1
|
Fan Q, Hadla M, Peterson Z, Nelson G, Ye H, Wang X, Mardirossian JM, Harris PC, Alper SL, Prakash YS, Beyder A, Torres VE, Chebib FT. Activation of PIEZO1 Attenuates Kidney Cystogenesis In Vitro and Ex Vivo. KIDNEY360 2024; 5:1601-1612. [PMID: 39356563 DOI: 10.34067/kid.0000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Key Points
PIEZO1 activation reduces cystogenesis: Yoda1 activates PIEZO1, raising calcium and lowering cAMP, reducing cyst growth in autosomal dominant polycystic kidney disease models.Context-dependent role of PIEZO1: PIEZO1 knockout in mice with or without polycystic kidneys does not affect cyst formation, suggesting redundancy in mechanosensitive pathways.Therapeutic potential: Findings support PIEZO1 activation as a part of combination therapy to slow cyst growth in autosomal dominant polycystic kidney disease, needing more in vivo studies.
Background
The disruption of calcium signaling associated with polycystin deficiency is a key factor in abnormal epithelial growth in autosomal dominant polycystic kidney disease. Calcium homeostasis can be influenced by mechanotransduction. The mechanosensitive cation channel PIEZO1 has been implicated in sensing intrarenal pressure and regulating urinary osmoregulation, but its role in kidney cystogenesis is unclear.
Methods
We hypothesized that altered mechanotransduction contributes to cystogenesis in autosomal dominant polycystic kidney disease and that activation of mechanosensitive cation channels could be a therapeutic strategy.
Results
We demonstrate that Yoda1, a PIEZO1 activator, increases intracellular calcium and reduces forskolin-induced cAMP levels in mouse inner medullary collecting duct (mIMCD3) cells. Notably, knockout of polycystin-2 attenuated the efficacy of Yoda1 in reducing cAMP levels in mIMCD3 cells. Yoda1 also reduced forskolin-induced mIMCD3 cyst surface area in vitro and cystic index in mouse metanephros ex vivo in a dose-dependent manner. However, collecting duct–specific PIEZO1 knockout neither induced cystogenesis in wild-type mice nor altered cystogenesis in the Pkd1RC/RC mouse model.
Conclusions
These findings support the potential role of PIEZO1 agonists in mitigating cystogenesis by increasing intracellular calcium and reducing cAMP levels, but the unaltered in vivo cystic phenotype after PIEZO1 knockout in the collecting duct suggests possible redundancy in mechanotransductive pathways.
Collapse
Affiliation(s)
- Qingfeng Fan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mohamad Hadla
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Zack Peterson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Grace Nelson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular biology, Mayo Clinic, Rochester, Minnesota
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
2
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Fan Q, Hadla M, Peterson Z, Nelson G, Ye H, Wang X, Mardirossian JM, Harris PC, Alper SL, Prakash YS, Beyder A, Torres VE, Chebib FT. Activation of Piezo1 Inhibits Kidney Cystogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593717. [PMID: 38766249 PMCID: PMC11101129 DOI: 10.1101/2024.05.11.593717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The disruption of calcium signaling associated with polycystin deficiency has been proposed as the primary event underlying the increased abnormally patterned epithelial cell growth characteristic of Polycystic Kidney Disease. Calcium can be regulated through mechanotransduction, and the mechanosensitive cation channel Piezo1 has been implicated in sensing of intrarenal pressure and in urinary osmoregulation. However, a possible role for PIEZO1 in kidney cystogenesis remains undefined. We hypothesized that cystogenesis in ADPKD reflects altered mechanotransduction, suggesting activation of mechanosensitive cation channels as a therapeutic strategy for ADPKD. Here, we show that Yoda-1 activation of PIEZO1 increases intracellular Ca 2+ and reduces forskolin-induced cAMP levels in mIMCD3 cells. Yoda-1 reduced forskolin-induced IMCD cyst surface area in vitro and in mouse metanephros ex vivo in a dose-dependent manner. Knockout of polycystin-2 dampened the efficacy of PIEZO1 activation in reducing both cAMP levels and cyst surface area in IMCD3 cells. However, collecting duct-specific Piezo1 knockout neither induced cystogenesis in wild-type mice nor affected cystogenesis in the Pkd1 RC/RC model of ADPKD. Our study suggests that polycystin-2 and PIEZO1 play a role in mechanotransduction during cystogenesis in vitro , and ex vivo , but that in vivo cyst expansion may require inactivation or repression of additional suppressors of cystogenesis and/or growth. Our study provides a preliminary proof of concept for PIEZO1 activation as a possible component of combination chemotherapy to retard or halt cystogenesis and/or cyst growth.
Collapse
|
4
|
Mbiakop UC, Jaggar JH. Vascular polycystin proteins in health and disease. Microcirculation 2024; 31:e12834. [PMID: 37823335 PMCID: PMC11009377 DOI: 10.1111/micc.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
PKD1 (polycystin 1) and PKD2 (polycystin 2) are expressed in a variety of different cell types, including arterial smooth muscle and endothelial cells. PKD1 is a transmembrane domain protein with a large extracellular N-terminus that is proposed to act as a mechanosensor and receptor. PKD2 is a member of the transient receptor potential (TRP) channel superfamily which is also termed TRPP1. Mutations in the genes which encode PKD1 and PKD2 lead to autosomal dominant polycystic kidney disease (ADPKD). ADPKD is one of the most prevalent monogenic disorders in humans and is associated with extrarenal and vascular complications, including hypertension. Recent studies have uncovered mechanisms of activation and physiological functions of PKD1 and PKD2 in arterial smooth muscle and endothelial cells. It has also been found that PKD function is altered in the vasculature during ADPKD and hypertension. We will summarize this work and discuss future possibilities for this area of research.
Collapse
Affiliation(s)
- Ulrich C. Mbiakop
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
5
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
6
|
Harling LC, Zafar MA, Ziganshin B, Elefteriades JA. Gene Commonality in Arterial Circuits Throughout the Body. AORTA (STAMFORD, CONN.) 2024; 12:8-12. [PMID: 39532283 PMCID: PMC11606663 DOI: 10.1055/s-0044-1791667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024]
Abstract
The common genetic underpinnings of thoracic aortic aneurysms and aneurysms and dissections of several other major arterial circuits have been described in the literature. These include thoracic and abdominal aortic aneurysms, thoracic and intracranial aneurysms, thoracic aortic aneurysms, and spontaneous coronary artery dissections. In this study, we provide a unified report of these observations and investigate any genetic commonality between the above four arterial circulations.
Collapse
Affiliation(s)
- Lisa C. Harling
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
- Otto von Guericke University Medical School, Magdeburg, Germany
| | - Mohammad A. Zafar
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| | - Bulat Ziganshin
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| | - John A. Elefteriades
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| |
Collapse
|
7
|
Tabata T, Masumura Y, Higo S, Kunimatsu S, Kameda S, Inoue H, Okuno S, Ogawa S, Takashima S, Watanabe M, Miyagawa S, Hikoso S, Sakata Y. Multiplexed measurement of cell type-specific calcium kinetics using high-content image analysis combined with targeted gene disruption. Biochem Biophys Res Commun 2022; 637:40-49. [PMID: 36375249 DOI: 10.1016/j.bbrc.2022.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Kinetic analysis of intracellular calcium (Ca2+) in cardiomyocytes is commonly used to determine the pathogenicity of genetic mutations identified in patients with dilated cardiomyopathy (DCM). Conventional methods for measuring Ca2+ kinetics target whole-well cultured cardiomyocytes and therefore lack information concerning individual cells. Results are also affected by heterogeneity in cell populations. Here, we developed an analytical method using CRISPR/Cas9 genome editing combined with high-content image analysis (HCIA) that links cell-by-cell Ca2+ kinetics and immunofluorescence images in thousands of cardiomyocytes at a time. After transfecting cultured mouse cardiomyocytes that constitutively express Cas9 with gRNAs, we detected a prolonged action potential duration specifically in Serca2a-depleted ventricular cardiomyocytes in mixed culture. To determine the phenotypic effect of a frameshift mutation in PKD1 in a patient with DCM, we introduced the mutation into Cas9-expressing cardiomyocytes by gRNA transfection and found that it decreases the expression of PKD1-encoded PC1 protein that co-localizes specifically with Serca2a and L-type voltage-gated calcium channels. We also detected the suppression of Ca2+ amplitude in ventricular cardiomyocytes with decreased PC1 expression in mixed culture. Our HCIA method provides comprehensive kinetic and static information on individual cardiomyocytes and allows the pathogenicity of mutations to be determined rapidly.
Collapse
Affiliation(s)
- Tomoka Tabata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Suzuka Kunimatsu
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoshi Kameda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Inoue
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shota Okuno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shou Ogawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
TRPP2 ion channels: The roles in various subcellular locations. Biochimie 2022; 201:116-127. [PMID: 35760123 DOI: 10.1016/j.biochi.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
TRPP2 (PC2, PKD2 or Polycytin-2), encoded by PKD2 gene, belongs to the nonselective cation channel TRP family. Recently, the three-dimensional structure of TRPP2 was constructed. TRPP2 mainly functions in three subcellular compartments: endoplasmic reticulum, plasma membrane and primary cilia. TRPP2 can act as a calcium-activated intracellular calcium release channel on the endoplasmic reticulum. TRPP2 also interacts with other Ca2+ release channels to regulate calcium release, like IP3R and RyR2. TRPP2 acts as an ion channel regulated by epidermal growth factor through activation of downstream factors in the plasma membrane. TRPP2 binding to TRPC1 in the plasma membrane or endoplasmic reticulum is associated with mechanosensitivity. In cilium, TRPP2 was found to combine with PKD1 and TRPV4 to form a complex related to mechanosensitivity. Because TRPP2 is involved in regulating intracellular ion concentration, TRPP2 mutations often lead to autosomal dominant polycystic kidney disease, which may also be associated with cardiovascular disease. In this paper, we review the molecular structure of TRPP2, the subcellular localization of TRPP2, the related functions and mechanisms of TRPP2 at different sites, and the diseases related to TRPP2.
Collapse
|
9
|
Park HC, Oh YK. Practical Issues in the Management of Polycystic Kidney Disease: Blood Pressure and Water Balance. Electrolyte Blood Press 2022; 20:10-16. [PMID: 36451711 PMCID: PMC9685325 DOI: 10.5049/ebp.2022.20.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common hereditary renal disease affecting more than 13 million people worldwide. Renal function deteriorates as the cysts in both kidneys increase in number and size, which eventually results in end-stage kidney failure. Until recently, conservative management for chronic kidney disease such as blood pressure control, low sodium diet, adequate water intake, and weight control were known for the only treatment of polycystic kidney disease. However, the introduction of disease-modifying drug has led to the new paradigm shift in the management of polycystic kidney disease. Tolvaptan, the vasopressin V2 receptor antagonist, has been introduced to the patients with large kidneys since it can inhibit cyclic adenosine monophosphate, attenuates cyst growth, and delays renal failure. This article reviews the two important practical issues in the management of polycystic kidney disease: blood pressure and water balance. Firstly, the article will review the pathogenesis of high blood pressure in polycystic kidney disease and will demonstrate the current up-to-date management plan for blood pressure control. Secondly, this article will explain the mechanism of Tolvaptan on the treatment of polycystic kidney disease and its possible adverse effect on water and sodium balance.
Collapse
Affiliation(s)
- Hayne Cho Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
10
|
Zhang JQJ, Saravanabavan S, Cheng KM, Raghubanshi A, Chandra AN, Munt A, Rayner B, Zhang Y, Chau K, Wong ATY, Rangan GK. Long-term dietary nitrate supplementation does not reduce renal cyst growth in experimental autosomal dominant polycystic kidney disease. PLoS One 2021; 16:e0248400. [PMID: 33886581 PMCID: PMC8061912 DOI: 10.1371/journal.pone.0248400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Augmentation of endogenous nitric oxide (NO) synthesis, either by the classical L-arginine-NO synthase pathway, or the recently discovered entero-salivary nitrate-nitrite-NO system, may slow the progression of autosomal dominant polycystic kidney disease (ADPKD). To test this hypothesis, the expression of NO in human ADPKD cell lines (WT 9–7, WT 9–12), and the effect of L-arginine on an in vitro model of three-dimensional cyst growth using MDCK cells, was examined. In addition, groups of homozygous Pkd1RC/RC mice (a hypomorphic genetic ortholog of ADPKD) received either low, moderate or high dose sodium nitrate (0.1, 1 or 10 mmol/kg/day), or sodium chloride (vehicle; 10 mmol/kg/day), supplemented drinking water from postnatal month 1 to 9 (n = 12 per group). In vitro, intracellular NO, as assessed by DAF-2/DA fluorescence, was reduced by >70% in human ADPKD cell lines, and L-arginine and the NO donor, sodium nitroprusside, both attenuated in vitro cyst growth by up to 18%. In contrast, in Pkd1RC/RC mice, sodium nitrate supplementation increased serum nitrate/nitrite levels by ~25-fold in the high dose group (P<0.001), but kidney enlargement and percentage cyst area was not altered, regardless of dose. In conclusion, L-arginine has mild direct efficacy on reducing renal cyst growth in vitro, whereas long-term sodium nitrate supplementation was ineffective in vivo. These data suggest that the bioconversion of dietary nitrate to NO by the entero-salivary pathway may not be sufficient to influence the progression of renal cyst growth in ADPKD.
Collapse
Affiliation(s)
- Jennifer Q. J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Kai Man Cheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Benjamin Rayner
- Heart Research Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Yunjia Zhang
- Heart Research Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrina Chau
- Department of Renal Medicine and School of Medicine, Western Sydney University at Blacktown Hospital, Sydney, New South Wales, Australia
| | - Annette T. Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
11
|
Cardiac Involvement in Autosomal Dominant Polycystic Kidney Disease. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disorders are the main complication in autosomal dominant polycystic kidney disease (ADPKD). contributing to both morbidity and mortality. This review considers clinical studies unveiling cardiovascular features in patients with ADPKD. Additionally, it focuses on basic science studies addressing the dysfunction of the polycystin proteins located in the cardiovascular system as a contributing factor to cardiovascular abnormalities. In particular, the effects of polycystin proteins’ deficiency on the cardiomyocyte function have been considered.
Collapse
|
12
|
Kim K, Hong KS. Transient receptor potential channel-dependent myogenic responsiveness in small-sized resistance arteries. J Exerc Rehabil 2021; 17:4-10. [PMID: 33728282 PMCID: PMC7939990 DOI: 10.12965/jer.2040836.418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/22/2022] Open
Abstract
It is well documented that the inherent ability of small arteries and arterioles to regulate intraluminal diameter in response to alterations in intravascular pressure determines peripheral vascular resistance and blood flow (termed myogenic response or pressure-induced vasoconstriction/dilation). This autoregulatory property of resistance arteries is primarily originated from mechanosensitive vascular smooth muscle cells (VSMCs). There are diverse biological apparatuses in the plasma membrane of VSMCs that sense mechanical stimuli and generate intracellular signals for the contractility of VSMCs. Although the roles of transient receptor potential (TRP) channels in pressure-induced vasoconstriction are not fully understood to date, TRP channels that are directly activated by mechanical stimuli (e.g., stretch of VSMCs) or indirectly evoked by intracellular molecules (e.g., inositol trisphosphate) provide the major sources of Ca2+ (e.g., Ca2+ influx or release from the sarcoplasmic reticulum) and in turn, evoke vascular reactivity. This review sought to summarize mounting evidence over several decades that the activation of TRP canonical, TRP melastatin, TRP vanilloid, and TRP polycystin channels contributes to myogenic vasoconstriction.
Collapse
Affiliation(s)
- Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul, Korea
| |
Collapse
|
13
|
Shukoor SS, Vaughan LE, Edwards ME, Lavu S, Kline TL, Senum SR, Mkhaimer Y, Zaatari G, Irazabal MV, Neal R, Hogan MC, Zoghby ZM, Harris PC, Torres VE, Chebib FT. Characteristics of Patients with End-Stage Kidney Disease in ADPKD. Kidney Int Rep 2020; 6:755-767. [PMID: 33732990 PMCID: PMC7938061 DOI: 10.1016/j.ekir.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Cystic expansion damaging the parenchyma is thought to lead to end-stage kidney disease (ESKD) in autosomal dominant polycystic kidney disease (ADPKD). Here we characterized genotypic and phenotypic attributes of ADPKD at time of ESKD. Methods This is a retrospective cross-sectional study of patients with ADPKD with ESKD evaluated at Mayo Clinic with available abdominal computed tomography (CT) or magnetic resonance imaging (MRI). Kidney volumes were measured (total kidney volume adjusted for height [HtTKV]), Mayo Image Class (MIC) calculated, ADPKD genotype determined, and clinical and laboratory features obtained from medical records. Results Differences in HtTKV at ESKD were associated with patient age and sex; older patients and women had smaller HtTKV at ESKD. HtTKV at ESKD was observed to be 12.3% smaller with each decade of age (P < 0.01); but significant only in women (17.8%, P < 0.01; men 6.9%, P = 0.06). Patients with onset of ESKD at <47, 47–61, or >61 years had different characteristics, with a shift from youngest to oldest in male to female enrichment, MIC from 1D/1E to 1B/1C, likely fully penetrant PKD1 mutations from 95% to 42%, and presence of macrovascular disease from 8% to 40%. Macrovascular disease was associated with smaller kidneys in female patients. Conclusion HtTKV at ESKD was smaller with advancing age in patients with ADPKD, particularly in women. These novel findings provide insight into possible underlying mechanisms leading to ESKD, which differ between younger and older individuals. Cystic growth is the predominant mechanism in younger patients with ESKD, whereas aging-related factors, including vascular disease, becomes potentially important as patients age.
Collapse
Affiliation(s)
- Shehbaz S Shukoor
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Lisa E Vaughan
- Division of Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marie E Edwards
- Division of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sravanthi Lavu
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Timothy L Kline
- Division of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Yaman Mkhaimer
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ghaith Zaatari
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Reem Neal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ziad M Zoghby
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Franchi F, Peterson KM, Quandt K, Domnick D, Kline TL, Olthoff M, Parvizi M, Tolosa EJ, Torres VE, Harris PC, Fernandez-Zapico ME, Rodriguez-Porcel MG. Impaired Hedgehog-Gli1 Pathway Activity Underlies the Vascular Phenotype of Polycystic Kidney Disease. Hypertension 2020; 76:1889-1897. [PMID: 33012205 DOI: 10.1161/hypertensionaha.120.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polycystic kidney disease (PKD) has been linked to abnormal structure/function of ciliary proteins, leading to renal dysfunction. Recently, attention has been focused in the significant vascular abnormalities associated with PKD, but the mechanisms underlying this phenomenon remain elusive. Here, we seek to define the molecular events regulating the angiogenic imbalance observed in PKD. Using micro computed tomography (n=7) and protein expression analysis (n=5), we assessed the vascular density and the angiogenic profile of noncystic organs in a well-established PKD rat model (Polycystic Kidney-PCK rat). Heart and lungs of PCK rats have reduced vascular density and decreased expression of angiogenic factors compared with wild type. Similarly, PCK-vascular smooth muscle cells (VSMCs; n=4) exhibited lower levels of vascular markers. Then, using small interfering RNA (n=4), we determined the role of the ciliary protein fibrocystin in wild type-VSMCs, a critical component/regulator of vascular structure and function. Reduction of fibrocystin in wild type-VSMCs (n=4) led to an abnormal angiogenic potential similar to that observed in PCK-VSMCs. Furthermore, we investigated the involvement of the hedgehog signaling, a pathway closely linked to the primary cilium and associated with vascular development, in PKD. Mechanistically, we demonstrated that impairment of the hedgehog signaling mediates, in part, this abnormal angiogenic phenotype. Lastly, overexpression of Gli1 in PCK-VSMCs (n=4) restored the expression levels of proangiogenic molecules. Our data support a critical role of fibrocystin in the abnormal vascular phenotype of PKD and indicate that a dysregulation of hedgehog may be responsible, at least in part, for these vascular deficiencies.
Collapse
Affiliation(s)
- Federico Franchi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Karen M Peterson
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Katherine Quandt
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - David Domnick
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Timothy L Kline
- Department of Radiology (T.L.K.), Mayo Clinic, Rochester, MN
| | - Michaela Olthoff
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Mojtaba Parvizi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Vicente E Torres
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Peter C Harris
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Martin G Rodriguez-Porcel
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
15
|
Zhang J, Liu F, He YB, Zhang W, Ma WR, Xing J, Wang LX. Polycystin-1 Downregulation Induced Vascular Smooth Muscle Cells Phenotypic Alteration and Extracellular Matrix Remodeling in Thoracic Aortic Dissection. Front Physiol 2020; 11:548055. [PMID: 33071810 PMCID: PMC7541897 DOI: 10.3389/fphys.2020.548055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Polycystin-1 (PC-1) is a protein encoded by the gene of polycystic kidney disease-1 (PKD-1). This study was designed to investigate the regulatory mechanisms of PC-1 on phenotypes of aortic vascular smooth muscle cells (VSMCs) and functions of extracellular matrix (ECM) in thoracic aortic dissection (TAD). Methods Aortic tissues from patients with TAD and healthy controls were collected, primary aortic VSMCs were also isolated. Immunohistochemistry, immunofluorescence, and immunocytochemistry was used to visualize the target proteins. Western blot and RT-qPCR were used to examine the expression of mRNA and proteins. Lentivirus infection was used to downregulate or overexpress PC-1. Results Compared with the control group, expression of PC-1 and the contractile phenotypic markers of VSMCs were decreased in TAD group, whereas expression of the synthetic markers of VSMCs, matrix metalloproteinase (MMP)-2, collagen I and collagen III were increased. The phosphorylation of mTOR, S6K and S6 were also elevated in TAD group. PC-1 downregulation of aortic VSMCs inhibited the expression of the contractile markers, but elevated the expression of the synthetic markers, MMP-2, collagen I and collagen III compared with the control group. The phosphorylation of mTOR, S6K and S6 were also increased in PKD-1-knockdown VSMCs. PC-1 upregulation reversed all these expression characteristics in aortic VSMCs. Furthermore, rapamycin treatment to PKD-1-knockdown VSMCs inhibited the effects caused by PC-1 downregulation. Conclusion Our study revealed PC-1 downregulation induces aortic VSMCs phenotypic alteration and ECM remodeling via activation of mTOR/S6K/S6 signaling pathway. Downregulation of PC-1 might be a potential mechanism for the development and progression of TAD. Rapamycin might be a potential inhibitor to attenuate the development and progression of TAD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Liu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Bin He
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Surgery Base, Huashan Hospital North, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Rui Ma
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Xing
- Department of Biobank, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Xin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Vascular Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Guo J, Zhao R, Zhou M, Li J, Yao X, Du J, Chen J, Shen B. TRPP2 and STIM1 form a microdomain to regulate store-operated Ca 2+ entry and blood vessel tone. Cell Commun Signal 2020; 18:138. [PMID: 32867798 PMCID: PMC7457527 DOI: 10.1186/s12964-020-00560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Polycystin-2 (TRPP2) is a Ca2+ permeable nonselective cationic channel essential for maintaining physiological function in live cells. Stromal interaction molecule 1 (STIM1) is an important Ca2+ sensor in store-operated Ca2+ entry (SOCE). Both TRPP2 and STIM1 are expressed in endoplasmic reticular membrane and participate in Ca2+ signaling, suggesting a physical interaction and functional synergism. Methods We performed co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer assay to identify the interactions of TRPP2 and STIM1 in transfected HEK293 cells and native vascular smooth muscle cells (VSMCs). The function of the TRPP2-STIM1 complex in thapsigargin (TG) or adenosine triphosphate (ATP)-induced SOCE was explored using specific small interfering RNA (siRNA). Further, we created TRPP2 conditional knockout (CKO) mouse to investigate the functional role of TRPP2 in agonist-induced vessel contraction. Results TRPP2 and STIM1 form a complex in transfected HEK293 cells and native VSMCs. Genetic manipulations with TRPP2 siRNA, dominant negative TRPP2 or STIM1 siRNA significantly suppressed ATP and TG-induced intracellular Ca2+ release and SOCE in HEK293 cells. Inositol triphosphate receptor inhibitor 2-aminoethyl diphenylborinate (2APB) abolished ATP-induced Ca2+ release and SOCE in HEK293 cells. In addition, TRPP2 and STIM1 knockdown significantly inhibited ATP- and TG-induced STIM1 puncta formation and SOCE in VSMCs. Importantly, knockdown of TRPP2 and STIM1 or conditional knockout TRPP2 markedly suppressed agonist-induced mouse aorta contraction. Conclusions Our data indicate that TRPP2 and STIM1 are physically associated and form a functional complex to regulate agonist-induced intracellular Ca2+ mobilization, SOCE and blood vessel tone. Video abstract
Collapse
Affiliation(s)
- Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Muyao Zhou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences the Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiexia Chen
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
17
|
Kuo IY, Chapman AB. Polycystins, ADPKD, and Cardiovascular Disease. Kidney Int Rep 2019; 5:396-406. [PMID: 32274448 PMCID: PMC7136326 DOI: 10.1016/j.ekir.2019.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disorders are the most common cause of mortality in autosomal dominant polycystic kidney disease (ADPKD). This review considers recent clinical and basic science studies that address the contributing factors of cardiovascular dysfunction in ADPKD. In particular, attention is placed on how dysfunction of the polycystin proteins located in the cardiovascular system contributes to extrarenal manifestations of ADPKD.
Collapse
Affiliation(s)
- Ivana Y Kuo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Arlene B Chapman
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Sang D, Bai S, Yin S, Jiang S, Ye L, Hou W, Yao Y, Wang H, Shen Y, Shen B, Du J. Role of TRPP2 in mouse airway smooth muscle tension and respiration. Am J Physiol Lung Cell Mol Physiol 2019; 317:L466-L474. [PMID: 31411061 DOI: 10.1152/ajplung.00513.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transient receptor potential polycystin-2 (TRPP2) is encoded by the Pkd2 gene, and mutation of this gene can cause autosomal dominant polycystic kidney disease (ADPKD). Some patients with ADPKD experience extrarenal manifestations, including radiologic and clinical bronchiectasis. We hypothesized that TRPP2 may regulate airway smooth muscle (ASM) tension. Thus, we used smooth muscle-Pkd2 conditional knockout (Pkd2SM-CKO) mice to investigate whether TRPP2 regulated ASM tension and whether TRPP2 deficiency contributed to bronchiectasis associated with ADPKD. Compared with wild-type mice, Pkd2SM-CKO mice breathed more shallowly and faster, and their cross-sectional area ratio of bronchi to accompanying pulmonary arteries was higher, suggesting that TRPP2 may regulate ASM tension and contribute to the occurrence of bronchiectasis in ADPKD. In a bioassay examining isolated tracheal ring tension, no significant difference was found for high-potassium-induced depolarization of the ASM between the two groups, indicating that TRPP2 does not regulate depolarization-induced ASM contraction. By contrast, carbachol-induced contraction of the ASM derived from Pkd2SM-CKO mice was significantly reduced compared with that in wild-type mice. In addition, relaxation of the carbachol-precontracted ASM by isoprenaline, a β-adrenergic receptor agonist that acts through the cAMP/adenylyl cyclase pathway, was also significantly attenuated in Pkd2SM-CKO mice compared with that in wild-type mice. Thus, TRPP2 deficiency suppressed both contraction and relaxation of the ASM. These results provide a potential target for regulating ASM tension and for developing therapeutic alternatives for some ADPKD complications of the respiratory system or for independent respiratory disease, especially bronchiectasis.
Collapse
Affiliation(s)
- Dacheng Sang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Orthopedic Surgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sheng Yin
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Sen Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Neurosurgery, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Li Ye
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenxuan Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanheng Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Haoran Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yonggang Shen
- Nursing Faculty, Anhui Health College, Chizhou, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Bouleti C, Flamant M, Escoubet B, Arnoult F, Milleron O, Vidal-Petiot E, Langeois M, Ou P, Vrtovsnik F, Jondeau G. Risk of Ascending Aortic Aneurysm in Patients With Autosomal Dominant Polycystic Kidney Disease. Am J Cardiol 2019; 123:482-488. [PMID: 30477801 DOI: 10.1016/j.amjcard.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022]
Abstract
In recent years, simple renal cysts have been associated with an increased risk of aortic aneurysms. There is little data regarding aortic dilation in patients with autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to compare Sinuses of Valsalva (SoV) and tubular ascending aorta diameters in ADPKD patients with matched controls. From 2008 to 2016, 61 consecutive ADPKD patients who had an echocardiogram performed in our institution were matched 1:1 with controls for sex, age, blood pressure, and β-blocker therapy use. SoV and tubular ascending aorta were measured at end-diastole, using the leading-edge to leading-edge convention. Paired t Tests were used for quantitative variables and McNemar-tests for qualitative variables. The mean age of patients was 56 ± 12 years, 54% were men, 38% received β-blockers, and mean systolic and diastolic BP were 137 ± 25 and 78 ± 19 mm Hg. SoV diameters were significantly larger in ADPKD patients than in controls (36.4 ± 4.1 vs 34.0 ± 3.7 mm, p <0.0001). The Z-scores (normalized for sex, age, and body surface area) were significantly higher in ADPKD patients, both for SoV and tubular ascending aorta. Moreover, aortic aneurysms, as defined by a Z score >2 standard deviations, were present in 27 ADPKD patients (44%) versus 9 controls (15%, p <0.001). In conclusion, there is an increased prevalence of aortic aneurysms in ADPKD patients as compared with controls matched for common confounding factors for aortic dilation.
Collapse
Affiliation(s)
- Claire Bouleti
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France.
| | - Martin Flamant
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1149 Bichat Hospital, Paris, France
| | - Brigitte Escoubet
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1138 Bichat Hospital, Paris, France
| | - Florence Arnoult
- DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Olivier Milleron
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France
| | - Emmanuelle Vidal-Petiot
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; INSERM U1149 Bichat Hospital, Paris, France
| | - Maud Langeois
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Phalla Ou
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - François Vrtovsnik
- Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1149 Bichat Hospital, Paris, France; Department of Nephrology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France
| | - Guillaume Jondeau
- Department of Cardiology, Centre de Référence pour le syndrome de Marfan et apparentés, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France; Paris-Diderot University, Sorbonne Paris Cité, Paris, France; DHU Fire, Paris-Diderot University, France; INSERM U1148 Bichat Hospital, Paris, France
| |
Collapse
|
20
|
Suwa Y, Higo S, Nakamoto K, Sera F, Kunimatsu S, Masumura Y, Kanzaki M, Mizote I, Mizuno H, Fujio Y, Hikoso S, Sakata Y. Old-Age Onset Progressive Cardiac Contractile Dysfunction in a Patient with Polycystic Kidney Disease Harboring a PKD1 Frameshift Mutation. Int Heart J 2019; 60:220-225. [DOI: 10.1536/ihj.18-184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yoshinobu Suwa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shuichiro Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine
| | - Kei Nakamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Fusako Sera
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Suzuka Kunimatsu
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine
| | - Yuki Masumura
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Machiko Kanzaki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Isamu Mizote
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Hiroya Mizuno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Osaka University Graduate School of Pharmaceutical Sciences
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| |
Collapse
|
21
|
The Roles of Primary Cilia in Cardiovascular Diseases. Cells 2018; 7:cells7120233. [PMID: 30486394 PMCID: PMC6315816 DOI: 10.3390/cells7120233] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are microtubule-based organelles found in most mammalian cell types. Cilia act as sensory organelles that transmit extracellular clues into intracellular signals for molecular and cellular responses. Biochemical and molecular defects in primary cilia are associated with a wide range of diseases, termed ciliopathies, with phenotypes ranging from polycystic kidney disease, liver disorders, mental retardation, and obesity to cardiovascular diseases. Primary cilia in vascular endothelia protrude into the lumen of blood vessels and function as molecular switches for calcium (Ca2+) and nitric oxide (NO) signaling. As mechanosensory organelles, endothelial cilia are involved in blood flow sensing. Dysfunction in endothelial cilia contributes to aberrant fluid-sensing and thus results in vascular disorders, including hypertension, aneurysm, and atherosclerosis. This review focuses on the most recent findings on the roles of endothelial primary cilia within vascular biology and alludes to the possibility of primary cilium as a therapeutic target for cardiovascular disorders.
Collapse
|
22
|
Young-Adult Polycystic Kidney Disease is Associated with Major Cardiovascular Complications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050903. [PMID: 29751520 PMCID: PMC5981942 DOI: 10.3390/ijerph15050903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 12/04/2022]
Abstract
Background: Patients with polycystic kidney disease (PKD) might have a risk of cardiovascular diseases because several cardiovascular risk factors are occasionally associated with PKD patients. Data on the association between PKD and the risk of cardiovascular events, including acute coronary syndrome (ACS), stroke, and congestive heart failure (CHF), are scant. Methods: Patients aged ≥20 years who were newly diagnosed with PKD (International Classification of Diseases, Ninth Revision, Clinical Modification codes 753.12 and 753.13) between 2000 and 2011 were selected as a PKD cohort (N = 5157). The association between PKD and cardiovascular events was analyzed. Results: We randomly selected a comparison cohort of people without PKD, who were frequency-matched by sex, age, and index date of diagnosis. At the end of 2011, the PKD cohort had a 1.40-fold greater incidence of ACS compared with the comparison cohort (8.59 vs. 6.17 per 1000 person-years), in addition to a 1.40-fold greater incidence of stroke, a 1.49-fold greater incidence of CHF, and a 1.64-fold greater incidence of mortality. Conclusions: This retrospective cohort study shows that patients with PKD have an increased risk of cardiovascular events including ACS, stroke, and CHF as well as mortality, particularly in younger patients. Early identification is necessary to attenuate the risk of cardiovascular complications in patients with PKD.
Collapse
|
23
|
The functions of TRPP2 in the vascular system. Acta Pharmacol Sin 2016; 37:13-8. [PMID: 26725733 DOI: 10.1038/aps.2015.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
TRPP2 (polycystin-2, PC2 or PKD2), encoded by the PKD2 gene, is a non-selective cation channel with a large single channel conductance and high Ca(2+) permeability. In cell membrane, TRPP2, along with polycystin-1, TRPV4 and TRPC1, functions as a mechanotransduction channel. In the endoplasmic reticulum, TRPP2 modulates intracellular Ca(2+) release associated with IP3 receptors and the ryanodine receptors. Noteworthily, TRPP2 is widely expressed in vascular endothelial and smooth muscle cells of all major vascular beds, and contributes to the regulation of vessel function. The mutation of the PKD2 gene is a major cause of autosomal dominant polycystic kidney disease (ADPKD), which is not only a common genetic disease of the kidney but also a systemic disorder associated with abnormalities in the vasculature; cardiovascular complications are the leading cause of mortality and morbidity in ADPKD patients. This review provides an overview of the current knowledge regarding the TRPP2 protein and its possible role in cardiovascular function and related diseases.
Collapse
|
24
|
Piperi C, Basdra EK. Polycystins and mechanotransduction: From physiology to disease. World J Exp Med 2015; 5:200-205. [PMID: 26618106 PMCID: PMC4655249 DOI: 10.5493/wjem.v5.i4.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Polycystins are key mechanosensor proteins able to respond to mechanical forces of external or internal origin. They are widely expressed in primary cilium and plasma membrane of several cell types including kidney, vascular endothelial and smooth muscle cells, osteoblasts and cardiac myocytes modulating their physiology. Interaction of polycystins with diverse ion channels, cell-cell and cell-extracellular matrix junctional proteins implicates them in the regulation of cell structure, mechanical force transmission and mechanotransduction. Their intracellular localization in endoplasmic reticulum further regulates subcellular trafficking and calcium homeostasis, finely-tuning overall cellular mechanosensitivity. Aberrant expression or genetic alterations of polycystins lead to severe structural and mechanosensing abnormalities including cyst formation, deregulated flow sensing, aneurysms, defective bone development and cancer progression, highlighting their vital role in human physiology.
Collapse
|
25
|
Perrone RD, Malek AM, Watnick T. Vascular complications in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 2015; 11:589-98. [PMID: 26260542 PMCID: PMC4904833 DOI: 10.1038/nrneph.2015.128] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. Relentless cyst growth substantially enlarges both kidneys and culminates in renal failure. Patients with ADPKD also have vascular abnormalities; intracranial aneurysms (IAs) are found in ∼10% of asymptomatic patients during screening and in up to 25% of those with a family history of IA or subarachnoid haemorrhage. As the genes responsible for ADPKD—PKD1 and PKD2—have complex integrative roles in mechanotransduction and intracellular calcium signalling, the molecular basis of IA formation might involve focal haemodynamic conditions exacerbated by hypertension and altered flow sensing. IA rupture results in substantial mortality, morbidity and poor long-term outcomes. In this Review, we focus mainly on strategies for screening, diagnosis and treatment of IAs in patients with ADPKD. Other vascular aneurysms and anomalies—including aneurysms of the aorta and coronary arteries, cervicocephalic and thoracic aortic dissections, aortic root dilatation and cerebral dolichoectasia—are less common in this population, and the available data are insufficient to recommend screening strategies. Treatment decisions should be made with expert consultation and be based on a risk-benefit analysis that takes into account aneurysm location and morphology as well as patient age and comorbidities.
Collapse
Affiliation(s)
- Ronald D Perrone
- Department of Medicine, Division of Nephrology, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Adel M Malek
- Department of Neurosurgery, Cerebrovascular and Endovascular Division, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Varela A, Piperi C, Sigala F, Agrogiannis G, Davos CH, Andri MA, Manopoulos C, Tsangaris S, Basdra EK, Papavassiliou AG. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep 2015; 5:13461. [PMID: 26286632 PMCID: PMC4541068 DOI: 10.1038/srep13461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/21/2015] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque formation is associated with irregular distribution of wall shear stress (WSS) that modulates endothelial function and integrity. Polycystins (PC)-1/-2 constitute a flow-sensing protein complex in endothelial cells, able to respond to WSS and induce cell-proliferation changes leading to atherosclerosis. An endothelial cell-culture system of measurable WSS was established to detect alterations in PCs expression under conditions of low- and high-oscillatory shear stress in vitro. PCs expression and p53 activation as a regulator of cell proliferation were further evaluated in vivo and in 69 advanced human carotid atherosclerotic plaques (AAPs). Increased PC-1/PC-2 expression was observed at 30–60 min of low shear stress (LSS) in endothelial cells. Elevated PC-1 expression at LSS was followed by p53 potentiation. PCs immunoreactivity localizes in areas with macrophage infiltration and neovascularization. PC-1 mRNA and protein levels were significantly higher than PC-2 in stable fibroatherotic (V) and unstable/complicated (VI) AAPs. Elevated PC-1 immunostaining was detected in AAPs from patients with diabetes mellitus, dyslipidemia, hypertension and carotid stenosis, at both arteries (50%) or in one artery (90%). PCs seem to participate in plaque formation and progression. Since PC-1 upregulation coincides with p38 and p53 activation, a potential interplay of these molecules in atherosclerosis induction is posed.
Collapse
Affiliation(s)
- Aimilia Varela
- 1] Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece [2] Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | - Fragiska Sigala
- Vascular Surgery Division, First Department of Propaedeutic Surgery, 'Hippokrateion' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - George Agrogiannis
- First Department of Pathology, 'Laikon' General Hospital, University of Athens Medical School, Athens 11527, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Maria-Anastasia Andri
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Christos Manopoulos
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Sokrates Tsangaris
- Laboratory of Biofluid Mechanics and Biomedical Engineering, School of Mechanical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, University of Athens Medical School, Athens 11527, Greece
| | | |
Collapse
|
27
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
28
|
Silverio A, Prota C, Di Maio M, Polito MV, Cogliani FM, Citro R, Gigantino A, Iesu S, Piscione F. Aortic dissection in patients with autosomal dominant polycystic kidney disease: A series of two cases and a review of the Literature. Nephrology (Carlton) 2015; 20:229-35. [DOI: 10.1111/nep.12373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Angelo Silverio
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Costantina Prota
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Marco Di Maio
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Maria Vincenza Polito
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | | | - Rodolfo Citro
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Alberto Gigantino
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Severino Iesu
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
| | - Federico Piscione
- Heart Department; University Hospital ‘San Giovanni di Dio e Ruggi d'Aragona’; Salerno Italy
- Department of Medicine and Surgery; University of Salerno; Salerno Italy
| |
Collapse
|
29
|
Peng W, Peng Z, Chai X, Zhu Q, Yang G, Zhao Q, Zhou S. Potential biomarkers for early diagnosis of acute aortic dissection. Heart Lung 2015; 44:205-8. [PMID: 25686518 DOI: 10.1016/j.hrtlng.2015.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The purpose of this study was to identify biological markers for early diagnosis of acute aortic dissection (AAD). METHODS 76 patients presented to the emergency room with acute chest pain within 6 h of occurrence were recruited for this study, and AAD diagnosed by aortic CTA. Biomarkers were measured by ELISA. ROC curve and Pearson correlation analysis were used to evaluate the sensitivity and specificity to diagnosis of AAD. RESULTS The serum levels of α-SMA, smMHC, sELAF, PC1 and D-dimer were significantly higher in AAD patients than in other groups (P < 0.05). Significant correlations between smMHC, sELAF, PC1, and D-dimer level were observed in AAD. Any combination of two markers showed good sensitivity (94.29%) and specificity (85.37%). CONCLUSION smMHC, sELAF, PC1, or D-dimer alone is a biomarker for early diagnosis of AAD, but the combination of these markers has significantly higher diagnostic value.
Collapse
Affiliation(s)
- Wen Peng
- Department of Emergency, Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Zhenyu Peng
- Department of Emergency, Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Xiangping Chai
- Department of Emergency, Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China.
| | - Qingyi Zhu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Guifang Yang
- Department of Emergency, Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Qin Zhao
- Department of Emergency, Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 308:H157-82. [PMID: 25416190 PMCID: PMC4312948 DOI: 10.1152/ajpheart.00457.2014] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of nonselective cation channels with variable degree of Ca(2+)-permeability. The 28 mammalian TRP channel proteins can be grouped into six subfamilies: canonical, vanilloid, melastatin, ankyrin, polycystic, and mucolipin TRPs. The majority of these TRP channels are expressed in different cell types including both excitable and nonexcitable cells of the cardiovascular system. Unlike voltage-gated ion channels, TRP channels do not have a typical voltage sensor, but instead can sense a variety of other stimuli including pressure, shear stress, mechanical stretch, oxidative stress, lipid environment alterations, hypertrophic signals, and inflammation products. By integrating multiple stimuli and transducing their activity to downstream cellular signal pathways via Ca(2+) entry and/or membrane depolarization, TRP channels play an essential role in regulating fundamental cell functions such as contraction, relaxation, proliferation, differentiation, and cell death. With the use of targeted deletion and transgenic mouse models, recent studies have revealed that TRP channels are involved in numerous cellular functions and play an important role in the pathophysiology of many diseases in the cardiovascular system. Moreover, several TRP channels are involved in inherited diseases of the cardiovascular system. This review presents an overview of current knowledge concerning the physiological functions of TRP channels in the cardiovascular system and their contributions to cardiovascular diseases. Ultimately, TRP channels may become potential therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhichao Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jia Xie
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jonathan Stock
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jianyang Du
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
31
|
Franchi F, Peterson KM, Xu R, Miller B, Psaltis PJ, Harris PC, Lerman LO, Rodriguez-Porcel M. Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplant 2014; 24:1687-98. [PMID: 25290249 DOI: 10.3727/096368914x684619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of end-stage renal failure, for which there is no accepted treatment. Progenitor and stem cells have been shown to restore renal function in a model of renovascular disease, a disease that shares many features with PKD. The objective of this study was to examine the potential of adult stem cells to restore renal structure and function in PKD. Bone marrow-derived mesenchymal stromal cells (MSCs, 2.5 × 10(5)) were intrarenally infused in 6-week-old PCK rats. At 10 weeks of age, PCK rats had an increase in systolic blood pressure (SBP) versus controls (126.22 ± 2.74 vs. 116.45 ± 3.53 mmHg, p < 0.05) and decreased creatinine clearance (3.76 ± 0.31 vs. 6.10 ± 0.48 µl/min/g, p < 0.01), which were improved in PKD animals that received MSCs (SBP: 114.67 ± 1.34 mmHg, and creatinine clearance: 4.82 ± 0.24 µl/min/g, p = 0.001 and p = 0.003 vs. PKD, respectively). MSCs preserved vascular density and glomeruli diameter, measured using microcomputed tomography. PCK animals had increased urine osmolality (843.9 ± 54.95 vs. 605.6 ± 45.34 mOsm, p < 0.01 vs. control), which was improved after MSC infusion and not different from control (723.75 ± 56.6 mOsm, p = 0.13 vs. control). Furthermore, MSCs reduced fibrosis and preserved the expression of proangiogenic molecules, while cyst size and number were unaltered by MSCs. Delivery of exogenous MSCs improved vascular density and renal function in PCK animals, and the benefit was observed up to 4 weeks after a single infusion. Cell-based therapy constitutes a novel approach in PKD.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Retailleau K, Duprat F. Polycystins and partners: proposed role in mechanosensitivity. J Physiol 2014; 592:2453-71. [PMID: 24687583 DOI: 10.1113/jphysiol.2014.271346] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of the two polycystins, PC1 and PC2, lead to polycystic kidney disease. Polycystins are able to form complexes with numerous families of proteins that have been suggested to participate in mechanical sensing. The proposed role of polycystins and their partners in the kidney primary cilium is to sense urine flow. A role for polycystins in mechanosensing has also been shown in other cell types such as vascular smooth muscle cells and cardiac myocytes. At the plasma membrane, polycystins interact with diverse ion channels of the TRP family and with stretch-activated channels (Piezos, TREKs). The actin cytoskeleton and its interacting proteins, such as filamin A, have been shown to be essential for these interactions. Numerous proteins involved in cell-cell and cell-extracellular matrix junctions interact with PC1 and/or PC2. These multimeric protein complexes are important for cell structure integrity, the transmission of force, as well as for mechanosensing and mechanotransduction. A group of polycystin partners are also involved in subcellular trafficking mechanisms. Finally, PC1 and especially PC2 interact with elements of the endoplasmic reticulum and are essential components of calcium homeostasis. In conclusion, we propose that both PC1 and PC2 act as conductors to tune the overall cellular mechanosensitivity.
Collapse
Affiliation(s)
- Kevin Retailleau
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Fabrice Duprat
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| |
Collapse
|
33
|
Rahbari-Oskoui F, Williams O, Chapman A. Mechanisms and management of hypertension in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2014; 29:2194-201. [PMID: 24463189 DOI: 10.1093/ndt/gft513] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease, characterized by progressive cyst growth and renal enlargement, resulting in renal failure. Hypertension is common and occurs early, prior to loss of kidney function. Whether hypertension in ADPKD is a primary vasculopathy secondary to mutations in the polycystin genes or secondary to activation of the renin-angiotensin-aldosterone system by cyst expansion and intrarenal ischemia is unclear. Dysregulation of the primary cilium causing endothelial and vascular smooth muscle cell dysfunction is a component of ADPKD. In this article, we review the epidemiology, pathophysiology and clinical characteristics of hypertension in ADPKD and give specific recommendations for its treatment.
Collapse
Affiliation(s)
| | - Olubunmi Williams
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arlene Chapman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
34
|
Narayanan D, Bulley S, Leo MD, Burris SK, Gabrick KS, Boop FA, Jaggar JH. Smooth muscle cell transient receptor potential polycystin-2 (TRPP2) channels contribute to the myogenic response in cerebral arteries. J Physiol 2013; 591:5031-46. [PMID: 23858011 PMCID: PMC3810807 DOI: 10.1113/jphysiol.2013.258319] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/10/2013] [Indexed: 12/29/2022] Open
Abstract
Intravascular pressure-induced vasoconstriction is a smooth muscle cell-specific mechanism that controls systemic blood pressure and organ regional blood flow. Smooth muscle cell polycystin-1 and -2 (TRPP1 and -2) proteins modulate the myogenic response in mesenteric arteries, but involvement in other vascular beds is unclear. Here, we examined TRPP2 expression, cellular distribution, cation currents (ICat), and physiological functions in smooth muscle cells of rat and human cerebral arteries. We demonstrate that TRPP2 is the major TRPP isoform expressed in cerebral artery smooth muscle cells, with message levels higher than those of TRPP1. Arterial biotinylation and immunofluorescence indicated that TRPP2 is located primarily (∼88%) in the smooth muscle cell plasma membrane. RNA interference reduced TRPP2 expression by ∼55% compared to control, but did not alter levels of TRPP1, TRPC1, TRPC3, TRPC6, TRPM4, ANO1/TMEM16A, or voltage-dependent Ca(2+) (CaV1.2) channels, other ion channel proteins that modulate myogenic tone. Cell swelling induced by hyposmotic (250 osmol (l solution)(-1)) bath solution stimulated Gd(3+)-sensitive ICat in smooth muscle cells that were reduced by selective TRPP2 knockdown. TRPP2 knockdown did not alter myogenic tone at 20 mmHg but reduced tone between ∼28 and 39% over an intravascular pressure range between 40 and 100 mmHg. In contrast, TRPP2 knockdown did not alter depolarization-induced (60 mmol l K(+)) vasoconstriction. In summary, we show that TRPP2 is expressed in smooth muscle cells of resistance-size cerebral arteries, resides primarily in the plasma membrane, and contributes to the myogenic response. Data also suggest that TRPP2 differentially regulates the myogenic response in cerebral and mesenteric arteries.
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu D, Wang CJ, Judge DP, Halushka MK, Ni J, Habashi JP, Moslehi J, Bedja D, Gabrielson KL, Xu H, Qian F, Huso D, Dietz HC, Germino GG, Watnick T. A Pkd1-Fbn1 genetic interaction implicates TGF-β signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2013; 25:81-91. [PMID: 24071006 DOI: 10.1681/asn.2012050486] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of renal failure that is due to mutations in two genes, PKD1 and PKD2. Vascular complications, including aneurysms, are a well recognized feature of ADPKD, and a subgroup of families exhibits traits reminiscent of Marfan syndrome (MFS). MFS is caused by mutations in fibrillin-1 (FBN1), which encodes an extracellular matrix protein with homology to latent TGF-β binding proteins. It was recently demonstrated that fibrillin-1 deficiency is associated with upregulation of TGF-β signaling. We investigated the overlap between ADPKD and MFS by breeding mice with targeted mutations in Pkd1 and Fbn1. Double heterozygotes displayed an exacerbation of the typical Fbn1 heterozygous aortic phenotype. We show that the basis of this genetic interaction results from further upregulation of TGF-β signaling caused by Pkd1 haploinsufficiency. In addition, we demonstrate that loss of PKD1 alone is sufficient to induce a heightened responsiveness to TGF-β. Our data link the interaction of two important diseases to a fundamental signaling pathway.
Collapse
Affiliation(s)
- Dongyan Liu
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Paavola J, Schliffke S, Rossetti S, Kuo IYT, Yuan S, Sun Z, Harris PC, Torres VE, Ehrlich BE. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J Mol Cell Cardiol 2013; 58:199-208. [PMID: 23376035 PMCID: PMC3636149 DOI: 10.1016/j.yjmcc.2013.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 12/31/2022]
Abstract
Mutations in PKD1 and PKD2, the genes encoding the proteins polycystin-1 (PC1) and polycystin-2 (PC2), cause autosomal dominant polycystic kidney disease (ADPKD). Although the leading cause of mortality in ADPKD is cardiovascular disease, the relationship between these conditions remains poorly understood. PC2 is an intracellular calcium channel expressed in renal epithelial cells and in cardiomyocytes, and is thus hypothesized to modulate intracellular calcium signaling and affect cardiac function. Our first aim was to study cardiac function in a zebrafish model lacking PC2 (pkd2 mutants). Next, we aimed to explore the relevance of this zebrafish model to human ADPKD by examining the Mayo Clinic's ADPKD database for an association between ADPKD and idiopathic dilated cardiomyopathy (IDCM). Pkd2 mutant zebrafish showed low cardiac output and atrioventricular block. Isolated pkd2 mutant hearts displayed impaired intracellular calcium cycling and calcium alternans. These results indicate heart failure in the pkd2 mutants. In human ADPKD patients, we found IDCM to coexist frequently with ADPKD. This association was strongest in patients with PKD2 mutations. Our results demonstrate that PC2 modulates intracellular calcium cycling, contributing to the development of heart failure. In human subjects we found an association between ADPKD and IDCM and suggest that PKD mutations contribute to the development of heart failure.
Collapse
Affiliation(s)
- Jere Paavola
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon Schliffke
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Anatomy II: Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sandro Rossetti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ivana Y.-T. Kuo
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Zhaoxia Sun
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Peter C. Harris
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Vicente E. Torres
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Bailey MA, Griffin KJ, Windle AL, Lines SW, Scott DJA. Cysts and swellings: a systematic review of the association between polycystic kidney disease and abdominal aortic aneurysm. Ann Vasc Surg 2012; 27:123-8. [PMID: 23088808 DOI: 10.1016/j.avsg.2012.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/04/2012] [Accepted: 05/14/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Whether abdominal aortic aneurysm (AAA) forms part of the extrarenal manifestations of autosomal-dominant polycystic kidney disease (ADPKD) is unclear. We set out to review the evidence for an association. MATERIALS AND METHODS PubMed, Medline, Embase, and Web of Science databases 1960-2011 were searched [abdominal aortic aneurysm OR AAA OR triple A] AND [polycystic kidney disease OR PKD OR ADPKD OR Renal Cysts]. No limitations were placed on article type or language. Reference lists were recursively searched as were pertinent journal contents. RESULTS Eighteen papers were included. Since the first documented case of ADPKD and AAA in 1980, there have been 23 case reports. The voluminous kidneys make AAA diagnosis challenging and surgical exposure difficult. Two studies have assessed aortic diameter in patients with ADPKD and controls, one finding increased aortic diameter in ADPKD (2.7 cm vs. 2.3 cm, P < 0.02) and the other finding no difference. A further study identified a higher incidence of renal cysts in patients with AAA compared to controls (54% vs. 30%, P = 0.0006). CONCLUSION There is not enough clinical evidence to determine if ADPKD and AAA share a common pathology. Larger multicenter trials are required to determine if a link exists.
Collapse
Affiliation(s)
- Marc A Bailey
- The Division of Cardiovascular & Diabetes Research, The Leeds Institute of Genetics, Health & Therapeutics, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
38
|
Wang L, Yao L, Guo D, Wang C, Wan B, Ji G, Yang C, Zhang J, Sheng Z, Fu W, Wang Y. Gene Expression Profiling in Acute Stanford Type B Aortic Dissection. Vasc Endovascular Surg 2012; 46:300-9. [PMID: 22534613 DOI: 10.1177/1538574412443315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lixin Wang
- Department of vascular surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiha J, Rangan GK, Chapman JR, Thiagalingam A. Autosomal dominant polycystic kidney disease (ADPKD) is associated with coronary arterial dilatation in end-stage renal failure patients. Clin Kidney J 2012; 5:41-3. [PMID: 26069746 PMCID: PMC4400451 DOI: 10.1093/ndtplus/sfr135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/30/2011] [Indexed: 11/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) can affect several organs in addition to the kidney. There is paucity in the literature on the cardiac manifestations of this disease. This retrospective study aimed to assess whether ADPKD was associated with a larger coronary artery diameter and to evaluate for the presence of coronary artery aneurysm and ectasia. This study shows that subjects with ADPKD and end-stage renal failure have dilatation of coronary arteries independent of traditional coronary risk factors and medication use.
Collapse
Affiliation(s)
- Joseph Chiha
- Department of Cardiology, Westmead Hospital, Sydney, Australia ; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Jeremy R Chapman
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Aravinda Thiagalingam
- Department of Cardiology, Westmead Hospital, Sydney, Australia ; Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Klingenberg-Salachova F, Limburg S, Boereboom F. Spontaneous coronary artery dissection in polycystic kidney disease. Clin Kidney J 2012; 5:44-6. [PMID: 26069747 PMCID: PMC4400459 DOI: 10.1093/ndtplus/sfr158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/21/2011] [Indexed: 12/31/2022] Open
Abstract
Little is known about the association between autosomal-dominant polycystic kidney disease (ADPKD) and coronary artery dissection (CAD). We suggest that the genetic disorder in ADPKD is the main cause of instable artery vasculature. Our case also shows that CAD can be missed in the acute phase. Therefore, we recommend additional investigation in patients with ADPKD presenting with acute chest pain. We report a case of a patient who developed a myocardial infarction due to a spontaneous dissection of the left anterior descending coronary artery. ADPKD was diagnosed during the additional investigation. The patient received medical management.
Collapse
Affiliation(s)
| | - Sander Limburg
- Department of Cardiology, Diakonessenhuis, Utrecht, The Netherlands
| | - Frans Boereboom
- Department of General Medicine, Diakonessenhuis, Utrecht, The Netherlands
| |
Collapse
|
41
|
Irazabal MV, Huston J, Kubly V, Rossetti S, Sundsbak JL, Hogan MC, Harris PC, Brown RD, Torres VE. Extended follow-up of unruptured intracranial aneurysms detected by presymptomatic screening in patients with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2011; 6:1274-85. [PMID: 21551026 DOI: 10.2215/cjn.09731110] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Autosomal dominant polycystic kidney disease (ADPKD) patients have an increased risk for intracranial aneurysms (IAs). The importance of screening for unruptured IAs (UIAs) depends on their risks for growth and rupture. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS ADPKD patients with UIAs found by presymptomatic screening with magnetic resonance angiography (MRA) during 1989 to 2009 were followed initially at 6 months and annually, and less frequently after demonstration of stability. RESULTS Forty-five saccular aneurysms were detected in 38 patients from 36 families. Most were small (median diameter 3.5 mm) and in the anterior circulation (84%). Median age at diagnosis was 49 years. During cumulative imaging follow-up of 243 years, one de novo UIA was detected and increased in size from 2 to 4.4 mm over 144 months and two UIAs grew from 4.5 to 5.9 mm and 4.7 to 6.2 mm after 69 and 184 months, respectively. Seven patients did not have imaging follow-up. No change was detected in the remaining 28 patients. During cumulative clinical follow-up of 316 years, no aneurysm ruptured. Five patients died from unrelated causes and two were lost to follow-up after 8 and 120 months. Three patients underwent surgical clipping. CONCLUSIONS Most UIAs detected by presymptomatic screening in ADPKD patients are small and in the anterior circulation. Growth and rupture risks are not higher than those of UIAs in the general population. These data support very selective screening for UIAs in ADPKD patients, and widespread screening is not indicated.
Collapse
Affiliation(s)
- Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Drummond IA. Polycystins, focal adhesions and extracellular matrix interactions. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1322-6. [PMID: 21396443 DOI: 10.1016/j.bbadis.2011.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 11/29/2022]
Abstract
Polycystic kidney disease is the most common heritable disease in humans. In addition to epithelial cysts in the kidney, liver and pancreas, patients with autosomal dominant polycystic kidney disease (ADPKD) also suffer from abdominal hernia, intracranial aneurysm, gastrointestinal cysts, and cardiac valvular defects, conditions often associated with altered extracellular matrix production or integrity. Despite more than a decade of work on the principal ADPKD genes, PKD1 and PKD2, questions remain about the basis of cystic disease and the role of extracellular matrix in ADPKD pathology. This review explores the links between polycystins, focal adhesions, and extracellular matrix gene expression. These relationships suggest roles for polycystins in cell-matrix mechanosensory signaling that control matrix production and morphogenesis. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
43
|
Lee K, Battini L, Gusella GL. Cilium, centrosome and cell cycle regulation in polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1263-71. [PMID: 21376807 DOI: 10.1016/j.bbadis.2011.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/10/2011] [Accepted: 02/16/2011] [Indexed: 12/19/2022]
Abstract
Polycystic kidney disease is the defining condition of a group of common life-threatening genetic disorders characterized by the bilateral formation and progressive expansion of renal cysts that lead to end stage kidney disease. Although a large body of information has been acquired in the past years about the cellular functions that characterize the cystic cells, the mechanisms triggering the cystogenic conversion are just starting to emerge. Recent findings link defects in ciliary functions, planar cell polarity pathway, and centrosome integrity in early cystic development. Many of the signals dysregulated during cystogenesis may converge on the centrosome for its central function as a structural support for cilia formation and a coordinator of protein trafficking, polarity, and cell division. Here, we will discuss the contribution of proliferation, cilium and planar cell polarity to the cystic signal and will analyze in particular the possible role that the basal bodies/centrosome may play in the cystogenetic mechanisms. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, The Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
44
|
Hong S, Kim JH, Lee HJ, Youn YN. Retrograde Aortic Dissection after Thoracic Endovascular Aortic Repair for Descending Aorta -2 case reports-. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2010. [DOI: 10.5090/kjtcs.2010.43.6.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Soonchang Hong
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System
| | - Hee-Jeong Lee
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System
| |
Collapse
|
45
|
Garcia-Gonzalez MA, Outeda P, Zhou Q, Zhou F, Menezes LF, Qian F, Huso DL, Germino GG, Piontek KB, Watnick T. Pkd1 and Pkd2 are required for normal placental development. PLoS One 2010; 5. [PMID: 20862291 PMCID: PMC2940908 DOI: 10.1371/journal.pone.0012821] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/25/2010] [Indexed: 12/16/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of inherited renal failure that results from mutations in PKD1 and PKD2. The disorder is characterized by focal cyst formation that involves somatic mutation of the wild type allele in a large fraction of cysts. Consistent with a two-hit mechanism, mice that are homozygous for inactivating mutations of either Pkd1 or Pkd2 develop cystic kidneys, edema and hemorrhage and typically die in midgestation. Cystic kidney disease is unlikely to be the cause of fetal loss since renal function is not required to complete gestation. One hypothesis is that embryonic demise is due to leaky vessels or cardiac pathology. Methodology/Principal Findings In these studies we used a series of genetically modified Pkd1 and Pkd2 murine models to investigate the cause of embryonic lethality in mutant embryos. Since placental defects are a frequent cause of fetal loss, we conducted histopathologic analyses of placentas from Pkd1 null mice and detected abnormalities of the labyrinth layer beginning at E12.5. We performed placental rescue experiments using tetraploid aggregation and conditional inactivation of Pkd1 with the Meox2 Cre recombinase. We found that both strategies improved the viability of Pkd1 null embryos. Selective inactivation of Pkd1 and Pkd2 in endothelial cells resulted in polyhydramnios and abnormalities similar to those observed in Pkd1−/− placentas. However, endothelial cell specific deletion of Pkd1 or Pkd2 did not yield the dramatic vascular phenotypes observed in null animals. Conclusions/Significance Placental abnormalities contribute to the fetal demise of Pkd−/− embryos. Endothelial cell specific deletion of Pkd1 or Pkd2 recapitulates a subset of findings seen in Pkd null animals. Our studies reveal a complex role for polycystins in maintaining vascular integrity.
Collapse
Affiliation(s)
- Miguel A. Garcia-Gonzalez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia Outeda
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qin Zhou
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Fang Zhou
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Luis F. Menezes
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Feng Qian
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory G. Germino
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Klaus B. Piontek
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (KBP); (TW)
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (KBP); (TW)
| |
Collapse
|
46
|
Abstract
Autosomal dominant polycystic kidney disease is a common disorder, affecting approximately one in 1,000 individuals. This disease is characterized by the presence of renal and extrarenal cysts, as well as by cardiovascular abnormalities, including hypertension and intracranial aneurysms. Mutations in the PKD1 gene account for 85% of cases, whereas mutations in PKD2 account for the remaining 15% of cases. Findings from the past 10 years indicate that polycystins, the products of the PKD genes, have a key role in renal and vascular mechanosensory transduction. In the primary cilium of renal, nodal, and endothelial cells, polycystins are proposed to act as flow sensors. In addition, the ratio of polycystin-1 to polycystin-2 regulates pressure sensing in arterial myocytes. In this Review, we summarize the data indicating that polycystins are key molecules in mechanotransduction. Moreover, we discuss the role of nucleotide release and autocrine and/or paracrine purinergic signaling in both fluid flow and pressure responses. Finally, we discuss the possible role of altered mechanosensory transduction in the etiology of polycystic kidney disease.
Collapse
Affiliation(s)
- Amanda Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 6097, Université de Nice-Sophia Antipolis, 06560 Valbonne, France
| | | |
Collapse
|
47
|
Torres VE, Boletta A, Chapman A, Gattone V, Pei Y, Qian Q, Wallace DP, Weimbs T, Wüthrich RP. Prospects for mTOR inhibitor use in patients with polycystic kidney disease and hamartomatous diseases. Clin J Am Soc Nephrol 2010; 5:1312-29. [PMID: 20498248 DOI: 10.2215/cjn.01360210] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian target of rapamycin (mTOR) is the core component of two complexes, mTORC1 and mTORC2. mTORC1 is inhibited by rapamycin and analogues. mTORC2 is impeded only in some cell types by prolonged exposure to these compounds. mTOR activation is linked to tubular cell proliferation in animal models and human autosomal dominant polycystic kidney disease (ADPKD). mTOR inhibitors impede cell proliferation and cyst growth in polycystic kidney disease (PKD) models. After renal transplantation, two small retrospective studies suggested that mTOR was more effective than calcineurin inhibitor-based immunosuppression in limiting kidney and/or liver enlargement. By inhibiting vascular remodeling, angiogenesis, and fibrogenesis, mTOR inhibitors may attenuate nephroangiosclerosis, cyst growth, and interstitial fibrosis. Thus, they may benefit ADPKD at multiple levels. However, mTOR inhibition is not without risks and side effects, mostly dose-dependent. Under certain conditions, mTOR inhibition interferes with adaptive increases in renal proliferation necessary for recovery from injury. They restrict Akt activation, nitric oxide synthesis, and endothelial cell survival (downstream from mTORC2) and potentially increase the risk for glomerular and peritubular capillary loss, vasospasm, and hypertension. They impair podocyte integrity pathways and may predispose to glomerular injury. Administration of mTOR inhibitors is discontinued because of side effects in up to 40% of transplant recipients. Currently, treatment with mTOR inhibitors should not be recommended to treat ADPKD. Results of ongoing studies must be awaited and patients informed accordingly. If effective, lower dosages than those used to prevent rejection would minimize side effects. Combination therapy with other effective drugs could improve tolerability and results.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S, Vasilyev A, Liu A, Drummond IA. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 2010; 3:354-65. [PMID: 20335443 DOI: 10.1242/dmm.003194] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in polycystin1 (PKD1) account for the majority of autosomal dominant polycystic kidney disease (ADPKD). PKD1 mutations are also associated with vascular aneurysm and abdominal wall hernia, suggesting a role for polycystin1 in extracellular matrix (ECM) integrity. In zebrafish, combined knockdown of the PKD1 paralogs pkd1a and pkd1b resulted in dorsal axis curvature, hydrocephalus, cartilage and craniofacial defects, and pronephric cyst formation at low frequency (10-15%). Dorsal axis curvature was identical to the axis defects observed in pkd2 knockdown embryos. Combined pkd1a/b, pkd2 knockdown demonstrated that these genes interact in axial morphogenesis. Dorsal axis curvature was linked to notochord collagen overexpression and could be reversed by knockdown of col2a1 mRNA or chemical inhibition of collagen crosslinking. pkd1a/b- and pkd2-deficient embryos exhibited ectopic, persistent expression of multiple collagen mRNAs, suggesting a loss of negative feedback signaling that normally limits collagen gene expression. Knockdown of pkd1a/b also dramatically sensitized embryos to low doses of collagen-crosslinking inhibitors, implicating polycystins directly in the modulation of collagen expression or assembly. Embryos treated with wortmannin or LY-29400 also exhibited dysregulation of col2a1 expression, implicating phosphoinositide 3-kinase (PI3K) in the negative feedback signaling pathway controlling matrix gene expression. Our results suggest that pkd1a/b and pkd2 interact to regulate ECM secretion or assembly, and that altered matrix integrity may be a primary defect underlying ADPKD tissue pathologies.
Collapse
Affiliation(s)
- Steve Mangos
- Massachusetts General Hospital, Department of Medicine, Nephrology Division, and Harvard Medical School Department of Genetics, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chapman AB, Stepniakowski K, Rahbari-Oskoui F. Hypertension in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010; 17:153-63. [PMID: 20219618 PMCID: PMC2845913 DOI: 10.1053/j.ackd.2010.01.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/03/2010] [Accepted: 01/03/2010] [Indexed: 01/20/2023]
Abstract
Hypertension is common and occurs in a majority of autosomal dominant polycystic kidney disease (ADPKD) patients before the loss of kidney function. Hypertension relates to progressive kidney enlargement and is a significant independent risk factor for progression to ESRD. The pathogenesis of hypertension in ADPKD is complex and dependent on many factors that influence each other. Pkd1 and Pkd2 expression levels are highest in the major vessels and are present in the cilia of endothelial cells and in vascular smooth muscle cells. Decreased or absent polycystin 1 or 2 expression is associated with abnormal vascular structure and function. Pkd1/Pkd2 deficiency results in reduced nitric oxide (NO) levels, altered endothelial response to shear stress with attenuation in vascular relaxation. Ten percent to 20% of ADPKD children show hypertension and the majority of adults are hypertensive before any loss of kidney function. Cardiac abnormalities such as left ventricular hypertrophy and carotid intimal wall thickening are present before the development of hypertension in ADPKD. The activation of the renin-angiotensin-aldosterone system occurs in ADPKD because of decreased NO production as well as bilateral cyst expansion and intrarenal ischemia. With increasing cyst size, further activation of the RAAS occurs, blood pressure increases, and a vicious cycle ensues with enhanced cyst growth and hypertension ultimately leading to ESRD. The inhibition of the angiotensin aldosterone system is possible with angiotensin converting enzyme inhibitors and angiotensin receptor blockers. However, interventional studies have not yet shown benefit in slowing progression to renal failure in ADPKD. Currently, large multicenter studies are being performed to determine the beneficial effects of RAAS inhibition both early and late in ADPKD.
Collapse
|
50
|
Sharif-Naeini R, Folgering JHA, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJM, Honoré E. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 2009; 139:587-96. [PMID: 19879844 DOI: 10.1016/j.cell.2009.08.045] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/13/2009] [Accepted: 08/31/2009] [Indexed: 12/23/2022]
Abstract
Autosomal-dominant polycystic kidney disease, the most frequent monogenic cause of kidney failure, is induced by mutations in the PKD1 or PKD2 genes, encoding polycystins TRPP1 and TRPP2, respectively. Polycystins are proposed to form a flow-sensitive ion channel complex in the primary cilium of both epithelial and endothelial cells. However, how polycystins contribute to cellular mechanosensitivity remains obscure. Here, we show that TRPP2 inhibits stretch-activated ion channels (SACs). This specific effect is reversed by coexpression with TRPP1, indicating that the TRPP1/TRPP2 ratio regulates pressure sensing. Moreover, deletion of TRPP1 in smooth muscle cells reduces SAC activity and the arterial myogenic tone. Inversely, depletion of TRPP2 in TRPP1-deficient arteries rescues both SAC opening and the myogenic response. Finally, we show that TRPP2 interacts with filamin A and demonstrate that this actin crosslinking protein is critical for SAC regulation. This work uncovers a role for polycystins in regulating pressure sensing.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 6097, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|