1
|
Van Goor J, Turdiev A, Speir SJ, Manning J, Haag ES. Male secreted short glycoproteins link sperm competition to the reproductive isolation of species. Curr Biol 2025:S0960-9822(24)01708-1. [PMID: 39884276 DOI: 10.1016/j.cub.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Sperm competition is found across multicellular organisms1,2,3,4 using both external and internal fertilization.5,6 Sperm competition and post-copulatory cryptic female choice can promote incompatibility between species due to the antagonistic coevolution of the sexes within a species.7,8,9,10,11 This between-species incompatibility is accelerated and markedly asymmetrical when sexual mode differs, producing the "weak inbreeder, strong outcrosser" (WISO) pattern.12 Here, we show that male secreted short (MSS) sperm glycoproteins of nematodes constitute a gametic effector of WISO. In obligately outcrossing Caenorhabditis, MSS is dispensable for baseline fertility but required for intraspecific sperm competitiveness.13 MSS is lost in self-fertile lineages, likely as a response to selection for a hermaphrodite-biased sex ratio.14 Selfing hermaphrodites that mate with males of closely related outcrossing species are rapidly sterilized due to ovarian sperm invasion.11 The simplification of the male proteome in selfing species suggests that many factors could contribute to invasivity.13,15,16 However, restoration of just MSS to the self-fertile C. briggsae is sufficient to induce mild invasivity. Further, MSS+ sperm appear to derive their competitive advantage from this behavior, directly linking interspecies incompatibility with intraspecific competition. MSS-related proteins (MSRPs) remaining in the C. briggsae genome are similar in structure, expression, and localization to MSS but are not necessary for normal sperm competitiveness. Further, overexpression of the MSRP most similar to MSS, Cbr-MSRP-3, is insufficient to enhance competitiveness. We conclude that outcrossing species retain sperm competition factors that contribute to their reproductive isolation from selfing relatives that lost them.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Asan Turdiev
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Savannah J Speir
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jillian Manning
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Eric S Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Higley CM, Waligora KD, Clore JR, Timmons SC, Kuzmanov A. Effects of bisphenol A, bisphenol S, and tetramethyl bisphenol F on male fertility in Caenorhabditis elegans. Toxicol Ind Health 2025; 41:11-19. [PMID: 39344986 DOI: 10.1177/07482337241287967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Research has shown that exposure to bisphenol A (BPA), a widely used plasticizer, can lead to meiotic errors, resulting in poor reproductive cell quality and infertility. Health-related concerns have prompted the search for BPA alternatives; however, evidence suggests that currently used BPA analogs, such as bisphenol S (BPS), may pose similar risks to human health. While the effects of BPA on female fertility are well documented, the impact of BPA exposure on sperm quality is poorly understood. To better understand the effects of bisphenol analogs on spermatogenesis, we synthesized a less investigated BPA analog, tetramethyl bisphenol F (TMBPF), and compared its reprotoxic potential to that of widely used BPA and BPS using C. elegans-based assays. We evaluated germ cell count, spermatid size, morphology, and activation in males treated with 0.5 mM ethanol-dissolved bisphenol analogs for 48 h as well as their cross-progeny number and viability. Our results indicated that all of the evaluated bisphenol analogs-BPA, BPS, and TMBPF-adversely affect male fertility to varying degrees. Whereas all three bisphenols reduced spermatid size, only BPA exposure resulted in impaired spermatid activation and significantly reduced brood size. In addition, a decrease in embryonic viability, suggestive of an increased incidence of sperm chromosomal aberrations, was observed following exposure to all of the tested bisphenols. Further investigation is necessary to fully elucidate the underlying mechanisms and implications of BPA, BPS, and TMBPF on spermatogenesis.
Collapse
Affiliation(s)
- Cole M Higley
- Department of Natural Sciences, Lawrence Technological University, Southfield, MI, USA
| | - Katelyn D Waligora
- Department of Natural Sciences, Lawrence Technological University, Southfield, MI, USA
| | - Jessica R Clore
- Department of Natural Sciences, Lawrence Technological University, Southfield, MI, USA
| | - Shannon C Timmons
- Department of Natural Sciences, Lawrence Technological University, Southfield, MI, USA
| | - Aleksandra Kuzmanov
- Department of Natural Sciences, Lawrence Technological University, Southfield, MI, USA
| |
Collapse
|
3
|
Kasimatis KR, Willis JH, Sedore CA, Phillips PC. Transcriptomic Sexual Conflict at Two Evolutionary Timescales Revealed by Experimental Evolution in Caenorhabditis elegans. Genome Biol Evol 2024; 16:evae256. [PMID: 39570916 DOI: 10.1093/gbe/evae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Sex-specific regulation of gene expression is the most plausible way for generating sexually differentiated phenotypes from an essentially shared genome. However, since genetic material is shared, sex-specific selection in one sex can have an indirect response in the other sex. From a gene expression perspective, this tethered response can move one sex away from their wild-type expression state and potentially impact many gene regulatory networks. Here, using experimental evolution in the model nematode Caenorhabditis elegans, we explore the coupling of direct sexual selection on males with the transcriptomic response in males and females over microevolutionary timescales to uncover the extent to which postinsemination reproductive traits share a genetic basis between the sexes. We find that differential gene expression evolved in a sex-specific manner in males, while in females, indirect selection causes an evolved response. Almost all differentially expressed genes were downregulated in both evolved males and females. Moreover, 97% of significantly differentially expressed genes in males and 69% of significantly differentially expressed genes in females have wild-type female-biased expression profile. Changes in gene expression profiles were likely driven through trans-acting pathways that are shared between the sexes. We found no evidence that the core dosage compensation machinery was impacted by experimental evolution. Together, these data suggest a defeminization of the male transcriptome and masculinization of the female transcriptome driven by direct selection on male sperm competitive ability. Our results indicate that on short evolutionary timescales, sexual selection can generate putative sexual conflict in expression space.
Collapse
Affiliation(s)
- Katja R Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| |
Collapse
|
4
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Eberhard WG. Genital courtship and female-active roles in mating: sexual selection by mate choice in Caenorhabditis elegans. J Evol Biol 2024; 37:1137-1147. [PMID: 39275891 DOI: 10.1093/jeb/voae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
A new bridge between studies of sexual selection and the massive literature on Caenorhabditis elegans behaviourand nervous system properties promise to provide important new insights into both fields. This paper shows that mate choice likely occurs in hermaphrodite C. elegans on the basis of stimulation from the male genital spicules, making it possible to apply the toolkit of extensive background knowledge of C. elegans and powerful modern techniques to test in unprecedented detail the leading hypotheses regarding one of the most sweeping trends in all of animal evolution, the especially rapid divergence of genital morphology. The recognition that sexual selection by mate choice may also occur in other contexts in C. elegans suggests additional payoffs from exploring previously unrecognized possibilities that female-active hermaphrodite reproductive behaviours are triggered by male stimulation. These facultative behaviours include attracting males, fleeing from or otherwise resisting males, opening the vulva to allow intromission, guiding sperm migration, avoiding rapid oviposition following copulation that results in sperm loss, expelling recently received sperm, and increasing feeding rates following copulation.
Collapse
Affiliation(s)
- William G Eberhard
- Smithsonian Tropical Research Institute, Ancon, Panama
- Biología, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica
- Louisiana State University, Museum of Natural Sciences, Baton Rouge, LA 70808, USA
| |
Collapse
|
6
|
Potter AE, White CR, Marshall DJ. Per capita sperm metabolism is density dependent. J Exp Biol 2024; 227:jeb246674. [PMID: 38380562 PMCID: PMC11006396 DOI: 10.1242/jeb.246674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
From bacteria to metazoans, higher density populations have lower per capita metabolic rates than lower density populations. The negative covariance between population density and metabolic rate is thought to represent a form of adaptive metabolic plasticity. A relationship between density and metabolism was actually first noted 100 years ago, and was focused on spermatozoa; even then, it was postulated that adaptive plasticity drove this pattern. Since then, contemporary studies of sperm metabolism specifically assume that sperm concentration has no effect on metabolism and that sperm metabolic rates show no adaptive plasticity. We did a systematic review to estimate the relationship between sperm aerobic metabolism and sperm concentration, for 198 estimates spanning 49 species, from protostomes to humans from 88 studies. We found strong evidence that per capita metabolic rates are concentration dependent: both within and among species, sperm have lower metabolisms in dense ejaculates, but increase their metabolism when diluted. On average, a 10-fold decrease in sperm concentration increased per capita metabolic rate by 35%. Metabolic plasticity in sperm appears to be an adaptive response, whereby sperm maximize their chances of encountering eggs.
Collapse
Affiliation(s)
- Ashley E. Potter
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Suo S. Sperm function is required for suppressing locomotor activity of C. elegans hermaphrodites. PLoS One 2024; 19:e0297802. [PMID: 38271363 PMCID: PMC10810530 DOI: 10.1371/journal.pone.0297802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Sex differences in sex-shared behavior are common across various species. During mating, males transfer sperm and seminal fluid to females, which can affect female behavior. Sperm can be stored in the female reproductive tract for extended periods of time and used to fertilize eggs. However, the role of either sperm or embryo production in regulating female behavior is poorly understood. In the androdioecious nematode C. elegans, hermaphrodites produce both oocytes and sperm, enabling them to self-fertilize or mate with males. Hermaphrodites exhibit less locomotor activity compared to males, indicating sex difference in behavioral regulation. In this study, mutants defective in the sperm production and function were examined to investigate the role of sperm function in the regulation of locomotor behavior. Infertile hermaphrodites exhibited increased locomotor activity, which was suppressed after mating with fertile males. The results suggest that sperm, seminal fluid, or the presence of embryos are detected by hermaphrodites, leading to a reduction in locomotor activity. Additionally, females of closely related gonochoristic species, C. remanei and C. brenneri, exhibited reduced locomotor activity after mating. The regulation of locomotion by sperm function may be an adaptive mechanism that enables hermaphrodites lacking sperm or embryo to search for mates and allow females to cease their search for mates after mating.
Collapse
Affiliation(s)
- Satoshi Suo
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Míčková K, Tomášek O, Jelínek V, Šulc M, Pazdera L, Albrechtová J, Albrecht T. Age-related changes in sperm traits and evidence for aging costs of sperm production in a sexually promiscuous passerine. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In many animal species, organismal performance declines with age in a process known as aging or senescence. Senescence typically leads to a deterioration of physiological functionality and can impact the development of primary sexual phenotypes. Sperm production is a complex and costly process that is sensitive to changes in individual physiological state, yet remarkably little is known about age-related changes in sperm performance and aging costs of sperm production. Here we use a non-linear generalized additive mixed models (GAMM) modelling to evaluate age-related changes in postcopulatory sexual traits in the European barn swallow (Hirundo rustica rustica), a relatively short lived sexually promiscuous passerine species, where male extra-pair fertilization success has been shown to increase with age. We confirmed a positive relationship between sperm midpiece length and sperm velocity in this species. Within-male changes in sperm morphology and sperm velocity were in general absent, with only sperm length decreasing linearly with increasing age, although this change was negligible compared to the overall variation in sperm size among males. In contrast, the cloacal protuberance (CP) size changed nonlinearly with age, with an initial increase between the first and third year of life followed by a plateau. The results further indicate the existence of a trade-off between investments in sperm production and survival as males with large CP tended to have a reduced lifespan. This seems consistent with the idea of expensive sperm production and survival aging costs associated with investments in post-copulatory traits in this sexually promiscuous species.
Collapse
|
9
|
Shabtai R, Tzur YB. Male-specific roles of lincRNA in C. elegans fertility. Front Cell Dev Biol 2023; 11:1115605. [PMID: 37035238 PMCID: PMC10076526 DOI: 10.3389/fcell.2023.1115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
The testis is the mammalian tissue with the highest expression levels of long intergenic non-coding RNAs (lincRNAs). However, most in vivo models have not found significant reductions in male fertility when highly expressed lincRNA genes were removed. This suggests that certain lincRNAs may act redundantly or lack functional roles. In the genome of the nematode Caenorhabditis elegans, there is an order of magnitude fewer lincRNA genes than in mammals. This characteristic lowers the potential for redundancy, making it an ideal model to test these possibilities. We identified five highly and dynamically expressed lincRNAs in male C. elegans gonads and quantified the fertility of worm strains in which these genes were removed. In contrast to the hermaphrodites of deletion strains, which exhibited no significant reductions in broods, smaller brood sizes were observed in the progeny of males of three of the lincRNA deleted strains. This demonstrates reduced male fertility in worms with those genes removed. Interestingly, reduced brood size was statistically significant only in the last days of egg laying in two of these strains. This suggests the effect is due to early deterioration and aging of the transferred sperm. We detected a mild increase in embryonic lethality in only one of the strains, supporting the possibility that these lincRNAs do not affect fertility through critical roles in essential meiotic processes. Together our results indicate a sexually dimorphic outcome on fertility when lincRNA are removed and show that, unlike mammals, individual lincRNAs in C. elegans do play significant roles in male fertility.
Collapse
|
10
|
Laugen AT, Hosken DJ, Reinhold K, Schwarzenbach GA, Hoeck PEA, Bussière LF, Blanckenhorn WU, Lüpold S. Sperm competition in yellow dung flies: No consistent effect of sperm size. J Evol Biol 2022; 35:1309-1318. [PMID: 35972882 DOI: 10.1111/jeb.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
The male competition for fertilization that results from female multiple mating promotes the evolution of increased sperm numbers and can impact sperm morphology, with theory predicting that longer sperm can at times be advantageous during sperm competition. If so, males with longer sperm should sire more offspring than competitors with shorter sperm. Few studies have directly tested this prediction, and findings are inconsistent. Here we assessed whether longer sperm provide a competitive advantage in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae). Initially, we let brothers with different temperature-mediated mean sperm lengths compete - thus minimizing confounding effects of genetic background - and found no clear advantage of longer sperm. We then used flies from lines subjected to bidirectional selection on phenoloxidase activity that had shown correlated evolutionary responses in sperm and female spermathecal duct lengths. This experiment also yielded no main effect of sperm size on siring success. Instead, there was a trend for a shorter-sperm advantage, but only when competing in females with longer spermathecal ducts. Our data corroborated many previously reported findings (last-male precedence, effects of copula duration and body size), suggesting our failure to find sperm size effects is not inherently due to our experimental protocols. We conclude that longer sperm are not competitively superior in yellow dung flies under most circumstances, and that, consistent with previous work, in this species competitive fertilization success is primarily determined by the relative numbers of sperm competing.
Collapse
Affiliation(s)
- Ane T Laugen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - David J Hosken
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter in Cornwall, Penryn, UK
| | - Klaus Reinhold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Evolutionsbiologie, Universität Bielefeld, Bielefeld, Germany
| | - Gioia A Schwarzenbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Paquita E A Hoeck
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Luc F Bussière
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland.,Biology and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
11
|
Description of Oscheius cyrus n. sp. (Nematoda: Rhabditidae) as new entomopathogenic nematode from Iran. J Helminthol 2022; 96:e69. [PMID: 36120816 DOI: 10.1017/s0022149x22000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new species of the genus Oscheius, Oscheius cyrus n. sp., collected in the moist soils taken from forest heights in the north of Iran, is recorded. A comprehensive description, comprising molecular (internal transcribed spacer (ITS), 18S, and 28S rDNA genes) information, morphometrics data, light microscope and scanning electron microscope images, is supplied. The species resembles Oscheius myriophilus. However, the highest ranges for female body length, female tail, infective juvenile tail length, median bulb, absence of epiptygma and lateral field incisures number vary. The new species was distinguished from Oscheius insectivorus by the general lip region. The male was not found. Molecular analysis showed that the new species has the most similarity to O. myriophilus both in the ITS and 18S regions. Morphological and molecular data confirmed its belonging to the Insectivora-group. Furthermore, the species of Ochrobactrum pseudogrignonense was reported as a dominant associated bacterium of the new Oscheius species. Finally, the mortality of the host after seven days varied from 20% to 82.5%, depending on nematodes' concentration.
Collapse
|
12
|
Yang B, Yang Z, Cheng L, Li Y, Zhou T, Han Y, Du H, Xu A. Effects of 10 T static magnetic field on the function of sperms and their offspring in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113671. [PMID: 35653972 DOI: 10.1016/j.ecoenv.2022.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
With the wide application of static magnetic fields (SMFs), the risk of living organisms exposed to man-made magnetic fields that the intensity is much higher than geomagnetic field has gradually increased. Reproductive system is highly sensitive to environmental stress; however, the influence of high SMFs on reproduction system is still largely unknown. Here we explored the biological responses of SMFs exposure at an intensity of 10 T on the sperms and their offspring in him-5 male mutants of Caenorhabditis elegans (C. elegans). The size of unactivated sperms was deceased by 10 T SMF exposure, instead of the morphology. Exposure to 10 T SMF significantly altered the function of sperms in him-5 worms including the activation of sperms and the non-transferred ratio of sperms. In addition, the brood size assay revealed that 10 T SMF exposure eventually diminished the reproductive capacity of him-5 male worms. The lifespan of outcrossed offspring from exposed him-5 male mutants and unexposed fog-2 female mutants was decreased by 10 T SMF in a time dependent manner. Together, our findings provide novel information regarding the adverse effects of high SMFs on the sperms of C. elegans and their offspring, which can improve our understanding of the fundamental aspects of high SMFs on biological system.
Collapse
Affiliation(s)
- Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhen Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yuyan Han
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
13
|
Li Q, Kaur A, Mallory B, Hariri S, Engebrecht J. Inducible degradation of dosage compensation protein DPY-27 facilitates isolation of Caenorhabditis elegans males for molecular and biochemical analyses. G3 (BETHESDA, MD.) 2022; 12:jkac085. [PMID: 35404452 PMCID: PMC9073673 DOI: 10.1093/g3journal/jkac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 04/22/2023]
Abstract
Biological sex affects numerous aspects of biology, yet how sex influences different biological processes have not been extensively studied at the molecular level. Caenorhabditis elegans, with both hermaphrodites (functionally females as adults) and males, is an excellent system to uncover how sex influences physiology. Here, we describe a method to isolate large quantities of C. elegans males by conditionally degrading DPY-27, a component of the dosage compensation complex essential for hermaphrodite, but not male, development. We show that germ cells from males isolated following DPY-27 degradation undergo meiosis and spermiogenesis like wild type and these males are competent to mate and sire viable offspring. We further demonstrate the efficacy of this system by analyzing gene expression and performing affinity pull-downs from male worm extracts.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Mallory
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sara Hariri
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
15
|
Kasimatis KR, Moerdyk-Schauwecker MJ, Lancaster R, Smith A, Willis JH, Phillips PC. Post-insemination selection dominates pre-insemination selection in driving rapid evolution of male competitive ability. PLoS Genet 2022; 18:e1010063. [PMID: 35157717 PMCID: PMC8880957 DOI: 10.1371/journal.pgen.1010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual reproduction is a complex process that contributes to differences between the sexes and divergence between species. From a male’s perspective, sexual selection can optimize reproductive success by acting on the variance in mating success (pre-insemination selection) as well as the variance in fertilization success (post-insemination selection). The balance between pre- and post-insemination selection has not yet been investigated using a strong hypothesis-testing framework that directly quantifies the effects of post-insemination selection on the evolution of reproductive success. Here we use experimental evolution of a uniquely engineered genetic system that allows sperm production to be turned off and on in obligate male-female populations of Caenorhabditis elegans. We show that enhanced post-insemination competition increases the efficacy of selection and surpasses pre-insemination sexual selection in driving a polygenic response in male reproductive success. We find that after 10 selective events occurring over 30 generations post-insemination selection increased male reproductive success by an average of 5- to 7-fold. Contrary to expectation, enhanced pre-insemination competition hindered selection and slowed the rate of evolution. Furthermore, we found that post-insemination selection resulted in a strong polygenic response at the whole-genome level. Our results demonstrate that post-insemination sexual selection plays a critical role in the rapid optimization of male reproductive fitness. Therefore, explicit consideration should be given to post-insemination dynamics when considering the population effects of sexual selection. Some of the most dramatic and diverse phenotypes observed in nature––such as head-butting in wild sheep and the elaborate tails of peacocks––are sexually dimorphic. These remarkable phenotypes are a result of sexual selection optimizing reproductive success in females and males independently. For males, total reproductive success is comprised of winning a mating event and then translating that mating event into a fertilization event. Therefore, to understand not only how male reproductive success is comprised, but also how it evolves, we must examine the interaction between pre- and post-insemination sexual selection. We combine environmentally-inducible control of sperm production within a highly reproducible factorial experimental evolution design to directly quantify the contribution of post-insemination selection to male reproductive evolution. We demonstrate that enhanced sperm competition increases the efficacy of selection and enhances the rate of male evolution. Alternatively, we show that enhanced pre-insemination competition slows the evolutionary rate. Using whole-genome approaches, we identify over 60 genes that contribute to male fertilization success. Brought together, our new approaches and results demonstrate that the unseen world of molecular interactions occurring during post-insemination are as fundamentally important as pre-mating factors.
Collapse
Affiliation(s)
- Katja R. Kasimatis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| | | | - Ruben Lancaster
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Alexander Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KRK); (PCP)
| |
Collapse
|
16
|
Cao M, Schwartz HT, Tan CH, Sternberg PW. The entomopathogenic nematode Steinernema hermaphroditum is a self-fertilizing hermaphrodite and a genetically tractable system for the study of parasitic and mutualistic symbiosis. Genetics 2022; 220:iyab170. [PMID: 34791196 PMCID: PMC8733455 DOI: 10.1093/genetics/iyab170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Abstract
Entomopathogenic nematodes (EPNs), including Heterorhabditis and Steinernema, are parasitic to insects and contain mutualistically symbiotic bacteria in their intestines (Photorhabdus and Xenorhabdus, respectively) and therefore offer opportunities to study both mutualistic and parasitic symbiosis. The establishment of genetic tools in EPNs has been impeded by limited genetic tractability, inconsistent growth in vitro, variable cryopreservation, and low mating efficiency. We obtained the recently described Steinernema hermaphroditum strain CS34 and optimized its in vitro growth, with a rapid generation time on a lawn of its native symbiotic bacteria Xenorhabdus griffiniae. We developed a simple and efficient cryopreservation method. Previously, S. hermaphroditum isolated from insect hosts was described as producing hermaphrodites in the first generation. We discovered that CS34, when grown in vitro, produced consecutive generations of autonomously reproducing hermaphrodites accompanied by rare males. We performed mutagenesis screens in S. hermaphroditum that produced mutant lines with visible and heritable phenotypes. Genetic analysis of the mutants demonstrated that this species reproduces by self-fertilization rather than parthenogenesis and that its sex is determined chromosomally. Genetic mapping has thus far identified markers on the X chromosome and three of four autosomes. We report that S. hermaphroditum CS34 is the first consistently hermaphroditic EPN and is suitable for genetic model development to study naturally occurring mutualistic symbiosis and insect parasitism.
Collapse
Affiliation(s)
- Mengyi Cao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Hammerquist AM, Yen CA, Curran SP. Analysis of Caenorhabditis elegans Sperm Number, Size, Activation, and Mitochondrial Content. Bio Protoc 2021; 11:e4035. [PMID: 34250202 PMCID: PMC8250386 DOI: 10.21769/bioprotoc.4035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/18/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Infertility is a widespread and often unexplained issue. Studying reproduction using C. elegans males offers insight into the influence of individual factors on male fertility in humans. We have created a collection of protocols to assess several aspects of C. elegans sperm quality, including number, size, rate of activation, and mitochondrial morphology. Studying sperm biology in a model system such as C. elegans allows access to the wealth of resources and techniques that have been optimized for that organism while providing valuable biological information that may be applicable to other systems.
Graphic abstract:
Flowchart depicting the preparation of C. elegans males and subsequent sperm quality assays
Collapse
Affiliation(s)
- Amy M Hammerquist
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States
| | - Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, United States.,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, United States.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
18
|
Wang Q, Cao Z, Du B, Zhang Q, Chen L, Wang X, Yuan Z, Wang P, He R, Shan J, Zhao Y, Miao L. Membrane contact site-dependent cholesterol transport regulates Na +/K +-ATPase polarization and spermiogenesis in Caenorhabditis elegans. Dev Cell 2021; 56:1631-1645.e7. [PMID: 34051143 DOI: 10.1016/j.devcel.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Spermiogenesis in nematodes is a process whereby round and quiescent spermatids differentiate into asymmetric and crawling spermatozoa. The molecular mechanism underlying this symmetry breaking remains uncharacterized. In this study, we revealed that sperm-specific Na+/K+-ATPase (NKA) is evenly distributed on the plasma membrane (PM) of Caenorhabditis elegans spermatids but is translocated to and subsequently enters the invaginated membrane of the spermatozoa cell body during sperm activation. The polarization of NKA depends on the transport of cholesterol from the PM to membranous organelles (MOs) via membrane contact sites (MCSs). The inositol 5-phosphatase CIL-1 and the MO-localized PI4P phosphatase SAC-1 may mediate PI4P metabolism to drive cholesterol countertransport via sterol/lipid transport proteins through MCSs. Furthermore, the NKA function is required for C. elegans sperm motility and reproductive success. Our data imply that the lipid dynamics mediated by MCSs might play crucial roles in the establishment of cell polarity. eGraphical abstract.
Collapse
Affiliation(s)
- Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Baochen Du
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiheng Yuan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun He
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Long Miao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Yen CA, Curran SP. Methods for Assessing Fertility in C. elegans from a Single Population. Methods Mol Biol 2021; 2144:91-102. [PMID: 32410027 DOI: 10.1007/978-1-0716-0592-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reproductive senescence occurs in a wide range of species with mechanistic aspects that are conserved from Caenorhabditis elegans to humans. Genetic and environmental factors can influence fertility and reproductive output can impact rates of aging. The C. elegans Bristol N2 strain commonly used in laboratories is hermaphroditic, producing a defined number of sperm during larval development before switching exclusively to oogenesis. Here we show a method of assaying both oocyte and sperm quality from a single population of animals.
Collapse
Affiliation(s)
- Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Department of Molecular and Computational Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA. .,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Bhaisare LY, Paraste S, Kaushik S, Chaudhary DD, Al-Misned F, Mahboob S, Al-Ghanim K, Ansari MJ. Reproductive success in Zygogramma bicolorata: A role of post-insemination association of male and female. Saudi J Biol Sci 2021; 28:1539-1543. [PMID: 33732037 PMCID: PMC7938115 DOI: 10.1016/j.sjbs.2020.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022] Open
Abstract
Reproductive success is attained by various mechanisms in insects. Prolonged post insemination association is one such mechanism to increase the reproductive success. The present study was conducted to assess the role of post insemination association of mating partners on reproductive performance in Chrysomelidae beetle, Zygogramma bicolorata Pallister. The matings were disrupted at different time intervals and fecundity and percent egg viability of the females were recorded. In addition, the mounting attempts, mating attempts, time to commencement of mating and latent period were also recorded. It was hypothesized that: (1) the mounting and mating attempts would not exist, (2) copulation duration, would not affect the reproductive performance, and (3) the beetle would not exhibit the mate guarding behaviour. Interestingly, results revealed that 6.00 ± 1.3 and 6.59 ± 0.93 mounting and mating attempts are needed to establish successful mating. The results revealed that males improved their percent egg viability with a mating duration ranging from nearly 30-50 min. While fecundity increased with a mating duration of above 30 min and up to a duration of 60 min. This result concluded that males of this beetle display post copulatory mate guarding behaviour after 60 min in which male rides on female's back with his aedeagus inserted in the female genital tract.
Collapse
Affiliation(s)
- Lankesh Yashwant Bhaisare
- Behavioural & Molecular Ecology & Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sweta Paraste
- Behavioural & Molecular Ecology & Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sandeep Kaushik
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Desh Deepak Chaudhary
- Behavioural & Molecular Ecology & Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| |
Collapse
|
21
|
Yen C, Curran SP. Incomplete proline catabolism drives premature sperm aging. Aging Cell 2021; 20:e13308. [PMID: 33480139 PMCID: PMC7884046 DOI: 10.1111/acel.13308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022] Open
Abstract
Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains unclear. Here, we demonstrate the loss of proline dehydrogenase, the first committed step in proline catabolism, is relatively benign. In contrast, disruption of alh-6, which facilitates the second step of proline catabolism by converting 1-pyrroline-5-carboxylate (P5C) to glutamate, results in premature reproductive senescence, specifically in males. The premature reproductive senescence in alh-6 mutant males is caused by aberrant ROS homeostasis, which can be countered by genetically limiting the first committed step of proline catabolism that functions upstream of ALH-6 or by pharmacological treatment with antioxidants. Taken together, our work uncovers proline metabolism as a critical component of normal sperm function that can alter the rate of aging in the male reproductive system.
Collapse
Affiliation(s)
- Chia‐An Yen
- Leonard Davis School of Gerontology University of Southern California Los Angeles CA USA
- Department of Molecular and Computation Biology Dornsife College of Letters, Arts, and Sciences University of Southern California Los Angeles CA USA
| | - Sean P. Curran
- Leonard Davis School of Gerontology University of Southern California Los Angeles CA USA
- Department of Molecular and Computation Biology Dornsife College of Letters, Arts, and Sciences University of Southern California Los Angeles CA USA
| |
Collapse
|
22
|
Yin J, Jian Z, Zhu G, Yu X, Pu Y, Yin L, Wang D, Bu Y, Liu R. Male reproductive toxicity involved in spermatogenesis induced by perfluorooctane sulfonate and perfluorooctanoic acid in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1443-1453. [PMID: 32839910 DOI: 10.1007/s11356-020-10530-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have gained increasing research attention over recent years because of their potential risk to humans and the environment. In this paper, we investigated the reproductive toxicity of these pollutants using a C. elegans model to evaluate spermatogenesis throughout the entire developmental cycle of him-5 mutant by exposing to 0.001, 0.01, and 0.1 mmol/L PFOS or PFOA for 48 h. Experimental results suggested that PFOS and PFOA exposure led to reductions in brood size, germ cell number, spermatid size, and motility, and increases in rate of malformation spermatids. Analysis of variance (ANOVA) showed that exposure to PFOS resulted in higher levels of damage than PFOA in germ cells only in 0.001 mmol/L exposure group. RT-qPCR was used to further investigate the expression of genes associated with different stages of spermatogenesis, such as mitosis and meiosis, fibrous body-membranous organelles (FB-MOs), and sperm activation. The expression levels of wee-1.3, spe-4, spe-6, and spe-17 genes were increased, while those of puf-8, spe-10, fer-1, swm-1, try-5, and spe-15 genes were decreased. Our results suggesting that PFOS or PFOA may cause spermatogenesis damage by disrupting the mitotic proliferation, meiotic entry, formation of the MOs, fusion of the MOs and plasma membrane (PM), and pseudopods. Loss-of-function studies using puf-8 and spe-10 mutants revealed spe-10 gene was specifically involved in PFOS- or PFOA-induced reproductive toxicity via regulating one or more critical palmitoylation events, while puf-8 gene was not direct target of PFOS and PFOA, and PFOS and PFOA may act on the upstream gene of puf-8, thus affecting reproductive ability. Taken together, these results demonstrate the potential adverse impact of PFOS and PFOA exposure on spermatogenesis and provide valuable data for PFC risk assessment. Grapical abstract.
Collapse
Affiliation(s)
- Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zihai Jian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Guangcan Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Roles for the RNA polymerase III regulator MAFR-1 in regulating sperm quality in Caenorhabditis elegans. Sci Rep 2020; 10:19367. [PMID: 33168938 PMCID: PMC7652826 DOI: 10.1038/s41598-020-76423-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
The negative regulator of RNA polymerase (pol) III mafr-1 has been shown to affect RNA pol III transcript abundance, lipid biosynthesis and storage, progeny output, and lifespan. We deleted mafr-1 from the Caenorhabditis elegans genome and found that animals lacking mafr-1 replicated many phenotypes from previous RNAi-based studies and discovered a new sperm-specific role. Utilizing a yeast two-hybrid assay, we discovered several novel interactors of MAFR-1 that are expressed in a sperm- and germline-enriched manner. In support of a role for MAFR-1 in the male germline, we found mafr-1 null males have smaller spermatids that are less capable in competition for fertilization; a phenotype that was dependent on RNA pol III activity. Restoration of MAFR-1 expression specifically in the germline rescued the spermatid-related phenotypes, suggesting a cell autonomous role for MAFR-1 in nematode male fertility. Based on the high degree of conservation of Maf1 activity across species, our study may inform similar roles for Maf1 and RNA pol III in mammalian male fertility.
Collapse
|
24
|
Yang Y, Zhang H, Wang S, Yang W, Ding J, Zhang Y. Variation in sperm morphology and performance in tree sparrow (Passer montanus) under long-term environmental heavy metal pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110622. [PMID: 32311616 DOI: 10.1016/j.ecoenv.2020.110622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Sperm morphology and performance traits are key determinants of male fertilization success, particularly when females copulate with multiple males. Such sperm traits have been reported to be influenced by environmental pollutants in various animals; however, such studies remain rare in free-living birds exposed to heavy metal pollution. In the present study, we selected tree sparrow (Passer montanus) as the study object to explore the effect of long-term environmental heavy metal pollution on sperm morphology (assessed mainly by using the dimensions of different sperm components and the sperm abnormality rates) and sperm performance (indicated by sperm velocity), and to elucidate potential relationships between variations in sperm morphology and performance. Sperm ATP concentration was also assessed considering sperm morphology and performance could be linked via energy availability. According to our results, tree sparrows from heavy metal polluted area (1) accumulated cadmium at a higher level in their testes; (2) produced longer sperm with lower abnormality rates, in addition to sperm with longer flagella and smaller head/flagellum ratios; (3) their sperm swam faster compared to those from the relatively unpolluted area, while no differences were observed in sperm ATP concentrations. We also found that the levels of lead and cadmium in testes affected the sperm nucleus length, and the level of copper in testes was negatively related to the proportions of abnormal sperm. Furthermore, the present study showed that sperm velocity was negatively correlated with sperm head lengths, head/flagellum ratios and ATP concentrations. Our study results reveal that sperm morphology and performance in tree sparrows show positive variations to maximize male fertility ability under long-term environmental heavy metal pollution, where males increase sperm flagellum lengths to decrease head/flagellum ratios, as opposed to varying sperm energy production, to achieve higher sperm velocity.
Collapse
Affiliation(s)
- Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Huijie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, PR China.
| |
Collapse
|
25
|
Giehr J, Wallner J, Krüger T, Heinze J. Body size and sperm quality in queen- And worker-produced ant males. J Evol Biol 2020; 33:842-849. [PMID: 32162367 DOI: 10.1111/jeb.13616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 01/18/2023]
Abstract
Workers of many species of social Hymenoptera have functional ovaries and are capable of laying haploid, unfertilized eggs, at least in the absence of a queen. Except for honeybees, it remains largely unknown whether worker-produced males have the same quality as queen-produced males and whether workers benefit in direct fitness by producing their sons. Previous studies in the monogynous ant Temnothorax crassispinus revealed that a high proportion of males in natural and laboratory colonies are worker offspring. Here, we compare longevity, body size, sperm length and sperm viability between queen- and worker-produced males. We either split queenright colonies into queenright and queenless halves or removed the queen from a fraction of the queenright colonies and then examined the newly produced males. Male quality traits varied considerably among colonies but differed only slightly between queen- and worker-produced males. Worker-produced males outnumbered queen-produced males and also had a longer lifespan, but under certain rearing conditions sperm from queen-produced males had a higher viability.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jennifer Wallner
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Theresa Krüger
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Yen CA, Ruter DL, Turner CD, Pang S, Curran SP. Loss of flavin adenine dinucleotide (FAD) impairs sperm function and male reproductive advantage in C. elegans. eLife 2020; 9:e52899. [PMID: 32022684 PMCID: PMC7032928 DOI: 10.7554/elife.52899] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Exposure to environmental stress is clinically established to influence male reproductive health, but the impact of normal cellular metabolism on sperm quality is less well-defined. Here we show that impaired mitochondrial proline catabolism, reduces energy-storing flavin adenine dinucleotide (FAD) levels, alters mitochondrial dynamics toward fusion, and leads to age-related loss of sperm quality (size and activity), which diminishes competitive fitness of the animal. Loss of the 1-pyrroline-5-carboxylate dehydrogenase enzyme alh-6 that catalyzes the second step in mitochondrial proline catabolism leads to premature male reproductive senescence. Reducing the expression of the proline catabolism enzyme alh-6 or FAD biosynthesis pathway genes in the germline is sufficient to recapitulate the sperm-related phenotypes observed in alh-6 loss-of-function mutants. These sperm-specific defects are suppressed by feeding diets that restore FAD levels. Our results define a cell autonomous role for mitochondrial proline catabolism and FAD homeostasis on sperm function and specify strategies to pharmacologically reverse these defects.
Collapse
Affiliation(s)
- Chia-An Yen
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Dana L Ruter
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Christian D Turner
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Shanshan Pang
- School of Life Sciences, Chongqing UniversityChongqingChina
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Department of Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesUnited States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
27
|
Nett EM, Sepulveda NB, Petrella LN. Defects in mating behavior and tail morphology are the primary cause of sterility in Caenorhabditis elegans males at high temperature. ACTA ACUST UNITED AC 2019; 222:jeb.208041. [PMID: 31672732 DOI: 10.1242/jeb.208041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditis elegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.
Collapse
Affiliation(s)
- Emily M Nett
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nicholas B Sepulveda
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa N Petrella
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
28
|
Gimond C, Vielle A, Silva-Soares N, Zdraljevic S, McGrath PT, Andersen EC, Braendle C. Natural Variation and Genetic Determinants of Caenorhabditis elegans Sperm Size. Genetics 2019; 213:615-632. [PMID: 31395653 PMCID: PMC6781899 DOI: 10.1534/genetics.119.302462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/04/2019] [Indexed: 01/28/2023] Open
Abstract
The diversity in sperm shape and size represents a powerful paradigm to understand how selection drives the evolutionary diversification of cell morphology. Experimental work on the sperm biology of the male-hermaphrodite nematode Caenorhabditis elegans has elucidated diverse factors important for sperm fertilization success, including the competitive superiority of larger sperm. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying natural variation in sperm size remain unknown. To address these questions, we quantified male sperm size variation of a worldwide panel of 97 genetically distinct C. elegans strains, allowing us to uncover significant genetic variation in male sperm size. Aiming to characterize the molecular genetic basis of C. elegans male sperm size variation using a genome-wide association study, we did not detect any significant quantitative trait loci. We therefore focused on the genetic analysis of pronounced sperm size differences observed between recently diverged laboratory strains (N2 vs. LSJ1/2). Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 underlies the evolution of small sperm in the LSJ lineage. Given the previous discovery that this same nurf-1 variation was central for hermaphrodite laboratory adaptation, the evolution of reduced male sperm size in LSJ strains likely reflects a pleiotropic consequence. Together, our results provide a comprehensive quantification of natural variation in C. elegans sperm size and first insights into the genetic determinants of Caenorhabditis sperm size, pointing at an involvement of the NURF chromatin remodeling complex.
Collapse
Affiliation(s)
- Clotilde Gimond
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
| | - Anne Vielle
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
| | - Nuno Silva-Soares
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice 06100, France
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | | |
Collapse
|
29
|
Cutter AD, Morran LT, Phillips PC. Males, Outcrossing, and Sexual Selection in Caenorhabditis Nematodes. Genetics 2019; 213:27-57. [PMID: 31488593 PMCID: PMC6727802 DOI: 10.1534/genetics.119.300244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Males of Caenorhabditis elegans provide a crucial practical tool in the laboratory, but, as the rarer and more finicky sex, have not enjoyed the same depth of research attention as hermaphrodites. Males, however, have attracted the attention of evolutionary biologists who are exploiting the C. elegans system to test longstanding hypotheses about sexual selection, sexual conflict, transitions in reproductive mode, and genome evolution, as well as to make new discoveries about Caenorhabditis organismal biology. Here, we review the evolutionary concepts and data informed by study of males of C. elegans and other Caenorhabditis We give special attention to the important role of sperm cells as a mediator of inter-male competition and male-female conflict that has led to drastic trait divergence across species, despite exceptional phenotypic conservation in many other morphological features. We discuss the evolutionary forces important in the origins of reproductive mode transitions from males being common (gonochorism: females and males) to rare (androdioecy: hermaphrodites and males) and the factors that modulate male frequency in extant androdioecious populations, including the potential influence of selective interference, host-pathogen coevolution, and mutation accumulation. Further, we summarize the consequences of males being common vs rare for adaptation and for trait divergence, trait degradation, and trait dimorphism between the sexes, as well as for molecular evolution of the genome, at both micro-evolutionary and macro-evolutionary timescales. We conclude that C. elegans male biology remains underexploited and that future studies leveraging its extensive experimental resources are poised to discover novel biology and to inform profound questions about animal function and evolution.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S3B2, Canada
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, Georgia 30322, and
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
30
|
Rosa ME, Kiss J, Barta Z, Kosztolányi A. Size‐dependent investment in tusk length, testis size and sperm length in a biparental geotrupid beetle. J Zool (1987) 2019. [DOI: 10.1111/jzo.12704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- M. E. Rosa
- Department of Ecology University of Veterinary Medicine Budapest Budapest Hungary
- Doctoral School of Biological Sciences Szent István University Gödöllő Hungary
| | - J. Kiss
- MTA‐DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary
| | - Z. Barta
- MTA‐DE Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology University of Debrecen Debrecen Hungary
| | - A. Kosztolányi
- Department of Ecology University of Veterinary Medicine Budapest Budapest Hungary
| |
Collapse
|
31
|
Bezler A, Braukmann F, West SM, Duplan A, Conconi R, Schütz F, Gönczy P, Piano F, Gunsalus K, Miska EA, Keller L. Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment. PLoS Genet 2019; 15:e1007905. [PMID: 30735500 PMCID: PMC6383947 DOI: 10.1371/journal.pgen.1007905] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/21/2019] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.
Collapse
Affiliation(s)
- Alexandra Bezler
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Sean M. West
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Arthur Duplan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Raffaella Conconi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Bioinformatics Core Facility; SIB Swiss Institute of Bioinformatics and Centre for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric A. Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
|
33
|
Abolafia J, Peña-Santiago R. Morphological and Molecular Characterization of Oscheius saproxylicus sp. n. (Rhabditida, Rhabditidae) From Decaying Wood in Spain, With New Insights into the Phylogeny of the Genus and a Revision of its Taxonomy. J Nematol 2019; 51:e2019-53. [PMID: 34179804 PMCID: PMC6909031 DOI: 10.21307/jofnem-2019-053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joaquín Abolafia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén. Campus “Las Lagunillas” s/n. 23071-Jaén, Spain
- * E-mail:
| | - Reyes Peña-Santiago
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén. Campus “Las Lagunillas” s/n. 23071-Jaén, Spain
| |
Collapse
|
34
|
Edme A, Zobač P, Korsten P, Albrecht T, Schmoll T, Krist M. Moderate heritability and low evolvability of sperm morphology in a species with high risk of sperm competition, the collared flycatcher Ficedula albicollis. J Evol Biol 2018; 32:205-217. [PMID: 30449037 DOI: 10.1111/jeb.13404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
Spermatozoa represent the morphologically most diverse type of animal cells and show remarkable variation in size across and also within species. To understand the evolution of this diversity, it is important to reveal to what degree this variation is genetic or environmental in origin and whether this depends on species' life histories. Here we applied quantitative genetic methods to a pedigreed multigenerational data set of the collared flycatcher Ficedula albicollis, a passerine bird with high levels of extra-pair paternity, to partition genetic and environmental sources of phenotypic variation in sperm dimensions for the first time in a natural population. Narrow-sense heritability (h2 ) of total sperm length amounted to 0.44 ± 0.14 SE, whereas the corresponding figure for evolvability (estimated as coefficient of additive genetic variation, CVa ) was 0.02 ± 0.003 SE. We also found an increase in total sperm length within individual males between the arrival and nestling period. This seasonal variation may reflect constraints in the production of fully elongated spermatozoa shortly after arrival at the breeding grounds. There was no evidence of an effect of male age on sperm dimensions. In many previous studies on laboratory populations of several insect, mammal and avian species, heritabilities of sperm morphology were higher, whereas evolvabilities were similar. Explanations for the differences in heritability may include variation in the environment (laboratory vs. wild), intensity of sexual selection via sperm competition (high vs. low) and genetic architecture that involves unusual linkage disequilibrium coupled with overdominance in one of the studied species.
Collapse
Affiliation(s)
- Anaïs Edme
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Petr Zobač
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic
| | - Peter Korsten
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Science, Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | - Tim Schmoll
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | - Miloš Krist
- Faculty of Science, Department of Zoology and Laboratory of Ornithology, Palacky University, Olomouc, Czech Republic.,Museum of Natural History, Olomouc, Czech Republic
| |
Collapse
|
35
|
Ebbing A, Vértesy Á, Betist MC, Spanjaard B, Junker JP, Berezikov E, van Oudenaarden A, Korswagen HC. Spatial Transcriptomics of C. elegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Dev Cell 2018; 47:801-813.e6. [DOI: 10.1016/j.devcel.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022]
|
36
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
37
|
Wilson LD, Obakpolor OA, Jones AM, Richie AL, Mieczkowski BD, Fall GT, Hall RW, Rumbley JN, Kroft TL. The Caenorhabditis elegans spe-49 gene is required for fertilization and encodes a sperm-specific transmembrane protein homologous to SPE-42. Mol Reprod Dev 2018; 85:563-578. [PMID: 29693775 DOI: 10.1002/mrd.22992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Fertilization, the fusion of sperm and oocyte to form a zygote, is the first and arguably the most important cell-cell interaction event in an organism's life. Forward and reverse genetic approaches in the nematode Caenorhabditis elegans have identified many genes that are required for gametogenesis and fertilization and thus are beginning to elucidate the molecular pathways that underlie these processes. We identified an allele of the spe-49 gene in a second filial generation (F2 ) mutagenesis screen for spermatogenesis-defective (spe) mutants. Mutant worms for spe-49 produce sperm that have normal morphology, activate to form ameboid spermatozoa, and can migrate to and maintain their position in the hermaphrodite reproductive tract but fail to fertilize oocytes. This phenotype puts spe-49 in the spe-9 class of late-acting genes that function in sperm at the time of fertilization. We cloned the spe-49 gene through a combination of deficiency mapping, transgenic rescue, and genomic sequencing. spe-49 messenger RNA (mRNA) is enriched in male germ cells, and the complementary DNA (cDNA) encodes a predicted 772-amino-acid six-pass transmembrane protein that is homologous to SPE-42. Indeed, SPE-49 and SPE-42 have identical predicted membrane topology and domain structure, including a large extracellular domain with six conserved cysteine residues, a DC-STAMP domain, and a C-terminal cytoplasmic domain containing a C4-C4 RING finger motif. The presence of two SPE-42 homologs in animal genomes from worms to humans suggests that these proteins are highly conserved components of the molecular apparatus required for the sperm-oocyte recognition, binding, and fusion.
Collapse
Affiliation(s)
- Luke D Wilson
- Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Omoyemwen A Obakpolor
- Department of Biology, College of Sciences, Auburn University at Montgomery, Montgomery, Alabama
| | - Autumn M Jones
- Department of Biology, College of Sciences, Auburn University at Montgomery, Montgomery, Alabama
| | | | | | - Gabriel T Fall
- Reagent Quality Control, Division of Diagnostics, Beckman Coulter, Chaska, Minnesota
| | - Rosine W Hall
- Department of Biology, College of Sciences, Auburn University at Montgomery, Montgomery, Alabama
| | - Jon N Rumbley
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Tim L Kroft
- Department of Biology, College of Sciences, Auburn University at Montgomery, Montgomery, Alabama
| |
Collapse
|
38
|
Lüpold S, Pitnick S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 2018; 155:R229-R243. [DOI: 10.1530/rep-17-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Sperm morphological variation has attracted considerable interest and generated a wealth of predominantly descriptive studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is far from complete. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm.
Collapse
|
39
|
Sakamoto T, Imai H. Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans. J Biol Chem 2017; 292:14804-14813. [PMID: 28724632 DOI: 10.1074/jbc.m117.788901] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Indexed: 11/06/2022] Open
Abstract
Superoxide dismutase (SOD) is a ubiquitous antioxidant enzyme that catalytically converts the superoxide radical to hydrogen peroxide (H2O2). In mammals, high SOD activity is detectable in sperm and seminal plasma, and loss of SOD activity has been correlated with male infertility; however, the underlying mechanisms of sperm infertility remain to be clarified. Here we report that the deletion of two major SOD genes in Caenorhabditis elegans, sod-1 and sod-2, causes sperm activation defects, leading to a significant reduction in brood size. By examining the reactivity to the sperm activation signals Pronase and triethanolamine, we found that sod-1;sod-2 double mutant sperm cells display defects in pseudopod extension. Neither the content nor oxidative modification of major sperm protein, an essential cytoskeletal component for crawling movement, were significantly affected in sod-1;sod-2 mutant sperm. Surprisingly, H2O2, the dismutation product of SOD, could activate sod-1;sod-2 mutant sperm treated with Pronase. Moreover, the H2O2 scavenger ebselen completely inhibited pseudopod extension in wild-type sperm treated with Pronase, and H2O2 could directly induce pseudopod extension in wild-type sperm. Analysis of Pronase-triggered sperm activation in sod-1 and sod-2 single mutants revealed that sod-2 is required for pseudopod extension. These results suggest that SOD-2 plays an important role in the sperm activation of C. elegans by producing H2O2 as an activator of pseudopod extension.
Collapse
Affiliation(s)
- Taro Sakamoto
- From the School of Pharmacy, Kitasato University, 5-9-1 Shinokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirotaka Imai
- From the School of Pharmacy, Kitasato University, 5-9-1 Shinokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
40
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
41
|
Godwin JL, Vasudeva R, Michalczyk Ł, Martin OY, Lumley AJ, Chapman T, Gage MJG. Experimental evolution reveals that sperm competition intensity selects for longer, more costly sperm. Evol Lett 2017; 1:102-113. [PMID: 30283643 PMCID: PMC6089504 DOI: 10.1002/evl3.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
It is the differences between sperm and eggs that fundamentally underpin the differences between the sexes within reproduction. For males, it is theorized that widespread sperm competition leads to selection for investment in sperm numbers, achieved by minimizing sperm size within limited resources for spermatogenesis in the testis. Here, we empirically examine how sperm competition shapes sperm size, after more than 77 generations of experimental selection of replicate lines under either high or low sperm competition intensities in the promiscuous flour beetle Tribolium castaneum. After this experimental evolution, populations had diverged significantly in their sperm competitiveness, with sperm in ejaculates from males evolving under high sperm competition intensities gaining 20% greater paternity than sperm in ejaculates from males that had evolved under low sperm competition intensity. Males did not change their relative investment into sperm production following this experimental evolution, showing no difference in testis sizes between high and low intensity regimes. However, the more competitive males from high sperm competition intensity regimes had evolved significantly longer sperm and, across six independently selected lines, there was a significant association between the degree of divergence in sperm length and average sperm competitiveness. To determine whether such sperm elongation is costly, we used dietary restriction experiments, and revealed that protein-restricted males produced significantly shorter sperm. Our findings therefore demonstrate that sperm competition intensity can exert positive directional selection on sperm size, despite this being a costly reproductive trait.
Collapse
Affiliation(s)
- Joanne L. Godwin
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Ramakrishnan Vasudeva
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | | | | | - Alyson J. Lumley
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Matthew J. G. Gage
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
42
|
Pitnick S, Marrow T, Spicer GS. EVOLUTION OF MULTIPLE KINDS OF FEMALE SPERM-STORAGE ORGANS IN DROSOPHILA. Evolution 2017; 53:1804-1822. [PMID: 28565462 DOI: 10.1111/j.1558-5646.1999.tb04564.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1998] [Accepted: 06/02/1999] [Indexed: 11/27/2022]
Abstract
Females of all species belonging to the family Drosophilidae have two kinds of sperm-storage organs: paired spherical spermathecae and a single elongate tubular seminal receptacle. We examined 113 species belonging to the genus Drosophila and closely allied genera and describe variation in female sperm-storage organ use and morphology. The macroevolutionary pattern of organ dysfunction and morphological divergence suggests that ancestrally both kinds of organs stored sperm. Loss of use of the spermathecae has evolved at least 13 times; evolutionary regain of spermathecal function has rarely if ever occurred. Loss of use of the seminal receptacle has likely occurred only once; in this case, all descendant species possess unusually elaborate spermathecae. Data further indicate that the seminal receptacle is the primary sperm-storage organ in Drosophila. This organ exhibits a pattern of strong correlated evolution with the length of sperm. The evolution of multiple kinds of female sperm-storage organs and the rapidly divergent and correlated evolution of sperm and female reproductive tract morphology are discussed.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Syracuse University, 108 College Place, Syracuse, New York, 13244-1270
| | - Therese Marrow
- Department of Zoology, Arizona State University, Tempe, Arizona, 85287-1501
| | - Greg S Spicer
- Department of Biology, San Francisco State University, San Francisco, California, 94132-1722
| |
Collapse
|
43
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
44
|
SCHREMPF A, MOSER A, DELABIE J, HEINZE J. Sperm traits differ between winged and wingless males of the antCardiocondyla obscurior. Integr Zool 2016; 11:427-432. [DOI: 10.1111/1749-4877.12191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alexandra SCHREMPF
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| | - Astrid MOSER
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| | - Jacques DELABIE
- Myrmecological Laboratory; Cocoa Research Center CEPLAC; Itabuna Brazil
| | - Jürgen HEINZE
- Zoology/Evolutionary Biology; University of Regensburg; Regensburg Germany
| |
Collapse
|
45
|
Li Y, Zhang M, Li S, Lv R, Chen P, Liu R, Liang G, Yin L. The Use of the Nematode Caenorhabditis elegans to Evaluate the Adverse Effects of Epoxiconazole Exposure on Spermatogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E993. [PMID: 27740608 PMCID: PMC5086732 DOI: 10.3390/ijerph13100993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
There is increasing evidence that epoxiconazole exposure can affect reproductive function, but few studies have investigated adverse effects on spermatogenesis. The nematode Caenorhabditis elegans (C. elegans) was used in our study to assess effects of epoxiconazole on spermatogenesis in male nematodes after 48 h of exposure to concentrations of 0.1, 1.0, or 10.0 μg/L. The results demonstrated that epoxiconazole exposure affected spermatogenesis, decreasing the number of total germ cells, mitotic cells, meiotic cells and spermatids, spermatid diameter, and cross-sectional area, and inducing mitotic germ cell proliferation arrest, premature entry into meiosis, and sperm activation inhibition; however, sperm transfer showed no abnormal changes. In addition, the results showed that epoxiconazole activated the transforming growth factor-β (TGFβ) signaling pathway and increased the expression levels of gene daf-1, daf-3, daf-4, daf-5 and daf-7 in nematodes. We therefore propose that epoxiconazole acts by activating the TGFβ signaling pathway, leading to the impairment of spermatogenesis and the consequent decline in male fertility.
Collapse
Affiliation(s)
- Yunhui Li
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Minhui Zhang
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Shaojun Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Rongrong Lv
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
46
|
Droge-Young EM, Belote JM, Perez GS, Pitnick S. Resolving mechanisms of short-term competitive fertilization success in the red flour beetle. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:1-10. [PMID: 27343847 DOI: 10.1016/j.jinsphys.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Postcopulatory sexual selection occurs when sperm from multiple males occupy a female's reproductive tract at the same time and is expected to generate strong selection pressures on traits related to competitive fertilization success. However, knowledge of competitive fertilization success mechanisms and characters targeted by resulting selection is limited, partially due to the difficulty of discriminating among sperm from different males within the female reproductive tract. Here, we resolved mechanisms of competitive fertilization success in the promiscuous flour beetle Tribolium castaneum. Through creation of transgenic lines with fluorescent-tagged sperm heads, we followed the fate of focal male sperm in female reproductive tracts while tracking paternity across numerous rematings. Our results indicate that a given male's sperm persist and fertilize eggs through at least seven rematings. Additionally, the proportion of a male's sperm in the bursa (the site of spermatophore deposition), which is influenced by both timing of female's ejecting excess sperm and male size, significantly predicted paternity share in the 24h following a mating. Contrary to expectation, proportional representation of sperm within the female's specialized sperm-storage organ did not significantly predict paternity, though spermathecal sperm may play a role in fertilization when females do not have access to mates for longer time periods. We address the adaptive significance of the identified reproductive mechanisms in the context of T. castaneum's unique mating system and ecology.
Collapse
Affiliation(s)
| | - John M Belote
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Giselle S Perez
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Scott Pitnick
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
47
|
Vielle A, Callemeyn-Torre N, Gimond C, Poullet N, Gray JC, Cutter AD, Braendle C. Convergent evolution of sperm gigantism and the developmental origins of sperm size variability in Caenorhabditis nematodes. Evolution 2016; 70:2485-2503. [PMID: 27565121 DOI: 10.1111/evo.13043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023]
Abstract
Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.
Collapse
Affiliation(s)
- Anne Vielle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | | | - Clotilde Gimond
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Nausicaa Poullet
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France
| | - Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Christian Braendle
- University Nice Sophia Antipolis, CNRS, Inserm, IBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
48
|
Poullet N, Vielle A, Gimond C, Carvalho S, Teotónio H, Braendle C. Complex heterochrony underlies the evolution of Caenorhabditis elegans
hermaphrodite sex allocation. Evolution 2016; 70:2357-2369. [DOI: 10.1111/evo.13032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nausicaa Poullet
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Anne Vielle
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Clotilde Gimond
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência; Apartado 14 P-2781-901 Oeiras Portugal
| | - Henrique Teotónio
- Institut de Biologie; École Normale Supérieure; CNRS UMR 8197, INSERM U1024 F-75005 Paris France
| | - Christian Braendle
- Université Nice Sophia Antipolis, CNRS, Inserm; IBV; Parc Valrose 06100 Nice France
| |
Collapse
|
49
|
Wojtovich AP, Wei AY, Sherman TA, Foster TH, Nehrke K. Chromophore-Assisted Light Inactivation of Mitochondrial Electron Transport Chain Complex II in Caenorhabditis elegans. Sci Rep 2016; 6:29695. [PMID: 27440050 PMCID: PMC4954975 DOI: 10.1038/srep29695] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/21/2016] [Indexed: 01/20/2023] Open
Abstract
Mitochondria play critical roles in meeting cellular energy demand, in cell death, and in reactive oxygen species (ROS) and stress signaling. Most Caenorhabditis elegans loss-of-function (lf) mutants in nuclear-encoded components of the respiratory chain are non-viable, emphasizing the importance of respiratory function. Chromophore-Assisted Light Inactivation (CALI) using genetically-encoded photosensitizers provides an opportunity to determine how individual respiratory chain components contribute to physiology following acute lf. As proof-of-concept, we expressed the ‘singlet oxygen generator’ miniSOG as a fusion with the SDHC subunit of respiratory complex II, encoded by mev-1 in C. elegans, using Mos1-mediated Single Copy Insertion. The resulting mev-1::miniSOG transgene complemented mev-1 mutant phenotypes in kn1 missense and tm1081(lf) deletion mutants. Complex II activity was inactivated by blue light in mitochondria from strains expressing active miniSOG fusions, but not those from inactive fusions. Moreover, light-inducible phenotypes in vivo demonstrated that complex II activity is important under conditions of high energy demand, and that specific cell types are uniquely susceptible to loss of complex II. In conclusion, miniSOG-mediated CALI is a novel genetic platform for acute inactivation of respiratory chain components. Spatio-temporally controlled ROS generation will expand our understanding of how the respiratory chain and mitochondrial ROS influence whole organism physiology.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology, Rochester, 14642, United States of America
| | - Teresa A Sherman
- University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States of America
| | - Keith Nehrke
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester, 14642, United States of America.,University of Rochester Medical Center, Department of Medicine, Rochester, 14642, United States of America
| |
Collapse
|
50
|
Ellis RE. "The persistence of memory"-Hermaphroditism in nematodes. Mol Reprod Dev 2016; 84:144-157. [PMID: 27291983 DOI: 10.1002/mrd.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Self-fertility has evolved many times in nematodes. This transition often produces an androdioecious species, with XX hermaphrodites and XO males. Although these hermaphrodites resemble females in most respects, early germ cells differentiate as sperm, and late ones as oocytes. The sperm then receive an activation signal, populate the spermathecae, and are stored for later use in self-fertilization. These traits are controlled by complex modifications to the sex-determination and sperm activation pathways, which have arisen independently during the evolution of each hermaphroditic species. This transformation in reproductive strategy then promotes other major changes in the development, evolution, and population structure of these animals. Mol. Reprod. Dev. 84: 144-157, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey
| |
Collapse
|