1
|
Baek J, Park J, Kim Y. Nucleic acid detection with single-base specificity integrating isothermal amplification and light-up aptamer probes. NANOSCALE 2024; 16:20067-20072. [PMID: 39377120 DOI: 10.1039/d4nr01638f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We report a novel platform for label-free nucleic acid detection using isothermal amplification and light-up aptamer probes. This assay converts double-stranded amplicons into single-stranded targets to enable sequence-specific hybridization with split dapoxyl aptamer probes, offering attomolar sensitivity and single-base specificity.
Collapse
Affiliation(s)
- Jaekyun Baek
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihyun Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngeun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Shen Y, Yuan H, Guo Z, Li XQ, Yang Z, Zong C. Exonuclease III Can Efficiently Cleave Linear Single-Stranded DNA: Reshaping Its Experimental Applications in Biosensors. BIOSENSORS 2023; 13:581. [PMID: 37366946 DOI: 10.3390/bios13060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Exonuclease III (Exo III) has been generally used as a double-stranded DNA (dsDNA)-specific exonuclease that does not degrade single-stranded DNA (ssDNA). Here, we demonstrate that Exo III at concentrations above 0.1 unit/μL can efficiently digest linear ssDNA. Moreover, the dsDNA specificity of Exo III is the foundation of many DNA target recycling amplification (TRA) assays. We demonstrate that with 0.3 and 0.5 unit/μL Exo III, the degradation of an ssDNA probe, free or fixed on a solid surface, was not discernibly different, regardless of the presence or absence of target ssDNA, indicating that Exo III concentration is critical in TRA assays. The study has expanded the Exo III substrate scope from dsDNA to both dsDNA and ssDNA, which will reshape its experimental applications.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Haoyu Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zixuan Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiu-Qing Li
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB E3B 4Z7, Canada
- NutraHealth Products and Technologies Inc., Fredericton, NB E3B 6J5, Canada
| | - Zhiqing Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Rizhao Science and Technology Innovation Service Center, Rizhao 276825, China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Kim Y, Yaseen AB, Kishi JY, Hong F, Saka SK, Sheng K, Gopalkrishnan N, Schaus TE, Yin P. Single-strand RPA for rapid and sensitive detection of SARS-CoV-2 RNA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.17.20177006. [PMID: 32839783 PMCID: PMC7444299 DOI: 10.1101/2020.08.17.20177006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the single-strand Recombinase Polymerase Amplification (ssRPA) method, which merges the fast, isothermal amplification of RPA with subsequent rapid conversion of the double-strand DNA amplicon to single strands, and hence enables facile hybridization-based, high-specificity readout. We demonstrate the utility of ssRPA for sensitive and rapid (4 copies per 50 μL reaction within 10 min, or 8 copies within 8 min) visual detection of SARS-CoV-2 RNA spiked samples, as well as clinical saliva and nasopharyngeal swabs in VTM or water, on lateral flow devices. The ssRPA method promises rapid, sensitive, and accessible RNA detection to facilitate mass testing in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Youngeun Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Adam B. Yaseen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Jocelyn Y. Kishi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Fan Hong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Sinem K. Saka
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Nikhil Gopalkrishnan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Thomas E. Schaus
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Kim K, Plapp BV. Substitutions of Amino Acid Residues in the Substrate Binding Site of Horse Liver Alcohol Dehydrogenase Have Small Effects on the Structures but Significantly Affect Catalysis of Hydrogen Transfer. Biochemistry 2020; 59:862-879. [PMID: 31994873 DOI: 10.1021/acs.biochem.9b01074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies showed that the L57F and F93W alcohol dehydrogenases catalyze the oxidation of benzyl alcohol with some quantum mechanical hydrogen tunneling, whereas the V203A enzyme has diminished tunneling. Here, steady-state kinetics for the L57F and F93W enzymes were studied, and microscopic rate constants for the ordered bi-bi mechanism were estimated from simulations of transient kinetics for the S48T, F93A, S48T/F93A, F93W, and L57F enzymes. Catalytic efficiencies for benzyl alcohol oxidation (V1/EtKb) vary over a range of ∼100-fold for the less active enzymes up to the L57F enzyme and are mostly associated with the binding of alcohol rather than the rate constants for hydride transfer. In contrast, catalytic efficiencies for benzaldehyde reduction (V2/EtKp) are ∼500-fold higher for the L57F enzyme than for the less active enzymes and are mostly associated with the rate constants for hydride transfer. Atomic-resolution structures (1.1 Å) for the F93W and L57F enzymes complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol are almost identical to previous structures for the wild-type, S48T, and V203A enzymes. Least-squares refinement with SHELXL shows that the nicotinamide ring is slightly strained in all complexes and that the apparent donor-acceptor distances from C4N of NAD to C7 of pentafluorobenzyl alcohol range from 3.28 to 3.49 Å (±0.02 Å) and are not correlated with the rate constants for hydride transfer or hydrogen tunneling. How the substitutions affect the dynamics of reorganization during hydrogen transfer and the extent of tunneling remain to be determined.
Collapse
Affiliation(s)
- Keehyuk Kim
- Department of Biochemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Bryce V Plapp
- Department of Biochemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
5
|
Crepieux P, Leprince D, Flourens A, Albagli O, Ferreira E, Stéhelin D. The two functionally distinct amino termini of chicken c-ets-1 products arise from alternative promoter usage. Gene Expr 2018; 3:215-25. [PMID: 8268721 PMCID: PMC6081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The chicken c-ets-1 locus gives rise to two distinct transcription factors differing by structurally and functionally unrelated N-termini. p54c-ets-1 shows a striking phylogenetic conservation from Xenopus to humans, while p68c-ets-1, the cellular counterpart of the E26-derived v-ets oncogene, is apparently restricted to avian and reptilian species. In the chick embryo, both mRNAs are expressed in a wide array of tissues of mesodermal origin; however, in the embryo and after hatching, p68c-ets-1 is excluded from lymphoid cells where p54c-ets-1 accumulates. In this report, we define the basis of the differential expression of the chicken c-ets-1 products to assess their different potentials as transcription factors. We demonstrate that the two distinct N-termini arise from alternative promoter usage within the chicken c-ets-1 locus. Examination of both promoters reveals that transcription initiates from multiple sites, consistent with the absence of TATA and CAAT elements. Of these two regulatory regions, only the one that initiates the p54c-ets-1 mRNA synthesis is of the G + C-rich type, and its organization is conserved in humans. The avian-specific p68c-ets-1 promoter activity was enhanced by its own product. In addition, we identify numerous potential binding sites for lymphoid-specific transcription factors that might contribute to a tight repressor effect in lymphoid tissues.
Collapse
Affiliation(s)
- P Crepieux
- Unité d'Oncologie Moleculaire, CNRS URA 1160, Institut Pasteur, Lille, France
| | | | | | | | | | | |
Collapse
|
6
|
Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Protein Sci 2018; 27:750-768. [PMID: 29271062 DOI: 10.1002/pro.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.
Collapse
Affiliation(s)
- Karthik K Shanmuganatham
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Diagnostic Virology Laboratory, USDA, Ames, IA, 50010
| | - Rachel S Wallace
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Ann Ting-I Lee
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,No 92, Jing Mao 1st Rd., Taichung, Taiwan, 406, Republic of China
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109
| |
Collapse
|
7
|
One-plasmid double-expression His-tag system for rapid production and easy purification of MS2 phage-like particles. Sci Rep 2017; 7:17501. [PMID: 29235545 PMCID: PMC5727534 DOI: 10.1038/s41598-017-17951-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
MS2 phage-like particles (MS2 PLP) are artificially constructed pseudo-viral particles derived from bacteriophage MS2. They are able to carry a specific single stranded RNA (ssRNA) sequence of choice inside their capsid, thus protecting it against the effects of ubiquitous nucleases. Such particles are able to mimic ssRNA viruses and, thus, may serve as the process control for molecular detection and quantification of such agents in several kinds of matrices, vaccines and vaccine candidates, drug delivery systems, and systems for the display of immunologically active peptides or nanomachines. Currently, there are several different in vivo plasmid-driven packaging systems for production of MS2 PLP. In order to combine all the advantages of the available systems and to upgrade and simplify the production and purification of MS2 PLP, a one-plasmid double-expression His-tag system was designed. The described system utilizes a unique fusion insertional mutation enabling purification of particles using His-tag affinity. Using this new production system, highly pure MS2 PLP can be quickly produced and purified by a fast performance liquid chromatography (FPLC) approach. The system can be easily adapted to produce other MS2 PLP with different properties.
Collapse
|
8
|
Zhang H, Vrang L, Unge T, Öberg B. Characterization of HIV Reverse Transcriptases with Tyr181→Cys and Leu100→lle Mutations. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two mutants of human immunodeficiency virus (HIV) reverse transcriptase (RT), Tyr181 to Cys and Leu100 to He, have been prepared and characterized by use of various inhibitors. As compared to wild type RT the mutant RT's had lower Kcat/Km values. The Km values were lower with heteropolymeric than with homopolymeric template-primers. Inhibition by phosphonoformate was of mixed type with both wild-type and mutant RT's and the mutants were less sensitive to phosphonoformate than the wild type RT. The non-nucleoside RT inhibitors 9-CI-TIBO and L-697,661 gave a non-competitive inhibition with respect to substrate of the wild type RT. The mutant RT's were inhibited at higher concentrations, showing a mixed type of inhibition with respect to substrate. ddGTP caused a competitive inhibition of wild type and mutant RT's with respect to substrate. RT preparations with different mutations are useful in rapidly characterizing the interaction between various inhibitors and HIV RT and thus facilitate the development of new inhibitors.
Collapse
Affiliation(s)
- H. Zhang
- Medivir AB, Lunastigen 7, S-141 44 Huddinge, Sweden
- Department of Virology, Karolinska Institute, c/o SBL, S-105 21 Stockholm, Sweden
| | - L. Vrang
- Medivir AB, Lunastigen 7, S-141 44 Huddinge, Sweden
| | - T. Unge
- Department of Molecular Biology, Biomedical Centre, University of Uppsala, Box 590, S-751 24 Uppsala, Sweden
| | - B. Öberg
- Medivir AB, Lunastigen 7, S-141 44 Huddinge, Sweden
- Department of Virology, Karolinska Institute, c/o SBL, S-105 21 Stockholm, Sweden
| |
Collapse
|
9
|
Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Anal Bioanal Chem 2015; 408:2793-811. [DOI: 10.1007/s00216-015-9240-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
|
10
|
Seven gene deletions in seven days: Fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Sci Rep 2015; 5:17874. [PMID: 26643270 PMCID: PMC4672327 DOI: 10.1038/srep17874] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/06/2015] [Indexed: 11/08/2022] Open
Abstract
Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering genes and a rhamnose inducible flippase recombinase was constructed to facilitate fast marker-free deletions. To further speed up the procedure, we integrated the arabinose inducible lambda Red recombineering genes and the rhamnose inducible FLP into the genome of E. coli K-12 MG1655. This system enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains in which four to seven genes were deleted in E. coli W and E. coli K-12. The growth rate of an E. coli K-12 quintuple deletion strain was significantly improved in the presence of high concentrations of acetate and NaCl. In conclusion, we have generated a method that enables efficient and simultaneous deletion of multiple genes in several E. coli variants. The method enables deletion of up to seven genes in as little as seven days.
Collapse
|
11
|
Mikel P, Vasickova P, Kralik P. Methods for Preparation of MS2 Phage-Like Particles and Their Utilization as Process Control Viruses in RT-PCR and qRT-PCR Detection of RNA Viruses From Food Matrices and Clinical Specimens. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:96-111. [PMID: 25711389 PMCID: PMC7090958 DOI: 10.1007/s12560-015-9188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
RNA viruses are pathogenic agents of many serious infectious diseases affecting humans and animals. The detection of pathogenic RNA viruses is based on modern molecular methods, of which the most widely used methods are the reverse transcription polymerase chain reaction (RT-PCR) and the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). All steps of RT-PCR and qRT-PCR should be strictly controlled to ensure the validity of obtained results. False-negative results may be caused not only by inhibition of RT or/and PCR steps but also by failure of the nucleic acid extraction step, particularly in the case of viral RNA extraction. The control of nucleic acid extraction generally involves the utilization of a non-pathogenic virus (process control virus) of similar structural properties to those of the target virus. Although in clinical samples the use of such process control virus is only recommended, in other kinds of settings such as food matrices its use is necessary. Currently, several different process control viruses are used for these purposes. Process control viruses can also be constructed artificially using technology for production of MS2 phage-like particles, which have many advantages in comparison with other used controls and are especially suited for controlling the detection and quantification of certain types of RNA viruses. The technology for production of MS2 phage-like particles is theoretically well established, uses the knowledge gained from the study of the familiar bacteriophage MS2 and utilizes many different approaches for the construction of the various process control viruses. Nevertheless, the practical use of MS2 phage-like particles in routine diagnostics is relatively uncommon. The current situation with regard to the use of MS2 phage-like particles as process control viruses in detection of RNA viruses and different methods of their construction, purification and use are summarized and discussed in this review.
Collapse
Affiliation(s)
- P Mikel
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic,
| | | | | |
Collapse
|
12
|
Takahashi S, Usui T, Kawasaki S, Miyata H, Kurita H, Matsuura SI, Mizuno A, Oshige M, Katsura S. Real-time single-molecule observations of T7 Exonuclease activity in a microflow channel. Anal Biochem 2014; 457:24-30. [PMID: 24751469 DOI: 10.1016/j.ab.2014.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
Abstract
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Tomohiro Usui
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shohei Kawasaki
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hidefumi Miyata
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hirofumi Kurita
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Shun-ichi Matsuura
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 983-8551, Japan
| | - Akira Mizuno
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Masahiko Oshige
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shinji Katsura
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
13
|
Xie P, Sayers JR. A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes. PLoS One 2011; 6:e16213. [PMID: 21264264 PMCID: PMC3021548 DOI: 10.1371/journal.pone.0016213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/15/2010] [Indexed: 12/27/2022] Open
Abstract
Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of ∼930 residues, possessing DNA-dependent DNA polymerase, 3′-5′ proofreading and 5′-3′ exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5′-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5′-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5′-nuclease domain can transit from the inactive mode, with the 5′-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5′-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5′-3′ exonuclease activities. Moreover, predicted results for the latter model are presented.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jon R. Sayers
- Department of Infection and Immunity, Krebs Institute, University of Sheffield Medical School, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Ihemere U, Arias-Garzon D, Lawrence S, Sayre R. Genetic modification of cassava for enhanced starch production. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:453-65. [PMID: 17177810 DOI: 10.1111/j.1467-7652.2006.00195.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To date, transgenic approaches to biofortify subsistence crops have been rather limited. This is particularly true for the starchy root crop cassava (Manihot esculenta Crantz). Cassava has one of the highest rates of CO(2) fixation and sucrose synthesis for any C3 plant, but rarely reaches its yield potentials in the field. It was our hypothesis that starch production in cassava tuberous roots could be increased substantially by increasing the sink strength for carbohydrate. To test this hypothesis, we generated transgenic plants with enhanced tuberous root ADP-glucose pyrophosphorylase (AGPase) activity. This was achieved by expressing a modified form of the bacterial glgC gene under the control of a Class I patatin promoter. AGPase catalyses the rate-limiting step in starch biosynthesis, and therefore the expression of a more active bacterial form of the enzyme was expected to lead to increased starch production. To facilitate maximal AGPase activity, we modified the Escherichia coli glgC gene (encoding AGPase) by site-directed mutagenesis (G336D) to reduce allosteric feedback regulation by fructose-1,6-bisphosphate. Transgenic plants (three) expressing the glgC gene had up to 70% higher AGPase activity than control plants when assayed under conditions optimal for plant and not bacterial AGPase activity. Plants having the highest AGPase activities had up to a 2.6-fold increase in total tuberous root biomass when grown under glasshouse conditions. In addition, plants with the highest tuberous root AGPase activity had significant increases in above-ground biomass, consistent with a possible reduction in feedback inhibition on photosynthetic carbon fixation. These results demonstrate that targeted modification of enzymes regulating source-sink relationships in crop plants having high carbohydrate source strengths is an effective strategy for increasing carbohydrate yields in sink tissues.
Collapse
Affiliation(s)
- Uzoma Ihemere
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
15
|
Kachalova GS, Rogulin EA, Artyukh RI, Perevyazova TA, Zheleznaya LA, Matvienko NI, Bartunik HD. Crystallization and preliminary crystallographic analysis of the site-specific DNA nickase Nb.BspD6I. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:332-4. [PMID: 16511033 PMCID: PMC1952280 DOI: 10.1107/s174430910500309x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 01/27/2005] [Indexed: 05/06/2023]
Abstract
Crystals of site-specific DNA nickase Nb.BspD6I (of molecular weight 70.8 kDa) have been grown at 291 K using PEG 8000 as precipitant. The diffraction pattern of the crystal extends to 3.3 A resolution at 100 K. The crystal belongs to space group P2(1), with unit-cell parameters a = 57.76, b = 90.67, c = 71.71, beta = 110.1 degrees. There is one molecule in the asymmetric unit and the solvent content is estimated to be 53% by volume.
Collapse
Affiliation(s)
- Galina S Kachalova
- Max-Planck Research Unit for Structural Biology, Protein Dynamics Group, Hamburg 22607, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Brevet A, Chen J, Commans S, Lazennec C, Blanquet S, Plateau P. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation. J Biol Chem 2003; 278:30927-35. [PMID: 12766171 DOI: 10.1074/jbc.m302618200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases.
Collapse
Affiliation(s)
- Annie Brevet
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Derst C, Henseling J, Röhm KH. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci 2000; 9:2009-17. [PMID: 11106175 PMCID: PMC2144453 DOI: 10.1110/ps.9.10.2009] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The use of Escherichia coli asparaginase II as a drug for the treatment of acute lymphoblastic leukemia is complicated by the significant glutaminase side activity of the enzyme. To develop enzyme forms with reduced glutaminase activity, a number of variants with amino acid replacements in the vicinity of the substrate binding site were constructed and assayed for their kinetic and stability properties. We found that replacements of Asp248 affected glutamine turnover much more strongly than asparagine hydrolysis. In the wild-type enzyme, N248 modulates substrate binding to a neighboring subunit by hydrogen bonding to side chains that directly interact with the substrate. In variant N248A, the loss of transition state stabilization caused by the mutation was 15 kJ mol(-1) for L-glutamine compared to 4 kJ mol(-1) for L-aspartic beta-hydroxamate and 7 kJ mol(-1) for L-asparagine. Smaller differences were seen with other N248 variants. Modeling studies suggested that the selective reduction of glutaminase activity is the result of small conformational changes that affect active-site residues and catalytically relevant water molecules.
Collapse
Affiliation(s)
- C Derst
- Philipps University, Institute of Physiological Chemistry, Marburg (Lahn), Germany
| | | | | |
Collapse
|
18
|
Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:117-21. [PMID: 10805163 DOI: 10.1089/oli.1.2000.10.117] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of nucleoside phosphorothioates is described in its historical context. Examples of the interaction of phosphorothioate groups, present either in oligodeoxynucleotides or in DNA, with nucleases are presented. The structural features responsible for the resistance of the phosphorothioates toward degradation by nucleases are discussed, as are the possible reasons for the high-affinity interaction of phosphorothioate oligodeoxynucleotides with certain proteins.
Collapse
Affiliation(s)
- F Eckstein
- Max-Planck-Institut für experimentelle Medizin, Göttingen, Germany
| |
Collapse
|
19
|
Zvi A, Tugarinov V, Faiman GA, Horovitz A, Anglister J. A model of a gp120 V3 peptide in complex with an HIV-neutralizing antibody based on NMR and mutant cycle-derived constraints. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:767-79. [PMID: 10651813 DOI: 10.1046/j.1432-1327.2000.01055.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 0.5beta monoclonal antibody is a very potent strain-specific HIV-neutralizing antibody raised against gp120, the envelope glycoprotein of HIV-1. This antibody recognizes the V3 loop of gp120, which is a major neutralizing determinant of the virus. The antibody-peptide interactions, involving aromatic and negatively charged residues of the antibody 0.5beta, were studied by NMR and double-mutant cycles. A deuterated V3 peptide and a Fab containing deuterated aromatic amino acids were used to assign these interactions to specific V3 residues and to the amino acid type and specific chain of the antibody by NOE difference spectroscopy. Electrostatic interactions between negatively charged residues of the antibody Fv and peptide residues were studied by mutagenesis of both antibody and peptide residues and double-mutant cycles. Several interactions could be assigned unambiguously: F96(L) of the antibody interacts with Pro13 of the peptide, H52(H) interacts with Ile7, Ile9 and Gln10 and D56(H) interacts with Arg11. The interactions of the light-chain tyrosines with Pro13 and Gly14 could be assigned to either Y30a(L) and Y32(L), respectively, or Y32(L) and Y49(L), respectively. Three heavy-chain tyrosines interact with Ile7, Ile20 and Phe17. Several combinations of assignments involving Y32(H), Y53(H), Y96(H) and Y100a(H) may satisfy the NMR and mutagenesis constraints, and therefore at this stage the interactions of the heavy-chain tyrosines were not taken into account. The unambiguous assignments [F96(L), H52(H) and D56(H)] and the two possible assignments of the light-chain tyrosines were used to dock the peptide into the antibody-combining site. The peptide converges to a unique position within the binding site, with the RGPG loop pointing into the center of the groove formed by the antibody complementary determining regions while retaining the beta-hairpin conformation and the type-VI RGPG turn [Tugarinov, V., Zvi, A., Levy, R. & Anglister, J. (1999) Nat. Struct. Biol. 6, 331-335].
Collapse
Affiliation(s)
- A Zvi
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
20
|
Hoover DM, Drennan CL, Metzger AL, Osborne C, Weber CH, Pattridge KA, Ludwig ML. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. J Mol Biol 1999; 294:725-43. [PMID: 10610792 DOI: 10.1006/jmbi.1999.3152] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long-chain flavodoxins, with 169-176 residues, display oxidation-reduction potentials at pH 7 that vary from -50 to -260 mV for the oxidized/semiquinone (ox/sq) equilibrium and are -400 mV or lower for the semiquinone/hydroquinone (sq/hq) equilibrium. To examine the effects of protein interactions and conformation changes on FMN potentials in the long-chain flavodoxin from Anacystis nidulans (Synechococcus PCC 7942), we have determined crystal structures for the semiquinone and hydroquinone forms of the wild-type protein and for the mutant Asn58Gly, and have measured redox potentials and FMN association constants. A peptide near the flavin ring, Asn58-Val59, reorients when the FMN is reduced to the semiquinone form and adopts a conformation ("O-up") in which O 58 hydrogen bonds to the flavin N(5)H; this rearrangement is analogous to changes observed in the flavodoxins from Clostridium beijerinckii and Desulfovibrio vulgaris. On further reduction to the hydroquinone state, the Asn58-Val59 peptide in crystalline wild-type A. nidulans flavodoxin rotates away from the flavin to the "O-down" position characteristic of the oxidized structure. This reversion to the conformation found in the oxidized state is unusual and has not been observed in other flavodoxins. The Asn58Gly mutation, at the site which undergoes conformation changes when FMN is reduced, was expected to stabilize the O-up conformation found in the semiquinone oxidation state. This mutation raises the ox/sq potential by 46 mV to -175 mV and lowers the sq/hq potential by 26 mV to -468 mV. In the hydroquinone form of the Asn58Gly mutant the C-O 58 remains up and hydrogen bonded to N(5)H, as in the fully reduced flavodoxins from C. beijerinckii and D. vulgaris. The redox and structural properties of A. nidulans flavodoxin and the Asn58Gly mutant confirm the importance of interactions made by N(5) or N(5)H in determining potentials, and are consistent with earlier conclusions that conformational energies contribute to the observed potentials.The mutations Asp90Asn and Asp100Asn were designed to probe the effects of electrostatic interactions on the potentials of protein-bound flavin. Replacement of acidic by neutral residues at positions 90 and 100 does not perturb the structure, but has a substantial effect on the sq/hq equilibrium. This potential is increased by 25-41 mV, showing that electrostatic interaction between acidic residues and the flavin decreases the potential for conversion of the neutral semiquinone to the anionic hydroquinone. The potentials and the effects of mutations in A. nidulans flavodoxin are rationalized using a thermodynamic scheme developed for C. beijerinckii flavodoxin.
Collapse
Affiliation(s)
- D M Hoover
- Biophysics Research Division and Department of Biological Chemistry, University of Michigan, 930 N. Univeristy Ave., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Schwede TF, Bädeker M, Langer M, Rétey J, Schulz GE. Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue. PROTEIN ENGINEERING 1999; 12:151-3. [PMID: 10195286 DOI: 10.1093/protein/12.2.151] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Histidase (histidine ammonia-lyase, EC 4.3.1.3) from Pseudomonas putida was expressed in Escherichia coli and purified. In the absence of thiols the tetrameric enzyme gave rise to undefined aggregates and suitable crystals could not be obtained. The solvent accessibility along the chain was predicted from the amino acid sequence. Among the seven cysteines, only one was labeled as 'solvent-exposed'. The exchange of this cysteine to alanine abolished all undefined aggregations and yielded readily crystals diffracting to 1.8 A resolution.
Collapse
Affiliation(s)
- T F Schwede
- Institut für Organische Chemie und Biochemie, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
22
|
12 Virulence Determinants in the Bacterial Phytopathogen Erwinia. J Microbiol Methods 1999. [DOI: 10.1016/s0580-9517(08)70123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
23
|
Aliverti A, Deng Z, Ravasi D, Piubelli L, Karplus PA, Zanetti G. Probing the function of the invariant glutamyl residue 312 in spinach ferredoxin-NADP+ reductase. J Biol Chem 1998; 273:34008-15. [PMID: 9852055 DOI: 10.1074/jbc.273.51.34008] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferredoxin-NADP+ reductase, the prototype of a large family of structurally related flavoenzymes, pairs single electrons carried by ferredoxin I and transfers them as a hydride to NADP+. Four mutants of the enzyme, in which Glu-312 was replaced with Asp, Gln, Leu, and Ala to probe the role of the residue charge, size, and polarity in the enzyme activity, have been heterologously expressed, purified, and characterized through steady-state, rapid kinetic studies, ligand-binding experiments, and three-dimensional structure determination by x-ray crystallography. The E312L mutant was the only one that was almost inactive (approximately 1%), whereas unexpectedly the E312A reductase was 10-100% active with the various acceptors tested. Rapid kinetic absorption spectroscopy studies demonstrated that flavin reduction by NADPH was impaired in the mutants. Furthermore, NADP(H) binding was partially perturbed. These functional and structural studies lead us to conclude that Glu-312 does not fulfil the role of proton donor during catalysis, but it is required for proper binding of the nicotinamide ring of NADP(H). In addition, its charge modulates the two one-electron redox potentials of the flavin to stabilize the semiquinone form.
Collapse
Affiliation(s)
- A Aliverti
- Dipartimento di Fisiologia e Biochimica Generali, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Reznik GO, Vajda S, Sano T, Cantor CR. A streptavidin mutant with altered ligand-binding specificity. Proc Natl Acad Sci U S A 1998; 95:13525-30. [PMID: 9811833 PMCID: PMC24852 DOI: 10.1073/pnas.95.23.13525] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between biotin and these biotin analogs. Free energy calculations predicted that the introduction of a negative charge at the position of S27 plus the mutation N23A should disrupt two of the three hydrogen bonds between natural streptavidin and the ureido oxygen of biotin. In contrast, the imino hydrogen of 2-iminobiotin should form a hydrogen bond with the side chain of an acidic amino acid at position 27. This should reduce the biotin-binding affinity by approximately eight orders of magnitude, while leaving the affinities for these biotin analogs virtually unaffected. In good agreement with these predictions, a streptavidin mutant with the N23A and S27D substitutions binds 2-iminobiotin with an affinity (Ka) of 1 x 10(6) M-1, two orders of magnitude higher than that for biotin (1 x 10(4) M-1). In contrast, the binding affinity of this streptavidin mutant for diaminobiotin (2.7 x 10(4) M-1) was lower than predicted (2.9 x 10(5) M-1), suggesting the position of the diaminobiotin in the biotin-binding site was not accurately determined by modeling.
Collapse
Affiliation(s)
- G O Reznik
- Center for Advanced Biotechnology and Departments of Physics, Biomedical Engineering, and Pharmacology and Experimental Therapeutics, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Synthetic oligonucleotide analogs have greatly aided our understanding of several biochemical processes. Efficient solid-phase and enzyme-assisted synthetic methods and the availability of modified base analogs have added to the utility of such oligonucleotides. In this review, we discuss the applications of synthetic oligonucleotides that contain backbone, base, and sugar modifications to investigate the mechanism and stereochemical aspects of biochemical reactions. We also discuss interference mapping of nucleic acid-protein interactions; spectroscopic analysis of biochemical reactions and nucleic acid structures; and nucleic acid cross-linking studies. The automation of oligonucleotide synthesis, the development of versatile phosphoramidite reagents, and efficient scale-up have expanded the application of modified oligonucleotides to diverse areas of fundamental and applied biological research. Numerous reports have covered oligonucleotides for which modifications have been made of the phosphodiester backbone, of the purine and pyrimidine heterocyclic bases, and of the sugar moiety; these modifications serve as structural and mechanistic probes. In this chapter, we review the range, scope, and practical utility of such chemically modified oligonucleotides. Because of space limitations, we discuss only those oligonucleotides that contain phosphate and phosphate analogs as internucleotidic linkages.
Collapse
Affiliation(s)
- S Verma
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
26
|
Drabkin HJ, RajBhandary UL. Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine. Mol Cell Biol 1998; 18:5140-7. [PMID: 9710598 PMCID: PMC109099 DOI: 10.1128/mcb.18.9.5140] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Accepted: 06/12/1998] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.
Collapse
Affiliation(s)
- H J Drabkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
27
|
Ballicora MA, Fu Y, Nesbitt NM, Preiss J. ADP-Glucose pyrophosphorylase from potato tubers. Site-directed mutagenesis studies of the regulatory sites. PLANT PHYSIOLOGY 1998; 118:265-74. [PMID: 9733546 PMCID: PMC34864 DOI: 10.1104/pp.118.1.265] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Accepted: 05/28/1998] [Indexed: 05/21/2023]
Abstract
Several lysines (Lys) were determined to be involved in the regulation of the ADP-glucose (Glc) pyrophosphorylase from spinach leaf and the cyanobacterium Anabaena sp. PCC 7120 (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711; Y. Charng, A.A. Iglesias, J. Preiss [1994] J Biol Chem 269: 24107-24113). Site-directed mutagenesis was used to investigate the relative roles of the conserved Lys in the heterotetrameric enzyme from potato (Solanum tuberosum L.) tubers. Mutations to alanine of Lys-404 and Lys-441 on the small subunit decreased the apparent affinity for the activator, 3-phosphoglycerate, by 3090- and 54-fold, respectively. The apparent affinity for the inhibitor, phosphate, decreased greater than 400-fold. Mutation of Lys-441 to glutamic acid showed even larger effects. When Lys-417 and Lys-455 on the large subunit were mutated to alanine, the phosphate inhibition was not altered and the apparent affinity for the activator decreased only 9- and 3-fold, respectively. Mutations of these residues to glutamic acid only decreased the affinity for the activator 12- and 5-fold, respectively. No significant changes were observed on other kinetic constants for the substrates ADP-Glc, pyrophosphate, and Mg2+. These data indicate that Lys-404 and Lys-441 on the small subunit are more important for the regulation of the ADP-Glc pyrophosphorylase than their homologous residues in the large subunit.
Collapse
Affiliation(s)
- M A Ballicora
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
28
|
Dardel F, Ragusa S, Lazennec C, Blanquet S, Meinnel T. Solution structure of nickel-peptide deformylase. J Mol Biol 1998; 280:501-13. [PMID: 9665852 DOI: 10.1006/jmbi.1998.1882] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the accompanying paper, we report that zinc is unlikely to be the co-factor supporting peptide deformylase activity in vivo. In contrast, nickel binding promotes full enzyme activity. The three-dimensional structure of the resulting nickel-containing peptide deformylase (catalytic domain, residues 1 to 147) was solved by NMR using a 13C-15N-doubly labelled protein sample. A set of 2261 restraints could be collected, with an average of 15.4 per amino acid. The resolution, which shows a good definition for the position of most side-chains, is greatly improved compared to that previously reported for the zinc-containing, inactive form. A comparison of the two stuctures indicates however that both share the same 3D organization. This shows that the nature of the bound metal is the primary determinant of the hydrolytic activity of this enzyme. Site-directed mutagenesis enabled us to determine the conserved residues of PDF involved in the structure of the active site. In particular, a buried arginine appears to be critical for the positioning of Cys90, one of the metal ligands. Furthermore, the 3D structure of peptide deformylase was compared to thermolysin and metzincins. Although the structural folds are very different, they all display a common structural motif involving an alpha-helix and a three-stranded beta-sheet. These conserved structural elements build a common scaffold which includes the active site, suggesting a common hydrolytic mechanism for these proteases. Finally, an invariant glycine shared by both PDF and metzincins enables us to extend the conserved motif from HEXXH to HEXXHXXG.
Collapse
Affiliation(s)
- F Dardel
- Unité Mixte de Recherche, Ecole Polytechnique, Palaiseau cedex, F-91128, France
| | | | | | | | | |
Collapse
|
29
|
Hanas JS, Koelsch G, Moreland R, Wickham JQ. Differential requirements for basic amino acids in transcription factor IIIA-5S gene interaction. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:256-64. [PMID: 9655916 DOI: 10.1016/s0167-4781(98)00070-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Basic amino acids Arg, Lys, and His in the Cys2His2 zinc fingers of transcription factor IIIA (TFIIIA) potentially have important roles in factor binding to the extended internal control region (ICR) of the 5S ribosomal gene. Conserved and non-conserved basic residues in the N-terminal fingers I, II, III and the more C-terminal fingers V and IX were analyzed by site-directed mutagenesis and DNase I protection in order to assess their individual requirement in the DNA-binding mechanism. In the DNA recognition helix of finger II, the conserved Arg at position 62 (N-terminal side of the first zinc-coordinating histidine) was changed to a Leu or Gln. Both the R62L and R62Q mutations inhibited Xenopus TFIIIA-dependent DNase I footprinting along the entire 5S gene ICR. When His-58 (non-conserved basic residue with DNA-binding potential in the same helical region) was changed to a Gln, the mutated protein was able to protect the ICR from DNase I digestion. Therefore, Arg-62 is individually required for TFIIIA binding over the entire ICR whereas His-58 is not. Fingers V and IX have conserved Arg residues in positions identical to Arg-62 in finger II (Arg-154 in finger V and Arg-271 in finger IX). When these residues were changed to Leu and Ile respectively, TFIIIA-dependent DNase I protection was observed along the entire 5S gene ICR. These results indicate differing DNA-binding mechanisms by the N-terminal fingers versus the C-terminal fingers at the level of individual amino acid-nucleotide interactions. In the N-terminal finger I, the conserved Lys at position 11 outside the recognition helix and a conserved hydrophobic Trp at position 28 within the helix were changed to an Ala and Ser respectively. The K11A change inhibited TFIIIA-dependent DNase I protection to a much greater extent than the W28S change.
Collapse
Affiliation(s)
- J S Hanas
- Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 940 Stanton Young Blvd., Oklahoma City, OK 73140, USA.
| | | | | | | |
Collapse
|
30
|
Fu Y, Ballicora MA, Preiss J. Mutagenesis of the glucose-1-phosphate-binding site of potato tuber ADP-glucose pyrophosphorylase. PLANT PHYSIOLOGY 1998; 117:989-96. [PMID: 9662541 PMCID: PMC34953 DOI: 10.1104/pp.117.3.989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Accepted: 04/20/1998] [Indexed: 05/21/2023]
Abstract
Lysine (Lys)-195 in the homotetrameric ADP-glucose pyrophosphorylase (ADPGlc PPase) from Escherichia coli was shown previously to be involved in the binding of the substrate glucose-1-phosphate (Glc-1-P). This residue is highly conserved in the ADPGlc PPase family. Site-directed mutagenesis was used to investigate the function of this conserved Lys residue in the large and small subunits of the heterotetrameric potato (Solanum tuberosum) tuber enzyme. The apparent affinity for Glc-1-P of the wild-type enzyme decreased 135- to 550-fold by changing Lys-198 of the small subunit to arginine, alanine, or glutamic acid, suggesting that both the charge and the size of this residue influence Glc-1-P binding. These mutations had little effect on the kinetic constants for the other substrates (ATP and Mg2+ or ADP-Glc and inorganic phosphate), activator (3-phosphoglycerate), inhibitor (inorganic phosphate), or on the thermal stability. Mutagenesis of the corresponding Lys (Lys-213) in the large subunit had no effect on the apparent affinity for Glc-1-P by substitution with arginine, alanine, or glutamic acid. A double mutant, SK198RLK213R, was also obtained that had a 100-fold reduction of the apparent affinity for Glc-1-P. The data indicate that Lys-198 in the small subunit is directly involved in the binding of Glc-1-P, whereas they appear to exclude a direct role of Lys-213 in the large subunit in the interaction with this substrate.
Collapse
Affiliation(s)
- Y Fu
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
31
|
Commans S, Lazard M, Delort F, Blanquet S, Plateau P. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases. J Mol Biol 1998; 278:801-13. [PMID: 9614943 DOI: 10.1006/jmbi.1998.1711] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subclass IIb aminoacyl-tRNA synthetases (Asn-, Asp- and LysRS) recognize the anticodon triplet of their cognate tRNA (GUU, GUC and UUU, respectively) through an OB-folded N-terminal extension. In the present study, the specificity of constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli was analyzed by cross-mutagenesis of the tRNA(Lys) anticodon, on the one hand, and of the amino acid residues composing the anticodon binding site on the other. From this analysis, a tentative model is deduced for both the recognition of the cognate anticodon and the rejection of non-cognate anticodons. In this model, the enzyme offers a rigid scaffold of amino acid residues along the beta-strands of the OB-fold for tRNA binding. Phe85 and Gln96 play a critical role in this spatial organization. This scaffold can recognize directly U35 at the center of the anticodon. Specification of the correct enzyme:tRNA complex is further achieved through the accommodation of U34 and U36. The binding of these bases triggers the conformationnal change of a flexible seven-residue loop between strands 4 and 5 of the OB-fold (L45). Additional free energy of binding is recovered from the resulting network of cooperative interactions. Such a mechanism would not depend on the modifications of the anticodon loop of tRNA(Lys) (mnm5s2U34 and t6A37). In the model, exclusion by the synthetase of non-cognate anticodons can be accounted for by a hindrance to the positioning of the L45 loop. In addition, Glu135 would repulse a cytosine base at position 35. Sequence comparisons show that the composition and length of the L45 loop are markedly conserved in each of the families composing subclass IIb aminoacyl-tRNA synthetases. The possible role of the loop is discussed for each case, including that of archaebacterial aspartyl-tRNA synthetases.
Collapse
Affiliation(s)
- S Commans
- Laboratoire de Biochimie, URA 1970 du CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
32
|
Sampson NS, Chen X. Increased expression of Brevibacterium sterolicum cholesterol oxidase in Escherichia coli by genetic modification. Protein Expr Purif 1998; 12:347-52. [PMID: 9535702 DOI: 10.1006/prep.1997.0855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To improve expression of Brevibacterium sterolicum cholesterol oxidase in Escherichia coli, we utilized the T7lac promoter and modified the gene to encode the first 21 amino acids with high-expression E. coli codons. These changes resulted in a 60-fold improvement of expression level. N-terminal sequencing revealed that the E. coli produced cholesterol oxidase signal peptide is cleaved 6 amino acids closer to the N-terminus than in B. sterolicum. The recombinant E. coli produced protein is composed of 513 amino acids with a calculated Mr of 55,374. The kinetic rate constants of the recombinant protein and the B. sterolicum produced cholesterol oxidase are identical.
Collapse
Affiliation(s)
- N S Sampson
- Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400, USA.
| | | |
Collapse
|
33
|
Brobey RK, Iwakura M, Itoh F, Aso K, Horii T. Enzyme-inhibition system for identifying potential antimalarials that target highly drug-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Parasitol Int 1998. [DOI: 10.1016/s1383-5769(98)00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Oyston PCF, Payne DW, Havard HL, Williamson ED, Titball RW. Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):333-341. [PMID: 9493371 DOI: 10.1099/00221287-144-2-333] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A panel of ten site-directed mutants of Clostridium perfringens epsilon-toxin was generated. All of the mutated proteins expressed in Escherichia coli were recognized in immunoblots by a neutralizing mAb raised against wild-type native epsilon-toxin. The cytotoxicity of the site-directed mutated toxins was assayed in vitro against MDCK cells. One mutation resulting in loss of activity in the assay was identified. This non-toxic protein was derived by substituting a proline for the histidine at residue 106 of the toxin. Immunization of mice with the non-toxic mutated epsilon-toxin resulted in the induction of a specific antibody response and immunized mice were protected against 1000 LD50 doses of wild-type recombinant epsilon-toxin.
Collapse
Affiliation(s)
- Petra C F Oyston
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Dean W Payne
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Helen L Havard
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - E Diane Williamson
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
35
|
Reddy P, Kamireddi M. Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate:sugar phosphotransferase system. J Bacteriol 1998; 180:732-6. [PMID: 9457881 PMCID: PMC106945 DOI: 10.1128/jb.180.3.732-736.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is demonstrated here that in Escherichia coli, the phosphorylated form of the glucose-specific phosphocarrier protein IIA(Glc) of the phosphoenolpyruvate:sugar phosphotransferase system is an activator of adenylyl cyclase and that unphosphorylated IIA(Glc) has no effect on the basal activity of adenylyl cyclase. To elucidate the specific role of IIA(Glc) phosphorylation in the regulation of adenylyl cyclase activity, both the phosphorylatable histidine (H90) and the interactive histidine (H75) of IIA(Glc) were mutated by site-directed mutagenesis to glutamine and glutamate. Wild-type IIA(Glc) and the H75Q mutant, in which the histidine in position 75 has been replaced by glutamine, were phosphorylated by the phosphohistidine-containing phosphocarrier protein (HPr-P) and were equally potent activators of adenylyl cyclase. Neither the H90Q nor the H90E mutant of IIA(Glc) was phosphorylated by HPr-P, and both failed to activate adenylyl cyclase. Furthermore, replacement of H75 by glutamate inhibited the appearance of a steady-state level of phosphorylation of H90 of this mutant protein by HPr-P, yet the H75E mutant of IIA(Glc) was a partial activator of adenylyl cyclase. The H75E H90A double mutant, which cannot be phosphorylated, did not activate adenylyl cyclase. This suggests that the H75E mutant was transiently phosphorylated by HPr-P but the steady-state level of the phosphorylated form of the mutant protein was decreased due to the repulsive forces of the negatively charged glutamate at position 75 in the catalytic pocket. These results are discussed in the context of the proximity of H75 and H90 in the IIA(Glc) structure and the disposition of the negative charge in the modeled glutamate mutants.
Collapse
Affiliation(s)
- P Reddy
- Biotechnology Division, Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001, USA.
| | | |
Collapse
|
36
|
Haase J, Lanka E. A specific protease encoded by the conjugative DNA transfer systems of IncP and Ti plasmids is essential for pilus synthesis. J Bacteriol 1997; 179:5728-35. [PMID: 9294428 PMCID: PMC179460 DOI: 10.1128/jb.179.18.5728-5735.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TraF, an essential component of the conjugative transfer apparatus of the broad-host-range plasmid RP4 (IncP), which is located at the periplasmic side of the cytoplasmic membrane, encodes a specific protease. The traF gene products of IncP and Ti plasmids show extensive similarities to prokaryotic and eukaryotic signal peptidases. Mutational analysis of RP4 TraF revealed that the mechanism of the proteolytic cleavage reaction resembles that of signal and LexA-like peptidases. Among the RP4 transfer functions, the product of the Tra2 gene, trbC, was identified as a target for the TraF protease activity. TrbC is homologous to VirB2 of Ti plasmids and thought to encode the RP4 prepilin. The maturation of TrbC involves three processing reactions: (i) the removal of the N-terminal signal peptide by Escherichia coli signal peptidase I (Lep), (ii) a proteolytic cleavage at the C terminus by an as yet unidentified host cell enzyme, and (iii) C-terminal processing by TraF. The third reaction of the maturation process is critical for conjugative transfer, pilus synthesis, and the propagation of the donor-specific bacteriophage PRD1. Thus, cleavage of TrbC by TraF appears to be one of the initial steps in a cascade of processes involved in export of the RP4 pilus subunit and pilus assembly mediated by the RP4 mating pair formation function.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | |
Collapse
|
37
|
Togashi S, Takazawa K, Endo T, Erneux C, Onaya T. Structural identification of the myo-inositol 1,4,5-trisphosphate-binding domain in rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J 1997; 326 ( Pt 1):221-5. [PMID: 9337872 PMCID: PMC1218658 DOI: 10.1042/bj3260221] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of key amino acids involved in Ins(1,4,5)P3 (InsP3) binding and catalytic activity of rat brain InsP3 3-kinase has been identified. The catalytic domain is at the C-terminal end and restricted to a maximum of 275 amino acids [Takazawa and Erneux (1991) Biochem. J. 280, 125-129]. In this study, newly prepared 5'-deletion and site-directed mutants have been compared both for InsP3 binding and InsP3 3-kinase activity. When the protein was expressed from L259 to R459, the activity was lost but InsP3 binding was conserved. Another deletion mutant that had lost only four amino acids after L259 had lost InsP3 binding, and this finding suggests that these residues (i.e. L259DCK262) are involved in InsP3 binding. To further support the data, we have produced two mutants by site-directed mutagenesis on residues C261 and K262. The two new enzymes were designated M4 (C261S) and M5 (K262A). M4 showed similar Vmax and Km values for InsP3 and ATP to wild-type enzyme. In contrast, M5 was totally inactive but had kept the ability to bind to calmodulin-Sepharose. C-terminal deletion mutants that had lost five, seven or nine amino acids showed a large decrease in InsP3 binding and InsP3 3-kinase activity. One mutant that had lost five amino acids (M2) was purified to apparent homogeneity: Km values for both substrates appeared unchanged but Vmax was decreased approx. 40-fold compared with the wild-type enzyme. The results indicate that (1) a positively charged amino acid residue K262 is essential for InsP3 binding and (2) amino acids at the C-terminal end of the protein are necessary to act as a catalyst in the InsP3 3-kinase reaction.
Collapse
Affiliation(s)
- S Togashi
- Third Department of Internal Medicine, University of Yamanashi Medical School, Japan
| | | | | | | | | |
Collapse
|
38
|
Schmitt E, Mechulam Y, Fromant M, Plateau P, Blanquet S. Crystal structure at 1.2 A resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J 1997; 16:4760-9. [PMID: 9303320 PMCID: PMC1170102 DOI: 10.1093/emboj/16.15.4760] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peptidyl-tRNA hydrolase activity from Escherichia coli ensures the recycling of peptidyl-tRNAs produced through abortion of translation. This activity, which is essential for cell viability, is carried out by a monomeric protein of 193 residues. The structure of crystalline peptidyl-tRNA hydrolase could be solved at 1.2 A resolution. It indicates a single alpha/beta globular domain built around a twisted mixed beta-sheet, similar to the central core of an aminopeptidase from Aeromonas proteolytica. This similarity allowed the characterization by site-directed mutagenesis of several residues of the active site of peptidyl-tRNA hydrolase. These residues, strictly conserved among the known peptidyl-tRNA hydrolase sequences, delineate a channel which, in the crystal, is occupied by the C-end of a neighbouring peptidyl-tRNA hydrolase molecule. Hence, several main chain atoms of three residues belonging to one peptidyl-tRNA hydrolase polypeptide establish contacts inside the active site of another peptidyl-tRNA hydrolase molecule. Such an interaction is assumed to represent the formation of a complex between the enzyme and one product of the catalysed reaction.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, Unit'e de Recherche Associ'ee No. 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
39
|
Schreiber G, Frisch C, Fersht AR. The role of Glu73 of barnase in catalysis and the binding of barstar. J Mol Biol 1997; 270:111-22. [PMID: 9231905 DOI: 10.1006/jmbi.1997.1080] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Barnase, a small extracellular ribonuclease from Bacillus amyloliquefaciens and its intracellular inhibitor barstar have co-evolved to bind tightly and rapidly. Barnase has also evolved to be catalytically active. The active site of barnase and its binding site for barstar use the same subset of amino acids. The exception is Glu73 (the general base in catalysis), which although located at the centre of the binding site, is separated by three ordered water molecules from barstar. We examined in this work the contribution of Glu73 to both catalysis and barstar binding. Truncation mutants of the general base (Glu73 --> Ala or Ser) retain a residual RNase activity of about 0.3% while mutants with larger hydrophobic replacements (Glu 73 --> Trp or Phe) have virtually no catalytic activity. This, and binding data of 3'-GMP with the different barnase mutants suggest that the loss in activity results from the elimination of the general base, which can be substituted to some extent by water or other polar side-chains in truncation mutants. All of the Glu73 mutations lead to a weakening of the free energy of complex formation with barstar by 1.4 to 3.0 kcal/mol (including Gln). This is surprising, since Glu73 does not interact directly with barstar and there is an electrostatic repulsion between Glu73 on barnase and the negatively charged binding surface of barstar. A newly developed method of constructing double mutant cycles between multiple mutations at the same site appears to pinpoint a favourable interaction between Glu73 and one of its nearest neighbours in barstar, Asp39. The coupling energy between those residues is presumably indirect: the carboxylate of Glu73 organizes neighbouring positively charged groups in barnase, Lys27, Arg83, and Arg87 to interact with Asp39 in barstar. This emphasizes that an apparent interaction between a pair of residues as measured with double mutant cycles is the sum of their direct and indirect interactions.
Collapse
Affiliation(s)
- G Schreiber
- Department of Biochemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
40
|
Ziegelin G, Calendar R, Lurz R, Lanka E. The helicase domain of phage P4 alpha protein overlaps the specific DNA binding domain. J Bacteriol 1997; 179:4087-95. [PMID: 9209020 PMCID: PMC179226 DOI: 10.1128/jb.179.13.4087-4095.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication initiation depends on origin recognition, helicase, and primase activities. In phage P4, a second DNA region, the cis replication region (crr), is also required for replication initiation. The multifunctional alpha protein of phage P4, which is essential for DNA replication, combines the three aforementioned activities on a single polypeptide chain. Protein domains responsible for the activities were identified by mutagenesis. We show that mutations of residues G506 and K507 are defective in vivo in phage propagation and in unwinding of a forked helicase substrate. This finding indicates that the proposed P loop is essential for helicase activity. Truncations of gene product alpha (gp alpha) demonstrated that 142 residues of the C terminus are sufficient for specifically binding ori and crr DNA. The minimal binding domain retains gp alpha's ability to induce loop formation between ori and crr. In vitro and in vivo analysis of short C-terminal truncations indicate that the C terminus is needed for helicase activity as well as for specific DNA binding.
Collapse
Affiliation(s)
- G Ziegelin
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Meinnel T, Lazennec C, Villoing S, Blanquet S. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J Mol Biol 1997; 267:749-61. [PMID: 9126850 DOI: 10.1006/jmbi.1997.0904] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermus thermophilus peptide deformylase was characterized. Its enzymatic properties as well as its organization in domains proved to share close resemblances with those of the Escherichia coli enzyme despite few sequence identities. In addition to the HEXXH signature sequence of the zinc metalloprotease family, a second short stretch of strictly conserved amino acids was noticed, EGCLS, the cysteine of which corresponds to the third zinc ligand. The study of site-directed mutants of the E. coli deformylase shows that the residues of this stretch are crucial for the structure and/or catalytic efficiency of the active enzyme. Both aforementioned sequences were used as markers of the peptide deformylase family in protein sequence databases. Seven sequences coming from Haemophilus influenzae, Lactococcus lactis, Bacillus stearothermophilus, Mycoplasma genitalium, Mycoplasma pneumoniae, Bacillus subtilus and Synechocystis sp. could be identified. The characterization of the product of the open reading frame from B. stearothermophilus confirmed that it actually corresponded to a peptide deformylase with properties similar to those of the E. coli enzyme. Alignment of the nine peptide deformylase sequences showed that, in addition to the two above sequences, only a third one, GXGXAAXQ, is strictly conserved. This motif is also located in the active site according to the three-dimensional structure of the E. coli enzyme. Site-directed variants of E. coli peptide deformylase showed the involvement of the corresponding residues for maintaining an active and stable enzyme. Altogether, these data allow us to propose that the three identified conserved motifs of peptide deformylases build up the active site around a metal ion. Finally, an analysis of the location of the other conserved residues, in particular of the hydrophobic ones, was performed using the three-dimensional model of the E. coli enzyme. This enables us to suggest that all bacterial peptide deformylases adopt a constant overall tertiary structure.
Collapse
Affiliation(s)
- T Meinnel
- Unite de Recherche Associee n 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
42
|
Mulrooney SB. Application of a single-plasmid vector for mutagenesis and high-level expression of thioredoxin reductase and its use to examine flavin cofactor incorporation. Protein Expr Purif 1997; 9:372-8. [PMID: 9126609 DOI: 10.1006/prep.1996.0698] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thioredoxin reductase from Escherichia coli is a dimeric enzyme containing one FAD and one redox-active disulfide per monomer and catalyzes the transfer of electrons from NADPH to thioredoxin, which subsequently performs several important cellular functions. To overcome problems with site-directed mutagenesis and low expression, the thioredoxin reductase gene was adapted for use in the plasmid vector pSL350 (Brosius, J., Methods Enzymol. 216, 469-483, 1992), which is designed both for protein expression and for production of single-stranded template DNA for mutagenesis, and examined expression of wild-type thioredoxin reductase under different growth conditions. In the absence of IPTG inducer, expression of thioredoxin reductase in saturated cultures accounts for 19% of the soluble protein, and with 1 mM IPTG expression increases to 61%. Some of the thioredoxin reductase is expressed as apoenzyme with the amount of apoenzyme increasing at higher IPTG concentrations, accounting for as high as 68% of the total thioredoxin reductase expressed. The apoenzyme in cell extracts is activated rapidly by addition of FAD, indicating correct folding of the enzyme in the absence of cofactor. Purification of wild-type thioredoxin reductase from the new system yielded 189 mg of enzyme from a 300-ml uninduced culture. The new plasmid was also used to generate an N155Y mutant which is purified and partially characterized.
Collapse
Affiliation(s)
- S B Mulrooney
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| |
Collapse
|
43
|
Formation of the Michaelis complex without involvement of the prosthetic group dehydroalanine of histidine ammonialyase. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00158-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Hirata R, Graham LA, Takatsuki A, Stevens TH, Anraku Y. VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J Biol Chem 1997; 272:4795-803. [PMID: 9030535 DOI: 10.1074/jbc.272.8.4795] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vacuolar membrane H+-ATPase (V-ATPase) of the yeast Saccharomyces cerevisiae is composed of peripheral catalytic (V1) and integral membrane (V0) domains. The 17-kDa proteolipid subunit (VMA3 gene product; Vma3p) is predicted to constitute at least part of the proton translocating pore of V0. Recently, two VMA3 homologues, VMA11 and VMA16 (PPA1), have been identified in yeast, and VMA11 has been shown to be required for the V-ATPase activity. Cells disrupted for the VMA16 gene displayed the same phenotypes as those lacking either Vma3p or Vma11p; the mutant cells lost V-ATPase activity and failed to assemble V-ATPase subunits onto the vacuolar membrane. Epitope-tagged Vma11p and Vma16p were detected on the vacuolar membrane by immunofluorescence microscopy. Density gradient fractionation of the solubilized vacuolar proteins demonstrated that the tagged proteins copurified with the V-ATPase complex. We conclude that Vma11p and Vma16p are essential subunits of the V-ATPase. Vma3p contains a conserved glutamic acid residue (Glu137) whose carboxyl side chain is predicted to be important for proton transport activity. Mutational analysis of Vma11p and Vma16p revealed that both proteins contain a glutamic acid residue (Vma11p Glu145 and Vma16p Glu108) functionally similar to Vma3p Glu137. These residues could only be functionally substituted by an aspartic acid residue, because other mutations we examined inactivated the enzyme activity. Assembly and vacuolar targeting of the enzyme complex was not inhibited by these mutations. These results suggest that the three proteolipid subunits have similar but not redundant functions, each of which is most likely involved in proton transport activity of the enzyme complex. Yeast cells contain V0 and V1 subcomplexes in the vacuolar membrane and in the cytosol, respectively, that can be assembled into the active V0V1 complex in vivo. Surprisingly, loss-of-function mutations of either Vma11p Glu145 or Vma16p Glu108 resulted in a higher degree of assembly of the V1 subunits onto the V0 subcomplex in the vacuolar membrane.
Collapse
Affiliation(s)
- R Hirata
- Institute of Physical and Chemical Research (RIKEN), Hirosawa, Wako-shi, Saitama 351-01, Japan
| | | | | | | | | |
Collapse
|
45
|
Collins M, Leaner VD, Madikizela M, Parker MI. Regulation of the human alpha 2(1) procollagen gene by sequences adjacent to the CCAAT box. Biochem J 1997; 322 ( Pt 1):199-206. [PMID: 9078262 PMCID: PMC1218177 DOI: 10.1042/bj3220199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human, rat, mouse and chicken alpha 2(1) procollagen promoters analysed to date all contain an inverted CCAAT box at -80. In this study we have examined the binding of nuclear proteins to the proximal promotor of the human alpha 2(1) procollagen gene, where an inverted CCAAT box is flanked by a downstream GGAGG sequence and its inverted counterpart (CCTCC) on the upstream end. Each of the GGAGG sequences is separated from the inverted CCAAT box by a single pyrimidine nucleotide (5'-CCTCCCATTGGTGGAGGCCCTTTT-3'). Electrophoretic mobility-shift assays (EMSAs) revealed that two distinct DNA-protein complexes formed on this DNA sequence. Methylation interference analysis and in vitro mutagenesis studies revealed that the integrity of the sequence 5'-CCTCCCATTGG-3' (the GGAGG/CCAAT-binding element or G/CBE) was important for the binding of the CCAAT-binding factor (CBF) (complex I). Competition studies showed that complex formation on the human G/CBE could be competed by mouse CBE and nuclear factor-Y (NF-Y) oligonucleotides, suggesting that mouse CBE and human G/CBE-binding proteins belong to the same family of CCAAT box binding proteins. Furthermore, antibodies to mouse CBF specifically supershifted the G/CBE complex (complex I) in EMSAs. The downstream GGAGG and 3'-flanking sequences (5'-GGAGGCCCTTTT-3') or collagen modulating element (CME), however, were important for the formation of a novel DNA protein complex (complex III). The formation of this complex was not competed out by CBE or NF-Y oligonucleotides, nor was DNA-protein complex formation affected by the anti-CBF antibody. Functional analysis of G/CBE and CME elements subjected to mutagenesis, using promoter-chloroamphenicol acetyl transferase constructs in transient transfection assays, showed that both these elements were essential for activity of the human promoter. These experiments identified a novel regulatory element in the human alpha 2(1) procollagen gene which is not present in the rodent gene.
Collapse
Affiliation(s)
- M Collins
- Department of Medical Biochemistry, University of Cape Town Medical School, South Africa
| | | | | | | |
Collapse
|
46
|
Bertrand L, Vertommen D, Feytmans E, Di Pietro A, Rider MH, Hue L. Mutagenesis of charged residues in a conserved sequence in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochem J 1997; 321 ( Pt 3):609-14. [PMID: 9032444 PMCID: PMC1218113 DOI: 10.1042/bj3210609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arg-136, Glu-137, Arg-138 and Arg-139 are conserved in all sequences of the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Their role was studied by site-directed mutagenesis. All the mutations had little, if any, effect on fructose-2,6-bisphosphatase activity. Mutations of Arg-136 and Glu-137 into Ala caused only minor modifications of phosphofructo-2-kinase activity. In contrast, mutation of Arg138 into Ala increased 280-fold the Km for fructose 6-phosphate of phosphofructo-2-kinase. Mutation of Arg-139 into Ala resulted in decreases in phosphofructo-2-kinase Vmax/Km for MgATP and fructose 6-phosphate 600-fold and 5000-fold respectively. Mutation of Arg-139 into Lys and Gln increased the Km of phosphofructo-2-kinase for MgATP (20-fold and 25-fold respectively) and for fructose 6-phosphate (8-fold and 13-fold), and the IC50 for MgADP (30-fold and 50-fold) and for magnesium citrate (7-fold and 25-fold). However, these two mutations did not affect nucleotide binding, as measured by quenching of intrinsic fluorescence. The changes in kinetic properties induced by mutations could not be attributed to structural changes. It is proposed that Arg-138 is involved in fructose 6-phosphate binding and that Arg-139 is probably involved in the stabilization of the transition state and so participates in catalysis.
Collapse
Affiliation(s)
- L Bertrand
- Facultés Universitaires Notre-Dame de la Paix, Department of Biology, Namur, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Haase J, Kalkum M, Lanka E. TrbK, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the IncP alpha plasmid RP4. J Bacteriol 1996; 178:6720-9. [PMID: 8955288 PMCID: PMC178567 DOI: 10.1128/jb.178.23.6720-6729.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
TrbK is the only plasmid-encoded gene product involved in entry exclusion of the broad-host-range plasmid RP4. The corresponding gene, trbK, coding for a protein of 69 amino acid residues maps in the Tra2 region within the mating pair formation genes. TrbK carries a lipid moiety at the N-terminal cysteine of the mature 47-residue polypeptide. The mutant protein TrbKC23G cannot be modified or proteolytically processed but still acts in entry exclusion with reduced efficiency. An 8-amino-acid truncation at the C terminus of TrbK results in a complete loss of the entry exclusion activity but still allows the protein to be processed. TrbK localizes predominately to the cytoplasmic membrane. Its function depends on presence in the recipient cell but not in the donor cell. TrbK excludes plasmids of homologous systems of the P complex; it is inert towards the IncI system. The likely target for TrbK action is the mating pair formation system, because DNA or any of the components of the relaxosome were excluded as possible targets.
Collapse
Affiliation(s)
- J Haase
- Max-Planck-Institut für Molekulare Genetik, Dahlem, Berlin, Germany
| | | | | |
Collapse
|
48
|
Krovat BC, Jantsch MF. Comparative mutational analysis of the double-stranded RNA binding domains of Xenopus laevis RNA-binding protein A. J Biol Chem 1996; 271:28112-9. [PMID: 8910425 DOI: 10.1074/jbc.271.45.28112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Xenopus laevis RNA-binding protein A is a ubiquitously expressed, double-stranded RNA-binding protein that is associated with the majority of cellular RNAs, ribosomal RNAs, and hnRNAs. X. laevis RNA-binding protein A contains three copies of the double-stranded RNA-binding domain (dsRBD) in tandem arrangement. Two of them, xl1 and xl2, belong to the type A group of dsRBDs that show strong homologies to the entire length of a defined consensus sequence. The xl3 domain, in contrast, is a type B dsRBD which only matches the basic C-terminal end of the dsRBD consensus sequence. Here we show that only xl2 but neither xl1 nor xl3 are able to bind double-stranded RNA substrates in vitro, suggesting that different dsRBD copies have varying RNA binding activities. By fine mapping mutagenesis of the isolated xl2 domain, we identified at least two central aromatic amino acids and a C-terminal alpha-helix that are indispensable for dsRNA binding. Furthermore, we show that different charge distributions within the C-terminal alpha-helices of xl1 and xl2 seem responsible for the different RNA binding behaviors of these two dsRBDs. Analyses of the RNA binding properties of constructs containing various combinations of different dsRBDs reveal that type A dsRBDs exhibit a cooperative binding effect, whereas type B dsRBDs show a rather low binding activity, thus contributing only to a minor extent to a stable RNA-protein interaction.
Collapse
Affiliation(s)
- B C Krovat
- Department of Cytology and Genetics, Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | | |
Collapse
|
49
|
Hooker DJ, Tachedjian G, Solomon AE, Gurusinghe AD, Land S, Birch C, Anderson JL, Roy BM, Arnold E, Deacon NJ. An in vivo mutation from leucine to tryptophan at position 210 in human immunodeficiency virus type 1 reverse transcriptase contributes to high-level resistance to 3'-azido-3'-deoxythymidine. J Virol 1996; 70:8010-8. [PMID: 8892925 PMCID: PMC190874 DOI: 10.1128/jvi.70.11.8010-8018.1996] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sequencing of the reverse transcriptase (RT) region of 26 human immunodeficiency virus type 1 (HIV-1) isolates from eight patients treated with 3'-azido-3'-deoxythymidine (AZT) revealed a mutation at codon 210 from TTG (leucine) to TGG (tryptophan) exclusively in association with resistance to AZT. The mutation Trp-210 was observed in 15 of the 20 isolates phenotypically resistant to AZT, being more commonly observed than resistance-associated mutations at codons 67, 70, and 219. Trp-210 was never observed before the emergence of resistance-associated mutations Leu-41 and Tyr-215, and in a sequential series of five isolates from one patient the order of emergence of mutations was found to be Tyr-215, Leu-41, and then Trp-210. Trp-210 was also found in association with the Leu-41, Asn-67, Arg-70, and Tyr-215 resistance genotype. To define the role of Trp-210 in AZT resistance, molecular HIV-1 clones were constructed with various combinations of RT mutations at codons 41, 67, 70, 210, and 215 and tested for susceptibility to AZT. In clones with polymerase genes derived either from HXB2-D or clinical isolates, Trp-210 alone did not increase AZT resistance, whereas in conjunction with Leu-41 and Tyr-215, Trp-210 contributed to high-level resistance (50% inhibitory concentration of >1 microM). In HXB2-D, Trp-210 with Tyr-215 generated a virus with resistance comparable to one with Leu-41, Tyr-215, and Trp-210. Inserting Trp-210 into the genetic context of mutations at codons 41, 67, 70, and 215 further enhanced resistance from a 50% inhibitory concentration of 1.44 microM to 8.41 microM. Molecular modeling of the tertiary structure of HIV-1 RT revealed that the distance between the side chains of Trp-210 (in helix alphaF) and Tyr-215 (in strand beta11a) approximated 4 A (1 A = 0.1 nm), sufficiently close to result in significant energetic interaction between these two aromatic side chains. In conclusion, Trp-210 contributes significantly to phenotypic AZT resistance of HIV-1 by augmenting resistance at least three- to sixfold in the context of two resistant genotypes, and its effect may require an interaction with an aromatic amino acid at position 215.
Collapse
Affiliation(s)
- D J Hooker
- AIDS Molecular Biology Laboratory, Macfarlane Burnet Center for Medical Research, Fairfield, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mei G, Gilardi G, Venanzi M, Rosato N, Canters GW, Agró AF. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Protein Sci 1996; 5:2248-54. [PMID: 8931143 PMCID: PMC2143279 DOI: 10.1002/pro.5560051111] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The UV dynamic fluorescence and CD of several Pseudomonas aeruginosa azurins bearing single amino acid mutation have been studied. Two classes of mutants were examined. In the first class, two hydrophobic residues in the core of the protein, Ile 7 and Phe 110, nearest to the azurin single tryptophan Trp 48, were substituted by a serine (mutants 17S and F110S). In the second class, two residues in the outer sphere of the copper ligand field were changed, obtaining the following mutants: M44K, H35F, H35L, and H35Q. All these proteins showed two fluorescence lifetimes in the copper-containing form, but only one in the copper-free form. The lifetime of the latter derivatives was different from either those of the metal-bound samples, definitely ruling out the presence of apo-like species in the holo protein. Copper-free 17S and F110S showed a more complex fluorescence decay profile requiring a distribution of lifetimes rather than a single lifetime. Holo F110S was also better fitted, in the limit of confidence, with two distributions rather than a pair of lifetimes. Time-resolved anisotropy of these two mutants as well as of wild-type (wt) protein showed two components (rotational times for wt < or = 200 ps and 7 ns, respectively). These components were not affected significantly by copper removal in the case of wt protein. Instead, the short rotational component of the mutants dropped dramatically to values near zero, indicating a much greater mobility of the tryptophanyl residue in the mutant apo azurins. These data were supported by CD measurements showing a small effect of the copper presence in the region below 250 nm, i.e., in the secondary structure, but almost a collapse of the aromatic asymmetry at 270-295 nm related to a relaxation of the structural constraint around the tryptophan. Altogether these data show that copper does not play a structural role in wt azurin, whereas it is crucial in the stabilization of 17S and F110S mutants. Furthermore, although the metal site geometry is rigidly kept in wt apo-azurin, it regains the native form only in the presence of the metal in the "core" mutants. This finding is important for the theory of entatic states in metalloproteins (Williams RJP, 1995, Eur J Biochem 234:363-381).
Collapse
Affiliation(s)
- G Mei
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Universitá di Roma Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|