Necker, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Herington AC. Insulin-like growth factors: biochemistry and physiology. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1991; 5:531-51. [PMID: 1721807 DOI: 10.1016/s0950-351x(10)80002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Ikejiri K, Wasada T, Haruki K, Hizuka N, Hirata Y, Yamamoto M. Identification of a novel transcription unit in the human insulin-like growth factor-II gene. Biochem J 1991; 280 ( Pt 2):439-44. [PMID: 1720956 PMCID: PMC1130567 DOI: 10.1042/bj2800439] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human insulin-like growth factor-II (hIGF-II) gene has until now been thought to be composed of eight exons, including three independent leader exons. In the present study two additional exons, one leader exon and one alternatively used ordinate exon, have been newly identified. They were abundantly expressed in human histiocytoma tissue, generating mRNA species of about 5.0 kb in length. The new leader exon shows significant sequence similarity with the rE1 exon, previously reported to be transcribed only in the rat, and is mapped at nearly the same genomic location as in the rat. On the other hand, sequence similarity with another exon in the corresponding region of the rat genome was also found. It was, however, obvious that the rat sequence would not work as an active exon, since both splice acceptor and donor sites were deviated considerably from the consensus sequences. It has thus become apparent that the complex transcription unit of a single-copy hIGF-II gene comprises at least 10 exons, including four leader exons, one alternative exon and three common protein-coding exons.
Collapse
Affiliation(s)
- K Ikejiri
- Department of Biochemistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Cariani E, Dubois N, Lasserre C, Briand P, Brechot C. Insulin-like growth factor II (IGF-II) mRNA expression during hepatocarcinogenesis in transgenic mice. J Hepatol 1991; 13:220-6. [PMID: 1720799 DOI: 10.1016/0168-8278(91)90818-v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Insulin-like growth factor II (IGF-II) mRNA expression is developmentally regulated in liver tissue. We previously observed the reexpression of fetal IGF-II mRNAs in human primary liver cancer and in surrounding cirrhotic tissue. In order to determine the steps of liver cancer progression where the activation of IGF-II fetal mRNAs occurs, we analyzed IGF-II mRNA expression during hepatocarinogenesis in transgenic mice carrying an antithrombin III-SV40 early region hybrid gene. The comparative analysis of mRNAs encoding IGF-II and other differentiation-associated proteins, as well as histological analysis, indicate that the reexpression of fetal IGF-II mRNAs takes place in specific steps of liver cancer progression, both in early pretumorous lesions and in well-differentiated hepatocellular carcinomas.
Collapse
Affiliation(s)
- E Cariani
- INSERM U 75, CHU Necker, Paris, France
| | | | | | | | | |
Collapse
|
50
|
Insulinlike growth factors and their receptors as growth regulators in normal physiology and pathologic states. Trends Endocrinol Metab 1991. [DOI: 10.1016/1043-2760(91)90003-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|