1
|
Ajjaji D, Ben M'barek K, Boson B, Omrane M, Gassama-Diagne A, Blaud M, Penin F, Diaz E, Ducos B, Cosset FL, Thiam AR. Hepatitis C virus core protein uses triacylglycerols to fold onto the endoplasmic reticulum membrane. Traffic 2021; 23:63-80. [PMID: 34729868 DOI: 10.1111/tra.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) are involved in viral infections, but exactly how remains unclear. Here, we study the hepatitis C virus (HCV) whose core capsid protein binds to LDs but is also involved in the assembly of virions at the endoplasmic reticulum (ER) bilayer. We found that the amphipathic helix-containing domain of core, D2, senses triglycerides (TGs) rather than LDs per se. In the absence of LDs, D2 can bind to the ER membrane but only if TG molecules are present in the bilayer. Accordingly, the pharmacological inhibition of the diacylglycerol O-acyltransferase enzymes, mediating TG synthesis in the ER, inhibits D2 association with the bilayer. We found that TG molecules enable D2 to fold into alpha helices. Sequence analysis reveals that D2 resembles the apoE lipid-binding region. Our data support that TG in LDs promotes the folding of core, which subsequently relocalizes to contiguous ER regions. During this motion, core may carry TG molecules to these regions where HCV lipoviroparticles likely assemble. Consistent with this model, the inhibition of Arf1/COPI, which decreases LD surface accessibility to proteins and ER-LD material exchange, severely impedes the assembly of virions. Altogether, our data uncover a critical function of TG in the folding of core and HCV replication and reveals, more broadly, how TG accumulation in the ER may provoke the binding of soluble amphipathic helix-containing proteins to the ER bilayer.
Collapse
Affiliation(s)
- Dalila Ajjaji
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Kalthoum Ben M'barek
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Mohyeddine Omrane
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, France.,Université Paris-Sud, UMR-S 1193, Villejuif, France
| | - Magali Blaud
- Université de Paris, CiTCoM, CNRS, Paris, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, CNRS, Labex Ecofect, University of Lyon, Lyon, France
| | - Elise Diaz
- High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - Bertrand Ducos
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France.,High Throughput qPCR Core Facility of the ENS, IBENS, PSL Research University, Paris, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, Paris, 75005, France
| |
Collapse
|
2
|
The Role of Protein Disorder in Nuclear Transport and in Its Subversion by Viruses. Cells 2020; 9:cells9122654. [PMID: 33321790 PMCID: PMC7764567 DOI: 10.3390/cells9122654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The transport of host proteins into and out of the nucleus is key to host function. However, nuclear transport is restricted by nuclear pores that perforate the nuclear envelope. Protein intrinsic disorder is an inherent feature of this selective transport barrier and is also a feature of the nuclear transport receptors that facilitate the active nuclear transport of cargo, and the nuclear transport signals on the cargo itself. Furthermore, intrinsic disorder is an inherent feature of viral proteins and viral strategies to disrupt host nucleocytoplasmic transport to benefit their replication. In this review, we highlight the role that intrinsic disorder plays in the nuclear transport of host and viral proteins. We also describe viral subversion mechanisms of the host nuclear transport machinery in which intrinsic disorder is a feature. Finally, we discuss nuclear import and export as therapeutic targets for viral infectious disease.
Collapse
|
3
|
Hepatitis C virus core protein interacts with cellular metastasis suppressor Nm23-H1 and promotes cell migration and invasion. Arch Virol 2019; 164:1271-1285. [PMID: 30859475 DOI: 10.1007/s00705-019-04151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) is the major etiological agent of hepatocellular carcinoma (HCC), which is the fourth most common cause of cancer-related deaths worldwide and second in terms of deaths of males (Bray et al. in CA Cancer J Clin 68(6):394-424, 2018). HCV-induced HCC is a multi-step process that involves alteration of several host regulatory pathways. One of the key features of HCV-associated hepatocellular carcinoma is the metastasis of cancer cells to different organs. Human Nm23-H1 is one of the best-studied metastasis suppressor proteins, and it has been shown to be modulated in many human cancers. Our study shows that the core protein of HCV genotype 2a can co-localize and interact directly with Nm23-H1 within cancer cells, resulting in modulation of the anti-metastasis properties of Nm23-H1. The HCV core protein promotes SUMOylation and degradation of the Nm23-H1 protein, as well as transcriptional downregulation. This study provides evidence that the HCV core protein is a pro-metastatic protein that can interact directly with and modulate the functions of cellular metastasis suppressor Nm23-H1.
Collapse
|
4
|
USP15 Participates in Hepatitis C Virus Propagation through Regulation of Viral RNA Translation and Lipid Droplet Formation. J Virol 2019; 93:JVI.01708-18. [PMID: 30626683 DOI: 10.1128/jvi.01708-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) utilizes cellular factors for efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of deubiquitinating enzymes (DUBs) or overexpression of nonspecific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up RNA interference (RNAi) screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR-122 cells) but not in a nonhepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo We also found that USP15-deficient Huh7 cells showed reductions in the amounts of lipid droplets (LDs), and the addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and the formation of LDs.IMPORTANCE Although ubiquitination has been shown to play important roles in the HCV life cycle, the roles of deubiquitinating enzymes (DUBs), which cleave ubiquitin chains from their substrates, in HCV propagation have not been investigated. Here, we identified USP15 as a DUB regulating HCV propagation. USP15 showed no interaction with viral proteins and no participation in innate immune responses. Deficiency of USP15 in Huh7 cells resulted in suppression of the translation of HCV RNA and reduction in the amounts of lipid droplets, and the addition of fatty acids partially restored the production of infectious HCV particles. These data suggest that USP15 participates in HCV propagation in hepatic cells through the regulation of viral RNA translation and lipid metabolism.
Collapse
|
5
|
Fernández-Ponce C, Durán-Ruiz MC, Narbona-Sánchez I, Muñoz-Miranda JP, Arbulo-Echevarria MM, Serna-Sanz A, Baumann C, Litrán R, Aguado E, Bloch W, García-Cozar F. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells. Front Microbiol 2018; 8:2595. [PMID: 29354102 PMCID: PMC5758585 DOI: 10.3389/fmicb.2017.02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.
Collapse
Affiliation(s)
- Cecilia Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Maria C Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Juan P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Mikel M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | | | | | - Rocío Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Francisco García-Cozar
- Department of Biomedicine, Biotechnology and Public Health, University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
6
|
Fernández-Ponce C, Dominguez-Villar M, Muñoz-Miranda JP, Arbulo-Echevarria MM, Litrán R, Aguado E, García-Cozar F. Immune modulation by the hepatitis C virus core protein. J Viral Hepat 2017; 24:350-356. [PMID: 28092420 DOI: 10.1111/jvh.12675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is currently the most important cause of chronic viral hepatitis in the world and one of the most frequent indications for liver transplantation. HCV uses different strategies to evade the innate and adaptive immune response, and this evasion plays a key role in determining viral persistence. Several HCV viral proteins have been described as immune modulators. In this review, we will focus on the effect of HCV nucleocapsid core protein in the function of immune cells and its correlation with the findings observed in HCV chronically infected patients. Effects on immune cell function related to both extracellular and intracellular HCV core localization will be considered. This review provides an updated perspective on the mechanisms involved in HCV evasion related to one single HCV protein, which could become a key tool in the development of new antiviral strategies able to control and/or eradicate HCV infection.
Collapse
Affiliation(s)
- C Fernández-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain.,Department of Neurology, Human Translational Immunology Program, Yale School of Medicine, 300 George St. 353D, New Haven, 06520, CT
| | - J P Muñoz-Miranda
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - M M Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - R Litrán
- Department of Condensed Matter Physics, University of Cádiz, Puerto Real, Cádiz, Spain
| | - E Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| | - F García-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Institute of Biomedical Research Cádiz (INIBICA), Cadiz, Spain
| |
Collapse
|
7
|
de Souza TLF, de Lima SMB, Braga VLDA, Peabody DS, Ferreira DF, Bianconi ML, Gomes AMDO, Silva JL, de Oliveira AC. Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ 2016; 4:e2670. [PMID: 27867765 PMCID: PMC5111903 DOI: 10.7717/peerj.2670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) core protein, in addition to its structural role to form the nucleocapsid assembly, plays a critical role in HCV pathogenesis by interfering in several cellular processes, including microRNA and mRNA homeostasis. The C-terminal truncated HCV core protein (C124) is intrinsically unstructured in solution and is able to interact with unspecific nucleic acids, in the micromolar range, and to assemble into nucleocapsid-like particles (NLPs) in vitro. The specificity and propensity of C124 to the assembly and its implications on HCV pathogenesis are not well understood. METHODS Spectroscopic techniques, transmission electron microscopy and calorimetry were used to better understand the propensity of C124 to fold or to multimerize into NLPs when subjected to different conditions or in the presence of unspecific nucleic acids of equivalent size to cellular microRNAs. RESULTS The structural analysis indicated that C124 has low propensity to self-folding. On the other hand, for the first time, we show that C124, in the absence of nucleic acids, multimerizes into empty NLPs when subjected to a pH close to its isoelectric point (pH ≈ 12), indicating that assembly is mainly driven by charge neutralization. Isothermal calorimetry data showed that the assembly of NLPs promoted by nucleic acids is enthalpy driven. Additionally, data obtained from fluorescence correlation spectroscopy show that C124, in nanomolar range, was able to interact and to sequester a large number of short unspecific nucleic acids into NLPs. DISCUSSION Together, our data showed that the charge neutralization is the major factor for the nucleocapsid-like particles assembly from C-terminal truncated HCV core protein. This finding suggests that HCV core protein may physically interact with unspecific cellular polyanions, which may correspond to microRNAs and mRNAs in a host cell infected by HCV, triggering their confinement into infectious particles.
Collapse
Affiliation(s)
- Theo Luiz Ferraz de Souza
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa L. de Azevedo Braga
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David S. Peabody
- Department of Molecular Genetics and Microbiology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, United States
| | - Davis Fernandes Ferreira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M. Lucia Bianconi
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Marco de Oliveira Gomes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Kao CC, Yi G, Huang HC. The core of hepatitis C virus pathogenesis. Curr Opin Virol 2016; 17:66-73. [PMID: 26851516 DOI: 10.1016/j.coviro.2016.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/05/2016] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
Capsid proteins form protective shells around viral genomes and mediate viral entry. However, many capsid proteins have additional and important roles for virus infection and in modulating cellular response to infection, with important consequences on pathogenesis. Infection by the Hepatitis C virus (HCV) can lead to liver steatosis, cirrhosis, and hepatocellular carcinoma. Herein, we focus on the role in pathogenesis of Core, the capsid protein of the HCV.
Collapse
Affiliation(s)
- C Cheng Kao
- Dept of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States.
| | - Guanghui Yi
- Dept of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, United States
| | - Hsuan-Cheng Huang
- Inst. of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
9
|
Levin A, Neufeldt CJ, Pang D, Wilson K, Loewen-Dobler D, Joyce MA, Wozniak RW, Tyrrell DLJ. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web. PLoS One 2014; 9:e114629. [PMID: 25485706 PMCID: PMC4259358 DOI: 10.1371/journal.pone.0114629] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS) and nuclear export signals (NES) have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC) proteins (termed nucleoporins or Nups) are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1), importin β3 (IPO5/kap β3), and exportin 1 (XPO1/CRM1) both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.
Collapse
Affiliation(s)
- Aviad Levin
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| | | | - Daniel Pang
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen Wilson
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Darci Loewen-Dobler
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W. Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| | - D. Lorne J Tyrrell
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail: (AL); (RWW); (DLJT)
| |
Collapse
|
10
|
The identification of three sizes of core proteins during the establishment of persistent hepatitis C virus infection in vitro. Virol Sin 2013; 28:129-35. [PMID: 23543610 DOI: 10.1007/s12250-013-3296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022] Open
Abstract
Similar to Hepatitis C virus (HCV) infection in humans, HCVcc infection can also result in persistent and chronic infection. The core protein is a variable protein and exists in several sizes. Some sizes of core proteins have been reported to be related to chronic HCV infection. To study the possible role of the core protein in persistent HCV infection, a persistent HCVcc infection was established, and the expression of the core protein was analysed over the course of the infection. The results show that there are three sizes of core proteins (p24, p21 and p19) expressed during the establishment of persistent HCVcc infection. Of these, the p21 core protein is the mature form of the HCV core protein. The p24 core protein is the phosphorylated form of p21. The p19 core protein appears to be a functional by-product generated during the course of infection. These three core proteins are all localized in the cytoplasm and can be encapsidated into the HCV virion. The appearance of the p19 and p24 core proteins might be related to acute HCVcc infection and chronic infection respectively and may play an important role in the pathology of a HCV infection.
Collapse
|
11
|
Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1. Biochem Biophys Res Commun 2012; 428:494-9. [PMID: 23122814 DOI: 10.1016/j.bbrc.2012.10.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/22/2022]
Abstract
Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection.
Collapse
|
12
|
Caval V, Piver E, Ivanyi-Nagy R, Darlix JL, Pagès JC. Packaging of HCV-RNA into lentiviral vector. Biochem Biophys Res Commun 2011; 414:808-13. [PMID: 22008549 DOI: 10.1016/j.bbrc.2011.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and CoreD1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.
Collapse
Affiliation(s)
- Vincent Caval
- INSERM U966, Université François Rabelais de Tours, Faculté de Médecine, 10 Bd. Tonnellé, 37000 Tours, France
| | | | | | | | | |
Collapse
|
13
|
Cerutti A, Maillard P, Minisini R, Vidalain PO, Roohvand F, Pecheur EI, Pirisi M, Budkowska A. Identification of a functional, CRM-1-dependent nuclear export signal in hepatitis C virus core protein. PLoS One 2011; 6:e25854. [PMID: 22039426 PMCID: PMC3200325 DOI: 10.1371/journal.pone.0025854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/12/2011] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Andrea Cerutti
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| | - Rosalba Minisini
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Pierre-Olivier Vidalain
- CNRS, URA3015, Paris, France
- Unité de Génomique Virale et Vaccination, Département de Virologie, Institut Pasteur, Paris, France
| | - Farzin Roohvand
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Teheran, Iran
| | - Eve-Isabelle Pecheur
- Université Lyon 1, Lyon, France
- CNRS, UMR5086, Lyon, France
- IBCP, Bases Moléculaires et Structurales des Systèmes Infectieux, Lyon, France
| | - Mario Pirisi
- Dipartimento di Medicina Clinica e Sperimentale, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Agata Budkowska
- Unité Hépacivirus et Immunité Innée, Département de Virologie, Institut Pasteur, Paris, France
- CNRS, URA3015, Paris, France
| |
Collapse
|
14
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
15
|
Machida K, McNamara G, Cheng KTH, Huang J, Wang CH, Comai L, Ou JHJ, Lai MMC. Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:6985-98. [PMID: 20974981 PMCID: PMC3101474 DOI: 10.4049/jimmunol.1000618] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma and putatively also non-Hodgkin's B cell lymphoma. In this study, we demonstrated that PBMCs obtained from HCV-infected patients showed frequent chromosomal aberrations and that HCV infection of B cells in vitro induced enhanced chromosomal breaks and sister chromatid exchanges. HCV infection hypersensitized cells to ionizing radiation and bleomycin and inhibited nonhomologous end-joining repair. The viral core and nonstructural protein 3 proteins were shown to be responsible for the inhibition of DNA repair, mediated by NO and reactive oxygen species. Stable expression of core protein induced frequent chromosome translocations in cultured cells and in transgenic mice. HCV core protein binds to the NBS1 protein and inhibits the formation of the Mre11/NBS1/Rad50 complex, thereby affecting ATM activation and inhibiting DNA binding of repair enzymes. Taken together, these data indicate that HCV infection inhibits multiple DNA repair processes to potentiate chromosome instability in both monocytes and hepatocytes. These effects may explain the oncogenicity and immunological perturbation of HCV infection.
Collapse
Affiliation(s)
- Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, Tikoo A, Chauhan A. Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 2010; 155:1-9. [PMID: 20951748 DOI: 10.1016/j.virusres.2010.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
Abstract
Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host-virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.
Collapse
Affiliation(s)
- Shalmali Bivalkar-Mehla
- Dept of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
The wild-type hepatitis C virus core inhibits initiation of antigen-specific T- and B-cell immune responses in BALB/c mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1139-47. [PMID: 20519445 DOI: 10.1128/cvi.00490-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, the effects of wild-type and deletion mutant hepatitis C virus (HCV) core proteins on the induction of immune responses in BALB/c mice were assessed. p2HA-C145-S23, encoding a core protein with the C-terminal 46 amino acids truncated, significantly produced stronger antibody and cellular responses than p2HA-C191-S23. The induction of immune responses by p2HA-C145-S23 was dose dependent. However, increasing the doses or repeated administration did not enhance immune responses by the wild-type core protein. In addition, p2HA-C191-S23 was apparently able to interfere with the priming of specific immune responses by p2HA-C145-S23 when the two were coadministered. These results demonstrated that the wild-type HCV core protein itself could inhibit the priming of immune responses in the course of a DNA vaccination, whereas the truncated HCV core protein could provide potential applications for the development of DNA- and peptide-based HCV vaccines.
Collapse
|
18
|
Wang H, Yan Z, Hou Y, Jin D. Molecular characterization of suppression of hepatitis B virus transcription by hepatitis C virus core protein. ACTA ACUST UNITED AC 2009; 40:648-56. [PMID: 18726290 DOI: 10.1007/bf02882696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1997] [Indexed: 11/26/2022]
Abstract
To further elucidate the molecular mechanisms underlying the suppression of hepatitis B virus (HBV) expression by the hepatitis C virus (HCV) core protein, five molecular clones of HCV cDNA sequence containing the 5' noncoding (5'NC) and the core regions have been isolated from Chinese HBV- and HCV-coinfected patients. Sequence comparison and phylogenetic analysis showed that the HCV sequence cloned from coinfected individuals is indistinguishable from that identified in other patients. Cotransfection assay confirmed that the core protein expressed from one of the cloned sequence is capable of suppressing the expression of hepatitis B surface and e antigens (HBsAg and HBeAg, respectively). Deletion mapping revealed that the C-terminal hydrophobic region of the HCV. core is necessary for the suppression. Results from reporter assays demonstrated that HCV core protein interacts with the HBV C promoter and enhancer II elements and down-regulates the transcription of HBV as well as other cellular and heterologous viral genes in both hepatic and non-hepatic cell lines. Taken together, the findings suggest HCV core protein as a multifunctional negative regulator of transcription critically involved in the molecular interactions between HBV and HCV, and between HCV and the cell.
Collapse
Affiliation(s)
- H Wang
- Institute of Virology, Chinese Academy of Preventive Medicine, Beijing, China
| | | | | | | |
Collapse
|
19
|
Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J Virol 2009; 83:12590-600. [PMID: 19793824 DOI: 10.1128/jvi.02643-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of hepatocellular carcinoma and probably also non-Hodgkin's B-cell lymphoma. The molecular mechanisms of HCV-associated carcinogenesis are unknown. Here we demonstrated that peripheral blood mononuclear cells obtained from hepatitis C patients and hepatocytes infected with HCV in vitro showed frequent chromosomal polyploidy. HCV infection or the expression of viral core protein alone in hepatocyte culture or transgenic mice inhibited mitotic spindle checkpoint function because of reduced Rb transcription and enhanced E2F-1 and Mad2 expression. The silencing of E2F-1 by RNA interference technology restored the function of mitotic checkpoint in core-expressing cells. Taken together, these data suggest that HCV infection may inhibit the mitotic checkpoint to induce polyploidy, which likely contributes to neoplastic transformation.
Collapse
|
20
|
Majeau N, Fromentin R, Savard C, Duval M, Tremblay MJ, Leclerc D. Palmitoylation of hepatitis C virus core protein is important for virion production. J Biol Chem 2009; 284:33915-25. [PMID: 19783655 DOI: 10.1074/jbc.m109.018549] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how palmitoylation, a post-translational protein modification, can modulate the targeting of core to cellular membranes. We show that core is palmitoylated at cysteine 172, which is adjacent to the transmembrane domain at the C-terminal end of core. Site-specific mutagenesis of residue Cys(172) showed that palmitoylation is not involved in the maturation process carried out by the signal peptide peptidase or in the targeting of core to LD. However, palmitoylation was shown to be important for core association with smooth ER membranes and ER closely surrounding LDs. Finally, we demonstrate that mutation of residue Cys(172) in the J6/JFH1 virus genome clearly impairs virion production.
Collapse
Affiliation(s)
- Nathalie Majeau
- Infectious Disease Research Centre, CHUL, Université Laval, 2705 boulevard Laurier, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Characterization of hepatitis C virus core protein multimerization and membrane envelopment: revelation of a cascade of core-membrane interactions. J Virol 2009; 83:9923-39. [PMID: 19605478 DOI: 10.1128/jvi.00066-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular basis underlying hepatitis C virus (HCV) core protein maturation and morphogenesis remains elusive. We characterized the concerted events associated with core protein multimerization and interaction with membranes. Analyses of core proteins expressed from a subgenomic system showed that the signal sequence located between the core and envelope glycoprotein E1 is critical for core association with endoplasmic reticula (ER)/late endosomes and the core's envelopment by membranes, which was judged by the core's acquisition of resistance to proteinase K digestion. Despite exerting an inhibitory effect on the core's association with membranes, (Z-LL)(2)-ketone, a specific inhibitor of signal peptide peptidase (SPP), did not affect core multimeric complex formation, suggesting that oligomeric core complex formation proceeds prior to or upon core attachment to membranes. Protease-resistant core complexes that contained both innate and processed proteins were detected in the presence of (Z-LL)(2)-ketone, implying that core envelopment occurs after intramembrane cleavage. Mutations of the core that prevent signal peptide cleavage or coexpression with an SPP loss-of-function D219A mutant decreased the core's envelopment, demonstrating that SPP-mediated cleavage is required for core envelopment. Analyses of core mutants with a deletion in domain I revealed that this domain contains sequences crucial for core envelopment. The core proteins expressed by infectious JFH1 and Jc1 RNAs in Huh7 cells also assembled into a multimeric complex, associated with ER/late-endosomal membranes, and were enveloped by membranes. Treatment with (Z-LL)(2)-ketone or coexpression with D219A mutant SPP interfered with both core envelopment and infectious HCV production, indicating a critical role of core envelopment in HCV morphogenesis. The results provide mechanistic insights into the sequential and coordinated processes during the association of the HCV core protein with membranes in the early phase of virus maturation and morphogenesis.
Collapse
|
22
|
Alekseeva E, Sominskaya I, Skrastina D, Egorova I, Starodubova E, Kushners E, Mihailova M, Petrakova N, Bruvere R, Kozlovskaya T, Isaguliants M, Pumpens P. Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen. GENETIC VACCINES AND THERAPY 2009; 7:7. [PMID: 19505299 PMCID: PMC2702340 DOI: 10.1186/1479-0556-7-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/08/2009] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatitis C core protein is an attractive target for HCV vaccine aimed to exterminate HCV infected cells. However, although highly immunogenic in natural infection, core appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine prototype based on core, and devise immunization regimens that would lead to potent anti-core immune responses which circumvent the immunogenicity limitations earlier observed. METHODS Plasmids encoding core with no translation initiation signal (pCMVcore); with Kozak sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1-98 and 1-173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-microg doses of pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 microg of either pCMVcore, or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized with 20 microg of core aa 1-98 in prime and boost, or with 100 microg of pCMVcoreKozak in prime and 20 microg of core aa 1-98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine secretion by core/core peptide-stimulated splenocytes were assessed after each immunization. RESULTS Plasmids differed in core-expression capacity: mouse fibroblasts transfected with pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 +/- 0.18, 0.83 +/- 0.5, and 13 +/- 5 ng core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced specific IFN-gamma and IL-2, and weak antibody response. Single immunization with plasmids directing low levels of core expression induced similar levels of cytokines, strong T-cell proliferation (pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced low antibody response, core-specific T-cell proliferation and IFN-gamma secretion that subsided after the 3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the heterologous pCMVcoreKozak prime/protein boost regiment that generated mixed Th1/Th2-cellular response with core-specific antibodies in titer >or= 3 x 10(3). CONCLUSION Thus, administration of highly expressed HCV core gene, as one large dose or repeated injections of smaller doses, may suppress core-specific immune response. Instead, the latter is induced by a heterologous DNA prime/protein boost regiment that circumvents the negative effects of intracellular core expression.
Collapse
Affiliation(s)
- Ekaterina Alekseeva
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, LV-1067, Latvia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ratinier M, Boulant S, Crussard S, McLauchlan J, Lavergne JP. Subcellular localizations of the hepatitis C virus alternate reading frame proteins. Virus Res 2008; 139:106-10. [PMID: 18996421 DOI: 10.1016/j.virusres.2008.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/16/2008] [Accepted: 09/19/2008] [Indexed: 12/28/2022]
Abstract
Alternate reading frame proteins (ARFPs) resulting either from frameshifting, from transcriptional slippage or from internal initiation in the +1 open reading frame (ORF) of hepatitis C virus (HCV) core protein coding sequence have been described in vitro. As an approach to study the roles of these proteins, we investigate the subcellular localization of ARFPs fused with the green fluorescent protein (GFP) either at their N- or C-terminus. Most GFP fusion products have a diffuse localization, as revealed by confocal microscopy. One GFP chimeric protein, arising from internal initiation at codon 26 in the +1 ORF (ARFP(26-161)), is specifically targeted to mitochondria. Mitochondrial localization was confirmed by immunoblot with an anti-ARFP antibody of a mitochondria-enriched cellular fraction. Mitochondrial targeting of ARFP(26-161) mostly involved the N-terminal portion of the protein as revealed by the cellular localization of truncated mutants. Interestingly, ARFP(26-161) from both genotypes 1a and 1b, but not the protein from the genotype 2a JFH1 infectious sequence, exhibit mitochondrial localization. These results are the first concerning the cellular localization and the role of this HCV ARFP; they may serve as a platform for further studies on its mitochondrial effects and their role in the virus life cycle and pathogenesis.
Collapse
Affiliation(s)
- Maxime Ratinier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-Université de Lyon, IFR 128 Biosciences, 7 passage du Vercors, 69367 Lyon cedex 07, France
| | | | | | | | | |
Collapse
|
24
|
Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 2008; 82:8349-61. [PMID: 18562515 DOI: 10.1128/jvi.00306-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.
Collapse
|
25
|
Abstract
In recent years, the effects of hepatitis C virus (HCV) proteins on hepatocarcinogenesis have undergone intense investigations. The potentially oncogenic proteins include at least three HCV proteins: core (C) protein, NS3, and NS5A. Several authors indicated relationships between subcellular localization, concentration, a specific molecular form of the proteins (full length, truncated, phosphorylated), the presence of specific domains (the nuclear localization signal homologous to e.g. Bcl-2) and their effects on the mechanisms linked to oncogenesis. The involvement of all the proteins has been described as being in control of the cell cycle, through interactions with key proteins of the process (p53, p21, cyclins, proliferating cell nuclear antigen), transcription factors, proto-oncogenes, growth factors/cytokines and their receptors, and proteins linked to the apoptotic process. Untilnow, the involvement of the core protein of HCV in liver carcinogenesis is the most recognized. One of the most common proteins affected by HCV proteins is the p53 tumor-suppressor protein. The p21/WAF1 gene is a major target of p53, and the effect of HCV proteins on the gene is frequently considered in parallel. The results of studies on the effects of HCV proteins on the apoptotic process are controversial. This work summarizes the information collected thus far in the field of HCV molecular virology and principal intracellular signaling pathways in which HCV oncogenic proteins are involved.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Medical University, Poznań, Poland
| | | |
Collapse
|
26
|
Galao RP, Scheller N, Alves-Rodrigues I, Breinig T, Meyerhans A, Díez J. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb Cell Fact 2007; 6:32. [PMID: 17927824 PMCID: PMC2148055 DOI: 10.1186/1475-2859-6-32] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.
Collapse
Affiliation(s)
- Rui P Galao
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev 2007; 59:1200-12. [PMID: 17825945 DOI: 10.1016/j.addr.2007.04.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/11/2007] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. Molecular studies of the virus became possible with the successful cloning of its genome in 1989. Although much work remains to be done regarding early and late stages of the HCV life cycle, significant progress has been made with respect to the molecular biology of HCV, especially the viral protein processing and the genome replication. This review summarizes our current understanding of genomic organization of HCV, features of the viral protein characteristics, and the viral life cycle.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
28
|
Feng X, Zhang H, Liu H, Song X, Wang G, Chen K, Ling S. Cancerogenic effect of different fragments of the hepatitis C virus core protein. Eur J Cancer Prev 2007; 16:304-11. [PMID: 17554203 DOI: 10.1097/01.cej.0000236252.16855.82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis C virus core protein plays an extremely important role in the hepatocarcinogenesis of hepatitis C virus. Little, however, is known about the oncogenic potency of fragments. Thus, the purpose of the present study is to investigate the cancerogenic effects of the different core protein fragments. Two series of recombinant plasmids containing hepatitis C virus core gene fragments encoding the different-length core protein were constructed using plasmid enhanced green fluorescent protein (pEGFP)-C1 and pcDNA3.1(+), respectively. Human hepatocyte L02 cells transiently transfected with pEGFP-C1-based plasmids were subjected to confocal laser scanning microscopy analysis to determine the localization of the different core protein fragments. The stably transfected L02 cells with the pcDNA3.1(+)-based core protein plasmids were used to investigate the ultrastructural effects of the core protein and the tumorigenicity of L02 cells expressing core protein fragments in athymic nude mice. The full-length core protein and Core130-191 were completely localized in the cytoplasm, while Core1-59 existed exclusively in the nucleus. On the other hand, Core50-140 and Core1-140 were observed in both the nucleus and the cytoplasm. Ultrastructural changes of L02 cells expressing the full-length core protein were comprehensive and included, for example, irregular nuclear, increased nuclear/cytoplasmic ratio and mitochondria swelling. The slight changes were observed in the cells expressing Core50-140 and Core130-191, whereas the ultrastructure of the cells expressing Core1-59 remained normal. All the L02 cells stably expressing different fragments of the core protein, with the exception of the C-terminal truncated fragment Core1-59, could induce the occurrence of tumor in the nude mice. The N-terminal fragment of the core protein, Core1-59, was not oncogenic, while the intermediate and posterior segments of the hepatitis C virus core protein had the cancerogenic potency. In view of the existence of many important immunogenic epitopes in it, the core protein anterior segment might be a safer candidate for the development of hepatitis C virus vaccine.
Collapse
Affiliation(s)
- Xiaoyan Feng
- Department of Vaccine Engineering, Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Pawlotsky JM, Chevaliez S, McHutchison JG. The hepatitis C virus life cycle as a target for new antiviral therapies. Gastroenterology 2007; 132:1979-98. [PMID: 17484890 DOI: 10.1053/j.gastro.2007.03.116] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 12/11/2022]
Abstract
The burden of disease consequent to hepatitis C virus (HCV) infection has been well described and is expected to increase dramatically over the next decade. Current approved antiviral therapies are effective in eradicating the virus in approximately 50% of infected patients. However, pegylated interferon and ribavirin-based therapy is costly, prolonged, associated with significant adverse effects, and not deemed suitable for many HCV-infected patients. As such, there is a clear and pressing need for the development of additional agents that act through alternate or different mechanisms, in the hope that such regimens could lead to enhanced response rates more broadly applicable to patients with hepatitis C infection. Recent basic science enhancements in HCV cell culture systems and replication assays have led to a broadening of our understanding of many of the mechanisms of HCV replication and, therefore, potential novel antiviral targets. In this article, we have attempted to highlight important new information as it relates to our understanding of the HCV life cycle. These steps broadly encompass viral attachment, entry, and fusion; viral RNA translation; posttranslational processing; HCV replication; and viral assembly and release. In each of these areas, we present up-to-date knowledge of the relevant aspects of that component of the viral life cycle and then describe the preclinical and clinical development targets and pathways being explored in the translational and clinical settings.
Collapse
Affiliation(s)
- Jean-Michel Pawlotsky
- French National Reference Center for Viral Hepatitis B, C, and delta, Department of Virology, Hôpital Henri Mondor, Université Paris 12, Créteil, France.
| | | | | |
Collapse
|
30
|
Yan XB, Battaglia S, Boucreux D, Chen Z, Brechot C, Pavio N. Mapping of the interacting domains of hepatitis C virus core protein and the double-stranded RNA-activated protein kinase PKR. Virus Res 2007; 125:79-87. [PMID: 17267064 DOI: 10.1016/j.virusres.2006.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) core protein has been shown to exhibit several biological properties which suggest an important role in liver pathogenesis and carcinogenesis. During a previous study, we showed that core mutants, isolated from tumour, could directly interact with PKR and maintain it in an activated form. In the present report, we have further investigated this interaction and mapped the core and PKR domains involved. Using glutathion S-transferase fusion protein harbouring the different domains of core or PKR, we determined that the N-terminal 1-58 amino acid (aa) of core protein and the N-terminal 1-180 aa of PKR are responsible for this direct interaction. Using this system we also confirmed that the core-PKR interaction induced PKR autophosphorylation. Furthermore, we found that core protein co-localized and co-immunoprecipitated with PKR in cells expressing a full-length HCV replicon, thus confirming that this interaction occurs when all HCV proteins are expressed. Considering that the activation of PKR has been observed in some cancer cell lines and tissues, it suggests that, depending on the cellular context, PKR may stimulate or inhibit cell proliferation. The precise mapping of core-PKR interaction provides new data to study the molecular mechanism underlying HCV pathogenesis.
Collapse
|
31
|
Expression profiling of liver cell lines expressing entire or parts of hepatitis C virus open reading frame. Hepatology 2007. [DOI: 10.1002/hep.1840360620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
32
|
Kim M, Ha Y, Park HJ. Structural requirements for assembly and homotypic interactions of the hepatitis C virus core protein. Virus Res 2006; 122:137-43. [PMID: 16949699 DOI: 10.1016/j.virusres.2006.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 07/11/2006] [Accepted: 07/12/2006] [Indexed: 10/24/2022]
Abstract
The hepatitis C virus (HCV) core protein is involved in the assembly of nucleocapsid particles, as well as regulation of cellular and viral gene expression. To investigate the biological properties of the viral core protein and viral RNA assembly, two recombinant core proteins, the mature core protein (named C179) and a C-terminal truncated protein (named C124), were expressed and purified. To confirm their ability to generate viral particles, the production of nucleocapsid-like particles was monitored using transmission electron microscopy (EM). The EM analysis revealed that exposure of these proteins to the 5' untranslated region (5' UTR) of the viral RNA resulted in generation of spherical particles of 30-140nm in diameter. Interestingly, a cross-linking analysis revealed that C124 required an RNA component for homotypic interactions. In contrast, C179 successfully assembled in the absence of nucleic acids. Additionally, RNA-mediated conversion of the C124 structure into a more stable state was maintained even after RNase treatment. Therefore, our results indicate that the basic N-terminal domain of the viral core protein utilizes RNA components to induce conformational changes or efficient homotypic interactions, while the C-terminal domain may contain key peptide sequences for initiating spontaneous multimerization at the early stages of viral assembly.
Collapse
Affiliation(s)
- Meehyein Kim
- Immunology and Virology Group, Mogam Biotechnology Research Institute, 341, Pojung-ri, Guseong-eup, Yongin-city, Kyonggi-do 449-913, South Korea.
| | | | | |
Collapse
|
33
|
Abstract
Chronic infection with the hepatitis C virus (HCV) is a major risk factor for the development of hepatocellular carcinoma (HCC) worldwide. The pathogenesis of HCC in HCV infection has extensively been analysed. Hepatitis C virus-induced chronic inflammation and the effects of cytokines in the development of fibrosis and liver cell proliferation are considered as one of the major pathogenic mechanisms. Increasing experimental evidence suggests that HCV contributes to HCC by directly modulating pathways that promote the malignant transformation of hepatocytes. Hepatitis C virus is an RNA virus that does not integrate into the host genome but HCV proteins interact with many host-cell factors well beyond their roles in the viral life cycle and are involved in a wide range of activities, including cell signaling, transcription, cell proliferation, apoptosis, membrane rearrangements, vesicular trafficking and translational regulation. At least four of the HCV gene products, namely HCV core, NS3, NS4B and NS5A, have been shown to exhibit transformation potential in tissue culture and several potentially oncogenic pathways have been shown to be altered by the expression of HCV proteins. Both HCV core and NS5A induce the accumulation of wild-type beta-catenin and the Wnt-beta-catenin pathway emerges as a common target for HCV (and HBV) in human HCCs, also independently from axin/beta-catenin gene mutations. Induction of both endoplasmic reticulum stress and oxidative stress by HCV proteins might also contribute to HCV transformation. Most of the putative transforming functions of the HCV proteins have been defined in artificial cellular systems, which may not be applicable to HCV infection in vivo, and still need to be established in relevant infection and disease models.
Collapse
Affiliation(s)
- M Levrero
- Department of Internal Medicine, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
34
|
Andersson HA, Singh RAK, Barry MA. Activation of Refractory T Cell Responses against Hepatitis C Virus Core Protein by Ablation of Interfering Hydrophobic Domains. Mol Ther 2006; 13:338-46. [PMID: 16242998 DOI: 10.1016/j.ymthe.2005.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/07/2005] [Accepted: 09/07/2005] [Indexed: 11/25/2022] Open
Abstract
Hepatitis C virus (HCV) is the major pathogen of chronic hepatitis and liver disease, but currently there are no prophylactic HCV vaccines available. The HCV core protein-encoding sequence is among the most conserved genes in the HCV genome, making it a prime candidate for a component of a vaccine. The core protein localizes to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that is cotranslationally inserted into the ER membrane. Here we show that removal of the C-terminal hydrophobic region confers nuclear localization and enhances proteasomal degradation of the core protein in mammalian cells. This efficient protein proteolysis induces enhanced core-specific CD8(+) T cell responses in BALB/c mice immunized with plasmids expressing C-terminal deletions of the HCV core protein. These results suggest that more potent HCV vaccines can be achieved by targeting the core protein for proteasomal degradation by deletion of its C-terminal hydrophobic domain.
Collapse
Affiliation(s)
- Helen A Andersson
- Center for Cell and Gene Therapy, Baylor College of Medicine/Texas Children's Hospital/The Methodist Hospital, Baylor College of Medicine, Houston, 77030, USA
| | | | | |
Collapse
|
35
|
Irshad M, Dhar I. Hepatitis C virus core protein: an update on its molecular biology, cellular functions and clinical implications. Med Princ Pract 2006; 15:405-16. [PMID: 17047346 DOI: 10.1159/000095485] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 03/18/2006] [Indexed: 12/20/2022] Open
Abstract
The present review article is an update on various features of hepatitis C virus (HCV) core protein including its molecular biology, role in HCV replication, involvement in HCV pathogenesis, etiological role in hepatocellular carcinogenesis, significance in diagnosis and vaccination against HCV infection. Core protein is a structural protein of HCV virus and has only recently been characterized. It was found to play a major role in HCV-induced viral hepatitis. Although published information shows a lot about the clinical significance of HCV core protein, several studies are still needed to demonstrate its exact significance in viral biology and underlying HCV pathogenesis.
Collapse
Affiliation(s)
- M Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
36
|
Mori Y, Okabayashi T, Yamashita T, Zhao Z, Wakita T, Yasui K, Hasebe F, Tadano M, Konishi E, Moriishi K, Matsuura Y. Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. J Virol 2005; 79:3448-58. [PMID: 15731239 PMCID: PMC1075736 DOI: 10.1128/jvi.79.6.3448-3458.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis virus (JEV) core protein was detected in both the nucleoli and cytoplasm of mammalian and insect cell lines infected with JEV or transfected with the expression plasmid of the core protein. Mutation analysis revealed that Gly(42) and Pro(43) in the core protein are essential for the nuclear and nucleolar localization. A mutant M4243 virus in which both Gly(42) and Pro(43) were replaced by Ala was recovered by plasmid-based reverse genetics. In C6/36 mosquito cells, the M4243 virus exhibited RNA replication and protein synthesis comparable to wild-type JEV, whereas propagation in Vero cells was impaired. The mutant core protein was detected in the cytoplasm but not in the nucleus of either C6/36 or Vero cell lines infected with the M4243 virus. The impaired propagation of M4243 in mammalian cells was recovered by the expression of wild-type core protein in trans but not by that of the mutant core protein. Although M4243 mutant virus exhibited a high level of neurovirulence comparable to wild-type JEV in spite of the approximately 100-fold-lower viral propagation after intracerebral inoculation to 3-week-old mice of strain Jcl:ICR, no virus was recovered from the brain after intraperitoneal inoculation of the mutant. These results indicate that nuclear localization of JEV core protein plays crucial roles not only in the replication in mammalian cells in vitro but also in the pathogenesis of encephalitis induced by JEV in vivo.
Collapse
Affiliation(s)
- Yoshio Mori
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kluger R, Mühlberger H, Hoffmann O, Berger CE, Engel A, Pavlova BG. Osteoprogenitor cells and osteoblasts are targets for hepatitis C virus. Clin Orthop Relat Res 2005:251-7. [PMID: 15805965 DOI: 10.1097/01.blo.0000150561.86138.c8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The goal of this study was to determine whether human osteoblasts might harbor the hepatitis C virus. We tested for positive-strand and negative-strand (replicative) hepatitis C virus RNA by reverse transcriptase-polymerase chain reaction, by in situ reverse transcriptase-polymerase chain reaction for intracellular localization of the hepatitis C virus, and by amplicon sequencing in in vitro differentiated mature osteoblasts from STRO-1+ osteoprogenitor cells from patients with chronic hepatitis C and from healthy individuals. We only detected the hepatitis C virus genome in STRO-1+ cells and mature osteoblasts from carriers with chronic hepatitis C, and we found hepatitis C virus negative strands expressed sporadically in these patients. Using in situ hepatitis C virus reverse transcriptase-polymerase chain reaction, we determined that the percentage of infected carrier osteoblasts ranged from 8.0-15.3%. These data provide evidence of hepatitis C virus presence and replication in human osteoprogenitors and osteoblasts, which may have important implications for bone allograft processing.
Collapse
Affiliation(s)
- Rainer Kluger
- Department of Orthopaedics, SMZO Donauspital, Langobardenstrasse 122, A-1220 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
38
|
Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, Moriishi K, Iwasaki T, Mizumoto K, Matsuura Y, Miyamura T, Suzuki T. Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol 2005; 79:1271-81. [PMID: 15613354 PMCID: PMC538550 DOI: 10.1128/jvi.79.2.1271-1281.2005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) core protein is a putative nucleocapsid protein with a number of regulatory functions. In tissue culture cells, HCV core protein is mainly located at the endoplasmic reticulum as well as mitochondria and lipid droplets within the cytoplasm. However, it is also detected in the nucleus in some cells. To elucidate the mechanisms by which cellular trafficking of the protein is controlled, we performed subcellular fractionation experiments and used confocal microscopy to examine the distribution of heterologously expressed fusion proteins involving various deletions and point mutations of the HCV core combined with green fluorescent proteins. We demonstrated that a region spanning amino acids 112 to 152 can mediate association of the core protein not only with the ER but also with the mitochondrial outer membrane. This region contains an 18-amino-acid motif which is predicted to form an amphipathic alpha-helix structure. With regard to the nuclear targeting of the core protein, we identified a novel bipartite nuclear localization signal, which requires two out of three basic-residue clusters for efficient nuclear translocation, possibly by occupying binding sites on importin-alpha. Differences in the cellular trafficking of HCV core protein, achieved and maintained by multiple targeting functions as mentioned above, may in part regulate the diverse range of biological roles of the core protein.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan 162-8640
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van Pelt JF, Severi T, Crabbé T, Eetveldt AV, Verslype C, Roskams T, Fevery J. Expression of hepatitis C virus core protein impairs DNA repair in human hepatoma cells. Cancer Lett 2004; 209:197-205. [PMID: 15159022 DOI: 10.1016/j.canlet.2003.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Revised: 11/26/2003] [Accepted: 11/28/2003] [Indexed: 02/07/2023]
Abstract
Several studies have documented the important association between hepatitis C virus (HCV) infection and hepatocellular carcinoma. The mechanisms involved are still unknown and could involve viral proteins. We investigated the effect of HCV-core protein on DNA repair after UV-induced DNA damage. Therefore, we developed and characterized stably transfected HepG2 cell lines that express HCV-core protein as demonstrated by immunohistochemistry. These cells were significantly less capable to repair the DNA damage than control cells. This suppression of DNA repair by HCV-core protein renders the cells more sensitive to acquire mutations that in combination with enhanced in vivo cell turnover in the infected liver might increase the likelihood of malignant transformation of HCV-infected cells by other viral factors or upon exposure to environmental factors (food, drugs, smoking, alcohol, etc.). Interestingly, expression of the full-length HCV core did increase the cell doubling time in one of the cell lines we had developed that could not be attributed to an increase in apoptosis or change in telomerase activity in these cells.
Collapse
Affiliation(s)
- Jos F van Pelt
- Department of Liver and Pancreatic Diseases, University Hospital Gasthuisberg, Herestraat 49, Leuven B 3000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
40
|
Okamoto K, Moriishi K, Miyamura T, Matsuura Y. Intramembrane proteolysis and endoplasmic reticulum retention of hepatitis C virus core protein. J Virol 2004; 78:6370-80. [PMID: 15163730 PMCID: PMC416534 DOI: 10.1128/jvi.78.12.6370-6380.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatitis C virus (HCV) core protein is suggested to localize to the endoplasmic reticulum (ER) through a C-terminal hydrophobic region that acts as a membrane anchor for core protein and as a signal sequence for E1 protein. The signal sequence of core protein is further processed by signal peptide peptidase (SPP). We examined the regions of core protein responsible for ER retention and processing by SPP. Analysis of the intracellular localization of deletion mutants of HCV core protein revealed that not only the C-terminal signal-anchor sequence but also an upstream hydrophobic region from amino acid 128 to 151 is required for ER retention of core protein. Precise mutation analyses indicated that replacement of Leu(139), Val(140), and Leu(144) of core protein by Ala inhibited processing by SPP, but cleavage at the core-E1 junction by signal peptidase was maintained. Additionally, the processed E1 protein was translocated into the ER and glycosylated with high-mannose oligosaccharides. Core protein derived from the mutants was translocated into the nucleus in spite of the presence of the unprocessed C-terminal signal-anchor sequence. Although the direct association of core protein with a wild-type SPP was not observed, expression of a loss-of-function SPP mutant inhibited cleavage of the signal sequence by SPP and coimmunoprecipitation with unprocessed core protein. These results indicate that Leu(139), Val(140), and Leu(144) in core protein play crucial roles in the ER retention and SPP cleavage of HCV core protein.
Collapse
Affiliation(s)
- Kiyoko Okamoto
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
41
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:940-943. [DOI: 10.11569/wcjd.v12.i4.940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
42
|
Realdon S, Gerotto M, Dal Pero F, Marin O, Granato A, Basso G, Muraca M, Alberti A. Proapoptotic effect of hepatitis C virus CORE protein in transiently transfected cells is enhanced by nuclear localization and is dependent on PKR activation. J Hepatol 2004; 40:77-85. [PMID: 14672617 DOI: 10.1016/j.jhep.2003.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS HCV-CORE protein has been implicated in the regulation of apoptosis of infected cells acting as full-length or C-terminus deleted forms and resulting in both proapoptotic and antiapoptotic effects in different experimental conditions. METHODS We have fused full-length and C-terminus deleted CORE with GFP to assess intracellular localization in transiently transfected cell lines and primary hepatocytes. Apoptosis of cells expressing different levels of chimeric proteins was quantified by cytometry. RESULTS Full-length CORE localized mainly in the cytoplasm, but nuclear staining was also observed, being more evident in primary human hepatocytes. Nuclear staining only was observed in cells expressing truncated CORE. Full-length CORE induced apoptosis in approximately 15-20% of transfected cells with low expression and in approximately 40-50% of those with high expression of viral protein. Interestingly, 40-50% of cells transfected with truncated CORE underwent apoptosis, independently of protein expression levels. CORE-induced apoptosis was significantly reduced in the presence of a protein kinase R (PKR) inhibiting peptide and truncated CORE was able to enhance translocation of PKR into nucleoli where CORE/PKR colocalization was observed. CONCLUSIONS These results suggest that nuclear forms of HCV-CORE are generated in vivo in primary hepatocytes and induce PKR-dependent apoptosis, a mechanism that might have a relevant role during natural infection.
Collapse
|
43
|
Falcón V, Acosta-Rivero N, Chinea G, de la Rosa MC, Menéndez I, Dueñas-Carrera S, Gra B, Rodriguez A, Tsutsumi V, Shibayama M, Luna-Munoz J, Miranda-Sanchez MM, Morales-Grillo J, Kouri J. Nuclear localization of nucleocapsid-like particles and HCV core protein in hepatocytes of a chronically HCV-infected patient. Biochem Biophys Res Commun 2003; 310:54-8. [PMID: 14511647 DOI: 10.1016/j.bbrc.2003.08.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Little is known about the life cycle of hepatitis C virus. Determination of the subcellular localization of HCV proteins may contribute to our understanding of the in vivo functions of the viral proteins. HCV core protein regulates multiple functions in host cells and it has been detected both in the cytoplasm and in the nucleus using different expression systems. In this study, nucleocapsid-like particles were observed in the nucleus of hepatocytes from a chronically HCV-infected patient. They were similar in size and shape to those of HCV core-like particles purified from recombinant Pichia pastoris cells. In addition the HCV core protein was detected not only in the cytoplasm but also in the nucleus and nucleolus of hepatocytes by immunoelectron microscopy. This is the first report showing nuclear localization of HCV core protein and nucleocapsid-like particles in hepatocytes during in vivo HCV infection.
Collapse
Affiliation(s)
- Viviana Falcón
- Biomedicine Division, Center for Genetic Engineering and Biotechnology, PO Box 6162, CP 10600, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, Murata S, Chiba T, Tanaka K, Suzuki R, Suzuki T, Miyamura T, Matsuura Y. Proteasome activator PA28gamma-dependent nuclear retention and degradation of hepatitis C virus core protein. J Virol 2003; 77:10237-49. [PMID: 12970408 PMCID: PMC228494 DOI: 10.1128/jvi.77.19.10237-10249.2003] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) core protein plays an important role in the formation of the viral nucleocapsid and a regulatory protein involved in hepatocarcinogenesis. In this study, we have identified proteasome activator PA28gamma (11S regulator gamma) as an HCV core binding protein by using yeast two-hybrid system. This interaction was demonstrated not only in cell culture but also in the livers of HCV core transgenic mice. These findings are extended to human HCV infection by the observation of this interaction in liver specimens from a patient with chronic HCV infection. Neither the interaction of HCV core protein with other PA28 subtypes nor that of PA28gamma with other Flavivirus core proteins was detected. Deletion of the PA28gamma-binding region from the HCV core protein or knockout of the PA28gamma gene led to the export of the HCV core protein from the nucleus to the cytoplasm. Overexpression of PA28gamma enhanced the proteolysis of the HCV core protein. Thus, the nuclear retention and stability of the HCV core protein is regulated via a PA28gamma-dependent pathway through which HCV pathogenesis may be exerted.
Collapse
Affiliation(s)
- Kohji Moriishi
- Research Center for Emerging Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J Virol 2003; 77:10131-8. [PMID: 12941925 PMCID: PMC224611 DOI: 10.1128/jvi.77.18.10131-10138.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the absence of a hepatitis C virus (HCV) culture system, the use of a Semliki Forest virus replicon expressing genes encoding HCV structural proteins that assemble into HCV-like particles provides an opportunity to study HCV morphogenesis. Using this system, we showed that the HCV core protein constitutes the budding apparatus of the virus and that its targeting to the endoplasmic reticulum by means of the signal sequence of E1 protein is essential for budding. In addition, the aspartic acid at position 111 in the HCV core protein sequence was found to be crucial for virus assembly, demonstrating the usefulness of this system for mapping amino acids critical to HCV morphogenesis.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- Laboratoire de Virologie, Faculté de Médecine et Centre Hospitalier Universitaire, 2 bis Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moorman JP, Prayther D, McVay D, Hahn YS, Hahn CS. The C-terminal region of hepatitis C core protein is required for Fas-ligand independent apoptosis in Jurkat cells by facilitating Fas oligomerization. Virology 2003; 312:320-9. [PMID: 12919737 DOI: 10.1016/s0042-6822(03)00208-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) is remarkable for its ability to establish persistent infection. Studies suggest that HCV core protein modulates immune responses to viral infection and can bind Fas receptor in vitro. To further examine the role of HCV core protein in Fas signaling, full-length (aa 1-192) and truncated (aa 1-152) HCV core proteins were expressed in Jurkat lymphocytes and cells were assayed for apoptotic response, caspase activation, and Fas activation. Jurkat expressing full-length but not truncated core protein exhibited ligand-independent apoptosis. Cytoplasmic targeting of truncated core protein recapitulated its ability to induce apoptosis. Activation of caspases 8 and 3 was necessary and sufficient for full-length core to induce apoptosis. Jurkat cells expressing full-length but not truncated core protein induced Fas receptor aggregation. HCV core activates apoptotic pathways in Jurkat via Fas and requires cytoplasmic localization of core. Infection of host lymphocytes by HCV may alter apoptotic signaling and skew host responses to acute infection.
Collapse
Affiliation(s)
- Jonathan P Moorman
- Department of Internal Medicine, East Tennessee State University, James H. Quillen College of Medicine, Johnson City, TN 37614, USA.
| | | | | | | | | |
Collapse
|
47
|
MESH Headings
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/virology
- Cell Adhesion/genetics
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Chronic Disease
- Genes, cdc
- Genes, p53
- Growth Substances/physiology
- Hepacivirus/pathogenicity
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/virology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/virology
- Humans
- Liver Diseases/complications
- Liver Diseases/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/virology
- Neoplasm Invasiveness/genetics
- Neoplasm Metastasis
- Neovascularization, Pathologic/genetics
- Precancerous Conditions/complications
- Precancerous Conditions/pathology
Collapse
|
48
|
Abstract
Hepatitis C virus (HCV) is an emerging virus of medical importance. A majority of HCV infections become chronic and lead to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, those involved in the immune response of the host. Several HCV proteins also modulate cell signalling through interaction with different effectors involved in cell proliferation and apoptosis, or in the interferon-signalling pathway. In addition, HCV infects immune cells such as B and T cells, and thus affects their normal functions. These various strategies used by HCV to counter the immune response of the host are reviewed here. A better understanding of these mechanisms would help design new therapeutic targets.
Collapse
Affiliation(s)
- Nicole Pavio
- Department of Molecular Microbiology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
49
|
Shimotohno K, Watashi K, Tsuchihara K, Fukuda K, Marusawa H, Hijikata M. Hepatitis C virus and its roles in cell proliferation. J Gastroenterol 2003; 37 Suppl 13:50-4. [PMID: 12109666 DOI: 10.1007/bf02990100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis and is linked to the development of hepatocellular carcinoma (HCC). The role of HCV infection in the development of HCC remains to be clarified. We analyzed the effect of HCV core protein on modulation of cell proliferation. HCV core protein was shown to have at least two functions: activation of the Ras/Raf signaling pathway and anti-apototic function.
Collapse
Affiliation(s)
- Kunitada Shimotohno
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR, Lee YHW. Mechanisms for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem 2003; 278:591-607. [PMID: 12401801 DOI: 10.1074/jbc.m204241200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.
Collapse
Affiliation(s)
- Shiow-Yi Chen
- Institute of Biochemistry and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|