1
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
2
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Marlétaz F, Timoshevskaya N, Timoshevskiy V, Simakov O, Parey E, Gavriouchkina D, Suzuki M, Kubokawa K, Brenner S, Smith J, Rokhsar DS. The hagfish genome and the evolution of vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537254. [PMID: 37131617 PMCID: PMC10153176 DOI: 10.1101/2023.04.17.537254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a critical window into early vertebrate evolution. Here, we investigate the complex history, timing, and functional role of genome-wide duplications in vertebrates in the light of a chromosome-scale genome of the brown hagfish Eptatretus atami. Using robust chromosome-scale (paralogon-based) phylogenetic methods, we confirm the monophyly of cyclostomes, document an auto-tetraploidization (1RV) that predated the origin of crown group vertebrates ~517 Mya, and establish the timing of subsequent independent duplications in the gnathostome and cyclostome lineages. Some 1RV gene duplications can be linked to key vertebrate innovations, suggesting that this early genomewide event contributed to the emergence of pan-vertebrate features such as neural crest. The hagfish karyotype is derived by numerous fusions relative to the ancestral cyclostome arrangement preserved by lampreys. These genomic changes were accompanied by the loss of genes essential for organ systems (eyes, osteoclast) that are absent in hagfish, accounting in part for the simplification of the hagfish body plan; other gene family expansions account for hagfishes' capacity to produce slime. Finally, we characterise programmed DNA elimination in somatic cells of hagfish, identifying protein-coding and repetitive elements that are deleted during development. As in lampreys, the elimination of these genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline/pluripotency functions. Reconstruction of the early genomic history of vertebrates provides a framework for further exploration of vertebrate novelties.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | | | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Elise Parey
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Present address: UK Dementia Research Institute, University College London, London, UK
| | - Masakazu Suzuki
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kaoru Kubokawa
- Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Sydney Brenner
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
- Deceased
| | - Jeramiah Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
4
|
Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annu Rev Anim Biosci 2023; 11:163-182. [PMID: 36400012 DOI: 10.1146/annurev-animal-050922-071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostatic control and reproductive functions of humans are regulated at the molecular levels largely by peptide hormones secreted from endocrine and/or neuroendocrine cells in the central nervous system and peripheral organs. Homologs of those hormones and their receptors function similarly in many vertebrate species distantly related to humans, but the evolutionary history of the endocrine system involving those factors has been obscured by the scarcity of genome DNA sequence information of some taxa that potentially contain their orthologs. Focusing on non-osteichthyan vertebrates, namely jawless and cartilaginous fishes, this article illustrates how investigating genome sequence information assists our understanding of the diversification of vertebrate gene repertoires in four broad themes: (a) the presence or absence of genes, (b) multiplication and maintenance of paralogs, (c) differential fates of duplicated paralogs, and (d) the evolutionary timing of gene origins.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Molecular Life History Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; .,Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hiroyuki Kaiya
- Grandsoul Research Institute of Immunology, Inc., Uda, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
5
|
Sekiguchi T. Evolution of calcitonin/calcitonin gene-related peptide family in chordates: Identification of CT/CGRP family peptides in cartilaginous fish genome. Gen Comp Endocrinol 2022; 328:114123. [PMID: 36075341 DOI: 10.1016/j.ygcen.2022.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/04/2022]
Abstract
The calcitonin (CT)/CT gene-related peptide (CGRP) family is a peptide gene family that is widely found in bilaterians. CT, CGRP, adrenomedullin (AM), amylin (AMY), and CT receptor-stimulating peptide (CRSP) are members of the CT/CGRP family. In mammals, CT is involved in calcium homeostasis, while CGRP and AM primarily function in vasodilation. AMY and CRSP are associated with anorectic effects. Diversification of the molecular features and physiological functions of the CT/CGRP family in vertebrate lineages have been extensively reported. However, the origin and diversification mechanisms of the vertebrate CT/CGRP family of peptides remain unclear. In this review, the molecular characteristics of CT/CGRP family peptides and their receptors, along with their major physiological functions in mammals and teleosts, are introduced. Furthermore, novel candidates of the CT/CGRP family in cartilaginous fish are presented based on genomic information. The CT/CGRP family peptides and receptors in urochordates and cephalochordates, which are closely related to vertebrates, are also described. Finally, a putative evolutionary scenario of the CT/CGRP family peptides and receptors in chordates is discussed.
Collapse
Affiliation(s)
- Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan.
| |
Collapse
|
6
|
Xu C, Yu M, Zhang Q, Ma Z, Du K, You H, Wei J, Wang D, Tao W. Genome-Wide Identification and Characterization of the BRD Family in Nile Tilapia (Oreochromis niloticus). Animals (Basel) 2022; 12:ani12172266. [PMID: 36077987 PMCID: PMC9454494 DOI: 10.3390/ani12172266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Nile tilapia is a good model for genome-wide identification and examination of the expression and role of gene families. In this study, we identified 54 bromodomain genes (BRDs) divided into eight subfamilies in Nile tilapia. Phylogenetic analysis revealed a high conservation of the BRDs family in vertebrates, with BRDs expansion due to fish-specific duplications. Most of the BRDs displayed sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and 9 ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testes of treated fish. Abstract The bromodomain (BRD) proteins specifically recognize the N-acetyllysine motifs, which is a key event in the reading process of epigenetic marks. BRDs are evolutionarily highly conserved. Over recent years, BRDs attracted great interest because of their important roles in biological processes. However, the genome-wide identification of this family was not carried out in many animal groups, in particular, in teleosts. Moreover, the expression patterns were not reported for any of the members in this family, and the role of the BRD family was not extensively studied in fish reproduction. In this study, we identified 16 to 120 BRD genes in 24 representative species. BRDs expanded significantly in vertebrates. Phylogenetic analysis showed that the BRD family was divided into eight subfamilies (I–VIII). Transcriptome analysis showed that BRDs in Nile tilapia (Oreochromis niloticus) exhibited different expression patterns in different tissues, suggesting that these genes may play different roles in growth and development. Gonadal transcriptome analysis showed that most of the BRDs display sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and nine ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Consistent with transcriptomic data, the results of qRT-PCR and fluorescence in situ hybridization showed that brdt expression was higher in the testis than in the ovary, suggesting its critical role in the spermatogenesis of the tilapia. Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced, and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testis tissue of treated fish. Our data provide insights into the evolution and expression of BRD genes, which is helpful for understanding their critical roles in sex differentiation and gonadal development in teleosts.
Collapse
|
7
|
Moreira F, Arenas M, Videira A, Pereira F. Evolutionary History of TOPIIA Topoisomerases in Animals. J Mol Evol 2022; 90:149-165. [PMID: 35165762 DOI: 10.1007/s00239-022-10048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/26/2022] [Indexed: 01/15/2023]
Abstract
TOPIIA topoisomerases are required for the regulation of DNA topology by DNA cleavage and re-ligation and are important targets of antibiotic and anticancer agents. Humans possess two TOPIIA paralogue genes (TOP2A and TOP2B) with high sequence and structural similarity but distinct cellular functions. Despite their functional and clinical relevance, the evolutionary history of TOPIIA is still poorly understood. Here we show that TOPIIA is highly conserved in Metazoa. We also found that TOPIIA paralogues from jawed and jawless vertebrates had different origins related with tetraploidization events. After duplication, TOP2B evolved under a stronger purifying selection than TOP2A, perhaps promoted by the more specialized role of TOP2B in postmitotic cells. We also detected genetic signatures of positive selection in the highly variable C-terminal domain (CTD), possibly associated with adaptation to cellular interactions. By comparing TOPIIA from modern and archaic humans, we found two amino acid substitutions in the TOP2A CTD, suggesting that TOP2A may have contributed to the evolution of present-day humans, as proposed for other cell cycle-related genes. Finally, we identified six residues conferring resistance to chemotherapy differing between TOP2A and TOP2B. These six residues could be targets for the development of TOP2A-specific inhibitors that would avoid the side effects caused by inhibiting TOP2B. Altogether, our findings clarify the origin, diversification and selection pressures governing the evolution of animal TOPIIA.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
8
|
Nishizawa H, Yamanaka M, Igarashi K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J 2022; 290:1688-1704. [PMID: 35107212 DOI: 10.1111/febs.16382] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
Abstract
Ferroptosis is triggered by a chain of intracellular labile iron-dependent peroxidation of cell membrane phospholipids. Ferroptosis is important not only as a cause of ischaemic and neurodegenerative diseases but also as a mechanism of cancer suppression, and a better understanding of its regulatory mechanism is required. It has become clear that ferroptosis is finely controlled by two oxidative stress-responsive transcription factors, NRF2 (NF-E2-related factor 2) and BACH1 (BTB and CNC homology 1). NRF2 and BACH1 inhibit and promote ferroptosis, respectively, by activating or suppressing the expression of genes in the major regulatory pathways of ferroptosis: intracellular labile iron metabolism, the GSH (glutathione) -GPX4 (glutathione peroxidase 4) pathway and the FSP1 (ferroptosis suppressor protein 1)-CoQ (coenzyme Q) pathway. In addition to this, NRF2 and BACH1 control ferroptosis through the regulation of lipid metabolism and cell differentiation. This multifaceted regulation of ferroptosis by NRF2 and BACH1 is considered to have been acquired during the evolution of multicellular organisms, allowing the utilization of ferroptosis for maintaining homeostasis, including cancer suppression. In terms of cell-cell interaction, it has been revealed that ferroptosis has the property of propagating to surrounding cells along with lipid peroxidation. The regulation of ferroptosis by NRF2 and BACH1 and the propagation phenomenon could be used to realize anticancer cell therapy in the future. In this review, these points will be summarized and discussed.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Liu S, Kang WJ, Abrimian A, Xu J, Cartegni L, Majumdar S, Hesketh P, Bekker A, Pan YX. Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021; 11:biom11101525. [PMID: 34680158 PMCID: PMC8534031 DOI: 10.3390/biom11101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.
Collapse
Affiliation(s)
- Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Wen-Jia Kang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Anna Abrimian
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Luca Cartegni
- Department of Chemical Biology, Ernest Mario School of Pharmacy Rutgers University, Piscataway, NJ 08854, USA;
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Patrick Hesketh
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
- Correspondence: ; Tel.: +1-973-972-3213
| |
Collapse
|
10
|
Huang Y, Sun M, Zhuang L, He J. Molecular Phylogenetic Analysis of the AIG Family in Vertebrates. Genes (Basel) 2021; 12:genes12081190. [PMID: 34440364 PMCID: PMC8394805 DOI: 10.3390/genes12081190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Minghao Sun
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| |
Collapse
|
11
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
12
|
Jiang S, Tanaka T, Yagami R, Hasegawa G, Umezu H, Fujiyoshi Y, Kodama T, Naito M, Ajioka Y. Immunohistochemical detection of hepatocyte nuclear factor-4α in vertebrates. Microsc Res Tech 2021; 84:2906-2914. [PMID: 34196449 DOI: 10.1002/jemt.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/06/2022]
Abstract
Hepatocyte nuclear factor-4α (HNF4α) presents in multiple isoforms generated using alternative promoter (P1 and P2) and splicing. Neither conservation of tissue distribution of HNF4α isoforms, nor presence of alternative promoter usage is known. In this study, to detect the expression of HNF4α in some species of animals, we have applied monoclonal antibodies against P1 (K9218) and P2 (H6939) promoter-driven and P1/P2 promoter-driven H1415 HNF4α for immunohistochemistry and western blot analysis. Antibody K9218 was observed in the hepatocytes, proximal tubules of the kidney, and epithelial cells in the mucosa of the small intestine and colon of rats, chicken, and tortoise, whereas antibody H6939 signal were detected in the stomach, pancreas, bile duct, and pancreatic duct of human and rats. The signal for antibody K9218 was recognized in tissues of a wide range of mammals, bird, reptile, amphibian, and fish as well. Antibody H1415 displayed a positive reaction in hepatocytes and intestinal epithelial cells in chicken and tortoise, whereas the bile duct, mucosal epithelial cells in the stomach, or pancreas in these animals were negative. Western blotting showed the binding of the antibody with HNF4α protein from each animal. The sequence of human HNF4α was 100% identical to murine and rat HNF4α, 88.9% to chicken, 77.8% to Xenopus HNF4α, and 81.5% to medaka. However, the specific part of human and invertebrate Drosophila HNF4 shares only 14.8% sequence identity. This antibody is useful for detecting HNF4α isoforms in a wide range of vertebrates, and suggests many insights into animal evolution.
Collapse
Affiliation(s)
- Shuying Jiang
- Niigata College of Medical Technology, Niigata, Japan.,Division of Molecular and Diagnostic Pathology, Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Ren Yagami
- Division of International Health (Public Health) Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Go Hasegawa
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hajime Umezu
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yukio Fujiyoshi
- Department of Pathology and Molecular Diagnostics, Nagoya City Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Makoto Naito
- Department of Pathology, Niigata Medical Center, Nishi-ku, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Mikalsen SO, í Kongsstovu S, Tausen M. Connexins during 500 Million Years-From Cyclostomes to Mammals. Int J Mol Sci 2021; 22:1584. [PMID: 33557313 PMCID: PMC7914757 DOI: 10.3390/ijms22041584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
It was previously shown that the connexin gene family had relatively similar subfamily structures in several vertebrate groups. Still, many details were left unclear. There are essentially no data between tunicates, which have connexins that cannot be divided into the classic subfamilies, and teleosts, where the subfamilies are easily recognized. There are also relatively few data for the groups that diverged between the teleosts and mammals. As many of the previously analyzed genomes have been improved, and many more genomes are available, we reanalyzed the connexin gene family and included species from all major vertebrate groups. The major results can be summarized as follows: (i) The same connexin subfamily structures are found in all Gnathostomata (jawed vertebrates), with some variations due to genome duplications, gene duplications and gene losses. (ii) In contrast to previous findings, birds do not have a lower number of connexins than other tetrapods. (iii) The cyclostomes (lampreys and hagfishes) possess genes in the alpha, beta, gamma and delta subfamilies, but only some of the genes show a phylogenetic affinity to specific genes in jawed vertebrates. Thus, two major evolutionary transformations have occurred in this gene family, from tunicates to cyclostomes and from cyclostomes to jawed vertebrates.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of Faroe Islands, FO-100 Tórshavn, Faroe Islands; (S.í.K.); (M.T.)
| | | | | |
Collapse
|
15
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
16
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
17
|
Qi D, Chao Y, Zhang C, Wang Z, Wang W, Chen Q, Zheng Z, Zhang Z. Duplication of toll-like receptor 22 in teleost fishes. FISH & SHELLFISH IMMUNOLOGY 2019; 94:752-760. [PMID: 31580937 DOI: 10.1016/j.fsi.2019.09.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The TLRs of teleost fishes have distinct features and are highly diverse, but the duplication characteristics and expression patterns of the tlr22 gene remain unclear. Here, we identified paralogous tlr22 genes in 13 teleost fishes by screening available fish genomic resources and using molecular cloning. We then conducted comprehensive bioinformatics analyses and investigated spatiotemporal differences in the expression patterns of the tlr22 genes in G. eckloni. The results indicated that more than three paralogous tlr22 genes were possessed by some teleost fishes. Of these, tlr22c is specific to some subfamilies of the Cyprinidae (e.g., Barbinae, Cyprininae, Schizothoracinae, and Leuciscinae). Phylogenetic and syntenic analyses showed that the paralogous tlr22 genes originated from two single-gene duplication events. Molecular clock calculations dated the two gene duplication events at 49.5 and 39.3 MYA, which is before the common carp-specific genome duplication event and well after the fish-specific genome duplication. Gene duplication of tlr22 was followed by gene loss or pseudogene events in certain lineages. Spatiotemporal expression differences between the three duplicated tlr22 genes from G. eckloni suggested that these genes diverged functionally after gene duplication.
Collapse
Affiliation(s)
- Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Yan Chao
- Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Cunfang Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zhenji Wang
- Fishery Environmental Monitoring Station of Qinghai Province, Xining, 810012, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Qichang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Ziqin Zheng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| | - Zhao Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China; Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China
| |
Collapse
|
18
|
Sainath SB, André A, Castro LFC, Santos MM. The evolutionary road to invertebrate thyroid hormone signaling: Perspectives for endocrine disruption processes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:124-138. [PMID: 31136851 DOI: 10.1016/j.cbpc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (THs) are the only iodine-containing hormones that play fundamental roles in chordates and non-chordates. The chemical nature, mode of action and the synthesis of THs are well established in mammals and other vertebrates. Although thyroid-like hormones have been detected in protostomes and non-chordate deuterostomes, TH signaling is poorly understood as compared to vertebrates, particularly in protostomes. Therefore, the central objective of this article is to review TH system components and TH-induced effects in non-vertebrate chordates, non-chordate deuterostomes and protostomes based on available genomes and functional information. To accomplish this task, we integrate here the available knowledge on the THs signaling across non-vertebrate chordates, non-chordate deuterostomes and protostomes by considering studies encompassing TH system components and physiological actions of THs. We also address the possible interactions of thyroid disrupting chemicals and their effects in protostomes and non-chordate deuterostomes. Finally, the perspectives on current and future challenges are discussed.
Collapse
Affiliation(s)
- S B Sainath
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Department of Biotechnology, Vikrama Simhapuri University, Nellore 524 003, AP, India.
| | - A André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - M M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
19
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
20
|
Onimaru K, Kuraku S. Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications. Brief Funct Genomics 2019; 17:352-361. [PMID: 29566222 PMCID: PMC6158797 DOI: 10.1093/bfgp/ely008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inferring the phenotype of the last common ancestor of living vertebrates is a challenging problem because of several unresolvable factors. They include the lack of reliable out-groups of living vertebrates, poor information about less fossilizable organs and specialized traits of phylogenetically important species, such as lampreys and hagfishes (e.g. secondary loss of vertebrae in adult hagfishes). These factors undermine the reliability of ancestral reconstruction by traditional character mapping approaches based on maximum parsimony. In this article, we formulate an approach to hypothesizing ancestral vertebrate phenotypes using information from the phylogenetic and functional properties of genes duplicated by genome expansions in early vertebrate evolution. We named the conjecture as ‘chronological reconstruction of ohnolog functions (CHROF)’. This CHROF conjecture raises the possibility that the last common ancestor of living vertebrates may have had more complex traits than currently thought.
Collapse
Affiliation(s)
- Koh Onimaru
- RIKEN Center for Life Science Technologies, Kobe, Hyogo Japan.,Department of biological science, Tokyo Institute of Technology, Tokyo, Japan
| | | |
Collapse
|
21
|
Cartography of rhodopsin-like G protein-coupled receptors across vertebrate genomes. Sci Rep 2019; 9:7058. [PMID: 31064998 PMCID: PMC6504862 DOI: 10.1038/s41598-018-33120-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022] Open
Abstract
We conduct a cartography of rhodopsin-like non-olfactory G protein-coupled receptors in the Ensembl database. The most recent genomic data (releases 90–92, 90 vertebrate genomes) are analyzed through the online interface and receptors mapped on phylogenetic guide trees that were constructed based on a set of ~14.000 amino acid sequences. This snapshot of genomic data suggest vertebrate genomes to harbour 142 clades of GPCRs without human orthologues. Among those, 69 have not to our knowledge been mentioned or studied previously in the literature, of which 28 are distant from existing receptors and likely new orphans. These newly identified receptors are candidates for more focused evolutionary studies such as chromosomal mapping as well for in-depth pharmacological characterization. Interestingly, we also show that 37 of the 72 human orphan (or recently deorphanized) receptors included in this study cluster into nineteen closely related groups, which implies that there are less ligands to be identified than previously anticipated. Altogether, this work has significant implications when discussing nomenclature issues for GPCRs.
Collapse
|
22
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
23
|
Weinrauch AM, Glover CN, Goss GG. Lipid acquisition and tissue storage in hagfish: new insights from an ancient vertebrate. J Comp Physiol B 2018; 189:37-45. [DOI: 10.1007/s00360-018-1196-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 11/29/2022]
|
24
|
Zheng S, Long J, Liu Z, Tao W, Wang D. Identification and Evolution of TGF-β Signaling Pathway Members in Twenty-Four Animal Species and Expression in Tilapia. Int J Mol Sci 2018; 19:E1154. [PMID: 29641448 PMCID: PMC5979292 DOI: 10.3390/ijms19041154] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway was intrinsically linked to the emergence of metazoan. The total number of TGF-β ligands, receptors, and smads changed slightly in all invertebrates and jawless vertebrates analyzed. In contrast, expansion of the pathway members, especially ligands, was observed in jawed vertebrates most likely due to the second round of whole genome duplication (2R) and additional rounds in teleosts. Duplications of TGFB2, TGFBR2, ACVR1, SMAD4 and SMAD6, which were resulted from 2R, were first isolated. Type II receptors may be originated from the ACVR2-like ancestor. Interestingly, AMHR2 was not identified in Chimaeriformes and Cypriniformes even though they had the ligand AMH. Based on transcriptome data, TGF-β ligands exhibited a tissue-specific expression especially in the heart and gonads. However, most receptors and smads were expressed in multiple tissues indicating they were shared by different ligands. Spatial and temporal expression profiles of 8 genes in gonads of different developmental stages provided a fundamental clue for understanding their important roles in sex determination and reproduction. Taken together, our findings provided a global insight into the phylogeny and expression patterns of the TGF-β pathway genes, and hence contribute to the greater understanding of their biological roles in the organism especially in teleosts.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
25
|
Sekiguchi T. The Calcitonin/Calcitonin Gene-Related Peptide Family in Invertebrate Deuterostomes. Front Endocrinol (Lausanne) 2018; 9:695. [PMID: 30555412 PMCID: PMC6283891 DOI: 10.3389/fendo.2018.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcitonin (CT)/CT gene-related peptide (CGRP) family peptides (CT/CGRP family peptides) including CT, CGRP, adrenomedullin, amylin, and CT receptor-stimulating peptide have been identified from various vertebrates and perform a variety of important physiological functions. These peptides bind to two types of receptors including CT receptor (CTR) and CTR-like receptor (CLR). Receptor recognition of CT/CGRP family peptides is determined by the heterodimer between CTR/CLR and receptor activity-modifying protein (RAMP). Comparative studies of the CT/CGRP family have been exclusively performed in vertebrates from teleost fishes to mammals and strongly manifest that the CGRP family system containing peptides, their receptors, and RAMPs was derived from a common ancestor. In addition, CT/CGRP family peptides and their receptors are also identified and inferred from various invertebrate species. However, the evolutionary process of the CT/CGRP family from invertebrates to vertebrates remains enigmatic. In this review, I principally summarize the CT/CGRP family peptides and their receptors in invertebrate deuterostomes, highlighting the study of invertebrate chordates including ascidians and amphioxi. The CT/CGRP family peptide that shows similar molecular structure and function with that of vertebrate CT has been identified from ascidian, Ciona intestinalis. Amphioxus, Branchiostoma floridae also possessed three CT/CGRP family peptides, one CTR/CLR receptor, and three RAMP-like proteins. The molecular function of the receptor complex formed by amphioxus CTR/CLR and a RAMP-like protein was clarified. Moreover, CT/CGRP family peptides have been identified in the superphylum Ambulacraria, which is close to Chordata. Finally, this review provides potential hypotheses of the evolution of CGRP family peptides and their receptors from invertebrates to vertebrates.
Collapse
|
26
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
27
|
Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 2017; 17:437-450. [PMID: 28461702 DOI: 10.1038/nri.2017.26] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4+ regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
28
|
Holzer G, Laudet V. New Insights into Vertebrate Thyroid Hormone Receptor Evolution. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, 1 avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
29
|
Endsin MJ, Michalec O, Manzon LA, Lovejoy DA, Manzon RG. CRH peptide evolution occurred in three phases: Evidence from characterizing sea lamprey CRH system members. Gen Comp Endocrinol 2017; 240:162-173. [PMID: 27777046 DOI: 10.1016/j.ygcen.2016.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 02/08/2023]
Abstract
The corticotropin releasing hormone (CRH) system, which includes the CRH family of peptides, their receptors (CRHRs) and a binding protein (CRHBP), has been strongly conserved throughout vertebrate evolution. The identification of invertebrate homologues suggests this system evolved over 500 million years ago. However, the early vertebrate evolution of the CRH system is not understood. Current theory indicates that agnathans (hagfishes and lampreys) are monophyletic with a conservative evolution over the past 500million years and occupy a position at the root of vertebrate phylogeny. We isolated the cDNAs for three CRH family members, two CRHRs and a CRHBP from the sea lamprey, Petromyzon marinus. Two of the CRH peptides are related to the CRH/urotensin-1 (UI) lineage, whereas the other is a urocortin (Ucn) 3 orthologue. The predicted amino acid identity of CRH and UI is 61% but they possess distinct motifs indicative of each peptide, suggesting an early divergence of the two genes. Based on our findings we propose the CRH peptides evolved in at least 3 distinct phases. The first occurring prior to the agnathans gave rise to the CRH/UI-like and Ucn2/3-like paralogous lineages. The second was a partial sub-genomic duplication of the ancestral CRH/UI-like gene, but not the Ucn2/3-like gene, giving rise to the CRH and UI (Ucn) lineages. The third event which resulted in the appearance of Ucn2 and Ucn3 must have occurred after the evolution of the cartilaginous fishes. Interestingly, unlike other vertebrate CRHRs, we were unable to classify our two P. marinus receptors (designated CRHRα and CRHRβ) as either type 1 or type 2, indicating that this split evolved later in vertebrate evolution. A single CRHBP gene was found suggesting that either this gene has not been affected by the vertebrate genome duplications or there have been a series of paralogous gene deletions. This study suggests that P. marinus possess a functional CRH system that differs from that of the gnathostomes and may represent a model for the earliest functioning CRH system in vertebrates.
Collapse
Affiliation(s)
- Matthew J Endsin
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ola Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lori A Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
| |
Collapse
|
30
|
Kollitz EM, Zhang G, Hawkins MB, Whitfield GK, Reif DM, Kullman SW. Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership. PLoS One 2016; 11:e0168278. [PMID: 27942020 PMCID: PMC5152921 DOI: 10.1371/journal.pone.0168278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/28/2016] [Indexed: 01/14/2023] Open
Abstract
The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a by-product of natural selection on the ligand-receptor partnership between the vitamin D receptor and the native VDR ligand: 1α,25-dihydroxyvitamin D3, the biologically active metabolite of vitamin D3.
Collapse
Affiliation(s)
- Erin M. Kollitz
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Guozhu Zhang
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary Beth Hawkins
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - G. Kerr Whitfield
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - David M. Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Seth W. Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
31
|
Abstract
Polyploidy-the increase in the number of whole chromosome sets-is an important evolutionary force in eukaryotes. Polyploidy is well recognized throughout the evolutionary history of plants and animals, where several ancient events have been hypothesized to be drivers of major evolutionary radiations. However, fungi provide a striking contrast: while numerous recent polyploids have been documented, ancient fungal polyploidy is virtually unknown. We present a survey of known fungal polyploids that confirms the absence of ancient fungal polyploidy events. Three hypotheses may explain this finding. First, ancient fungal polyploids are indeed rare, with unique aspects of fungal biology providing similar benefits without genome duplication. Second, fungal polyploids are not successful in the long term, leading to few extant species derived from ancient polyploidy events. Third, ancient fungal polyploids are difficult to detect, causing the real contribution of polyploidy to fungal evolution to be underappreciated. We consider each of these hypotheses in turn and propose that failure to detect ancient events is the most likely reason for the lack of observed ancient fungal polyploids. We examine whether existing data can provide evidence for previously unrecognized ancient fungal polyploidy events but discover that current resources are too limited. We contend that establishing whether unrecognized ancient fungal polyploidy events exist is important to ascertain whether polyploidy has played a key role in the evolution of the extensive complexity and diversity observed in fungi today and, thus, whether polyploidy is a driver of evolutionary diversifications across eukaryotes. Therefore, we conclude by suggesting ways to test the hypothesis that there are unrecognized polyploidy events in the deep evolutionary history of the fungi.
Collapse
|
32
|
Katsu Y, Cziko PA, Chandsawangbhuwana C, Thornton JW, Sato R, Oka K, Takei Y, Baker ME, Iguchi T. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription. Gen Comp Endocrinol 2016; 236:105-114. [PMID: 27432813 DOI: 10.1016/j.ygcen.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan
| | - Paul A Cziko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Joseph W Thornton
- Departments of Ecology and Evolution and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Rui Sato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Koari Oka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, CA, USA
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan; National Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
33
|
Demircan T, İlhan AE, Aytürk N, Yıldırım B, Öztürk G, Keskin İ. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl. Acta Histochem 2016; 118:746-759. [PMID: 27436816 DOI: 10.1016/j.acthis.2016.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues.
Collapse
|
34
|
Gutierrez-Mazariegos J, Nadendla EK, Studer RA, Alvarez S, de Lera AR, Kuraku S, Bourguet W, Schubert M, Laudet V. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150484. [PMID: 27069642 PMCID: PMC4821253 DOI: 10.1098/rsos.150484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Eswar Kumar Nadendla
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Romain A. Studer
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI)—Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Susana Alvarez
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
35
|
Marques CL, Fernández I, Viegas MN, Cox CJ, Martel P, Rosa J, Cancela ML, Laizé V. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci 2016; 73:841-57. [PMID: 26341094 PMCID: PMC11108344 DOI: 10.1007/s00018-015-2024-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/24/2022]
Abstract
BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Michael N Viegas
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo Martel
- Centre for Molecular and Structural Biomedicine (CBME/IBB-LA), University of Algarve, Faro, Portugal
| | - Joana Rosa
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal.
| |
Collapse
|
36
|
Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System. PLoS One 2015; 10:e0144991. [PMID: 26710071 PMCID: PMC4692385 DOI: 10.1371/journal.pone.0144991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute to better understanding of the evolution of the TH system.
Collapse
|
37
|
Doolittle RF. Bioinformatic Characterization of Genes and Proteins Involved in Blood Clotting in Lampreys. J Mol Evol 2015; 81:121-30. [PMID: 26437661 DOI: 10.1007/s00239-015-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Lampreys and hagfish are the earliest diverging of extant vertebrates and are obvious targets for investigating the origins of complex biochemical systems found in mammals. Currently, the simplest approach for such inquiries is to search for the presence of relevant genes in whole genome sequence (WGS) assemblies. Unhappily, in the past a high-quality complete genome sequence has not been available for either lampreys or hagfish, precluding the possibility of proving gene absence. Recently, improved but still incomplete genome assemblies for two species of lamprey have been posted, and, taken together with an extensive collection of short sequences in the NCBI trace archive, they have made it possible to make reliable counts for specific gene families. Particularly, a multi-source tactic has been used to study the lamprey blood clotting system with regard to the presence and absence of genes known to occur in higher vertebrates. As was suggested in earlier studies, lampreys lack genes for coagulation factors VIII and IX, both of which are critical for the "intrinsic" clotting system and responsible for hemophilia in humans. On the other hand, they have three each of genes for factors VII and X, participants in the "extrinsic" clotting system. The strategy of using raw trace sequence "reads" together with partial WGS assemblies for lampreys can be used in studies on the early evolution of other biochemical systems in vertebrates.
Collapse
Affiliation(s)
- Russell F Doolittle
- Departments of Chemistry & Biochemistry and Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0314, USA.
| |
Collapse
|
38
|
Fabian P, Kozmikova I, Kozmik Z, Pantzartzi CN. Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Front Genet 2015; 6:228. [PMID: 26191073 PMCID: PMC4488758 DOI: 10.3389/fgene.2015.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022] Open
Abstract
Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.
Collapse
Affiliation(s)
- Peter Fabian
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| | - Chrysoula N Pantzartzi
- Department of Transcriptional Regulation, Institute of Molecular Genetics Prague, Czech Republic
| |
Collapse
|
39
|
Campo-Paysaa F, Jandzik D, Takio-Ogawa Y, Cattell MV, Neef HC, Langeland JA, Kuratani S, Medeiros DM, Mazan S, Kuraku S, Laudet V, Schubert M. Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum. EvoDevo 2015; 6:18. [PMID: 25984292 PMCID: PMC4432984 DOI: 10.1186/s13227-015-0016-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 01/13/2023] Open
Abstract
Background Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensively studied in jawed vertebrates (that is, gnathostomes) and invertebrate chordates, very little is known about the repertoire and developmental roles of RARs in cyclostomes, which are extant jawless vertebrates. Here, we present the first extensive study of cyclostome RARs focusing on three different lamprey species: the European freshwater lamprey, Lampetra fluviatilis, the sea lamprey, Petromyzon marinus, and the Japanese lamprey, Lethenteron japonicum. Results We identified four rar paralogs (rar1, rar2, rar3, and rar4) in each of the three lamprey species, and phylogenetic analyses indicate a complex evolutionary history of lamprey rar genes including the origin of rar1 and rar4 by lineage-specific duplication after the lamprey-hagfish split. We further assessed their expression patterns during embryonic development by in situ hybridization. The results show that lamprey rar genes are generally characterized by dynamic and highly specific expression domains in different embryonic tissues. In particular, lamprey rar genes exhibit combinatorial expression domains in the anterior central nervous system (CNS) and the pharyngeal region. Conclusions Our results indicate that the genome of lampreys encodes at least four rar genes and suggest that the lamprey rar complement arose from vertebrate-specific whole genome duplications followed by a lamprey-specific duplication event. Moreover, we describe a combinatorial code of lamprey rar expression in both anterior CNS and pharynx resulting from dynamic and highly specific expression patterns during embryonic development. This ‘RAR code’ might function in regionalization and patterning of these two tissues by differentially modulating the expression of downstream effector genes during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0016-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florent Campo-Paysaa
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France ; MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL UK
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA ; Department of Zoology, Comenius University in Bratislava, Mlynska Dolina B-1, 84215 Bratislava, Slovakia
| | - Yoko Takio-Ogawa
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA ; Department of Pediatrics, University of Colorado, Children's Hospital, 13065 East 17th Avenue, Aurora, CO 80045 USA
| | - Haley C Neef
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, Michigan 49008 USA ; Division of Pediatric Gastroenterology, Department of Pediatrics and Communicable Diseases, University of Michigan, C.S. Mott Children's Hospital, 1540 East Hospital Drive SPC 4259, Ann Arbor, Michigan 48109 USA
| | - James A Langeland
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, Michigan 49008 USA
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Ramaley Biology, 1800 Colorado Avenue, Boulder, CO 80309 USA
| | - Sylvie Mazan
- Sorbonne Universités, UPMC Université Paris 06, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France ; CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France
| | - Shigehiro Kuraku
- Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan ; Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France ; CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
40
|
Kollitz EM, Zhang G, Hawkins MB, Whitfield GK, Reif DM, Kullman SW. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates. PLoS One 2015; 10:e0122853. [PMID: 25855982 PMCID: PMC4391915 DOI: 10.1371/journal.pone.0122853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.
Collapse
Affiliation(s)
- Erin M. Kollitz
- Program in Environmental and Molecular Toxicology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Guozhu Zhang
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Mary Beth Hawkins
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - G. Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States of America
| | - David M. Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Seth W. Kullman
- Program in Environmental and Molecular Toxicology, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Martin KJ, Holland PWH. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol Biol Evol 2014; 31:2592-611. [PMID: 24974377 PMCID: PMC4166920 DOI: 10.1093/molbev/msu202] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.
Collapse
Affiliation(s)
- Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
42
|
Luckenbach T, Fischer S, Sturm A. Current advances on ABC drug transporters in fish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:28-52. [PMID: 24858718 DOI: 10.1016/j.cbpc.2014.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/14/2023]
Abstract
Most members of the large ATP-binding cassette (ABC) gene family are transporters involved in substrate translocation across biological membranes. In eukaryotes, ABC proteins functioning as drug transporters are located in the plasma membrane and mediate the cellular efflux of a wide range of organic chemicals, with some transporters also transporting certain metals. As the enhanced expression of ABC drug transporters can confer multidrug resistance (MDR) to cancers and multixenobiotic resistance (MXR) to organisms from polluted habitats, these ABC family members are also referred to as MDR or MXR proteins. In mammals, ABC drug transporters show predominant expression in tissues involved in excretion or constituting internal or external body boundaries, where they facilitate the excretion of chemicals and their metabolites, and limit chemical uptake and penetration into "sanctuary" sites of the body. Available knowledge about ABC proteins is still limited in teleost fish, a large vertebrate group of high ecological and economic importance. Using transport activity measurements and immunochemical approaches, early studies demonstrated similarities in the tissue distribution of ABC drug transporters between teleosts and mammals, suggesting conserved roles of the transporters in the biochemical defence against toxicants. Recently, the availability of teleost genome assemblies has stimulated studies of the ABC family in this taxon. This review summarises the current knowledge regarding the genetics, functional properties, physiological function, and ecotoxicological relevance of teleostean ABC transporters. The available literature is reviewed with emphasis on recent studies addressing the tissue distribution, substrate spectrum, regulation, physiological function and phylogenetic origin of teleostean ABC transporters.
Collapse
Affiliation(s)
- Till Luckenbach
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Stephan Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Department of Environmental Systems Sciences, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Armin Sturm
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
43
|
Manzon LA, Youson JH, Holzer G, Staiano L, Laudet V, Manzon RG. Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon marinus) metamorphosis. Gen Comp Endocrinol 2014; 204:211-22. [PMID: 24907629 DOI: 10.1016/j.ygcen.2014.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR expression data suggests that THs, either directly or via a metabolite, may function to positively modulate changes at the tissue or organ levels during lamprey metamorphosis. Collectively the results presented herein support the hypothesis that THs have a dual functional role in the lamprey life cycle whereby high levels promote larval feeding, growth and lipogenesis and low levels promote metamorphosis.
Collapse
Affiliation(s)
- Lori A Manzon
- Department of Zoology and Division of Life Sciences, University of Toronto, Toronto, ON M1A 1C4, Canada
| | - John H Youson
- Department of Zoology and Division of Life Sciences, University of Toronto, Toronto, ON M1A 1C4, Canada
| | - Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Leopoldo Staiano
- Cellular and Developmental Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, École Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
44
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
45
|
|
46
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
47
|
Cañestro C, Albalat R, Irimia M, Garcia-Fernàndez J. Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 2013; 24:83-94. [DOI: 10.1016/j.semcdb.2012.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 02/06/2023]
|
48
|
|
49
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
50
|
Klöpper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 2012; 10:71. [PMID: 22873208 PMCID: PMC3425129 DOI: 10.1186/1741-7007-10-71] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
Collapse
Affiliation(s)
- Tobias H Klöpper
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|