1
|
O'Donohoe DS, Whelan S, Mannion A, Tones M, Heussler H, Bellgard M, Leader G. Association between sleep disturbances and challenging behavior in children and adolescents with Angelman syndrome. Sleep Med 2024; 123:1-6. [PMID: 39222563 DOI: 10.1016/j.sleep.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder with severe symptoms and associated comorbidities. It is caused by the inactivity or lack of the UBE3a gene. Symptoms of the syndrome include intellectual disability and developmental delay. The current study investigated sleep disturbances (SD) in children and adolescents with AS, associations between SD and possible predictors of SD. Variables examined included age, gender, newborn and infancy history, challenging behavior, type of therapy received, genetic type of AS, and seizures. The sample included data from 109 participants with a mean age of 8.21, accessed via the Global Angelman Syndrome Registry. Chi-square tests were carried out to assess the associations between the variables and a logistical regression was carried out to assess the possible predictors of SD. Associations were found between SD and certain repetitive behaviors: slapping walls, focal hand movements, and agitation at new situations. From these associations, a regression formed a predictive model for sleep disturbances. The findings of this research demonstrated the importance of investigating the relationship between sleep disturbances and challenging behavior in children and adolescents with AS and the need for further research in this area.
Collapse
Affiliation(s)
- Darragh S O'Donohoe
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, University of Galway, Galway, Ireland
| | - Sally Whelan
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, University of Galway, Galway, Ireland
| | - Arlene Mannion
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, University of Galway, Galway, Ireland
| | - Megan Tones
- EResearch, Queensland University of Technology, Brisbane, Australia
| | - Helen Heussler
- Children's Health and Hospital Services, QLD, Brisbane, Australia
| | - Matthew Bellgard
- EResearch, Queensland University of Technology, Brisbane, Australia; University of East London, United Kingdom
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Zhuang J, Zhang N, Fu W, Jiang Y, Chen Y, Chen C. Prenatal diagnosis of fetuses with 15q11.2 BP1-BP2 microdeletion in the Chinese population: a seven-year single-center retrospective study. Mol Cytogenet 2024; 17:20. [PMID: 39218907 PMCID: PMC11367773 DOI: 10.1186/s13039-024-00690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The 15q11.2 BP1-BP2 microdeletion syndrome is associated with developmental delays, language impairments, neurobehavioral disorders, and psychiatric complications. The aim of the present study was to provide prenatal and postnatal clinical data for 16 additional fetuses diagnosed with the 15q11.2 BP1-BP2 microdeletion syndrome in the Chinese population. METHODS A total of 5,789 pregnancy women that underwent amniocentesis were enrolled in the present study. Both karyotype analysis and chromosomal microarray analysis (CMA) were conducted on these subjects to detect chromosomal abnormalities and copy number variants (CNVs). Whole exome sequencing (WES) was performed to investigate sequence variants in subjects with clinical abnormalities after birth. RESULTS Sixteen fetuses with 15q11.2 BP1-BP2 microdeletion were identified in the present study, with a detection rate of 0.28% (16/5,789). The 15q11.2 BP1-BP2 microdeletion fragments ranged from 311.8 kb to 849.7 kb, encompassing the NIPA1, NIPA2, CYFIP1, and TUBGCP5 genes. The follow-up results regarding pregnancy outcomes showed that five cases opted for pregnancy termination, while the remaining cases continued with their pregnancies. Subsequent postnatal follow-up indicated that only one case with the 15q11.2 BP1-BP2 microdeletion displayed neurodevelopmental disorders, demonstrating an incomplete penetrance rate of 9.09% (1/11). CONCLUSION The majority of fetuses with the 15q11.2 microdeletion exhibit typical features during early childhood, indicating a low penetrance and mild impact. Nonetheless, pregnancies involving fetuses with the 15q11.2 microdeletion require thorough prenatal counseling. Additionally, enhanced supervision and extended postnatal monitoring are warranted for those who choose to proceed with their pregnancies.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Na Zhang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Wanyu Fu
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yuying Jiang
- Prenatal diagnosis center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Chunnuan Chen
- Department of Neurology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
3
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
4
|
Suleja A, Milska-Musa K, Przysło Ł, Bednarczyk M, Kostecki M, Cysewski D, Matryba P, Rozensztrauch A, Dwornik M, Opacki M, Śmigiel R, Łukasiewicz K. Angelman syndrome in Poland: current diagnosis and therapy status-the caregiver perspective: a questionnaire study. Orphanet J Rare Dis 2024; 19:306. [PMID: 39174987 PMCID: PMC11340045 DOI: 10.1186/s13023-024-03292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental disease caused by imprinting disorders that impede the production of the ubiquitin E3A ligase protein (UBE3A). AS affects multiple systems, with the main symptoms including epilepsy, psychomotor disorders and speech development disorders. To date, no study has been conducted in the Polish population to verify the condition's diagnosis and treatment process. RESULTS Seventy patients with the median age of 60 months were included into the analysis. 80% of patients were diagnosed with deletion, 19.9% with a mutation of UBE3A gene, 4.3% with paternal uniparental disomy (UPD) and 2.8% with an imprinting defect. The mean age of first symptoms was 5 months, while the mean age of diagnosis was 29 months (earliest in deletion group at 23 months), and the median duration of diagnosis process was 7 months. The average time to a clinical geneticist appointment was 3 months. 37.9% of the patients initially received a different diagnosis. Epileptic seizures were present in 88.6% of the individuals. 98.6% of the studied group were under care of a pediatric neurologist, 47.1% of a gastroenterologist. A ketogenic diet was used in 7.1% of patients. Caregivers identified finding a specialist suitable for AS patients and access to genetic testing as the biggest problems. CONCLUSIONS The care of patients with AS in Poland is carried out according to the European and world standards, however there is an impeded access to clinical geneticist, and the knowledge about rare diseases among primary healthcare physicians could be improved. Moreover, access to AS care specialists and coordination of care is limited. There is a need for creation a specialized centers and databases for AS patients.
Collapse
Affiliation(s)
- Agata Suleja
- Faculty of Medicine, Medical University of Silesia, Katowice, Poland
- Angelman Syndrome Project, PROT sp. z o.o., Bialystok, Poland
| | - Katarzyna Milska-Musa
- Division of Quality of Life Research, Department of Psychology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Łukasz Przysło
- Department of Developmental Neurology and Epileptology, Research Institute of Polish Mother's Memorial Hospital, Lodz, Poland
| | - Marzena Bednarczyk
- Angelman Syndrome Project, PROT sp. z o.o., Bialystok, Poland
- Department of Propaedeutics of Obstetrics, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Kostecki
- Angelman Syndrome Project, PROT sp. z o.o., Bialystok, Poland
| | - Dominik Cysewski
- Angelman Syndrome Project, PROT sp. z o.o., Bialystok, Poland
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Matryba
- Department of Immunology, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Rozensztrauch
- Division of Family and Pediatric Nursing, Department of Nursing and Obstetrics, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Dwornik
- Centre of Medical Rehabilitation and Osteopathy REHApunkt, Warsaw, Poland
| | - Marcin Opacki
- Experimental Linguistics Lab, Faculty of Modern Languages, University of Warsaw, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
- Uniwersyteckie Centrum Chorób Rzadkich, Wroclaw Medical University, Wroclaw, Poland.
| | - Kacper Łukasiewicz
- Angelman Syndrome Project, PROT sp. z o.o., Bialystok, Poland.
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Faculty of Medicine with the Division of Dentistry and Division of Medical Education In English, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
5
|
Ozarkar SS, Patel RKR, Vulli T, Smith AL, Shen MD, Burette AC, Philpot BD, Styner MA, Hazlett HC. Comparative profiling of white matter development in the human and mouse brain reveals volumetric deficits and delayed myelination in Angelman syndrome. RESEARCH SQUARE 2024:rs.3.rs-4681861. [PMID: 39149488 PMCID: PMC11326408 DOI: 10.21203/rs.3.rs-4681861/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still not well characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS. Furthermore, we probed the underlying neuropathology by examining the progression of myelination in an AS mouse model. Methods We conducted magnetic resonance imaging (MRI) on children with AS (n=32) and neurotypical controls (n=99) aged 0.5-12 years. In parallel, we examined myelination in postnatal Ube3a maternal-null mice (Ube3a m-/p+; AS model), Ube3a paternal-null mice (Ube3a m+/p-), and wildtype controls (Ube3a m+/p+) using immunohistochemistry, Western blotting, and electron microscopy. Results Our data revealed that AS individuals exhibit significant reductions in brain volume by ~1 year of age, with WM reduced by 26% and gray matter by 21% by 6-12 years of age-approximately twice the reductions observed in the adult AS mouse model. In our AS mouse model, we saw a global delay in the onset of myelination, which normalized within days (likely corresponding to months or years in human development). This myelination delay is caused by the loss of UBE3A in neurons rather than UBE3A haploinsufficiency in oligodendrocytes. Interestingly, ultrastructural analyses did not reveal any abnormalities in myelinated or unmyelinated axons. Limitations It is difficult to extrapolate the timing and duration of the myelination delay observed in AS model mice to individuals with AS. Conclusions This study reveals WM deficits as a hallmark in children with AS, demonstrating for the first time that these deficits are already apparent at 1 year of age. Parallel studies in a mouse model of AS show that these deficits may be associated with delayed onset of myelination due to the loss of neuronal (but not glial) UBE3A. These findings emphasize the potential of WM as both a therapeutic target for interventions and a valuable biomarker for tracking the progression of AS and the effectiveness of potential treatments.
Collapse
Affiliation(s)
- Siddhi S Ozarkar
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ridthi K-R Patel
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tasmai Vulli
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Audrey L Smith
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark D Shen
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alain C Burette
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Benjamin D Philpot
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martin A Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Holthöfer L, Diederich S, Haug V, Lehmann L, Hewel C, Paul NW, Schweiger S, Gerber S, Linke M. A case of an Angelman-syndrome caused by an intragenic duplication of UBE3A uncovered by adaptive nanopore sequencing. Clin Epigenetics 2024; 16:101. [PMID: 39095842 PMCID: PMC11297752 DOI: 10.1186/s13148-024-01711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.
Collapse
Affiliation(s)
- Laura Holthöfer
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Diederich
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Haug
- Neuropediatrics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lioba Lehmann
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charlotte Hewel
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert W Paul
- Institute for History, Philosophy, and Ethics of Medicine, Johannes Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Linke
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Gupta PK, Barak S, Feuermann Y, Goobes G, Kaphzan H. 1H-NMR-based metabolomics reveals metabolic alterations in early development of a mouse model of Angelman syndrome. Mol Autism 2024; 15:31. [PMID: 39049050 PMCID: PMC11267930 DOI: 10.1186/s13229-024-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurodevelopmental genetic disorder caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, affecting approximately 1:15,000 live births. We have recently shown that mitochondrial function in AS is altered during mid to late embryonic brain development leading to increased oxidative stress and enhanced apoptosis of neural precursor cells. However, the overall alterations of metabolic processes are still unknown. Hence, as a follow-up, we aim to investigate the metabolic profiles of wild-type (WT) and AS littermates and to identify which metabolic processes are aberrant in the brain of AS model mice during embryonic development. METHODS We collected brain tissue samples from mice embryos at E16.5 and performed metabolomic analyses using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Multivariate and Univariate analyses were performed to determine the significantly altered metabolites in AS mice. Pathways associated with the altered metabolites were identified using metabolite set enrichment analysis. RESULTS Our analysis showed that overall, the metabolomic fingerprint of AS embryonic brains differed from those of their WT littermates. Moreover, we revealed a significant elevation of distinct metabolites, such as acetate, lactate, and succinate in the AS samples compared to the WT samples. The elevated metabolites were significantly associated with the pyruvate metabolism and glycolytic pathways. LIMITATIONS Only 14 metabolites were successfully identified and investigated in the present study. The effect of unidentified metabolites and their unresolved peaks was not determined. Additionally, we conducted the metabolomic study on whole brain tissue samples. Employing high-resolution NMR studies on different brain regions could further expand our knowledge regarding metabolic alterations in the AS brain. Furthermore, increasing the sample size could reveal the involvement of more significantly altered metabolites in the pathophysiology of the AS brain. CONCLUSIONS Ube3a loss of function alters bioenergy-related metabolism in the AS brain during embryonic development. Furthermore, these neurochemical changes could be linked to the mitochondrial reactive oxygen species and oxidative stress that occurs during the AS embryonic development.
Collapse
Affiliation(s)
- Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Sharon Barak
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Gil Goobes
- Department of Chemistry and The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
8
|
Saravanapandian V, Madani M, Nichols I, Vincent S, Dover M, Dikeman D, Philpot BD, Takumi T, Colwell CS, Jeste S, Paul KN, Golshani P. Sleep EEG signatures in mouse models of 15q11.2-13.1 duplication (Dup15q) syndrome. J Neurodev Disord 2024; 16:39. [PMID: 39014349 PMCID: PMC11251350 DOI: 10.1186/s11689-024-09556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.
Collapse
Affiliation(s)
- Vidya Saravanapandian
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - India Nichols
- Department of Biology, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Scott Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin D Philpot
- Neuroscience Center, Department of Cell Biology and Physiology, and the Carolina Institute for Developmental Disabilities, UNC-Chapel Hill, NC, 27599, USA
| | - Toru Takumi
- Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Christopher S Colwell
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shafali Jeste
- Children's Hospital Los Angeles, 4650 Sunset Blvd, MS 82, Los Angeles, CA, 90027, USA
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Peyman Golshani
- Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| |
Collapse
|
9
|
Vihma H, Li K, Welton-Arndt A, Smith AL, Bettadapur KR, Gilmore RB, Gao E, Cotney JL, Huang HC, Collins JL, Chamberlain SJ, Lee HM, Aubé J, Philpot BD. Ube3a unsilencer for the potential treatment of Angelman syndrome. Nat Commun 2024; 15:5558. [PMID: 38977672 PMCID: PMC11231141 DOI: 10.1038/s41467-024-49788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Deletion of the maternal UBE3A allele causes Angelman syndrome (AS); because paternal UBE3A is epigenetically silenced by a long non-coding antisense (UBE3A-ATS) in neurons, this nearly eliminates UBE3A protein in the brain. Reactivating paternal UBE3A holds promise for treating AS. We previously showed topoisomerase inhibitors can reactivate paternal UBE3A, but their therapeutic challenges prompted our search for small molecule unsilencers with a different mechanism of action. Here, we found that (S)-PHA533533 acts through a novel mechanism to significantly increase paternal Ube3a mRNA and UBE3A protein levels while downregulating Ube3a-ATS in primary neurons derived from AS model mice. Furthermore, peripheral delivery of (S)-PHA533533 in AS model mice induces widespread neuronal UBE3A expression. Finally, we show that (S)-PHA533533 unsilences paternal UBE3A in AS patient-derived neurons, highlighting its translational potential. Our findings provide a lead for developing a small molecule treatment for AS that could be safe, non-invasively delivered, and capable of brain-wide unsilencing of paternal UBE3A.
Collapse
Affiliation(s)
- Hanna Vihma
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna Welton-Arndt
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Audrey L Smith
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kiran R Bettadapur
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel B Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric Gao
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Hsueh-Cheng Huang
- Deerfield Discovery and Development, Deerfield Management, New York, NY, USA
| | - Jon L Collins
- Office of the Vice Chancellor for Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Hyeong-Min Lee
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, Neuroscience Center, and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Leader G, Killeen C, Whelan S, Coyne R, Tones M, Mannion A. Factors associated with sleep disturbances in children and adolescents with Angelman Syndrome. Sleep Med 2024; 117:9-17. [PMID: 38479041 DOI: 10.1016/j.sleep.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare genetic disorder characterised by hyperactivity, overexcitability, developmental delays, and lack of speech. METHODS This study used secondary data analysis to investigate sleep disturbances in children and adolescents (n = 212) who are enrolled in the Global Angelman Syndrome Registry. Participants were divided into two groups based on the presence or absence of sleep disturbance. The cut-off score of 40 on the Sleep Disturbance Scale for Children was used to indicate the presence or absence of sleep disturbances. Sleep disturbances and their association with co-occurring conditions were examined regarding challenging behaviour, language and communication, infancy history, gastrointestinal symptoms, and epilepsy. Multiple regression was then conducted to investigate possible predictors for sleep disturbances. RESULTS Children and adolescents with AS, with and without sleep disturbances, differed considerably regarding anxiety. Sleep disturbances were significantly associated with an ability to use spoken words and computerised communication devices, and anxiety was a predictor of sleep disturbances. CONCLUSION Future research is necessary to replicate this novel research, and to advance the clinical treatment of sleep disturbances in children and adolescents with AS.
Collapse
Affiliation(s)
- Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland, Galway, Ireland
| | - Chloe Killeen
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland, Galway, Ireland
| | - Sally Whelan
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland, Galway, Ireland.
| | - Rory Coyne
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland, Galway, Ireland
| | - Megan Tones
- Research Office, Queensland University of Technology, Brisbane, Australia
| | - Arlene Mannion
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Genovese AC, Butler MG. Behavioral and Psychiatric Disorders in Syndromic Autism. Brain Sci 2024; 14:343. [PMID: 38671997 PMCID: PMC11048128 DOI: 10.3390/brainsci14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Syndromic autism refers to autism spectrum disorder diagnosed in the context of a known genetic syndrome. The specific manifestations of any one of these syndromic autisms are related to a clinically defined genetic syndrome that can be traced to certain genes and variants, genetic deletions, or duplications at the chromosome level. The genetic mutations or defects in single genes associated with these genetic disorders result in a significant elevation of risk for developing autism relative to the general population and are related to recurrence with inheritance patterns. Additionally, these syndromes are associated with typical behavioral characteristics or phenotypes as well as an increased risk for specific behavioral or psychiatric disorders and clinical findings. Knowledge of these associations helps guide clinicians in identifying potentially treatable conditions that can help to improve the lives of affected patients and their families.
Collapse
Affiliation(s)
- Ann C. Genovese
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | | |
Collapse
|
12
|
Walsh JR, Sun G, Balan J, Hardcastle J, Vollenweider J, Jerde C, Rumilla K, Koellner C, Koleilat A, Hasadsri L, Kipp B, Jenkinson G, Klee E. A supervised learning method for classifying methylation disorders. BMC Bioinformatics 2024; 25:66. [PMID: 38347515 PMCID: PMC10863277 DOI: 10.1186/s12859-024-05673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND DNA methylation is one of the most stable and well-characterized epigenetic alterations in humans. Accordingly, it has already found clinical utility as a molecular biomarker in a variety of disease contexts. Existing methods for clinical diagnosis of methylation-related disorders focus on outlier detection in a small number of CpG sites using standardized cutoffs which differentiate healthy from abnormal methylation levels. The standardized cutoff values used in these methods do not take into account methylation patterns which are known to differ between the sexes and with age. RESULTS Here we profile genome-wide DNA methylation from blood samples drawn from within a cohort composed of healthy controls of different age and sex alongside patients with Prader-Willi syndrome (PWS), Beckwith-Wiedemann syndrome, Fragile-X syndrome, Angelman syndrome, and Silver-Russell syndrome. We propose a Generalized Additive Model to perform age and sex adjusted outlier analysis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores among the cohort for each site, we deployed an ensemble based machine learning pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confidence Interval 0.868[Formula: see text]0.995). CONCLUSION We demonstrate a method for age and sex adjusted outlier detection of differentially methylated loci based on a large cohort of healthy individuals. We present a custom machine learning pipeline utilizing this outlier analysis to classify samples for potential methylation associated congenital disorders. These methods are able to achieve high accuracy when used with machine learning methods to classify abnormal methylation patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alaa Koleilat
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
13
|
Yagasaki A, Mochizuki K, Yagasaki T, Sakaguchi H. Relationship between strabismus associated with Angelman syndrome and orbital anomaly. Jpn J Ophthalmol 2024; 68:37-41. [PMID: 38006466 DOI: 10.1007/s10384-023-01030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/19/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE To investigate the relationship between the details of strabismus and orbital abnormalities determined by ocular motility tests and orbital imaging examinations in 9 cases with Angelman syndrome (AS). STUDY DESIGN A retrospective, clinical report. METHODS The 9 AS cases (mean age at initial visit: 4.6 ± 8.0 years) were confirmed by genetic diagnosis of the chromosome 15q11-13 region. In all cases, axial imaging of the orbit in the transverse plane of the horizontal extraocular muscles was obtained. The opening angle between both lateral walls of the orbit (greater wing of sphenoid) was measured as the biorbital angle, and compared with the 95% confidence interval of the orbital angle in normal children. RESULTS All cases had exotropia with means of the distance and near of angle 32.2 prism diopters (Δ) ± 9.7Δ and 32.8Δ ± 8.3Δ. The mean of the biorbital angle was 107.7° ± 7.6°, greater than the biorbital angle of 94.3° ± 5.1° previously reported in 129 normal children (P < 0.0001, t-test). Except for one biorbital angle of 93° in the 25-year-old patient, all the biorbital angles in the 8 children were larger than the upper 95% confidence interval in normal children. Astigmatic and hyperopic ametropic amblyopia were detected in 3 cases and 1 case, respectively. CONCLUSIONS The frequency of exotropia in AS is higher than previously reported, with our results strongly suggesting that the enlarged biorbital angle is related to the pathogenesis of exotropia in AS.
Collapse
Affiliation(s)
- Ayaka Yagasaki
- Department of Ophthalmology, Gifu Prefectural General Medical Center, 4-6-1 Noisshiki, Gifu City, Gifu Prefecture, 500-8717, Japan.
- Department of Ophthalmology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu Prefecture, 501-1194, Japan.
| | - Kiyofumi Mochizuki
- Department of Ophthalmology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu Prefecture, 501-1194, Japan
| | - Teiji Yagasaki
- Yagasaki Eye Clinic, 62-6 Gonaka, Kaimei, Ichinomiya city, Aichi Prefecture, 494-0001, Japan
| | - Hirokazu Sakaguchi
- Department of Ophthalmology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu Prefecture, 501-1194, Japan
| |
Collapse
|
14
|
Jiang XL, Liang B, Zhao WT, Lin N, Huang HL, Cai MY, Xu LP. Prenatal diagnosis of 15q11.2 microdeletion fetuses in Eastern China: 21 case series and literature review. J Matern Fetal Neonatal Med 2023; 36:2262700. [PMID: 37770195 DOI: 10.1080/14767058.2023.2262700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE 15q11.2 microdeletion can lead to syndromes affecting the nervous system. However, 15q11.2 microdeletion has large phenotypic differences and incomplete penetrance, which brings challenges to prenatal diagnosis. We reported 21 cases of 15q11.2 microdeletion fetuses in Eastern China and reviewed literature on the prenatal clinical characteristics related to the deletion variants to provide a basis for prenatal genetic counseling. METHODS The clinical data of 21 cases of 15q11.2 microdeletion fetuses collected from June 2018 to September 2021 were retrospectively analyzed, and chromosomal microarray analysis was performed. The reported prenatal clinical features of 15q11.2 microdeletion fetuses were reviewed and summarized. A meta-analysis of 20 studies was performed to test heterogeneity, data integration, and sensitivity on the correlation between 15q11.2 microdeletion and neuropsychiatric diseases. RESULTS The median age of the women was 29.5 years. The median gestational age at interventional examination was 24 weeks. All fetuses showed deletion variants of the 15q11.2 fragment, and the median deletion range was approximately 0.48 MB. Ultrasound of five cases showed no abnormalities; however, four of them showed a high risk of Down's syndrome (risk values were 1/184, 1/128, 1/47, and 1/54, respectively). The remaining 16 fetuses showed congenital heart disease (7/16), elevated nuchal translucency (5/16), abnormal brain structure (2/16) and renal disease (2/16). In a literature review of 82 prenatal cases, 44% (36/82) had abnormal ultrasound features, 31% (11/36) showed abnormal nuchal translucency, approximately 28% (10/36) showed abnormal cardiac structure, and 14% (5/36) had brain structural abnormalities. The meta-analysis revealed that the frequency of the 15q11.2 microdeletion mutation in patients with schizophrenia and epilepsy was significantly higher (odds ratio 2.04, 95% confidence interval: 1.78-2.33, p < 0.00001; odds ratio 5.23, 95% confidence interval: 2.83-9.67, p < 0.00001) than that in normal individuals. CONCLUSION More than half of the 15q11.2 microdeletion cases presented no abnormalities in prenatal ultrasound examination. The cases with ultrasound features mainly showed isolated malformations such as elevated nuchal translucency, congenital heart disease, and brain structural abnormalities. Postpartum 15q11.2 microdeletion patients are at an increased risk of suffering from schizophrenia, epilepsy, and other neurological and mental diseases from 15q11.2 microdeletion. Therefore, prenatal diagnosis of 15q11.2 microdeletion not only depends on molecular diagnostic techniques but also requires cautious genetic counseling.
Collapse
Affiliation(s)
- Xia-Li Jiang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Wan-Tong Zhao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hai-Long Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Mei-Ying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liang-Pu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affifiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
15
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
16
|
Camões dos Santos J, Appleton C, Cazaux Mateus F, Covas R, Bekman EP, da Rocha ST. Stem cell models of Angelman syndrome. Front Cell Dev Biol 2023; 11:1274040. [PMID: 37928900 PMCID: PMC10620611 DOI: 10.3389/fcell.2023.1274040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Angelman syndrome (AS) is an imprinted neurodevelopmental disorder that lacks a cure, characterized by developmental delay, intellectual impairment, seizures, ataxia, and paroxysmal laughter. The condition arises due to the loss of the maternally inherited copy of the UBE3A gene in neurons. The paternally inherited UBE3A allele is unable to compensate because it is silenced by the expression of an antisense transcript (UBE3A-ATS) on the paternal chromosome. UBE3A, encoding enigmatic E3 ubiquitin ligase variants, regulates target proteins by either modifying their properties/functions or leading them to degradation through the proteasome. Over time, animal models, particularly the Ube3a mat-/pat+ Knock-Out (KO) mice, have significantly contributed to our understanding of the molecular mechanisms underlying AS. However, a shift toward human pluripotent stem cell models (PSCs), such as human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), has gained momentum. These stem cell models accurately capture human genetic and cellular characteristics, offering an alternative or a complement to animal experimentation. Human stem cells possess the remarkable ability to recapitulate neurogenesis and generate "brain-in-a-dish" models, making them valuable tools for studying neurodevelopmental disorders like AS. In this review, we provide an overview of the current state-of-the-art human stem cell models of AS and explore their potential to become the preclinical models of choice for drug screening and development, thus propelling AS therapeutic advancements and improving the lives of affected individuals.
Collapse
Affiliation(s)
- João Camões dos Santos
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Appleton
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Cazaux Mateus
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Covas
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Evguenia Pavlovna Bekman
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- The Egas Moniz Center for Interdisciplinary Research (CiiEM), Caparica, Portugal
| | - Simão Teixeira da Rocha
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Kioutchoukova IP, Foster DT, Thakkar RN, Foreman MA, Burgess BJ, Toms RM, Molina Valero EE, Lucke-Wold B. Neurologic orphan diseases: Emerging innovations and role for genetic treatments. World J Exp Med 2023; 13:59-74. [PMID: 37767543 PMCID: PMC10520757 DOI: 10.5493/wjem.v13.i4.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States. Most orphan diseases are of neurologic and genetic origin. With the current advances in technology, more funding has been devoted to developing therapeutic agents for patients with these conditions. In our review, we highlight emerging options for patients with neurologic orphan diseases, specifically including diseases resulting in muscular deterioration, epilepsy, seizures, neurodegenerative movement disorders, inhibited cognitive development, neuron deterioration, and tumors. After extensive literature review, gene therapy offers a promising route for the treatment of neurologic orphan diseases. The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases. Additionally, the use of adeno-associated viral vectors has shown improvement in survival, motor function, and developmental milestones, while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients. Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes. Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth, proliferation, and angiogenesis. Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases.
Collapse
Affiliation(s)
| | - Devon T Foster
- Florida International University Herbert Wertheim College of Medicine, Florida International University Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Rajvi N Thakkar
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Marco A Foreman
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Brandon J Burgess
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | - Rebecca M Toms
- College of Medicine, University of Florida, Gainesville, FL 32611, United States
| | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
18
|
Rogers M, Motola S, Bechichi Y, Cluzeau C, Terray T, Berent A, Panagoulias J, Duis J, Eggenspieler D, Servais L. Qualitative Insights into Key Angelman Syndrome Motor Related Concepts Reported by Caregivers-A Thematic Analysis of Semi-Structured Interviews. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1462. [PMID: 37761423 PMCID: PMC10529730 DOI: 10.3390/children10091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Previous patient-centered concept models of Angelman syndrome (AS) are integral in developing our understanding of the symptoms and impact of this condition with a holistic perspective and have highlighted the importance of motor function. We aimed to develop the motor and movement aspects of the concept models, to support research regarding motor-related digital outcomes aligned with patients' and caregivers' perspectives. We conducted a qualitative analysis of semi-structured interviews of 24 caregivers to explore AS motor-related features, factors influencing them and their impact on patients and caregivers.The most impacted motor features were gait, walking and stair-climbing. Half of caregivers ranked motor symptoms as one of the most burdensome symptoms of AS. Caregivers frequently reported physical therapy, motivation, medical management and age as factors influencing motor function in AS and reported that impaired motor function affected both patients and caregivers. Measures of lower-limb motor function were identified as relevant to monitor drug effectiveness in AS. Caregivers discussed expected benefits of a digital outcome and potential issues with wearable technology in the context of AS. We propose a new motor function patient-centered concept model, providing insights for the development of relevant, motor-related, digital outcomes in AS.
Collapse
Affiliation(s)
- Miranda Rogers
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 2JD, UK;
- Sysnav Co., 27200 Vernon, France; (S.M.); (Y.B.); (C.C.); (T.T.); (D.E.)
| | - Stéphane Motola
- Sysnav Co., 27200 Vernon, France; (S.M.); (Y.B.); (C.C.); (T.T.); (D.E.)
| | - Yacine Bechichi
- Sysnav Co., 27200 Vernon, France; (S.M.); (Y.B.); (C.C.); (T.T.); (D.E.)
| | - Céline Cluzeau
- Sysnav Co., 27200 Vernon, France; (S.M.); (Y.B.); (C.C.); (T.T.); (D.E.)
| | - Tanguy Terray
- Sysnav Co., 27200 Vernon, France; (S.M.); (Y.B.); (C.C.); (T.T.); (D.E.)
| | - Allyson Berent
- Foundation for Angelman Syndrome Therapeutics (FAST), P.O. Box 40307, Austin, TX 78704, USA; (A.B.); (J.P.)
| | - Jennifer Panagoulias
- Foundation for Angelman Syndrome Therapeutics (FAST), P.O. Box 40307, Austin, TX 78704, USA; (A.B.); (J.P.)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Campus, Aurora, CO 80045, USA;
| | | | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 2JD, UK;
- Department of Paediatrics, Neuromuscular Reference Center, University Hospital Liège, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
19
|
Davidson EA, Holingue C, Jimenez-Gomez A, Dallman JE, Moshiree B. Gastrointestinal Dysfunction in Genetically Defined Neurodevelopmental Disorders. Semin Neurol 2023; 43:645-660. [PMID: 37586397 PMCID: PMC10895389 DOI: 10.1055/s-0043-1771460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with validated questionnaires used in the general population of children without NDDS cannot be used in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role of genetics and the environment in this disease spectrum and focus instead on possible diagnostics that could provide future objective insight into the connection of the gut-brain-microbiome in this disease entity. We provide our own data from both humans and a zebrafish model of ASD called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current knowledge on many of these profound NDDs and that it provides a future framework upon which clinicians and researchers can build and network with other interested multidisciplinary specialties.
Collapse
Affiliation(s)
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andres Jimenez-Gomez
- Neuroscience Center, Joe DiMaggio Children’s Hospital, Hollywood, Florida
- Department of Child Neurology, Florida Atlantic University Stiles - Nicholson Brain Institute, Jupiter, Florida
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, Miami, Florida
| | - Baharak Moshiree
- Atrium Health, Wake Forest Medical University, Charlotte, North Carolina
| |
Collapse
|
20
|
Borja N, Borjas-Mendoza P, Bivona S, Peart L, Gonzalez J, Johnson BK, Guo S, Yusupov R, Bademci G, Tekin M. H4C5 missense variant leads to a neurodevelopmental phenotype overlapping with Angelman syndrome. Am J Med Genet A 2023; 191:1911-1916. [PMID: 36987712 PMCID: PMC10286100 DOI: 10.1002/ajmg.a.63193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/29/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Recurrent de novo missense variants in H4 histone genes have recently been associated with a novel neurodevelopmental syndrome that is characterized by intellectual disability and developmental delay as well as more variable findings that include short stature, microcephaly, and facial dysmorphisms. A 4-year-old male with autism, developmental delay, microcephaly, and a happy demeanor underwent evaluation through the Undiagnosed Disease Network. He was clinically suspected to have Angelman syndrome; however, molecular testing was negative. Genome sequencing identified the H4 histone gene variant H4C5 NM_003545.4: c.295T>C, p.Tyr99His, which parental testing confirmed to be de novo. The variant met criteria for a likely pathogenic classification and is one of the seven known disease-causing missense variants in H4C5. A comparison of our proband's findings to the initial description of the H4-associated neurodevelopmental syndrome demonstrates that his phenotype closely matches the spectrum of those reported among the 29 affected individuals. As such, this report corroborates the delineation of neurodevelopmental syndrome caused by de novo missense H4 gene variants. Moreover, it suggests that cases of clinically suspected Angelman syndrome without molecular confirmation should undergo exome or genome sequencing, as novel neurodevelopmental syndromes with phenotypes overlapping with Angelman continue to be discovered.
Collapse
Affiliation(s)
- Nicholas Borja
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paulo Borjas-Mendoza
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephanie Bivona
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - LéShon Peart
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joanna Gonzalez
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brittney Keira Johnson
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Roman Yusupov
- Department of Clinical Genetics, Memorial Healthcare System, Hollywood, Florida, USA
| | | | - Guney Bademci
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mustafa Tekin
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Keary CJ, McDougle CJ. Current and emerging treatment options for Angelman syndrome. Expert Rev Neurother 2023; 23:835-844. [PMID: 37599585 DOI: 10.1080/14737175.2023.2245568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, limited expressive language, epilepsy, and motor impairment. Angelman syndrome is caused by haploinsufficiency of the UBE3A gene on the maternal copy of chromosome 15. There have been ongoing advances in the understanding of neurological, behavioral, and sleep-based problems and associated treatments for patients with AS. These results along with gene-based therapies entering into clinical development prompted this review. AREAS COVERED The authors summarize the research basis describing phenomenology of epilepsy and behavioral concerns such as hyperactivity behavior, aggression, self-injury, repetitive behavior, and sleep disorder. The evidence for recent treatment advances in these target symptom domains of concern is reviewed, and the potential for emerging gene therapy treatments is considered. EXPERT OPINION The prospect for emerging gene therapies means that increasing efforts should be directed toward the early identification of AS implemented equitably. Recent studies emphasize the important role of behavioral therapy in addressing mental health concerns such as aggression and disordered sleep.
Collapse
Affiliation(s)
- Christopher J Keary
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Angelman Syndrome Program, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Christopher J McDougle
- Department is department of psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Lurie Center for Autism, Lexington, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Simchi L, Gupta PK, Feuermann Y, Kaphzan H. Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells. Mol Psychiatry 2023; 28:2382-2397. [PMID: 36991133 PMCID: PMC10611580 DOI: 10.1038/s41380-023-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder caused by the maternally inherited loss of function of the UBE3A gene. AS is characterized by a developmental delay, lack of speech, motor dysfunction, epilepsy, autistic features, happy demeanor, and intellectual disability. While the cellular roles of UBE3A are not fully understood, studies suggest that the lack of UBE3A function is associated with elevated levels of reactive oxygen species (ROS). Despite the accumulating evidence emphasizing the importance of ROS during early brain development and its involvement in different neurodevelopmental disorders, up to date, the levels of ROS in AS neural precursor cells (NPCs) and the consequences on AS embryonic neural development have not been elucidated. In this study we show multifaceted mitochondrial aberration in AS brain-derived embryonic NPCs, which exhibit elevated mitochondrial membrane potential (ΔΨm), lower levels of endogenous reduced glutathione, excessive mitochondrial ROS (mROS) levels, and increased apoptosis compared to wild-type (WT) littermates. In addition, we report that glutathione replenishment by glutathione-reduced ethyl ester (GSH-EE) corrects the excessive mROS levels and attenuates the enhanced apoptosis in AS NPCs. Studying the glutathione redox imbalance and mitochondrial abnormalities in embryonic AS NPCs provides an essential insight into the involvement of UBE3A in early neural development, information that can serve as a powerful avenue towards a broader view of AS pathogenesis. Moreover, since mitochondrial dysfunction and elevated ROS levels were associated with other neurodevelopmental disorders, the findings herein suggest some potential shared underlying mechanisms for these disorders as well.
Collapse
Affiliation(s)
- Lilach Simchi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Pooja Kri Gupta
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yonatan Feuermann
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
23
|
Jenner L, Richards C, Howard R, Moss J. Heterogeneity of Autism Characteristics in Genetic Syndromes: Key Considerations for Assessment and Support. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2023; 10:132-146. [PMID: 37193200 PMCID: PMC10169182 DOI: 10.1007/s40474-023-00276-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Purpose of Review Elevated prevalence of autism characteristics is reported in genetic syndromes associated with intellectual disability. This review summarises recent evidence on the behavioural heterogeneity of autism in the following syndromes: Fragile X, Cornelia de Lange, Williams, Prader-Willi, Angelman, Down, Smith-Magenis, and tuberous sclerosis complex. Key considerations for assessment and support are discussed. Recent Findings The profile and developmental trajectory of autism-related behaviour in these syndromes indicate some degree of syndrome specificity which may interact with broader behavioural phenotypes (e.g. hypersociability), intellectual disability, and mental health (e.g. anxiety). Genetic subtype and co-occurring epilepsy within syndromes contribute to increased significance of autism characteristics. Autism-related strengths and challenges are likely to be overlooked or misunderstood using existing screening/diagnostic tools and criteria, which lack sensitivity and specificity within these populations. Summary Autism characteristics are highly heterogeneous across genetic syndromes and often distinguishable from non-syndromic autism. Autism diagnostic assessment practices in this population should be tailored to specific syndromes. Service provisions must begin to prioritise needs-led support.
Collapse
Affiliation(s)
- Lauren Jenner
- School of Psychology, University of Surrey, Guildford, England
| | | | - Rachel Howard
- School of Psychology, University of Surrey, Guildford, England
| | - Joanna Moss
- School of Psychology, University of Surrey, Guildford, England
| |
Collapse
|
24
|
Dang H, Srinivasa S, Lee SY, Alprin C. A Case Study of Early Diagnosed Angelman Syndrome: Recognizing Atypical Clinical Presentations. Cureus 2023; 15:e39271. [PMID: 37342752 PMCID: PMC10279475 DOI: 10.7759/cureus.39271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Angelman syndrome (AS) is a rare pediatric neurological condition in which patients most commonly present with inappropriate laughter, microcephaly, speech difficulties, seizures, and movement disorders. AS can be diagnosed clinically and confirmed with genetic testing. In this case report, the patient presented with 9.3% weight loss at two days of age. Although there were multiple attempts at lactational counseling and nutritional guidance, the patient was admitted to the hospital due to failure to thrive. Due to continued global developmental delay and upper and lower extremities hypotonia by the age of nine months, the patient was referred to a neurologist. Brain MRI was negative, and genetic testing revealed 15q11.2q13.1 deletion, which is consistent with AS. Through different therapies and intervention, the patient showed slow improvements in symptoms. This case illustrates the importance of early recognition of nonspecific clinical manifestations of AS. The general management for all AS patients includes physical therapy, speech therapy, mobility support devices, education, and behavioral therapy as they progress through life. Establishing an early diagnosis has potential long-term benefits of improved quality of life and outcomes for patients via early interventions such as physical therapy starting at the age of six months to improve gross motor function. When infants present with nonspecific clinical presentations such as failure to thrive and hypotonia, clinicians should maintain a lower threshold for suspecting genetic conditions, which will facilitate early diagnosis of AS.
Collapse
Affiliation(s)
- Han Dang
- Pediatrics, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Sandhya Srinivasa
- Pediatrics, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Sun Young Lee
- Pediatrics, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Clifford Alprin
- Family Medicine, North San Antonio Healthcare Associates, San Antonio, USA
| |
Collapse
|
25
|
Martinez LA, Born HA, Harris S, Regnier-Golanov A, Grieco JC, Weeber EJ, Anderson AE. Quantitative EEG Analysis in Angelman Syndrome: Candidate Method for Assessing Therapeutics. Clin EEG Neurosci 2023; 54:203-212. [PMID: 33203220 DOI: 10.1177/1550059420973095] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Heather A Born
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Sarah Harris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Angelique Regnier-Golanov
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA
| | - Joseph C Grieco
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, TX, USA.,Departments of Neuroscience and Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Isralowitz EB, Sideris J, Stein Duker LI, Baranek GT, Cermak SA. Comparing sensory processing in children with Down syndrome to a mental age matched sample of children with autism, other developmental disabilities, and typically developing children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 134:104421. [PMID: 36638671 DOI: 10.1016/j.ridd.2022.104421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Atypical sensory processing impacts children with intellectual and developmental disabilities (IDD). Research has focused on SP in individuals with autism spectrum disorder (ASD); comparatively, little has been written regarding individuals with Down syndrome (DS) and IDDs. AIMS We compared patterns of sensory processing in children with DS to children with ASD, other IDDs, and typically developing (TD) peers examining the relationship among different sensory processing measures. METHODS AND PROCEDURES We analyzed cross-sectional data using two caregiver questionnaires (SP, SEQ) and one observational measure (SPA). Groups were compared on three sensory processing patterns: hyporesponsiveness; hyperresponsiveness; and sensory interests, repetitions, and seeking (SIRS) via ANOVA. We assessed concordance through correlations. OUTCOMES AND RESULTS Children with DS, IDD, and ASD demonstrated more atypical sensory processing behaviors than TD peers. Children with ASD exhibited the most atypical responses across all measures, significantly more than DS children on all but one subscale. The IDD and DS groups differed on several measures. Measurement concordance was higher between caregiver-report versus observational assessment. CONCLUSIONS AND IMPLICATIONS Differences between three clinical groups indicate that sensory processing features may differ across clinical populations regardless of cognitive functioning. Lower concordance between caregiver-report and observation measures highlights the need to understand sensory processing expression across different tasks and environments.
Collapse
Affiliation(s)
- Elizabeth B Isralowitz
- Division of Occupational Science and Occupational Therapy, University of Southern California, 1540 Alcazar St., CHP-133, Los Angeles, CA, 90089-9003, USA.
| | - John Sideris
- Division of Occupational Science and Occupational Therapy, University of Southern California, 1540 Alcazar St., CHP-133, Los Angeles, CA, 90089-9003, USA
| | - Leah I Stein Duker
- Division of Occupational Science and Occupational Therapy, University of Southern California, 1540 Alcazar St., CHP-133, Los Angeles, CA, 90089-9003, USA
| | - Grace T Baranek
- Division of Occupational Science and Occupational Therapy, University of Southern California, 1540 Alcazar St., CHP-133, Los Angeles, CA, 90089-9003, USA
| | - Sharon A Cermak
- Division of Occupational Science and Occupational Therapy, University of Southern California, 1540 Alcazar St., CHP-133, Los Angeles, CA, 90089-9003, USA
| |
Collapse
|
27
|
Social attention and social-emotional modulation of attention in Angelman syndrome: an eye-tracking study. Sci Rep 2023; 13:3375. [PMID: 36854878 PMCID: PMC9975183 DOI: 10.1038/s41598-023-30199-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Individuals with Angelman syndrome (AS) present with severe intellectual disability alongside a social phenotype characterised by social communication difficulties and an increased drive for social engagement. As the social phenotype in this condition is poorly understood, we examined patterns of social attention and social modulation of attention in AS. Twenty-four individuals with AS and twenty-one young children with similar mental age were shown videos featuring unfamiliar actors who performed simple actions across two conditions: a playful condition, in which the actor showed positive facial emotions, and a neutral condition, in which the actor showed a neutral facial expression. During the passive observation of the videos, participants' proportion of time spent watching the two areas of interest (faces and actions) was examined using eye-tracking technology. We found that the playful condition elicited increased proportion of fixations duration to the actor's face compared to the neutral condition similarly across groups. Additionally, the proportion of fixations duration to the action area was similar across groups in the two conditions. However, children with AS looked towards the actor's face for a shorter duration compared to the comparison group across conditions. This pattern of similarities and differences provides novel insight on the complex social phenotype of children with AS.
Collapse
|
28
|
Galli J, Loi E, Strobio C, Micheletti S, Martelli P, Merabet LB, Pasini N, Semeraro F, Fazzi E. Neurovisual profile in children affected by Angelman syndrome. Brain Dev 2023; 45:117-125. [PMID: 36344336 DOI: 10.1016/j.braindev.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurogenetic disorder caused by altered expression of the maternal copy of the UBE3A gene. Together with motor, cognitive, and speech impairment, ophthalmological findings including strabismus, and ocular fundus hypopigmentation characterize the clinical phenotype. The aim of this study was to detail the neurovisual profile of children affected by AS and to explore any possible genotype-phenotype correlations. METHODS Thirty-seven children (23 females, mean age 102.8 ± 54.4 months, age range 22 to 251 months) with molecular confirmed diagnosis of AS were enrolled in the study. All underwent a comprehensive video-recorded neurovisual evaluation including the assessment of ophthalmological aspects, oculomotor functions, and basic visual abilities. RESULTS All children had visual impairments mainly characterized by refractive errors, ocular fundus changes, strabismus, discontinuous/jerky smooth pursuit and altered saccadic movements, and/or reduced visual acuity. Comparing the neurovisual profiles between the deletion and non-deletion genetic subgroups, we found a significant statistical correlation between genotype and ocular fundus hypopigmentation (p = 0.03), discontinuous smooth pursuit (p < 0.05), and contrast sensitivity abnormalities (p < 0.01) being more frequent in the deletion subgroup. CONCLUSIONS Subjects affected by AS present a wide spectrum of neurovisual impairments that lead to a clinical profile consistent with cerebral visual impairment (CVI). Moreover, subjects with a chromosome deletion show a more severe visual phenotype with respect to ocular fundus changes, smooth pursuit movements, and contrast sensitivity. Early detection of these impaired visual functions may help promote the introduction of neurovisual habilitative programs which can improve children's visual, neuromotor, and cognitive outcomes.
Collapse
Affiliation(s)
- Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Erika Loi
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Caterina Strobio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Serena Micheletti
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paola Martelli
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Nadia Pasini
- Department of Neurological and Vision Sciences, ASST Spedali Civili of Brescia, Italy
| | - Francesco Semeraro
- Department of Neurological and Vision Sciences, ASST Spedali Civili of Brescia, Italy; University of Brescia, Eye Clinic, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | | |
Collapse
|
29
|
Faqeih EA, Alghamdi MA, Almahroos MA, Alharby E, Almuntashri M, Alshangiti AM, Clément P, Calame DG, Qebibo L, Burglen L, Doco-Fenzy M, Mastrangelo M, Torella A, Manti F, Nigro V, Alban Z, Alharbi GS, Hashmi JA, Alraddadi R, Alamri R, Mitani T, Magalie B, Coban-Akdemir Z, Geckinli BB, Pehlivan D, Romito A, Karageorgou V, Martini J, Colin E, Bonneau D, Bertoli-Avella A, Lupski JR, Pastore A, Peake RWA, Dallol A, Alfadhel M, Almontashiri NAM. Biallelic variants in HECT E3 paralogs, HECTD4 and UBE3C, encoding ubiquitin ligases cause neurodevelopmental disorders that overlap with Angelman syndrome. Genet Med 2023; 25:100323. [PMID: 36401616 DOI: 10.1016/j.gim.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.
Collapse
Affiliation(s)
- Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Malak Ali Alghamdi
- Medical Genetics Division, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Medical Genetic Division, Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Marwa A Almahroos
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Makki Almuntashri
- Department of Radiology, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Amnah M Alshangiti
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Prouteau Clément
- Department of Medical Genetics and Mitovasc INSERM 1083, CNRS 6015, Angers University Hospital, Angers, France
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Leila Qebibo
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, 75012, Paris, France
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, 75012, Paris, France; Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR, 1163, F-75015, Paris, France
| | - Martine Doco-Fenzy
- CHU Reims, SFR CAP Sante, EA3801, Reims, France and CHU de Nantes, service de génétique médicale, Nantes, France
| | - Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza-University of Rome, Rome, Italy
| | - Annalaura Torella
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli" ,Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Filippo Manti
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza-University of Rome, Rome, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, Università della Campania "Luigi Vanvitelli" ,Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ziegler Alban
- Department of Medical Genetics and Mitovasc INSERM 1083, CNRS 6015, Angers University Hospital, Angers, France
| | - Ghadeer Saleh Alharbi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Jamil Amjad Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Rawya Alraddadi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Razan Alamri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Barth Magalie
- Department of Medical Genetics and Mitovasc INSERM 1083, CNRS 6015, Angers University Hospital, Angers, France
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Bilgen Bilge Geckinli
- Center of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Davut Pehlivan
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Antonio Romito
- Medical Reporting & Genomic Research, CENTOGENE GmbH, Rostock, Germany
| | | | - Javier Martini
- Medical Reporting & Genomic Research, CENTOGENE GmbH, Rostock, Germany
| | - Estelle Colin
- Department of Medical Genetics and Mitovasc INSERM 1083, CNRS 6015, Angers University Hospital, Angers, France
| | - Dominique Bonneau
- Department of Medical Genetics and Mitovasc INSERM 1083, CNRS 6015, Angers University Hospital, Angers, France
| | | | - James R Lupski
- Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Annalisa Pastore
- Dementia Research Institute at King's College London, The Wohl Institute, 5 Cutcome Rd, London SE59RT, UK
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
| | - Ashraf Dallol
- Noor Diagnostics and Discovery, Innovation Cluster, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia; Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia; College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia.
| |
Collapse
|
30
|
Key AP, Roth S, Jones D, Hunt-Hawkins H. Typical and atypical neural mechanisms support spoken word processing in Angelman syndrome. BRAIN AND LANGUAGE 2023; 236:105215. [PMID: 36502770 PMCID: PMC9839587 DOI: 10.1016/j.bandl.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Angelman syndrome (AS) is known to affect expressive and receptive communication abilities. This study examined individual differences in neural mechanisms underlying speech processing in children with AS (n = 24, M age = 10.01 years) and typical development (n = 30, M age = 10.82 years) using auditory event-related potentials during passive listening to common English words and novel pseudowords. A group of adults with AS (n = 7, M = 31.78 years) provided data about the upper developmental range. The typically developing group demonstrated the expected more negative amplitudes in response to words than pseudowords within 250-500 ms after stimulus onset at the left temporal scalp region. Children and adults with AS exhibited a similar left-lateralized pattern of word-pseudoword differentiation at temporal and parietal regions, but not the midline parietal memory response for known words observed in the typically developing group, suggesting typical-like word-pseudoword differentiation along with possible alterations in the automatic recall of word meaning. These results have important implications for understanding receptive and expressive communication processes in AS and support the use of auditory neural responses for characterizing individual differences in neurodevelopmental disorders with limited speech.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Sydney Roth
- Vanderbilt University, Nashville, TN 37235, USA
| | - Dorita Jones
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN 37203, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
31
|
Case Report: Autism Risk Within the Context of Two Chromosome 15 Syndromes. J Autism Dev Disord 2023; 53:503-513. [PMID: 34997429 DOI: 10.1007/s10803-021-05422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
|
32
|
Klocke B, Krone K, Tornes J, Moore C, Ott H, Pitychoutis PM. Insights into the role of intracellular calcium signaling in the neurobiology of neurodevelopmental disorders. Front Neurosci 2023; 17:1093099. [PMID: 36875674 PMCID: PMC9975342 DOI: 10.3389/fnins.2023.1093099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Calcium (Ca2+) comprises a critical ionic second messenger in the central nervous system that is under the control of a wide array of regulatory mechanisms, including organellar Ca2+ stores, membrane channels and pumps, and intracellular Ca2+-binding proteins. Not surprisingly, disturbances in Ca2+ homeostasis have been linked to neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. However, aberrations in Ca2+ homeostasis have also been implicated in neuropsychiatric disorders with a strong neurodevelopmental component including autism spectrum disorder (ASD) attention-deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). While plasma membrane Ca2+ channels and synaptic Ca2+-binding proteins have been extensively studied, increasing evidence suggests a prominent role for intracellular Ca2+ stores, such as the endoplasmic reticulum (ER), in aberrant neurodevelopment. In the context of the current mini-review, we discuss recent findings implicating critical intracellular Ca2+-handling regulators such as the sarco-ER Ca2+ ATPase 2 (SERCA2), ryanodine receptors (RyRs), inositol triphosphate receptors (IP3Rs), and parvalbumin (PVALB), in the emergence of ASD, SCZ, and ADHD.
Collapse
Affiliation(s)
- Benjamin Klocke
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Kylie Krone
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Jason Tornes
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Carter Moore
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Hayden Ott
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
33
|
Arpone M, Bretherton L, Amor DJ, Hearps SJC, Rogers C, Field MJ, Hunter MF, Santa Maria L, Alliende AM, Slee J, Godler DE, Baker EK. Agreement between parents' and clinical researchers' ratings of behavioral problems in children with fragile X syndrome and chromosome 15 imprinting disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 131:104338. [PMID: 36179574 DOI: 10.1016/j.ridd.2022.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Despite the increasing number of clinical trials involving children with neurodevelopmental disorders, appropriate and objective outcome measures for behavioral symptoms are still required. AIM This study assessed the agreement between parents' and clinical researchers' ratings of behavioral problem severity in children with fragile X syndrome (FXS) and chromosome 15 imprinting disorders. METHODS AND PROCEDURES The cohort comprised 123 children (64% males), aged 3-17 years, with FXS (n = 79), Prader-Willi (PWS; n = 19), Angelman (AS; n = 15), and Chromosome 15q duplication (n = 10) syndromes. Specific items from the Autism Diagnostic Observation Schedule-Second Edition and Aberrant Behavior Checklist-Community Edition mapping to corresponding behavioral domains were selected ad-hoc, to assess behavioral problems. OUTCOMES AND RESULTS Inter-rater agreement for the cohort was slight for self-injury (Intraclass Correlation Coefficient (ICC) = 0.12), fair for tantrums/aggression (0.24) and mannerisms/stereotypies (0.25), and moderate for hyperactivity (0.48). When stratified by diagnosis, ICC ranged from poor (0; self-injury, AS and PWS) to substantial (0.48; hyperactivity, females with FXS). CONCLUSIONS AND IMPLICATIONS The high level of inter-rater disagreement across most domains suggests that parents' and researchers' assessments led to discrepant appraisal of behavioral problem severity. These findings have implications for treatment targets and outcome measure selection in clinical trials, supporting a multi-informant approach.
Collapse
Affiliation(s)
- Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - David J Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Stephen J C Hearps
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Jennie Slee
- Department of Health, Government of Western Australia, Genetic Services of Western Australia, Perth, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
34
|
Key AP, Roth S, Venker C. Spoken language comprehension in children and adults with Angelman Syndrome. JOURNAL OF COMMUNICATION DISORDERS 2022; 100:106272. [PMID: 36244082 PMCID: PMC9994640 DOI: 10.1016/j.jcomdis.2022.106272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Objective evaluation of receptive communication abilities in nonspeaking individuals using standardized behavioral measures can be complicated by co-occurring intellectual disabilities and motor difficulties. Eye tracking during listening may offer an informative complementary approach to directly evaluate receptive language skills. METHOD This study examined feasibility of eye gaze measures as an index of spoken language comprehension in nonspeaking children and adults with Angelman syndrome (AS; n = 23) using a looking-while-listening procedure. Typically developing children (n = 34) provided a reference data set. Primary caregivers of participants with AS completed standardized informant reports (MacArthur-Bates Communicative Development Inventory: Words and Gestures; Vineland Adaptive Behavior Scales-3; Aberrant Behavior Checklist-2) to characterize communicative skills and general adaptive functioning. RESULTS Gaze data in participants with AS, particularly in the individuals reported by caregivers to have larger receptive vocabularies and stronger adaptive communicative functioning, demonstrated the expected pattern of comprehension reflected by the increased probability of looks to the target images after vs. before they were named in a spoken sentence. However, processing speed (gaze reaction time) was significantly slower in participants with AS than in the typically developing group. CONCLUSIONS Gaze-based paradigms could be an informative measure of receptive communication processes in participants who are unable to complete traditional standardized behavioral assessments.
Collapse
|
35
|
Rispoli M, Shannon E, Voorhis C, Lang R, Mason R, Kelleher B. Telehealth Training in Naturalistic Communication Intervention for Mothers of Children with Angelman Syndrome. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:549-566. [PMID: 36160311 PMCID: PMC9483349 DOI: 10.1007/s41252-022-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Objectives Young children with Angelman syndrome have significant delays in expressive communication. Parents of children with Angelman syndrome require training to support their child's communication development. Unfortunately, parent training focused on the needs of families of children with rare genetic syndromes is unavailable to many families. The purpose of this study was to evaluate a telehealth parent training program on naturalistic communication intervention for young children with Angelman syndrome. Methods Using two single-case multiple baseline designs across a total of six parent-child dyads, we evaluated the effects of a telehealth parent training program on parent implementation fidelity of a naturalistic communication intervention, child communication, and child engagement. Results With the telehealth parent training program, parent implementation fidelity of naturalistic communication intervention improved, maintained and generalized to untrained home routines. Small effects on child communication and engagement were observed during the program. Conclusions Parents of children with Angelman syndrome were successfully taught via telehealth to implement a naturalistic communication intervention with their child at home. Additional research is needed to promote positive child communication outcomes through parent-mediated intervention.
Collapse
Affiliation(s)
- Mandy Rispoli
- Department of Curriculum, Instruction, and Special Education, University of Virginia, PO Box 400273, Charlottesville, VA 22904 USA
| | | | | | | | - Rose Mason
- Purdue University, West Lafayette, IN USA
| | | |
Collapse
|
36
|
Li Y, Shu J, Cheng Y, Zhou X, Huang T. Identification of key biomarkers in Angelman syndrome by a multi-cohort analysis. Front Med (Lausanne) 2022; 9:963883. [PMID: 36052323 PMCID: PMC9424609 DOI: 10.3389/fmed.2022.963883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The Angelman Syndrome (AS) is an extreme neurodevelopmental disorder without effective treatments. While most patients with this disease can be diagnosed by genetic testing, there are still a handful of patients have an unrecognized genetic cause for their illness. Thus, novel approaches to clinical diagnosis and treatment are urgently needed. The aim of this study was to identify and characterize differentially expressed genes involved in AS and built potential diagnostic panel for AS by NGS sequencing. A multi-cohort analysis framework was used to analyze stem cell-derived neurons from AS patients in GSE160747 dataset. We identified three differentially expressed genes (ACTN1, ADAMTS2, SLC30A8) differentiates AS patients from controls. Moreover, we validated the expression patterns of these genes in GSE146640, GSE120225. Receiver operating characteristic (ROC) curves analysis demonstrated that these genes could function as potential diagnostic biomarkers [AUC = 1 (95% CI 1–1)]. This study may provide new approach for diagnosing patients with AS and helping to develop novel therapies in treating AS patients.
Collapse
Affiliation(s)
- Yong Li
- Department of Pediatric Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Shu
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Cheng
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Zhou
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Huang,
| |
Collapse
|
37
|
Agar G, Oliver C, Richards C. Direct assessment of overnight parent-child proximity in children with behavioral insomnia: Extending models of operant and classical conditioning. Behav Sleep Med 2022; 21:254-272. [PMID: 35796281 DOI: 10.1080/15402002.2022.2076681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Explanatory models of behavioral insomnia typically draw on operant learning theory with behavioral techniques focused on altering parent-child interactions to improve sleep. However, there are no data describing parent-child interactions overnight beyond parent report. In this study we used radio frequency identification technology to quantify parent-child proximity overnight in two groups at elevated risk of behavioral insomnia, Angelman syndrome (AS) and Smith-Magenis syndrome (SMS). MATERIALS AND METHODS Nineteen children aged 4-15 years (8 with AS, 11 with SMS) participated in a week-long at-home assessment of sleep and overnight parent-child proximity. Sleep parameters were recorded using the Philips Actiwatch 2 and proximity data were recorded using custom-built radio frequency identification watches. RESULTS Three patterns of proximity data between parent-child dyads overnight were evident: "checking" (six with AS, five with SMS), "co-sleeping" (four with SMS) and those who had "no proximity" overnight (two with AS, two with SMS). In the AS group, 25.45% of actigraphy-defined wakes resulted in a parent-child interaction. In the SMS group, 39.34% of wakes resulted in a parent-child interaction. Children who interacted with their parents when settling to sleep were not significantly more likely to interact at waking. DISCUSSION The novel application of radio frequency identification technology is a feasible method for studying overnight parent-child proximity. Profiles of proximity between participants that are not closely aligned with operant models of behavioral insomnia were evident. These results have significant implications for the etiology of poor sleep and the application of behavioral sleep interventions.
Collapse
Affiliation(s)
- Georgie Agar
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Chris Oliver
- School of Psychology, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
38
|
Motil KJ, Geerts S, Annese F, Neul JL, Benke T, Marsh E, Lieberman D, Skinner SA, Glaze DG, Heydemann P, Beisang A, Standridge S, Ryther R, Lane JB, Edwards L, Percy AK. Anthropometric Measures Correspond with Functional Motor Outcomes in Females with Rett Syndrome. J Pediatr 2022; 244:169-177.e3. [PMID: 35063470 PMCID: PMC9086122 DOI: 10.1016/j.jpeds.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To characterize growth and anthropometric measurements in females with Rett syndrome and compare these measurements with functional outcomes. STUDY DESIGN We obtained longitudinal growth and anthropometric measurements from 1154 females with classic and atypical Rett syndrome seen between 2006 and 2019 in the US Natural History Study. We calculated the Clinical Severity Score, Motor Behavior Assessment score, and arm and leg muscle areas and recorded the functional assessments of arm and hand use and ambulation. We compared growth and anthropometric variables from females with Rett syndrome in regard to normative data. We analyzed Clinical Severity Score, Motor Behavior Assessment, and anthropometric measurements in regard to functional assessments. RESULTS Growth and anthropometric measurements were significantly lower in females with classic and severe atypical Rett syndrome compared with those classified as mild atypical Rett syndrome and deviated from normative patterns among all 3 groups. Suprailiac skinfold measurements correlated with body mass index measurements in each group. Lower leg muscle area measurements were significantly greater among females in all 3 Rett syndrome groups who ambulated independently compared with those who did not. In females with classic Rett syndrome, arm, thigh, and lower leg muscle area measurements increased significantly over time and were significantly greater among those who had purposeful arm and hand use and independent ambulation compared with those who did not. CONCLUSIONS The pattern of growth and anthropometric measures in females with Rett syndrome differs from normative data and demonstrates clear differences between classic and mild or severe atypical Rett syndrome. Anthropometric measures correspond with functional outcomes and could provide markers supporting efficacy outcomes in clinical trials.
Collapse
Affiliation(s)
- Kathleen J Motil
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Suzanne Geerts
- Sparks Clinics/Nutrition, University of Alabama at Birmingham, Birmingham, AL
| | - Fran Annese
- Genetics Center, Greenwood Genetic Center, Greenwood, SC
| | - Jeffrey L Neul
- Department of Pediatrics/Child Neurology, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN
| | - Tim Benke
- Department of Pediatrics/Child Neurology, University of Colorado-Denver, Denver, CO
| | - Eric Marsh
- Department of Pediatrics/Child Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - David Lieberman
- Department of Child Neurology, Children's Hospital Boston, Harvard University, Boston, MA
| | | | - Daniel G Glaze
- Department of Pediatrics/Child Neurology, Baylor College of Medicine, Houston, TX
| | - Peter Heydemann
- Department of Pediatrics/Child Neurology, Rush Medical Center, Chicago, IL
| | - Arthur Beisang
- Department of Pediatrics, Gillette Children's Hospital, St. Paul, MN
| | - Shannon Standridge
- Department of Pediatrics/Child Neurology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Robin Ryther
- Department of Pediatrics/Child Neurology, Washington University, St. Louis, MO
| | - Jane B Lane
- Department of Pediatrics/Child Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Lloyd Edwards
- School of Public Health/Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Alan K Percy
- Department of Pediatrics/Child Neurology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
39
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
40
|
Han S, Park C, You J(SH. Effects of Robotic Interactive Gait Training Combined with Virtual Reality and Augmented Reality on Balance, Gross Motor Function, Gait Kinetic, and Kinematic Characteristics in Angelman Syndrome: A Case Report. CHILDREN (BASEL, SWITZERLAND) 2022; 9:544. [PMID: 35455588 PMCID: PMC9031291 DOI: 10.3390/children9040544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Angelman syndrome (AS) is a genetic neurological disorder resulting in cognitive and neuromuscular impairments, such as lack of safety awareness and attention, as well as lack of balance and locomotor control. The robotic interactive gait training (RIGT) system is designed to provide accurate proprioceptive, kinematic, and kinetic feedback, and facilitate virtual reality and augmented reality (VR-AR) interactive exercises during gait training. In the present case report, we examined the effect of an innovative hip-knee-ankle interlimb-coordinated RIGT system. We utilized this therapeutic modality in a participant with Angelman syndrome (AS). Gross motor function measures, risk of fall, and gait-related kinetic (force), and kinematic (joint angle) biomechanical characteristics were assessed before and after 20 sessions of RIGT with VR-AR. We found RIGT with VR-AT improved gait ability, as shown by Performance-Oriented Mobility Assessment score, gross motor function by Gross Motor Function Measure score, balance by Pediatric Balance Scale score, knee and hip joint kinetics, and kinematics during gait. Our clinical and biomechanical evidence provide important clinical insights to improve the effectiveness of current neurorehabilitation approaches for treating patients with AS in balance and locomotor control and reduce the risk of falling.
Collapse
Affiliation(s)
- Sangkeun Han
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (S.H.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Chanhee Park
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (S.H.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| | - Joshua (Sung) H. You
- Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, Department of Physical Therapy, Yonsei University, Wonju 26493, Korea; (S.H.); (C.P.)
- Department of Physical Therapy, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
41
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
42
|
Dodge A, Morrill N, Weeber EJ, Nash KR. Recovery of Angelman syndrome rat deficits with UBE3A protein supplementation. Mol Cell Neurosci 2022; 120:103724. [DOI: 10.1016/j.mcn.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
|
43
|
Duis J, Nespeca M, Summers J, Bird L, Bindels‐de Heus KG, Valstar MJ, de Wit MY, Navis C, ten Hooven‐Radstaake M, van Iperen‐Kolk BM, Ernst S, Dendrinos M, Katz T, Diaz‐Medina G, Katyayan A, Nangia S, Thibert R, Glaze D, Keary C, Pelc K, Simon N, Sadhwani A, Heussler H, Wheeler A, Woeber C, DeRamus M, Thomas A, Kertcher E, DeValk L, Kalemeris K, Arps K, Baym C, Harris N, Gorham JP, Bohnsack BL, Chambers RC, Harris S, Chambers HG, Okoniewski K, Jalazo ER, Berent A, Bacino CA, Williams C, Anderson A. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol Genet Genomic Med 2022; 10:e1843. [PMID: 35150089 PMCID: PMC8922964 DOI: 10.1002/mgg3.1843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurogenetic disorder present in approximately 1/12,000 individuals and characterized by developmental delay, cognitive impairment, motor dysfunction, seizures, gastrointestinal concerns, and abnormal electroencephalographic background. AS is caused by absent expression of the paternally imprinted gene UBE3A in the central nervous system. Disparities in the management of AS are a major problem in preparing for precision therapies and occur even in patients with access to experts and recognized clinics. AS patients receive care based on collective provider experience due to limited evidence-based literature. We present a consensus statement and comprehensive literature review that proposes a standard of care practices for the management of AS at a critical time when therapeutics to alter the natural history of the disease are on the horizon. METHODS We compiled the key recognized clinical features of AS based on consensus from a team of specialists managing patients with AS. Working groups were established to address each focus area with committees comprised of providers who manage >5 individuals. Committees developed management guidelines for their area of expertise. These were compiled into a final document to provide a framework for standardizing management. Evidence from the medical literature was also comprehensively reviewed. RESULTS Areas covered by working groups in the consensus document include genetics, developmental medicine, psychology, general health concerns, neurology (including movement disorders), sleep, psychiatry, orthopedics, ophthalmology, communication, early intervention and therapies, and caregiver health. Working groups created frameworks, including flowcharts and tables, to help with quick access for providers. Data from the literature were incorporated to ensure providers had review of experiential versus evidence-based care guidelines. CONCLUSION Standards of care in the management of AS are keys to ensure optimal care at a critical time when new disease-modifying therapies are emerging. This document is a framework for providers of all familiarity levels.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics & Inherited Metabolic DiseaseSection of Pediatrics, Special CareDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mark Nespeca
- Department of NeurologyRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Jane Summers
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Lynne Bird
- Department of PediatricsClinical Genetics / DysmorphologyUniversity of California, San DiegoRady Children’s Hospital San DiegoSan DiegoCaliforniaUSA
| | - Karen G.C.B. Bindels‐de Heus
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. J. Valstar
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands
| | - Marie‐Claire Y. de Wit
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of Neurology and Pediatric NeurologyErasmus MCRotterdamThe Netherlands
| | - C. Navis
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,Department of ENT (Speech & Language Pathology)Erasmus MCRotterdamThe Netherlands
| | - Maartje ten Hooven‐Radstaake
- Department of PediatricsErasmus MC SophiaChildren’s HospitalRotterdamNetherlands,ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Bianca M. van Iperen‐Kolk
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands,Department of Physical TherapyErasmus MCRotterdamThe Netherlands
| | - Susan Ernst
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Melina Dendrinos
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| | - Terry Katz
- Developmental PediatricsDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Gloria Diaz‐Medina
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Akshat Katyayan
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Srishti Nangia
- Department of PediatricsDivision of Child NeurologyWeill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Ronald Thibert
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Daniel Glaze
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Christopher Keary
- Angelman Syndrome ProgramLurie Center for AutismMassachusetts General Hospital for ChildrenBostonMassachusettsUSA
| | - Karine Pelc
- Department of NeurologyHôpital Universitaire des Enfants Reine FabiolaUniversité Libre de Bruxelles (ULB)BrusselsBelgium
| | - Nicole Simon
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Anjali Sadhwani
- Department of PsychiatryBoston Children’s HospitalBostonMAUSA
| | - Helen Heussler
- UQ Child Health Research CentreFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Anne Wheeler
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | - Caroline Woeber
- Audiology, Speech & Learning ServicesChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Margaret DeRamus
- Department of PsychiatryCarolina Institute for Developmental DisabilitiesUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Amy Thomas
- New York League for Early Learning William O'connor SchoolNew YorkNew YorkUSA
| | | | - Lauren DeValk
- Occupational TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Kristen Kalemeris
- Department of Pediatric RehabilitationMonroe Carell Jr. Children's Hospital at VanderbiltNashvilleTennesseeUSA
| | - Kara Arps
- Department of Physical TherapyChildren’s Hospital ColoradoUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Carol Baym
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - Nicole Harris
- Physical TherapyChildren’s Hospital ColoradoAuroraColoradoUSA
| | - John P. Gorham
- Department of Ophthalmology and Visual SciencesUniversity of MichiganAnn ArboMichiganUSA
| | - Brenda L. Bohnsack
- Division of OphthalmologyDepartment of OphthalmologyAnn & Robert H. Lurie Children’s Hospital of ChicagoNorthwestern University Feinberg School of MedicineAnn ArboMichiganUSA
| | - Reid C. Chambers
- Department of Orthopedic Surgery Nationwide Children’s HospitalColumbusOhioUSA
| | - Sarah Harris
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| | - Henry G. Chambers
- Orthopedic SurgerySan Diego Department of Pediatric OrthopedicsUniversity of CaliforniaRady Children’s HospitalSan DiegoCaliforniaUSA
| | - Katherine Okoniewski
- Center for Newborn ScreeningRTI InternationalResearch Triangle ParkNorth CarolinaUSA
| | | | - Allyson Berent
- Foundation for Angelman Syndrome TherapeuticsChicagoIllinoisUSA
| | - Carlos A. Bacino
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Charles Williams
- Raymond C. Philips UnitDivision of Genetics and MetabolismDepartment of PediatricsUniversity of FloridaGainesvilleFloridaUSA
| | - Anne Anderson
- Division of Neurology and Developmental PediatricsDepartment of PediatricsBaylor College of MedicineHoustonTexasUSA,NeurologyTexas Children's HospitalHoustonTexasUSA
| |
Collapse
|
44
|
Bobylova M, Mukhin K, Kuzmich G, Glukhova L, Pylayeva O. Epilepsy in Angelman syndrome. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:100-105. [DOI: 10.17116/jnevro2022122071100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Maia N, Nabais Sá MJ, Melo-Pires M, de Brouwer APM, Jorge P. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics 2021; 22:909. [PMID: 34930158 PMCID: PMC8686650 DOI: 10.1186/s12864-021-08227-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID) can be caused by non-genetic and genetic factors, the latter being responsible for more than 1700 ID-related disorders. The broad ID phenotypic and genetic heterogeneity, as well as the difficulty in the establishment of the inheritance pattern, often result in a delay in the diagnosis. It has become apparent that massive parallel sequencing can overcome these difficulties. In this review we address: (i) ID genetic aetiology, (ii) clinical/medical settings testing, (iii) massive parallel sequencing, (iv) variant filtering and prioritization, (v) variant classification guidelines and functional studies, and (vi) ID diagnostic yield. Furthermore, the need for a constant update of the methodologies and functional tests, is essential. Thus, international collaborations, to gather expertise, data and resources through multidisciplinary contributions, are fundamental to keep track of the fast progress in ID gene discovery.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal. .,Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| | - Maria João Nabais Sá
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Serviço de Neuropatologia, Centro Hospitalar e Universitário do Porto (CHUPorto), Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paula Jorge
- Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), and ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| |
Collapse
|
46
|
Iyer GR, Utage P, Devi RR, Vattam KK, Hasan Q. Expanding the clinico-molecular spectrum of Angelman syndrome phenotype with the GABRG3 gene: Evidence from methylation and sequencing studies. Ann Hum Genet 2021; 86:71-79. [PMID: 34779508 DOI: 10.1111/ahg.12449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angelman syndrome (AS) (OMIM#105830) is an imprinting disorder caused due to alterations in the maternal chr 15q11-13 region. Majority of cases can be diagnosed by methylation-specific polymerase chain reaction (MS-PCR) of SNRPN gene and by UBE3A sequencing, however, about 10% of cases with AS phenotype remain undiagnosed. Differential diagnoses of AS can be detected by chromosomal microarray (CMA) and clinical exome sequencing (CES). In this study, 30 cases with AS features were evaluated by MS-PCR, CMA, and CES. SNRPN MS-PCR confirmed AS in eight (26%), CMA and CES diagnosed nine (30%) cases. One case was identified with a novel variant c.1125C > T in GABRG3, located at 15q12 region, which is currently not associated with any syndrome. The GABRG3 gene is also speculated to be imprinted, a MS-PCR assay was designed to confirm its differential parental methylation status. This assay identified another case with altered GABRG3 methylation. The two cases with GABRG3 alteration-sequence change and methylation indicate that GABRG3 may be associated with a subtype of AS or a new related syndrome. Performing GABRG3 MS-PCR and sequencing of a larger group of patients with AS phenotype and normal SNPRN and UBE3A status will help in establishing exact genotype-phenotype correlation.
Collapse
Affiliation(s)
- Gayatri R Iyer
- Department of Genetics & Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India.,Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Prashant Utage
- Department of Pediatrics, Kamineni Hospitals, Hyderabad, Telangana, India.,Department of Pediatric Neurology, Utage Child Development Center, Hyderabad, Telangana, India
| | - Radha Rama Devi
- Department of Pediatrics - Rainbow Hospitals, Hyderabad, Telangana, India
| | - Kiran Kumar Vattam
- Department of Genomics & Molecular Diagnostics, Sandor Specialty Diagnostics, Hyderabad, Telangana, India.,Department of Cytogenetics, Sandor Speciality Diagnostics, Hyderabad, Telangana, India
| | - Qurratulain Hasan
- Department of Genetics & Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
47
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
48
|
Clinical Characterization of Epilepsy in Children With Angelman Syndrome. Pediatr Neurol 2021; 124:42-50. [PMID: 34536900 PMCID: PMC8500934 DOI: 10.1016/j.pediatrneurol.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Epilepsy is highly prevalent in children with Angelman syndrome (AS), and its detailed characterization and relationship to the genotype (deletion vs nondeletion) is important both for medical practice and for clinical trial design. METHODS AND MATERIALS We retrospectively analyzed the main clinical features of epilepsy in 265 children with AS who were enrolled in the AS Natural History Study, a multicenter, observational study conducted at six centers in the United States. Participants were prospectively followed up and classified by genotype. RESULTS Epilepsy was reported in a greater proportion of individuals with a deletion than a nondeletion genotype (171 of 187 [91%] vs. 48 of 78 [61%], P < 0.001). Compared with participants with a nondeletion genotype, those with deletions were younger at the time of the first seizure (age: median [95% confidence interval]: 24 [21-24] months vs. 57 [36-85] months, P < 0.001) and had a higher prevalence of generalized motor seizures. Hospitalization following a seizure was reported in more children with a deletion than a nondeletion genotype (92 of 171 [54%] vs. 17 of 48 [36%], P = 0.04). The overall prevalence of absence seizures was not significantly different between genotype groups. Forty-six percent (102/219) of the individuals reporting epilepsy were diagnosed with AS concurrently or after their first seizure. CONCLUSIONS Significant differences exist in the clinical expression of epilepsy in AS according to the underlying genotype, with earlier age of onset and more severe epilepsy in individuals with AS due to a chromosome 15 deletion.
Collapse
|
49
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|
50
|
Agbolade O, Nazri A, Yaakob R, Ghani AA, Cheah YK. Investigation of age-related facial variation among Angelman syndrome patients. Sci Rep 2021; 11:20767. [PMID: 34675349 PMCID: PMC8531312 DOI: 10.1038/s41598-021-99944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Angelman syndrome (AS) is one of the common genetic disorders that could emerge either from a 15q11-q13 deletion or paternal uniparental disomy (UPD) or imprinting or UBE3A mutations. AS comes with various behavioral and phenotypic variability, but the acquisition of subjects for experiment and automating the landmarking process to characterize facial morphology for Angelman syndrome variation investigation are common challenges. By automatically detecting and annotating subject faces, we collected 83 landmarks and 10 anthropometric linear distances were measured from 17 selected anatomical landmarks to account for shape variability. Statistical analyses were performed on the extracted data to investigate facial variation in each age group. There is a correspondence in the results achieved by relative warp (RW) of the principal component (PC) and the thin-plate spline (TPS) interpolation. The group is highly discriminated and the pattern of shape variability is higher in children than other groups when judged by the anthropometric measurement and principal component.
Collapse
Affiliation(s)
- Olalekan Agbolade
- Department of Computer Science, Faculty of Computer Science and IT, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Azree Nazri
- Department of Computer Science, Faculty of Computer Science and IT, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Razali Yaakob
- Department of Computer Science, Faculty of Computer Science and IT, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abdul Azim Ghani
- Department of Software Engineering, Faculty of Computer Science and IT, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|