1
|
Qiao B, Xiao N, Deng N, Tan Z. Shenling Baizhu powder attenuates lard diet in a fatigued state-induced diarrhea via targeting microbial metabolites short chain fatty acids-mediated lipid metabolism. 3 Biotech 2024; 14:203. [PMID: 39157421 PMCID: PMC11329475 DOI: 10.1007/s13205-024-04045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Shenling Baizhu Powder (SLBZP), a traditional Chinese medicine (TCM) prescription renowned for its efficacy, is specifically recognized for its therapeutic effects in managing diarrhea associated with spleen qi deficiency. Our previous research has demonstrated that a lard diet in a fatigued state induced diarrhea belonging to spleen qi deficiency in TCM. Through a comprehensive investigation, we aimed to provide insights into the intricate relationship between SLBZP and the modulation of gut microbiota in alleviating symptoms associated with spleen qi deficiency-induced diarrhea. We induced diarrhea in mice by subjecting them to continuous standing on a multiple-platform apparatus while administering lard through intragastric administration for 14 days. Subsequently, we conducted gavage administration of SLBZP at a concentration of 0.637 g/ml for seven days. We observed a therapeutic effect of SLBZP on diarrhea induced by a lard diet in a fatigued state. SLBZP mitigated disorders in lipid metabolism and diminished hepatic oxidative responses. Additionally, SLBZP reversed gut microbiota dysbiosis of diarrheic mice and notably increased the production of short-chain fatty acids (SCFAs), primarily acetic acid, butyric acid, and valeric acid. Through correlation analysis, we additionally identified Lactobacillus reuteri and Lactobacillus intestinalis as potentially pivotal species associated with the therapeutic effects of SLBZP. We demonstrated that SLBZP exerts therapeutic effects on diarrhea caused by a lard diet in a fatigued state by repairing the intestinal mucosal barrier, improving lipid metabolism disorders, and regulating gut microbiota and metabolites SCFAs.
Collapse
Affiliation(s)
- Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Blanco-Morales V, Mercatante D, Faubel N, Miedes D, Mandrioli M, Rodriguez-Estrada MT, Garcia-Llatas G. Lipolysis and Sterol Stability and Bioaccessibility of Wholemeal Rye Bread Enriched with Plant Sterols Subjected to Adult and Elderly Digestion Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16976-16987. [PMID: 39037854 PMCID: PMC11299168 DOI: 10.1021/acs.jafc.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
This study evaluated the impact of different digestion conditions (adult and senior) on lipolysis and bioaccessibility of plant sterols (PS) and phytosterol oxidation products (POPs) in PS-enriched wholemeal rye bread. Under adult digestion conditions, the addition of gastric lipase (GL) reduced lipolysis products (by 6.1% for free fatty acids and 11.7% for monoacylglycerols) and the bioaccessibility of PS by 6.7%, compared to the control. In digestion with both GL and cholesterol esterase (CE), these reductions were 12.9, 20.1, and 11.3%, respectively. Both modifications (GL and GL + CE) increased the bioaccessibility of POPs by 4.5-4.0%. When simulating the elderly digestion, the modified gastric and intestinal phases did not alter PS bioaccessibility but decreased POPs bioaccessibility by 21.8% compared to control, along with reduced lipolysis. Incorporating GL and CE thus approached physiological conditions and influenced lipid digestion. Elderly simulated digestion conditions resulted in a positive outcome by maintaining PS bioaccessibility while reducing potentially harmful POPs.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Dario Mercatante
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Nerea Faubel
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Diego Miedes
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| | - Mara Mandrioli
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Maria Teresa Rodriguez-Estrada
- Department
of Agricultural and Food Sciences, Alma
Mater Studiorum-Università di Bologna, Viale Fanin 40, Bologna 40127, Italy
| | - Guadalupe Garcia-Llatas
- Nutrition
and Food Science Area, Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicente Andrés Estellés s/n,
Burjassot, 46100 Valencia, Spain
| |
Collapse
|
3
|
Kłosowska K, Del Castillo-Santaella T, Maldonado-Valderrama J, Macierzanka A. The bile salt/phospholipid ratio determines the extent of in vitro intestinal lipolysis of triglycerides: Interfacial and emulsion studies. Food Res Int 2024; 187:114421. [PMID: 38763671 DOI: 10.1016/j.foodres.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.
Collapse
Affiliation(s)
- Katarzyna Kłosowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Teresa Del Castillo-Santaella
- Department of Physical Chemistry, University of Granada, Faculty of Pharmacy, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Julia Maldonado-Valderrama
- Department of Applied Physics, University of Granada, Faculty of Sciences, Campus de Fuentenueva s/n, 18071 Granada, Spain.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
4
|
Couëdelo L, Lennon S, Abrous H, Chamekh I, Bouju C, Griffon H, Vaysse C, Larvol L, Breton G. In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization. Nutrients 2024; 16:1014. [PMID: 38613047 PMCID: PMC11013230 DOI: 10.3390/nu16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | - Hélène Abrous
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Ikram Chamekh
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Corentin Bouju
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Hugues Griffon
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | - Carole Vaysse
- ITERG, Nutrition Life Sciences, 33610 Bordeaux, France; (H.A.); (I.C.); (C.B.); (H.G.); (C.V.)
| | | | | |
Collapse
|
5
|
Okuro PK, Viau M, Marze S, Laurent S, Cunha RL, Berton-Carabin C, Meynier A. In vitro digestion of high-lipid emulsions: towards a critical interpretation of lipolysis. Food Funct 2023; 14:10868-10881. [PMID: 37987232 DOI: 10.1039/d3fo03816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Investigating the gastrointestinal fate of food emulsions is critical to unveil their nutritional relevance. To this end, the protocol standardized by COST INFOGEST 2.0 is meaningful for guiding in vitro digestion experiments. In contrast with studies addressing emulsions with low dispersed phase volume fraction (φ 0.05-0.1), we presently raise some points for a proper interpretation of the digestibility of emulsions with high lipid content using the pH-stat method. Oil-in-water high internal phase emulsions (HIPEs) were submitted to gastric pre-lipolysis with the addition of rabbit gastric lipase (RGE). Commercial mayonnaise (φ 0.76) was systematically diluted (φ 0.025, 0.05, 0.1, 0.15, 0.25, 0.4, and 0.76) to cover a wide range of enzyme-to-lipid ratios (8.5-0.3 U per µmol for RGE and 565.1-18.6 U per µmol for pancreatin, in the gastric and intestinal phases, respectively). Lipolysis was tracked either by fatty acid titration (NaOH titration) or completed by analysis of lipid classes and fatty acid composition. Gastric lipase resulted in substantial lipid hydrolysis, reaching 20 wt% at low lipid fractions (φ 0.025 and 0.05). Likewise, the kinetics and extent of lipolysis during intestinal digestion were modulated by the enzyme-to-substrate ratio. A logarithmic relationship between lipid hydrolysis and lipid concentration was observed, with a very limited extent at the highest lipid content (φ 0.76). A holistic interpretation relying on FFA titration and further evaluation of all lipolytic products appears of great relevance to capture the complexity of the effects involved. Overall, this work contributes to rationally and critically evaluating the outcomes of static in vitro experiments of lipid digestion.
Collapse
Affiliation(s)
- Paula K Okuro
- INRAE, UR BIA, F-44316, Nantes, France.
- Department of Food Technology and Engineering, School of Food Engineering, University of Campinas, 13083-862, Campinas, Brazil
| | | | | | | | - Rosiane L Cunha
- Department of Food Technology and Engineering, School of Food Engineering, University of Campinas, 13083-862, Campinas, Brazil
| | - Claire Berton-Carabin
- INRAE, UR BIA, F-44316, Nantes, France.
- Laboratory of Food Process Engineering, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| | | |
Collapse
|
6
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Zupančič O, Kushwah V, Paudel A. Pancreatic lipase digestion: The forgotten barrier in oral administration of lipid-based delivery systems? J Control Release 2023; 362:381-395. [PMID: 37579977 DOI: 10.1016/j.jconrel.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/3, 8010 Graz, Austria.
| |
Collapse
|
8
|
Tormási J, Abrankó L. Impact of Grape Seed Powder and Black Tea Brew on Lipid Digestion-An In Vitro Co-Digestion Study with Real Foods. Nutrients 2023; 15:nu15102395. [PMID: 37242278 DOI: 10.3390/nu15102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Effects of two foods with bioactive constituents (black tea brew, BTB and grape seed powder, GSP) on lipid digestibility was studied. Lipolysis inhibitory effect of these foods was examined using two test foods (cream and baked beef) with highly different fatty acid (FA) composition. Digestion simulations were performed either using both gastric and pancreatic lipase, or only with pancreatic lipase according to the Infogest protocol. Lipid digestibility was assessed based on the bioaccessible FAs. Results showed the triacylglycerols containing short- and medium-chain FAs (SCFA and MCFA) are non-preferred substrates for pancreatic lipase; however, this is not characteristic for GL. Our findings suggest that both GSP and BTB primarily affect the lipolysis of SCFAs and MCFAs, because the dispreference of pancreatic lipase towards these substrates was further enhanced as a result of co-digestion. Interestingly, GSP and BTB similarly resulted in significant decrease in lipolysis for cream (containing milk fat having a diverse FA profile), whereas they were ineffective in influencing the digestion of beef fat, having simpler FA profile. It highlights that the characteristics of the dietary fat source of a meal can be a key determinant on the observed extent of lipolysis when co-digested with foods with bioactive constituents.
Collapse
Affiliation(s)
- Judit Tormási
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| | - László Abrankó
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| |
Collapse
|
9
|
Li H, Van der Meeren P. Designing Gastric-Stable Adsorption Layers by Whey Protein-Pectin Complexation at the Oil-Water Interface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7109-7118. [PMID: 37126566 DOI: 10.1021/acs.jafc.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work aims to design gastric-stable emulsions with food-grade biopolymers using a novel multiscale approach. The adsorption layer formation at the oil-water interface was based on opposite charge interactions between whey proteins and pectin (with different esterification levels) at pH 3.0 by a sequential adsorption method. The interfacial assembly and disassembly (interfacial complexation, proteolysis, lipolysis) during in vitro gastric digestion were evaluated using a quartz crystal microbalance with dissipation monitoring, ζ-potential, dynamic interfacial tension, and interfacial dilatational rheology. Besides, the evolution of the particle size and microstructure of bulk emulsions during the digestion was investigated by static light scattering and light microscopy. Compared with whey protein isolate (WPI)-stabilized emulsions, the presence of an additional pectin layer can prevent or at least largely delay gastric destabilization (giving rise to coalescence or/and oiling off). Especially, the esterification degree of the pectin used was found to largely affect the emulsion stability upon gastric digestion.
Collapse
Affiliation(s)
- Hao Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
10
|
Hou FB, Zhang N, Hou XD, Liu W, Fan YF, Zhu GH, Wu Y, Sun MR, Zhao B, Ge GB, Wang P. A rationally engineered specific near-infrared fluorogenic substrate of human pancreatic lipase for functional imaging and inhibitor screening. Analyst 2023; 148:2225-2236. [PMID: 37092796 DOI: 10.1039/d3an00198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.
Collapse
Affiliation(s)
- Fan-Bin Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Na Zhang
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, Marburg, 35043, Germany
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Liu
- Department of Pharmacy, Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Infantes-Garcia MR, Verkempinck SHE, Carriére F, Hendrickx ME, Grauwet T. Pre-duodenal lipid digestion of emulsions: Relevance, colloidal aspects and mechanistic insight. Food Res Int 2023; 168:112785. [PMID: 37120232 DOI: 10.1016/j.foodres.2023.112785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Fréderic Carriére
- CNRS, Aix-Marseille Université, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, 13402 Marseille cedex 9, France
| | - Marc E Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg, 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Liu L, Lei S, Lin X, Ji J, Wang Y, Zheng B, Zhang Y, Zeng H. Lotus seed resistant starch and sodium lactate regulate small intestinal microflora and metabolite to reduce blood lipid. Int J Biol Macromol 2023; 233:123553. [PMID: 36740125 DOI: 10.1016/j.ijbiomac.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
14
|
Zhang Q, Zhang L, Chen C, Li P, Lu B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Prog Lipid Res 2023; 89:101209. [PMID: 36473673 DOI: 10.1016/j.plipres.2022.101209] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
Atherosclerotic cardiovascular disease is one of the major leading global causes of death. Growing evidence has demonstrated that gut microbiota (GM) and its metabolites play a pivotal role in the onset and progression of atherosclerosis (AS), now known as GM-artery axis. There are interactions between dietary lipids and GM, which ultimately affect GM and its metabolites. Given these two aspects, the GM-artery axis may play a mediating role between dietary lipids and AS. Diets rich in saturated fatty acids (SFAs), omega-6 polyunsaturated fatty acids (n-6 PUFAs), industrial trans fatty acids (TFAs), and cholesterol can increase the levels of atherogenic microbes and metabolites, whereas monounsaturated fatty acids (MUFAs), ruminant TFAs, and phytosterols (PS) can increase the levels of antiatherogenic microbes and metabolites. Actually, dietary phosphatidylcholine (PC), sphingomyelin (SM), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been demonstrated to affect AS via the GM-artery axis. Therefore, that GM-artery axis acts as a communication bridge between dietary lipids and AS. Herein, we will describe the molecular mechanism of GM-artery axis in AS and discuss the complex interactions between dietary lipids and GM. In particular, we will highlight the evidence and potential mechanisms of dietary lipids affecting AS via GM-artery axis.
Collapse
Affiliation(s)
- Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wubhan, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Maternal training during lactation modifies breast milk fatty acid composition and male offspring glucose homeostasis in rat. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159223. [PMID: 35987325 DOI: 10.1016/j.bbalip.2022.159223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
The perinatal exposome can modify offspring metabolism and health later in life. Within this concept, maternal exercise during gestation has been reported modifying offspring glucose sensing and homeostasis, while the impact of such exercise during lactation is little-known. We thus aimed at evaluating short- and long-term effects of it on offspring pancreatic function, assuming a link with changes in breast milk composition. Fifteen-week-old primiparous female Wistar rats exercised during lactation at a constant submaximal intensity (TR) or remained sedentary (CT). Male offspring were studied at weaning and at 7 months of age for growth, pancreas weight, glycemia and insulin responses. Milk protein content was determined by the bicinchoninic acid assay (BCA colorimetric method), and lipid content and fatty acid composition by gas chromatography. Mature milk from TR rats contained significantly less saturated (-7 %) and more monounsaturated (+18 %) and polyunsaturated (PUFA +12 %) fatty acids compared to CT rats, with no difference in total lipid and protein concentrations. In offspring from TR vs CT mothers, fasting glycemia was lower, pancreas weight was higher with a lower insulin content (-37 %) at weaning. Such outcomes were correlated with milk PUFA levels and indices of desaturase or elongase activities. These effects were no longer present at 7 months, whereas a more efficient muscle insulin sensitivity was observed. Maternal training during lactation led to a specific milk phenotype that was associated with a short-term impact on glucose homeostasis and pancreatic function of the male offspring.
Collapse
|
18
|
Effect of Gum Acacia on the Intestinal Bioavailability of n-3 Polyunsaturated Fatty Acids in Rats. Biomolecules 2022; 12:biom12070975. [PMID: 35883531 PMCID: PMC9313134 DOI: 10.3390/biom12070975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Lipid emulsification is a technique that is being explored for improving the bioavailability of omega 3 (n-3) long chain (LC) fatty acid (FA). The nature of the emulsifiers can differently impact the lipid bioavailability via a modification of the lipolysis step. Among natural emulsifiers, gum acacia (GA), an indigestible polysaccharide, provides protective encapsulation of n-3 by forming a specifically crown-like shape around lipid drops, which could also impact the digestion step. Despite the interest in lipolysis rate, the impact of GA on lipid bioavailability has never been explored in a complete physiological context. Thus, we followed in a kinetics study the n-3 bioavailability in rat lymph, orally administered DHA-rich oil, formulated based on GA compared to the bulk phase form of the oil. The AUC values were significantly improved by +121% for total TG and by 321% for n-3 PUFA, specifically for EPA (+244%) and for DHA (+345%). Benefits of GA have also been related to the transport of FA in lymph, which was 2 h earlier (Tmax = 4 h), compared to the Tmax (6 h) obtained with the bulk phase oil. All the data showed that GA is one of the most favorable candidates of natural emulsifiers to improve n-3 bioavailability and their rate of absorption for health targets.
Collapse
|
19
|
Borduas M, Spagnuolo P, Marangoni A, Corradini M, Wright A, Rogers M. Lipid crystallinity of oil-in-water emulsions alters in vitro. Food Chem 2022; 382:132326. [DOI: 10.1016/j.foodchem.2022.132326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
20
|
Garbi A, Armand M, Beltran-Anzola AA, Sarté C, Brévaut-Malaty V, Tosello B, Gire C. Effect of Massage with Oil Balanced in Essential Fatty Acids on Development and Lipid Parameters in Very Premature Neonates: A Randomized, Controlled Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040463. [PMID: 35455507 PMCID: PMC9031158 DOI: 10.3390/children9040463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Background: Oil massage versus only massage can increase preterm newborn development, especially weight gain, via a supposed percutaneous absorption of oil lipids, but data are contradictory. Aims: Investigating whether massage with a vegetable oil balanced in essential fatty acids improves neonatal weight gain, and digestive autonomy as proxy for neuro-development outcomes. Methods: A prospective monocentric randomized study was conducted in very premature newborns who received massage with oil (isio4 10 mL/kg/day, n = 18) versus with no oil (n = 18) for five consecutive days (10-min session twice daily) at a corrected gestational age of 34−35 weeks. Anthropometrics and clinical characteristics were recorded. Plasma triglyceride and total cholesterol concentrations were analyzed with an enzymatic kit. The fatty acid composition (weight%, mg/mL) of total plasma lipids and of red blood cell (RBC) membrane was analyzed by gas chromatography. Results: Weight gain velocity at the end of massage period was 12.3 ± 1.4 g/kg/day with oil vs. 9.8 ± 1.4 g/kg/day with no oil (p = 0.1). Digestive autonomy, plasma lipid parameters, polyunsaturated fatty acids in plasma total lipids or in RBC were comparable. The no oil group displayed a higher RBC level in nervonic acid at discharge (4.3 ± 0.2 vs. 3.4 ± 0.2%; p = 0.025) and in C18:1n-9 plasmalogen species at the end of the massage period and at discharge (0.73 ± 0.06 vs. 0.48 ± 0.06; 0.92 ± 0.06 vs. 0.69 ± 0.06%; p < 0.01), two molecules that are involved in neurodevelopment. Conclusions: The use of isio4 oil did not provide additional benefits for the development of very premature newborns, neither changed lipid metabolism nor polyunsaturated fatty acid biological status, which did not corroborate the existence of a percutaneous route for oil lipid absorption. The reason for different levels of nervonic acid and plasmalogen in RBC remains to be explored.
Collapse
Affiliation(s)
- Aurélie Garbi
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Martine Armand
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Any-Alejandra Beltran-Anzola
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| | - Catherine Sarté
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France; (M.A.); (C.S.)
| | - Véronique Brévaut-Malaty
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
| | - Barthélémy Tosello
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Correspondence:
| | - Catherine Gire
- Department of Neonatology, AP-HM, University Hospital Nord, 13015 Marseille, France; (A.G.); (A.-A.B.-A.); (V.B.-M.); (C.G.)
- Aix Marseille Univ, CERESS, Marseille, France
| |
Collapse
|
21
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
22
|
Effects of sonication on fatty acid chain length and emulsion stability in curry gravy: A potential approach for satiation perception enhancement. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2021.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Floros S, Toskas A, Pasidi E, Vareltzis P. Bioaccessibility and Oxidative Stability of Omega-3 Fatty Acids in Supplements, Sardines and Enriched Eggs Studied Using a Static In Vitro Gastrointestinal Model. Molecules 2022; 27:415. [PMID: 35056730 PMCID: PMC8780033 DOI: 10.3390/molecules27020415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Modern dietary habits have created the need for the design and production of functional foods enriched in bioactive compounds for a healthy lifestyle. However, the fate of many of these bioactive compounds in the human gastrointestinal (GI) tract has not been thoroughly investigated. Thus, in the present study, the bioaccessibility of omega-3 fatty acids was examined. To that end, different foods and supplements underwent simulated digestion following the INFOGEST protocol. The selected samples were foods rich in omega-3 fatty acids both in free and bound form-i.e., dietary fish oil supplements, heat-treated fish, and eggs enriched with omega-3 fatty acids. The oxidation of polyunsaturated fatty acids (PUFAs) was measured at each stage of the digestion process using peroxide value (PV) and TBARS and by quantifying individual omega-3 fatty acids using a gas chromatograph with flame ionization detector (GC-FID). The final bioaccessibility values of omega-3 fatty acids were determined. Changes in the quantity of mono-saturated fatty acids (MUFAs) and saturated fatty acids (SFAs) were recorded as well. The results indicated a profound oxidation of omega-3 fatty acids, giving rise to both primary and secondary oxidation products. Additionally, stomach conditions seemed to exert the most significant effect on the oxidation of PUFAs during digestion, significantly decreasing their bioaccessibility. The oxidation rate of each fatty acid was found to be strongly correlated with its initial concentration. Finally, the oxidation pattern was found to be different for each matrix and emulsified lipids seemed to be better protected than non-emulsified lipids. It is concluded that digestion has a profound negative effect on omega-3 bioaccessibility and therefore there is a need for improved protective mechanisms.
Collapse
Affiliation(s)
- Stylianos Floros
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Alexandros Toskas
- Petros Androulakis Medical Biology Analytical Laboratories, 57001 Thermi, Greece;
| | - Evagelia Pasidi
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| | - Patroklos Vareltzis
- Department of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.F.); (E.P.)
| |
Collapse
|
24
|
Qiao B, Li X, Wu Y, Guo T, Tan Z. Comparative Analysis of the Gut Microbiota in Mice under Lard or Vegetable Blend Oil Diet. J Oleo Sci 2022; 71:1613-1624. [DOI: 10.5650/jos.ess22056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Bo Qiao
- Hunan University of Chinese Medicine
| | - Xiaoya Li
- Hunan University of Chinese Medicine
| | - Yi Wu
- Hunan University of Chinese Medicine
| | - Tan Guo
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University
| | | |
Collapse
|
25
|
Alshaikh BN, Reyes Loredo A, Knauff M, Momin S, Moossavi S. The Role of Dietary Fats in the Development and Prevention of Necrotizing Enterocolitis. Nutrients 2021; 14:145. [PMID: 35011027 PMCID: PMC8746672 DOI: 10.3390/nu14010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of mortality and morbidity in preterm infants. The pathogenesis of NEC is not completely understood; however, intestinal immaturity and excessive immunoreactivity of intestinal mucosa to intraluminal microbes and nutrients appear to have critical roles. Dietary fats are not only the main source of energy for preterm infants, but also exert potent effects on intestinal development, intestinal microbial colonization, immune function, and inflammatory response. Preterm infants have a relatively low capacity to digest and absorb triglyceride fat. Fat may thereby accumulate in the ileum and contribute to the development of NEC by inducing oxidative stress and inflammation. Some fat components, such as long-chain polyunsaturated fatty acids (LC-PUFAs), also exert immunomodulatory roles during the early postnatal period when the immune system is rapidly developing. LC-PUFAs may have the ability to modulate the inflammatory process of NEC, particularly when the balance between n3 and n6 LC-PUFAs derivatives is maintained. Supplementation with n3 LC-PUFAs alone may have limited effect on NEC prevention. In this review, we describe how various fatty acids play different roles in the pathogenesis of NEC in preterm infants.
Collapse
Affiliation(s)
- Belal N Alshaikh
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Adriana Reyes Loredo
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Megan Knauff
- Nutrition Services, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| | - Sarfaraz Momin
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
- International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
26
|
Caroline OB, Ebuehi OA, Cecilia OA, Kayode OA. Effect of Allium sativum extract in combination -with orlistat on insulin resistance and disrupted metabolic hormones in high fat diet induced obese rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Tormási J, Abrankó L. Assessment of Fatty Acid-Specific Lipolysis by In Vitro Digestion and GC-FID. Nutrients 2021; 13:nu13113889. [PMID: 34836142 PMCID: PMC8623358 DOI: 10.3390/nu13113889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023] Open
Abstract
The nutritional relevance of food compositional data could be improved by taking the bioaccessibility of these constituents into account. A lack of routine methods to assess the bioaccessibility of fatty acids (FAs) in food is one of the limiting factors of doing so. An analytical protocol is proposed for routine assessment of the extent of lipolysis via in vitro digestion simulation methods in food products. The established method provides specific information on each FA individually. Steps of the protocol including the Bligh and Dyer chloroform/methanol/water extraction of esterified and free FAs from in vitro digesta, methyl ester derivatization, and GC-FID analysis were specifically tailored to help routine work and were harmonized with the Infogest in vitro digestion simulation protocol (both v1.0 and v2.0). The method was applied to assess the degree of FA-specific lipolysis in a baked fish (carp) meal and the results showed that the FA composition of the original food significantly differed from that of the distribution of FFAs in the digesta. The use of gastric lipase (in Infogest v2.0 protocol) increased total FA release by 9.5% and its specific impact on palmitic acid was the most prominent.
Collapse
|
28
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
29
|
Folz JS, Shalon D, Fiehn O. Metabolomics analysis of time-series human small intestine lumen samples collected in vivo. Food Funct 2021; 12:9405-9415. [PMID: 34606553 DOI: 10.1039/d1fo01574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human small intestine remains an elusive organ to study due to the difficulty of retrieving samples in a non-invasive manner. Stool samples as a surrogate do not reflect events in the upper gut intestinal tract. As proof of concept, this study investigates time-series samples collected from the upper gastrointestinal tract of a single healthy subject. Samples were retrieved using a small diameter tube that collected samples in the stomach and duodenum as the tube progressed to the jejunum, and then remained positioned in the jejunum during the final 8.5 hours of the testing period. Lipidomics and metabolomics liquid chromatography tandem mass spectrometry (LC-MS/MS) assays were employed to annotate 828 unique metabolites using accurate mass with retention time and/or tandem MS library matches. Annotated metabolites were clustered based on correlation to reveal sets of biologically related metabolites. Typical clusters included bile metabolites, food metabolites, protein breakdown products, and endogenous lipids. Acylcarnitines and phospholipids were clustered with known human bile components supporting their presence in human bile, in addition to novel human bile compounds 4-hydroxyhippuric acid, N-acetylglucosaminoasparagine and 3-methoxy-4-hydroxyphenylglycol sulfate. Food metabolites were observed passing through the small intestine after meals. Acetaminophen and its human phase II metabolism products appeared for hours after the initial drug treatment, due to excretion back into the gastrointestinal tract after initial absorption. This exploratory study revealed novel trends in timing and chemical composition of the human jejunum under standard living conditions.
Collapse
Affiliation(s)
- Jacob S Folz
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | | | - Oliver Fiehn
- West Coast Metabolomics Center and Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
30
|
Alves AA, De Queiroz AAAE, Jorge Soares CR, de Queiroz AAA. Microfluidic caging lipase in hyperbranched polyglycerol microcapsules for extracorporeal treatment of enzyme pancreatic insufficiency. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2349-2368. [PMID: 34428382 DOI: 10.1080/09205063.2021.1971820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lipase cartridges are currently the mainstay of treatment to improve fat absorption related to pancreatic insufficiency (PI) in patients receiving enteral nutrition feedings. Enzyme immobilization is an essential prerequisite for designing lipase cartridges systems for efficient enzymatic fat hydrolysis. A microfluidic approach has been adopted to produce lipase (LIP) caged in hyperbranched polyglycerol microcapsules (HPGly). The resulting HPGly-LIP microcapsules are spherical and had an average diameter of 29 µm with monomodal size distribution. The optimum conditions determined by artificial neural networks were HPGly concentration of 10 wt.%, LIP loading of 20% (wt) and total flow rate in microfluidic cell of 1.0 mL/h. Under these conditions, the maximum capacity of the LIP that can be microencapsulated is around 85% with respect to the HPGly concentration of 10 wt.% and total flow rate in microfluidic cell of 1.0 mL/h. This resultant HPGly-LIP exhibited Michaelis-Menten coefficients of 1.138,14 mM (Km) and 0.49 U/mg (Vmax) showing higher activity compared to free LIP. Finally, the robust HPGly-LIP microcapsules showed excellent recyclability. The in vitro Analysis of the HPGly-LIP cytotoxicity showed that microcapsules had no cytotoxic effect to L929 fibroblasts cells and behaved very similar to the negative control. These features will be useful for the facile construction of biocatalytic systems with high efficiency, excellent recyclability and adequate biocompatibility for treatment of patients with PI receiving enteral nutrition feedings.
Collapse
Affiliation(s)
- Andressa Aparecida Alves
- Doctorate Post-Graduate Scholarship in Materials for Engineering/Biomaterials (CAPES), Federal University of Itajubá (UNIFEI), Itajubá-Minas Gerais, Brazil
| | | | | | | |
Collapse
|
31
|
Quast DR, Nauck MA, Schenker N, Menge BA, Kapitza C, Meier JJ. Macronutrient intake, appetite, food preferences and exocrine pancreas function after treatment with short- and long-acting glucagon-like peptide-1 receptor agonists in type 2 diabetes. Diabetes Obes Metab 2021; 23:2344-2353. [PMID: 34189834 DOI: 10.1111/dom.14477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
AIM To clarify the distinct effects of a long-acting (liraglutide) and a short-acting (lixisenatide) glucagon-like peptide-1 receptor agonist (GLP-1 RA) on macronutrient intake, gastrointestinal side effects and pancreas function. MATERIALS AND METHODS Fifty participants were randomized to either lixisenatide or liraglutide for a treatment period of 10 weeks. Appetite, satiety, macronutrient intake, gastrointestinal symptoms and variables related to pancreatic function and gastric emptying were assessed at baseline and after treatment. RESULTS Both GLP-1 RAs reduced macronutrient intake similarly. Weight loss and appetite reduction were not related to the delay in gastric emptying or gastrointestinal side effects (P > .05). Lipase increased significantly with liraglutide treatment (by 18.3 ± 4.1 U/L; P = .0001), but not with lixisenatide (-1.8 ± 2.4 U/L; P = .46). Faecal elastase and serum ß-carotin levels (indicators for exocrine pancreas function) improved in both groups (P < .05). Changes in lipase activities did not correlate with gastrointestinal symptoms (P > .05 for each variable). CONCLUSIONS Both GLP-1 RAs comparably affected body weight, energy and macronutrient intake. Both treatments were associated with indicators of improved exocrine pancreas function. Reductions in appetite and body weight as a result of treatment with short- or long-acting GLP-1 RAs are not driven by changes in gastric emptying or gastrointestinal side effects.
Collapse
Affiliation(s)
- Daniel R Quast
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Michael A Nauck
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Nina Schenker
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Björn A Menge
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | | | - Juris J Meier
- Diabetes Division, Department of Internal Medicine, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Internal Medicine, Gastroenterology and Diabetes, Augusta Clinic Bochum, Bochum, Germany
| |
Collapse
|
32
|
Ren Q, Ma Y, Wang R, Ma Y, Niu T. Triacylglycerol Composition of Butterfat Fractions Determines Its Gastrointestinal Fate and Postprandial Effects: Lipidomic Analysis of Tri-, Di-, and Mono-acylglycerols and Free Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11033-11042. [PMID: 34469147 DOI: 10.1021/acs.jafc.1c03291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lipolytic behaviors and postprandial effects of butterfat and its fractions (30L and 30S) procured by dry fractionation at 30 °C were investigated using in vivo digestion. A total of 142 triacylglycerols (TAGs), 64 diacylglycerols (DAGs), 14 monoacylglycerols (MAGs), and 7 free fatty acids (FFAs) in the butterfat fractions and their hydrolysates were identified by combining high-performance liquid chromatography coupled with electrospray ionization-tandem quadrupole time-of-flight mass spectrometry with solid-phase extraction. The first-step hydrolysis from TAGs to sn-1,2 DAGs occurred slower in the high-melting-temperature solid fat (30S) fraction, which is rich in long-chain FAs compared to that of the low-melting-temperature liquid oil (30L) fraction, which is rich in short-chain unsaturated FAs (the hydrolysis rates were 39.22% vs 60.11%, respectively, in the 30 min gastric phase), and these differences were also reflected in the delayed and relatively flat postprandial lipemia levels in rats force-fed with 30S fraction. This study revealed the importance of TAG composition and lipid physical state in regulating digestion and absorption, which is related to nutrition science and the dairy or pharmaceutical industry.
Collapse
Affiliation(s)
- Qingxi Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yanfeng Ma
- Mengniu Hi-tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Tianjiao Niu
- Mengniu Hi-tech Dairy (Beijing) Co., Ltd., Beijing 101107, China
| |
Collapse
|
33
|
Mulet-Cabero AI, Wilde PJ. Role of calcium on lipid digestion and serum lipids: a review. Crit Rev Food Sci Nutr 2021; 63:813-826. [PMID: 34281429 DOI: 10.1080/10408398.2021.1954873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Calcium is an essential nutrient for humans that can be taken as supplement or in a food matrix (e.g. dairy products). It is suggested that dietary calcium may have a beneficial effect on cardiovascular risk but the mechanism is not clear. In this review, the main mechanisms of the possible cholesterol-lowering effect of calcium, i.e. interaction with fatty acids and bile acids, are described and clinical evidences are presented. The observations from interventional studies of the possible cholesterol-lowering effect in terms of the main related mechanisms are variable and do not seem to fulfill all the related aspects. It seems that the interplay of calcium in blood lipid metabolism might be due to its complex and multiple roles in the lipid digestion in the small intestine. The interactions between calcium and, fatty acids and bile may lead to impaired mixed micelle formation and solubilization, which is crucial in the lipid absorption and metabolism. In addition, the calcium source and its surrounding matrix will have an influence over the physiological outcome. This research is important for the delivery and formulation of calcium, particularly with the move toward plant-based diets.
Collapse
Affiliation(s)
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
34
|
Mekkaoui A, Liu Y, Zhang P, Ullah S, Wang C, Xu B. Effect of Bile Salts on the Interfacial Dilational Rheology of Lecithin in the Lipid Digestion Process. J Oleo Sci 2021; 70:1069-1080. [PMID: 34248099 DOI: 10.5650/jos.ess21081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of bile salts on the emulsifier adsorption layer play a crucial role in lipid digestion. The current study selected sodium cholate (NaCh) and lecithin as model compounds for bile salts and food emulsifiers, respectively. The interface dilational rheological and emulsification properties of NaCh and lecithin were carried out. The results showed that the NaCh molecules could quickly diffuse from the bulk to interface, which broke the tightly-arranged interfacial layer of lecithin and enhanced the viscoelasticity of interfacial film. As a result, the interfacial adsorption layer, which was originally dominated by the slow relaxation processes within the interface, was transformed into one controlled by the fast molecular diffusion exchange. This accelerated the exchange of materials between the bulk and interface, thereby creating suitable conditions for the interfacial adsorption of lipases, which promoted the digestion process. These results provided a mechanism for the promotion of lipid digestion by bile salts from the perspective of interfacial viscoelasticity and relaxation processes. A deeper understanding of the interfacial behavior of bile salts with emulsifiers would provide a basis for the rational design of interfacial layer for modulating lipid digestion.
Collapse
Affiliation(s)
- Aicha Mekkaoui
- School of Light Industry, Beijing Technology and Business University.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University
| | - Yang Liu
- School of Light Industry, Beijing Technology and Business University
| | - Pingping Zhang
- School of Light Industry, Beijing Technology and Business University
| | - Sana Ullah
- School of Light Industry, Beijing Technology and Business University.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University
| |
Collapse
|
35
|
|
36
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Sybachin AV, Stepanova DA. Modification of Multiliposomal Nanocontainers with Albumin as a Method for Increasing Their Resistance to Enzymatic Hydrolysis. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Lipid digestibility and bioaccessibility of a high dairy fat meal is altered when consumed with whole apples: Investigations using static and dynamic in vitro digestion models. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Oligonucleotide Delivery across the Caco-2 Monolayer: The Design and Evaluation of Self-Emulsifying Drug Delivery Systems (SEDDS). Pharmaceutics 2021; 13:pharmaceutics13040459. [PMID: 33800701 PMCID: PMC8066367 DOI: 10.3390/pharmaceutics13040459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Oligonucleotides (OND) represent a promising therapeutic approach. However, their instability and low intestinal permeability hamper oral bioavailability. Well-established for oral delivery, self-emulsifying drug delivery systems (SEDDS) can overcome the weakness of other delivery systems such as long-term instability of nanoparticles or complicated formulation processes. Therefore, the present study aims to prepare SEDDS for delivery of a nonspecific fluorescently labeled OND across the intestinal Caco-2 monolayer. The hydrophobic ion pairing of an OND and a cationic lipid served as an effective hydrophobization method using either dimethyldioctadecylammonium bromide (DDAB) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). This strategy allowed a successful loading of OND-cationic lipid complexes into both negatively charged and neutral SEDDS. Subjecting both complex-loaded SEDDS to a nuclease, the negatively charged SEDDS protected about 16% of the complexed OND in contrast to 58% protected by its neutral counterpart. Furthermore, both SEDDS containing permeation-enhancing excipients facilitated delivery of OND across the intestinal Caco-2 cell monolayer. The negatively charged SEDDS showed a more stable permeability profile over 120 min, with a permeability of about 2 × 10-7 cm/s, unlike neutral SEDDS, which displayed an increasing permeability reaching up to 7 × 10-7 cm/s. In conclusion, these novel SEDDS-based formulations provide a promising tool for OND protection and delivery across the Caco-2 cell monolayer.
Collapse
|
40
|
Heerup C, Ebbesen MF, Geng X, Madsen SF, Berthelsen R, Müllertz A. Effects of recombinant human gastric lipase and pancreatin during in vitro pediatric gastro-intestinal digestion. Food Funct 2021; 12:2938-2949. [PMID: 33710204 DOI: 10.1039/d0fo02976a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the study was to implement a gastric digestion step using recombinant human gastric lipase (rHGL) in an in vitro pediatric gastro-intestinal digestion model to achieve a physiologically relevant gastric contribution to total gastro-intestinal lipid digestion. A commercial infant formula (NAN Comfort stage 1 (NAN1)) with 3.4% lipid and an in-lab prepared oil-in-water emulsion, emulsified with soy phosphatidylcholine (SPCemul), with 3.5% lipid (oil-blend containing Akonino NS, MEG-3 and ARASCO oils) were subjected to in vitro gastro-intestinal digestion. To achieve a physiologically relevant level of gastric digestion, 50 min of in vitro gastric digestion, using either 0, 3.75 or 7.5 TBU mL-1 rHGL, was followed by 90 min of in vitro intestinal digestion, using either 0 or 26.5 TBU mL-1 pancreatic triglyceride lipase (PTL) from porcine pancreatin. The digestion of the substrates was assessed using titration-based quantification supported by HPLC-ELSD analysis. In vitro gastric digestion of NAN1 and SPCemul with either 3.75 or 7.5 TBU mL-1 rHGL contributed with 10-27% of the total gastro-intestinal digestion, corresponding to the reported contribution in human infants. At the end of the gastro-intestinal digestion (t = 140 min), the combined lipolytic effect of rHGL and PTL was additive during digestion of SPCemul, but not for the digestion of NAN1, as all lipase activity combinations resulted in a similar degree of NAN1 digestion. The effect of gastric digestion with rHGL on total digestion therefore appeared to be substrate dependent. To conclude, a gastric digestion step using rHGL resulting in physiologically relevant gastric contribution to the observed gastro-intestinal digestion was successfully implemented into an in vitro pediatric gastro-intestinal digestion model.
Collapse
Affiliation(s)
- Christine Heerup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
41
|
Ye Z, Xu YJ, Liu Y. Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. J Food Biochem 2021; 45:e13695. [PMID: 33694208 DOI: 10.1111/jfbc.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
In the present study, the influences of five typical dietary oils (i.e., palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; and linseed oil, LN) consumption on the nutrients malabsorption were studied using adult male Sprague Dawley rats. Results suggested that the C16:0 (24.534 ± 2.26% to 54.269 ± 1.28%) and C18:0 (18.433 ± 4.421% to 36.455 ± 3.316%) were the dominant fatty acids in fecal samples in different groups. After 6-week intervention by different dietary oils, the fecal moisture and water soluble protein content in PO group, the reducing sugar content in PO, LO, and RO groups were significantly increased compared with those in the control group (p < .05). Moreover, the Na, K, and Fe contents in LO group were all the highest among the all groups. These effects were probably due to the different fatty acids composition as illustrated in the correlation analysis results. The different effects were probably due to their distinct fatty acids composition as illustrated in the correlation analysis results. Results further indicated that the different dietary oils treatment, especially for the PO (SFAs, 43.17 ± 0.98%) and LO (SFAs, 36.44 ± 0.65%), increased the upstream inflammatory cytokine expression level in the Toll-like receptor signal pathway (i.e., TLR4 and MyD88), enhancing the gut permeability. This resulted in significant increase of serum lipopolysaccharide (LPS) levels (p < .05), which was closely connected with different metabolic diseases. The present study may provide basic understandings about different dietary oil enteral nutrition and their effects on gut health. PRACTICAL APPLICATIONS: The PO, LO, RO, SO, and LN are the five of the most typical dietary lipids in Asia countries, especially in China. They are the natural edible oils which are rich in C16:0, C18:0, C18:1, C18:2ω6, and C18:3ω3, respectively. The present study indicated that the different dietary lipid consumption may result in different dietary nutrients malabsorption, which are related with the dietary lipid fatty acid composition.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,School of Human Nutrition, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
42
|
Mella C, Quilaqueo M, Zúñiga RN, Troncoso E. Impact of the Simulated Gastric Digestion Methodology on the In Vitro Intestinal Proteolysis and Lipolysis of Emulsion Gels. Foods 2021; 10:foods10020321. [PMID: 33546343 PMCID: PMC7913480 DOI: 10.3390/foods10020321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to study the impact of the methodology of in vitro gastric digestion (i.e., in terms of motility exerted and presence of gastric emptying) and gel structure on the degree of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein isolate. Emulsions were prepared at pH 4.0 and 7.0 using two homogenization pressures (500 and 1000 bar) and then the emulsions were gelled by heat treatment. These gels were characterized in terms of texture analysis, and then were subjected to one of the following gastric digestion methods: in vitro mechanical gastric system (IMGS) or in vitro gastric digestion in a stirred beaker (SBg). After gastric digestion, the samples were subjected to in vitro intestinal digestion in a stirred beaker (SBi). Hardness, cohesiveness, and chewiness were significantly higher in gels at pH 7.0. The degree of proteolysis was higher in samples digested by IMGS–SBi (7–21%) than SBg–SBi (3–5%), regardless of the gel’s pH. For SBg–SBi, the degree of proteolysis was not affected by pH, but when operating the IMGS, higher hydrolysis values were obtained for gels at pH 7.0 (15–21%) than pH 4.0 (7–13%). Additionally, the percentage of free fatty acids (%FFA) released was reduced by 47.9% in samples digested in the IMGS–SBi. For the methodology SBg–SBi, the %FFA was not affected by the pH, but in the IMGS, higher values were obtained for gels at pH 4.0 (28–30%) than pH 7.0 (15–19%). Our findings demonstrate the importance of choosing representative methods to simulate food digestion in the human gastrointestinal tract and their subsequent impact on nutrient bioaccessibility.
Collapse
Affiliation(s)
- Camila Mella
- Department of Food Science and Chemical Technology, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile;
| | - Michelle Quilaqueo
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
| | - Rommy N. Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Elizabeth Troncoso
- Department of Chemistry, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile;
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
- Correspondence:
| |
Collapse
|
43
|
Infantes-Garcia M, Verkempinck S, Gonzalez-Fuentes P, Hendrickx M, Grauwet T. Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Schittmayer M, Vujic N, Darnhofer B, Korbelius M, Honeder S, Kratky D, Birner-Gruenberger R. Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases. Mol Cell Proteomics 2020; 19:2104-2115. [PMID: 33023980 PMCID: PMC7710144 DOI: 10.1074/mcp.ra120.002171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/28/2020] [Indexed: 01/05/2023] Open
Abstract
Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.
Collapse
Affiliation(s)
- Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria; Diagnostic and Research Institute of Pathology, Medical University Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
45
|
Enzymatic and chemical conversions taking place during in vitro gastric lipid digestion: The effect of emulsion droplet size behavior. Food Chem 2020; 326:126895. [DOI: 10.1016/j.foodchem.2020.126895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
46
|
Higuchi K, Futagami S, Yamawaki H, Murakami M, Kirita K, Agawa S, Ikeda G, Noda H, Kodaka Y, Ueki N, Kaneko K, Gudis K, Ohashi R, Iwakiri K. Endosonographic features in patients with non-alcoholic early chronic pancreatitis improved with treatment at one year follow up. J Clin Biochem Nutr 2020; 68:86-94. [PMID: 33536717 PMCID: PMC7844654 DOI: 10.3164/jcbn.19-130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Since the prevention of early chronic pancreatitis (ECP) into chronic pancreatitis might be critical for the reduction of pancreatic cancer, we tried to clarify the pathophysiology of ECP patients, focusing on ECP patients without alcoholic chronic pancreatitis. 27 ECP patients without alcoholic chronic pancreatitis and 33 patients with functional dyspepsia with pancreatic enzyme abnormalities (FD-P) were enrolled in this study. Diagnosis of ECP was made when imaging findings showed the presence of more than 2 out of 7 endoscopic ultrasound features. Duodenal degranulated eosinophils and glucagon-like peptide 1 producing cells were estimated by immunostaining. There were no significant differences in characteristics and psychogenic factors between ECP and FD-P patients. Interestingly, endoscopic ultrasound score in ECP patients significantly improved, albeit clinical symptoms in ECP patients showed no improvement at one year follow up. The extent of migration of duodenal degranulated eosinophils in FD-P patients was significantly higher compared to that in ECP patients. The levels of elastase-1 and trypsin in ECP patients with improved endoscopic ultrasound features were significantly reduced by the treatment. Further studies will be needed to clarify whether clinical symptoms and endoscopic ultrasound features in ECP patients without alcoholic chronic pancreatitis were improved in longer follow up study.
Collapse
Affiliation(s)
- Kazutoshi Higuchi
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Seiji Futagami
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hiroshi Yamawaki
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Makoto Murakami
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kumiko Kirita
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Shuhei Agawa
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Go Ikeda
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Hiroto Noda
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yasuhiro Kodaka
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Nobue Ueki
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Keiko Kaneko
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Katya Gudis
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Ryuji Ohashi
- Department of Diagnostic Pathology, Nippon Medical School Musashi Kosugi Hospital, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Katsuhiko Iwakiri
- Department of Gastroenterology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| |
Collapse
|
47
|
Klitgaard M, Beilles S, Sassene PJ, Berthelsen R, Müllertz A. Adding a Gastric Step to the Intestinal In Vitro Digestion Model Improves the Prediction of Pharmacokinetic Data in Beagle Dogs of Two Lipid-Based Drug Delivery Systems. Mol Pharm 2020; 17:3214-3222. [PMID: 32662647 DOI: 10.1021/acs.molpharmaceut.0c00307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drug release from a lipid-based drug delivery system (LbDDS) is typically studied in vitro using a one-step intestinal digestion model. However, lately the importance of incorporating gastric digestion has been stressed. The aim of the present study was to compare a two-step gastro-intestinal (GI) in vitro digestion model to the commonly used one-step intestinal digestion model. The models were evaluated by studying release of the model drug A1260 from two LbDDSs (F-I and F-II), for which in vivo pharmacokinetic data from oral administration to beagle dogs were available. The amount of A1260 recovered in the aqueous phases during and after the GI digestion of F-I and F-II was related to the Cmax and AUC0-48h of the plasma concentration-time profiles of each formulation and produced a rank order in vitro-in vivo (IVIV) relation. In comparison, a similar IVIV rank ordering was obtained when relating the amount of A1260 recovered in the aqueous phase prior (t = 0 min), and following 15 min of intestinal digestion, to the plasma concentration-time profiles. However, after 60 min of intestinal digestion, the LbDDSs performed equally in the one-step in vitro digestion model, contrary to what was observed in the two-step digestion model, and in vivo. As the GI digestion model produced a clearer distinction in terms of LbDDS rank ordering of the two LbDDSs, compared to the intestinal digestion model, it was found to be a promising in vitro model to study and estimate the LbDDS behavior in vivo.
Collapse
Affiliation(s)
- Mette Klitgaard
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Stephane Beilles
- Pharmaceutical Science Department, Sanofi, Montpellier 34080, France
| | | | - Ragna Berthelsen
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark.,Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Copenhagen 1165, Denmark
| |
Collapse
|
48
|
Fruehwirth S, Zehentner S, Salim M, Sterneder S, Tiroch J, Lieder B, Zehl M, Somoza V, Pignitter M. In Vitro Digestion of Grape Seed Oil Inhibits Phospholipid-Regulating Effects of Oxidized Lipids. Biomolecules 2020; 10:biom10050708. [PMID: 32370178 PMCID: PMC7277833 DOI: 10.3390/biom10050708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
The intake of dietary lipids is known to affect the composition of phospholipids in gastrointestinal cells, thereby influencing passive lipid absorption. However, dietary lipids rich in polyunsaturated fatty acids, such as vegetable oils, are prone to oxidation. Studies investigating the phospholipid-regulating effect of oxidized lipids are lacking. We aimed at identifying the effects of oxidized lipids from moderately (18.8 ± 0.39 meq O2/kg oil) and highly (28.2 ± 0.39 meq O2/kg oil) oxidized and in vitro digested cold-pressed grape seed oils on phospholipids in human gastric tumor cells (HGT-1). The oils were analyzed for their antioxidant constituents as well as their oxidized triacylglycerol profile by LC-MS/MS before and after a simulated digestion. The HGT-1 cells were treated with polar oil fractions containing epoxidized and hydroperoxidized triacylglycerols for up to six hours. Oxidized triacylglycerols from grape seed oil were shown to decrease during the in vitro digestion up to 40% in moderately and highly oxidized oil. The incubation of HGT-1 cells with oxidized lipids from non-digested oils induced the formation of cellular phospholipids consisting of unsaturated fatty acids, such as phosphocholines PC (18:1/22:6), PC (18:2/0:0), phosphoserine PS (42:8) and phosphoinositol PI (20:4/0:0), by about 40%–60%, whereas the incubation with the in vitro digested oils did not affect the phospholipid metabolism. Hence, the gastric conditions inhibited the phospholipid-regulating effect of oxidized triacylglycerols (oxTAGs), with potential implications in lipid absorption.
Collapse
Affiliation(s)
- Sarah Fruehwirth
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Sofie Zehentner
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Mohammed Salim
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Sonja Sterneder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Johanna Tiroch
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Barbara Lieder
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (S.F.); (S.Z.); (M.S.); (S.S.); (J.T.); (B.L.); (V.S.)
- Correspondence: ; Tel.: +43-14277-70621
| |
Collapse
|
49
|
Joyce P, Ulmefors H, Garcia-Bennett A, Prestidge CA. Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3367-3376. [PMID: 32167765 DOI: 10.1021/acs.langmuir.0c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding lipase-mediated hydrolysis mechanisms within solid-state nanocarriers is fundamental for the rational design of lipid-based formulations. In this study, SBA-15 ordered mesoporous silica (MPS) particles were engineered with well-controlled nanostructural properties to systematically elucidate the role of intrawall microporosity, mesopore size, and particle structure on lipase activity. The microporosity and diffusional path length were shown to be key modulators for lipase-provoked hydrolysis of medium chain triglycerides confined within MPS, with small changes in the pore size, between 9 and 13 nm, showing now a clear correlation to lipase activity. Lipid speciation within MPS after lipolysis, obtained through 1H NMR, indicated that free fatty acids preferentially adsorbed to rod-shaped MPS (RodMPS) particles with high microporosity. MPS that formed aggregated spindle-like structures (AggMPS) had intrinsically reduced microporosity, which was hypothesized to limit lipase/lipid diffusion to and from the MPS pores and thus retard lipolysis kinetics. A linear correlation between the microporosity and the extent of lipase-provoked hydrolysis was observed within both AggMPS and RodMPS, ultimately indicating that the intricate interplay between the microporosity and lipid/lipase diffusion can be harnessed to optimize lipolysis kinetics for silica-lipid hybrid carriers. The new insights derived in this study are integral to the future development of solid-state lipid-based nanocarriers that control the lipase activity for improving the absorption of poorly soluble bio-active compounds.
Collapse
Affiliation(s)
- Paul Joyce
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hanna Ulmefors
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | | | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
50
|
Investigation of drug partition kinetics to fat in simulated fed state gastric conditions based on drug properties. Eur J Pharm Sci 2020; 146:105263. [DOI: 10.1016/j.ejps.2020.105263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|