1
|
Zhang Y, Wang C, Yan D, Si L, Chang L, Li T. Molecular characterization and functional analysis of ZAP-like gene in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109981. [PMID: 39461392 DOI: 10.1016/j.fsi.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The zinc finger antiviral protein (ZAP) is a host antiviral factor that could restrict the replication of various RNA and DNA viruses. To date, the antiviral properties of ZAP gene have been demonstrated in multiple mammals and a few of bird species, while no data is available regarding the immune role of ZAP in fish. In this study, one ZAP-like gene (CcZAPL) was identified form common carp and its antiviral role was investigated. Expression analysis showed that CcZAPL was widely expressed in multiple fish tissues, with highest level in the head kidney, and confocal microscopy analysis showed the sublocation of CcZAPL mainly in the nucleus of Epithelioma papulosum cyprini (EPC) cells. After in vivo stimulation by Spring viraemia of carp virus (SVCV), CcZAPL was induced in gene expression, and in EPC cells overexpression of CcZAPL led to significantly decreased virus load of SVCV and diminished cytopathic effect (CPE). Moreover, after SVCV infection in vitro, expressions of cytokines including IFN, ISG15, PKR, Mx and TNF-α were observed to be up-regulated in CcZAPL-overexpressed EPC cells. Our findings indicated that CcZAPL played a positive role in the control of SVCV, which will allow us to gain new insights into the immune role of ZAP in fish antiviral immunity.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Cuixia Wang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Dongchun Yan
- School of Fisheries, Ludong University, Yantai, PR China
| | - Lingjun Si
- School of Fisheries, Ludong University, Yantai, PR China
| | - Linrui Chang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Ting Li
- School of Fisheries, Ludong University, Yantai, PR China.
| |
Collapse
|
2
|
Li Z, Zhong H, Lv S, Huang Y, Pei S, Wei Y, Wu H, Xiao J, Feng H. Selective autophagy receptor p62/SQSTM1 inhibits TBK1-IRF7 innate immune pathway in triploid hybrid fish. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109805. [PMID: 39102972 DOI: 10.1016/j.fsi.2024.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The production of type I interferon is tightly regulated to prevent excessive immune activation. However, the role of selective autophagy receptor SQSTM1 in this regulation in teleost remains unknown. In this study, we cloned the triploid fish SQSTM1 (3nSQSTM1), which comprises 1371 nucleotides, encoding 457 amino acids. qRT-PCR data revealed that the transcript levels of SQSTM1 in triploid fish were increased both in vivo and in vitro following spring viraemia of carp virus (SVCV) infection. Immunofluorescence analysis confirmed that 3nSQSTM1 was mainly distributed in the cytoplasm. Luciferase reporter assay results showed that 3nSQSTM1 significantly blocked the activation of interferon promoters induced by 3nMDA5, 3nMAVS, 3nTBK1, and 3nIRF7. Co-immunoprecipitation assays further confirmed that 3nSQSTM1 could interact with both 3nTBK1 and 3nIRF7. Moreover, upon co-transfection, 3nSQSTM1 significantly inhibited the antiviral activity mediated by TBK1 and IRF7. Mechanistically, 3nSQSTM1 decreased the TBK1 phosphorylation and its interaction with 3nIRF7, thereby suppressing the subsequent antiviral response. Notably, we discovered that 3nSQSTM1 also interacted with SVCV N and P proteins, and these viral proteins may exploit 3nSQSTM1 to further limit the host's antiviral innate immune responses. In conclusion, our study demonstrates that 3nSQSTM1 plays a pivotal role in negatively regulating the interferon signaling pathway by targeting 3nTBK1 and 3nIRF7.
Collapse
Affiliation(s)
- Zhenghao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuting Lv
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yiru Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuaibin Pei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yingbing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Qiu TX, Liu L, Wang H, Hu Y, Chen J. Schisandrin A: A sustainable antiviral and immunomodulatory agent against spring viraemia of carp virus in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109914. [PMID: 39306214 DOI: 10.1016/j.fsi.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Spring viraemia of carp virus (SVCV) is a major threat to the aquaculture industry, causing severe economic losses and significantly impacting fish health. Despite this, no approved antiviral treatments are currently available for use in aquaculture, underscoring the urgent need for effective interventions. This study evaluated the antiviral and immunomodulatory potential of Schisandrin A (SA), a bioactive compound derived from the traditional Chinese medicinal herb Schisandra chinensis, against SVCV. Through a combination of in vitro and in vivo experiments, SA was found to significantly inhibit SVCV replication, lower the viral titer, and improve survival rates in infected juvenile carp. Mechanistically, SA enhanced the host's innate immune response, as demonstrated by the upregulation of key antiviral genes including interferon-alpha1 (ifna1), interferon-gamma (ifnγ), interferon-stimulated gene 15 (isg15), and myxovirus resistance 1 (mx1). Additionally, SA exhibited potent antioxidative properties, preserving mitochondrial integrity and reducing oxidative stress in SVCV-infected cells. These findings showed the dual role of SA in both directly suppressing viral replication and modulating the immune response, offering a multifaceted approach to managing SVCV infection. Given its low toxicity and biodegradability, SA emerges as a promising, sustainable antiviral agent for aquaculture. This study highlights the potential of SA to enhance biosecurity and promote sustainability in the industry, paving the way for the development of eco-friendly antivirals that could improve the management of viral diseases, ensuring healthier fish populations and greater economic stability.
Collapse
Affiliation(s)
- Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
4
|
Ouyang P, Li Q, Liu S, Li Y, Li S, Zhou Y, Jia P, Chen D, Huang X, Geng Y. Histopathology and transcriptome profiling reveal features of immune responses in gills and intestine induced by Spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109726. [PMID: 38944254 DOI: 10.1016/j.fsi.2024.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The immune system of bony fish closely resembles that of mammals, comprising both specific (adaptive) and non-specific (innate) components. Notably, the mucosa-associated lymphoid tissue (MALT) serves as the first line of defense within the non-specific immune system, playing a critical role in protecting these aquatic organisms against invading pathogens. MALT encompasses a network of immune cells strategically distributed throughout the gills and intestines, forming an integral part of the mucosal barrier that interfaces directly with the surrounding aquatic environment. Spring Viremia of Carp Virus(SVCV), a highly pathogenic agent causing substantial harm to common carp populations, has been designated as a Class 2 animal disease by the Ministry of Agriculture and Rural Affairs of China. Utilizing a comprehensive array of research techniques, including Hematoxylin and Eosin (HE)、Alcian Blue Periodic Acid-Schiff (AB-PAS)、transcriptome analysis for global gene expression profiling and Reverse Transcription-Polymerase Chain Reaction (RT-qPCR), this study uncovered several key findings: SVCV is capable of compromising the mucosal architecture in the gill and intestinal tissues of carp, and stimulate the proliferation of mucous cells both in gill and intestinal tissues. Critically, the study revealed that SVCV's invasion elicits a robust response from the carp's mucosal immune system, demonstrating the organism's capacity to resist SVCV invasion despite the challenges posed by the pathogen.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuya Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yankai Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shuhan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yongheng Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Peng Jia
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China.
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Wei PJ, Bao JJ, Gao Z, Tan JY, Cao RF, Su Y, Zheng CH, Deng L. MEFFGRN: Matrix enhancement and feature fusion-based method for reconstructing the gene regulatory network of epithelioma papulosum cyprini cells by spring viremia of carp virus infection. Comput Biol Med 2024; 179:108835. [PMID: 38996550 DOI: 10.1016/j.compbiomed.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Gene regulatory networks (GRNs) are crucial for understanding organismal molecular mechanisms and processes. Construction of GRN in the epithelioma papulosum cyprini (EPC) cells of cyprinid fish by spring viremia of carp virus (SVCV) infection helps understand the immune regulatory mechanisms that enhance the survival capabilities of cyprinid fish. Although many computational methods have been used to infer GRNs, specialized approaches for predicting the GRN of EPC cells following SVCV infection are lacking. In addition, most existing methods focus primarily on gene expression features, neglecting the valuable network structural information in known GRNs. In this study, we propose a novel supervised deep neural network, named MEFFGRN (Matrix Enhancement- and Feature Fusion-based method for Gene Regulatory Network inference), to accurately predict the GRN of EPC cells following SVCV infection. MEFFGRN considers both gene expression data and network structure information of known GRN and introduces a matrix enhancement method to address the sparsity issue of known GRN, extracting richer network structure information. To optimize the benefits of CNN (Convolutional Neural Network) in image processing, gene expression and enhanced GRN data were transformed into histogram images for each gene pair respectively. Subsequently, these histograms were separately fed into CNNs for training to obtain the corresponding gene expression and network structural features. Furthermore, a feature fusion mechanism was introduced to comprehensively integrate the gene expression and network structural features. This integration considers the specificity of each feature and their interactive information, resulting in a more comprehensive and precise feature representation during the fusion process. Experimental results from both real-world and benchmark datasets demonstrate that MEFFGRN achieves competitive performance compared with state-of-the-art computational methods. Furthermore, study findings from SVCV-infected EPC cells suggest that MEFFGRN can predict novel gene regulatory relationships.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Jin-Jin Bao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Zhen Gao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Jing-Yun Tan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rui-Fen Cao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yansen Su
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chun-Hou Zheng
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Li Deng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Zhang Y, Li C, Zhang M, Gao F, Zhao Y, Kong X. Selective autophagy receptor p62 promotes antibacterial and antiviral immunity in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109719. [PMID: 38914181 DOI: 10.1016/j.fsi.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.
Collapse
Affiliation(s)
- Yunli Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| | - Mengxi Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
7
|
Zhang Y, Gao Y, Li C, Zhang YA, Lu Y, Ye J, Liu X. Parabacteroides distasonis regulates the infectivity and pathogenicity of SVCV at different water temperatures. MICROBIOME 2024; 12:128. [PMID: 39020382 PMCID: PMC11253412 DOI: 10.1186/s40168-024-01799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/24/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.
Collapse
Affiliation(s)
- Yujun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yan Gao
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei, China
| | - Chen Li
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, Thompson School of Social Work & Public Health, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xueqin Liu
- National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ouyang P, Li Y, Wei W, Li Q, Liu J, MaYang, Li S, Zhou Y, Chen D, Geng Y, Huang X. Preparation and evaluation of microencapsulated delivery system of recombinant interferon alpha protein from rainbow trout. Int J Biol Macromol 2024; 273:132872. [PMID: 38942671 DOI: 10.1016/j.ijbiomac.2024.132872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/30/2024]
Abstract
Diseases caused by viruses pose a significant risk to the health of aquatic animals, for which there are presently no efficacious remedies. Interferon (IFN) serving as an antiviral agent, is frequently employed in clinical settings. Due to the unique living conditions of aquatic animals, traditional injection of interferon is cumbersome, time-consuming and labor-intensive. This study aimed to prepare IFN microcapsules through emulsion technique by using resistant starch (RS) and carboxymethyl chitosan (CMCS). Optimization was achieved using the Box-Behnken design (BBD) response surface technique, followed by the creation of microcapsules through emulsification. With RS at a concentration of 1.27 %, a water‑oxygen ratio of 3.3:7.4, CaCl2 at 13.67 %, CMCS at 1.04 %, the rate of encapsulation can escalate to 80.92 %. Rainbow trout infected with Infectious hematopoietic necrosis virus (IHNV) and common carp infected with Spring vireemia (SVCV) exhibited a relative survival rate (RPS) of 65 % and 60 % after treated with IFN microcapsules, respectively. Moreover, the microcapsules effectively reduced the serum AST levels and enhanced the expression of IFNα, IRF3, ISG15, MX1, PKR and Viperin in IHNV-infected rainbow trout and SVCV-infected carp. In conclusion, this integrated IFN microcapsule showed potential as an antiviral agent for treatment of viral diseases in aquaculture.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yankai Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenyan Wei
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiaxing Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - MaYang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - Shuhan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongheng Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Zhao L, Wang WZ, Jiang TT, Sun TZ, Liu B, Zhu B. Drug delivery system based on metal-organic framework improved 5-Fluorouracil against spring viremia of carp virus. Antiviral Res 2024; 226:105881. [PMID: 38604448 DOI: 10.1016/j.antiviral.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Spring viremia of carp virus (SVCV), as a high pathogenicity pathogen, has seriously restricts the healthy and sustainable development of cyprinid farming industry. In this study, we selected 5-Fluorouracil (5-Fu) as the drug model based on zeolitic imidazolate framework-8 (ZIF-8) to construct a drug delivery system (5-Fu@ZIF-8), and the anti-SVCV activity was detected in vitro and in vivo. The results showed 5-Fu@ZIF-8 was uniform cubic particle with truncated angle and smooth surface, and the particle size was 90 nm. The anti-SVCV activity in vitro results showed that the highest inhibition rate of 5-Fu was 77.93% at 40 mg/L and the inhibitory concentration at half-maximal activity (IC50) was 20.86 mg/L. For 5-Fu@ZIF-8, the highest inhibition rate was 91.36% at 16 mg/L, and the IC50 value was 5.85 mg/L. In addition, the cell viability was increased by 18.1% after 5-Fu treatment. Similarly, after 5-Fu@ZIF-8 treatment, the cell viability increased by 27.3%. Correspondingly, in vivo experimental results showed the viral loads reduced by 18.1% on the days 7 and the survival rate increased to 19.4% at 80 mg/L after 5-Fu treatment. For 5-Fu@ZIF-8, the viral loads reduced by 41.2% and the survival rate increased to 54.8%. Mechanistically, 5-Fu inhibits viral replication by regulating p53 expression and promoting early apoptosis in infected cells. All results indicated that 5-Fu@ZIF-8 improved the anti-SVCV activity; it may be a potential strategy to construct a drug-loaded system with ZIF-8 as a carrier for the prevention and treatment of aquatic diseases.
Collapse
Affiliation(s)
- Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Wei-Ze Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Tian-Tian Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Li Z, Li J, Li Z, Song Y, Wang Y, Wang C, Yuan L, Xiao W, Wang J. Zebrafish mylipb attenuates antiviral innate immunity through two synergistic mechanisms targeting transcription factor irf3. PLoS Pathog 2024; 20:e1012227. [PMID: 38739631 PMCID: PMC11115282 DOI: 10.1371/journal.ppat.1012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
IFN regulatory factor 3 (IRF3) is the transcription factor crucial for the production of type I IFN in viral defence and inflammatory responses. The activity of IRF3 is strictly modulated by post-translational modifications (PTMs) to effectively protect the host from infection while avoiding excessive immunopathology. Here, we report that zebrafish myosin-regulated light chain interacting protein b (mylipb) inhibits virus-induced type I IFN production via two synergistic mechanisms: induction of autophagic degradation of irf3 and reduction of irf3 phosphorylation. In vivo, mylipb-null zebrafish exhibit reduced lethality and viral mRNA levels compared to controls. At the cellular level, overexpression of mylipb significantly reduces cellular antiviral capacity, and promotes viral proliferation. Mechanistically, mylipb associates with irf3 and targets Lys 352 to increase K6-linked polyubiquitination, dependent on its E3 ubiquitin ligase activity, leading to autophagic degradation of irf3. Meanwhile, mylipb acts as a decoy substrate for the phosphokinase tbk1 to attenuate irf3 phosphorylation and cellular antiviral responses independent of its enzymatic activity. These findings support a critical role for zebrafish mylipb in the limitation of antiviral innate immunity through two synergistic mechanisms targeting irf3.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Le Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Liu X, Zhu C, Jia S, Deng H, Tang J, Sun X, Zeng X, Chen X, Wang Z, Liu W, Liao Q, Zha H, Cai X, Xiao W. Dual modifying of MAVS at lysine 7 by SIRT3-catalyzed deacetylation and SIRT5-catalyzed desuccinylation orchestrates antiviral innate immunity. Proc Natl Acad Sci U S A 2024; 121:e2314201121. [PMID: 38635631 PMCID: PMC11047105 DOI: 10.1073/pnas.2314201121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
To effectively protect the host from viral infection while avoiding excessive immunopathology, the innate immune response must be tightly controlled. However, the precise regulation of antiviral innate immunity and the underlying mechanisms remain unclear. Here, we find that sirtuin3 (SIRT3) interacts with mitochondrial antiviral signaling protein (MAVS) to catalyze MAVS deacetylation at lysine residue 7 (K7), which promotes MAVS aggregation, as well as TANK-binding kinase I and IRF3 phosphorylation, resulting in increased MAVS activation and enhanced type I interferon signaling. Consistent with these findings, loss of Sirt3 in mice and zebrafish renders them more susceptible to viral infection compared to their wild-type (WT) siblings. However, Sirt3 and Sirt5 double-deficient mice exhibit the same viral susceptibility as their WT littermates, suggesting that loss of Sirt5 in Sirt3-deficient mice may counteract the increased viral susceptibility displayed in Sirt3-deficient mice. Thus, we not only demonstrate that SIRT3 positively regulates antiviral immunity in vitro and in vivo, likely via MAVS, but also uncover a previously unrecognized mechanism by which SIRT3 acts as an accelerator and SIRT5 as a brake to orchestrate antiviral innate immunity.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
- University of Chinese Academy of Sciences, Beijing100049, China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan430072, China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jinhua Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Xiaoli Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Xiaoyun Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Qian Liao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Huangyuan Zha
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Xiaolian Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan430072, China
- University of Chinese Academy of Sciences, Beijing100049, China
- The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan430072, China
| |
Collapse
|
12
|
Hernández-Urcera J, Romero A, Cruz P, Vasconcelos V, Figueras A, Novoa B, Rodríguez F. Screening of Microalgae for Bioactivity with Antiviral, Antibacterial, Anti-Inflammatory and Anti-Cancer Assays. BIOLOGY 2024; 13:255. [PMID: 38666867 PMCID: PMC11048355 DOI: 10.3390/biology13040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Marine microalgae are a rich reservoir of natural compounds, including bioactives. Nonetheless, these organisms remain fairly unexplored despite their potential biotechnological applications. Culture collections with diverse taxonomic groups and lifestyles are a good source to unlock this potential and discover new molecules for multiple applications such as the treatment of human pathologies or the production of aquaculture species. In the present work extracts from thirty-three strains (including twenty dinoflagellates, four diatoms and nine strains from seven other algal classes), cultivated under identical conditions, were examined for their antiviral, antibacterial, anti-inflammatory and anti-cancer activities. Among these, antiviral and anti-inflammatory activities were detected in a few strains while the antibacterial tests showed positive results in most assays. In turn, most trials did not show any anti-cancer activity. Significant differences were observed between species within the same class, in particular dinoflagellates, which were better represented in this study. These preliminary findings pave the way for an in-depth characterization of the extracts with highest signals in each test, the identification of the compounds responsible for the biological activities found and a further screening of the CCVIEO culture collection.
Collapse
Affiliation(s)
- Jorge Hernández-Urcera
- Centro Oceanográfico de Vigo (IEO, CSIC), 36390 Vigo, Spain;
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Alejandro Romero
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Pedro Cruz
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), 4450-208 Matosinhos, Portugal; (P.C.); (V.V.)
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), 4450-208 Matosinhos, Portugal; (P.C.); (V.V.)
- Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| | - Francisco Rodríguez
- Instituto de Investigaciones Marinas (IIM, CSIC), 36208 Vigo, Spain; (A.R.); (A.F.)
| |
Collapse
|
13
|
Pei S, Wei Y, Li Z, Zhong H, Dong J, Yi Z, Hou R, Kong W, Xiao J, Xu Z, Feng H. GSTP1 is a negative regulator of MAVS in the antiviral signaling against SVCV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109426. [PMID: 38316349 DOI: 10.1016/j.fsi.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.
Collapse
Affiliation(s)
- Shuaibin Pei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yingbing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhenghao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinyang Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zewen Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ruixin Hou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
14
|
Zheng YY, Zhao L, Wei XF, Sun TZ, Xu FF, Wang GX, Zhu B. Vaccine Molecule Design Based on Phage Display and Computational Modeling against Rhabdovirus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:551-562. [PMID: 38197664 DOI: 10.4049/jimmunol.2300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Rhabdoviruses with rich species lead a variety of high lethality and rapid transmission diseases to plants and animals around the globe. Vaccination is one of the most effective approaches to prevent and control virus disease. However, the key antigenic epitopes of glycoprotein being used for vaccine development are unclear. In this study, fish-derived Abs are employed for a Micropterus salmoides rhabdovirus (MSRV) vaccine design by phage display and bioinformatics analysis. We constructed an anti-MSRV phage Ab library to screen Abs for glycoprotein segment 2 (G2) (G129-266). Four M13-phage-displayed Abs (Ab-5, Ab-7, Ab-8 and Ab-30) exhibited strong specificity to target Ag, and Ab-7 had the highest affinity with MSRV. Ab-7 (300 μg/ml) significantly increased grass carp ovary cell viability to 83.40% and significantly decreased the titer of MSRV. Molecular docking results showed that the key region of Ag-Ab interaction was located in 10ESQEFTTLTSH20 of G2. G2Ser11 and G2Gln12 were replaced with alanine, respectively, and molecular docking results showed that the Ag-Ab was nonbinding (ΔG > 0). Then, the peptide vaccine KLH-G210-20 was immunized to M. salmoides via i.p. injection. ELISA result showed that the serum Ab potency level increased significantly (p < 0.01). More importantly, the challenge test demonstrated that the peptide vaccine elicited robust protection against MSRV invasion, and the relative percentage survival reached 62.07%. Overall, this study proposed an approach for screening key epitope by combining phage display technology and bioinformatics tools to provide a reliable theoretical reference for the prevention and control of viral diseases.
Collapse
Affiliation(s)
- Yu-Ying Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xue-Feng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei-Fan Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Yang H, Xiao T, Deng Y, Ding C, Zhang M, Li J, Lv Z. JunD functions as a transcription factor of IL-10 to regulate bacterial infectious inflammation in grass carp (Ctenopharyngodon idella). Int J Biol Macromol 2024; 258:129045. [PMID: 38159700 DOI: 10.1016/j.ijbiomac.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
IL-10 is a key anti-inflammatory mediator ensuring the protection of a host from excessive inflammation in response to pathogen infections, whose transcription or expression levels are tightly linked to the onset and progression of infectious diseases. An AP-1 family member called CiJunD was shown to be a transcription factor of IL-10 in grass carp (Ctenopharyngodon idella) in the current study. CiJunD protein harbored the conserved Jun and bZIP domains. Mutant experiments demonstrated that CiJunD bound to three specific sites on IL-10 promoter, i.e., 5'-ATTATTCATA-3', 5'-AGATGAGACATCT-3', and 5'-ATTATTCATC-3', mainly relying on the bZIP domain, and initiated IL-10 transcription. Expression data from the grass carp spleen infected by Aeromonas hydrophila and lipopolysaccharide (LPS) challenged spleen leukocytes indicated that the expressions of CiJunD and IL-10 were positively correlated, while the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, IFN-γ, and TNF-α, showed an overall downward trend when CiJunD and IL-10 peaked. The ability of CiJunD to down-regulate the production of pro-inflammatory cytokines and up-regulate the expression of IL-10, both with and without LPS stimulation, was confirmed by overexpression experiments. Meanwhile, the subcellular fractionation assay revealed that the nuclear translocation of CiJunD was significantly enhanced after the LPS challenge. Moreover, in vivo administration of grass carp with Oxamflatin, a potent agonist of JunD activity, could promote IL-10 but suppress the expression of pro-inflammatory cytokines. Intriguingly, tissue inflammation lesions and the survival rates of grass carp infected with A. hydrophila were also significantly improved by Oxamflatin administration. This work sheds light on the regulation mechanism by JunD of IL-10 expression and bacterial infectious inflammation for the first time, and it may present a viable method for preventing infectious diseases in fish by regulating IL-10 expression and inflammatory response.
Collapse
Affiliation(s)
- Hong Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Yadong Deng
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Mengyuan Zhang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Zhao Lv
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
16
|
Yu J, Kong W, Wang X, Cai C, Cheng G, Ding G, Xu Z. Mucosal immune responses of gut IgM in common carp (Cyprinus carpio) following infection with spring viremia of carp virus (SVCV). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109326. [PMID: 38134976 DOI: 10.1016/j.fsi.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Immunoglobulin M (IgM) specifically recognizes various antigens and can activate complement, mediate cytotoxicity, opsonize and agglutinate pathogens to induce phagocytosis, all of which play an important role in immunity. However, the IgM response of common carp (Cyprinus carpio) in the intestinal mucosa after viral infection has not been thoroughly. Therefore, we successfully produced an anti-carp IgM monoclonal antibody and developed a model of viral infection to study the kinetics of immune responses after viral infection. Our results showed that the expression of IL1-β and Igs were dramatically increased, implying that common carp exhibited a significant innate and adaptive immune response to viral infection. Furthermore, we found that the IgM responses varied between the two infection strategies. At 14 days post-infection (DPI), a significant population of IgM+ B cells were observed in the gut, accompanied by a sharp rise in IgM levels. The immune response to secondary infection started at 7 DPI, suggesting that the IgM response is faster in the gut after re-infection. Importantly, we also explored the variability of different gut compartments to viral infection, and result revealed a stronger immune response in the hindgut than in the foregut and midgut. Overall, our findings indicate that IgM plays an important role in the intestinal immune response following primary and secondary viral infection, in which the hindgut plays a major immune function.
Collapse
Affiliation(s)
- Jiaqian Yu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyou Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chang Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - GuangYi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
17
|
Wang M, Li X, Wang C, Zou M, Yang J, Li XD, Guo B. Asymmetric and parallel subgenome selection co-shape common carp domestication. BMC Biol 2024; 22:4. [PMID: 38166816 PMCID: PMC10762839 DOI: 10.1186/s12915-023-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The common carp (Cyprinus carpio) might best represent the domesticated allopolyploid animals. Although subgenome divergence which is well-known to be a key to allopolyploid domestication has been comprehensively characterized in common carps, the link between genetic architecture underlying agronomic traits and subgenome divergence is unknown in the selective breeding of common carps globally. RESULTS We utilized a comprehensive SNP dataset in 13 representative common carp strains worldwide to detect genome-wide genetic variations associated with scale reduction, vibrant skin color, and high growth rate in common carp domestication. We identified numerous novel candidate genes underlie the three agronomically most desirable traits in domesticated common carps, providing potential molecular targets for future genetic improvement in the selective breeding of common carps. We found that independently selective breeding of the same agronomic trait (e.g., fast growing) in common carp domestication could result from completely different genetic variations, indicating the potential advantage of allopolyploid in domestication. We observed that candidate genes associated with scale reduction, vibrant skin color, and/or high growth rate are repeatedly enriched in the immune system, suggesting that domestication of common carps was often accompanied by the disease resistance improvement. CONCLUSIONS In common carp domestication, asymmetric subgenome selection is prevalent, while parallel subgenome selection occurs in selective breeding of common carps. This observation is not due to asymmetric gene retention/loss between subgenomes but might be better explained by reduced pleiotropy through transposable element-mediated expression divergence between ohnologs. Our results demonstrate that domestication benefits from polyploidy not only in plants but also in animals.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinxin Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chongnv Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Institute of Chinese Sturgeon, China Three Gorges Corporation, Yichang, 443100, Hubei, China
| | - Xiang-Dong Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810008, China.
| |
Collapse
|
18
|
Hongli J, Min Z, Longying G, Liegang S, Na W, Mingfeng G, Shengwei X, Jianping W, Shaoqiang W. Separation of spring viraemia of carp virus from large-volume samples using immunomagnetic beads. Arch Virol 2023; 169:8. [PMID: 38085352 DOI: 10.1007/s00705-023-05927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023]
Abstract
A method for separation of spring viraemia of carp virus (SVCV) from large-volume samples using immunomagnetic beads (IMBs) coated with a polyclonal antibody against SVCV was developed. The optimum amount of IMBs was 2 mg in 100 mL. After IMB treatment, the detection limit of SVCV in reverse transcription quantitative PCR (RT-qPCR) was 103 times the 50% tissue culture infectious dose per mL in 100-mL samples. The concentration of viral RNA extracted from SVCV that had been separated using IMBs was 5.18 × 103-fold higher than that of the unseparated SVCV. When fish samples were tested, the concordance rates of the IMBs/RT-qPCR and RT-qPCR were 100% and 67.5%, respectively.
Collapse
Affiliation(s)
- Jing Hongli
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Zhang Min
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Gao Longying
- Da Chan Bay Customs People's Republic of China, Shenzhen, 518102, China
| | - Si Liegang
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Wang Na
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Ge Mingfeng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Xu Shengwei
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Wang Jianping
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China.
| | - Wu Shaoqiang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
19
|
Bessaid M, Kwak JS, Kim KH. Generation of Recombinant Snakehead Rhabdovirus (SHRV) Expressing Artificial MicroRNA Targeting Spring Viremia of Carp Virus (SVCV) P Gene and In Vivo Therapeutic Use Against SVCV Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1076-1084. [PMID: 37861943 DOI: 10.1007/s10126-023-10260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Spring viremia of carp virus (SVCV) is a highly lethal virus in common carp (Cyprinus carpio) and other cyprinid fish species. The aim of the present study was to develop an in vivo therapeutic measure against SVCV using artificial microRNA (AmiRNA) targeting the SVCV P gene transcript. Three candidates of AmiRNAs (AmiR-P1, -P2, and -P3) were selected, and their ability to downregulate SVCV P gene transcript was analyzed by both synthesized AmiRNA mimics and AmiRNA-expressing vector system, in which AmiR-P3 showed the strongest inhibitory activity among the three candidates. To overcome in vivo limitation of miRNA mimics or plasmid-based miRNA expression systems, we rescued recombinant snakehead rhabdoviruses (SHRVs) expressing SVCV P gene-targeting AmiRNA (rSHRV-AmiR-P3) or control AmiRNA (rSHRV-AmiR-C) using reverse genetic technology. The successful expression of AmiR-P3 and AmiR-C in cells infected with the rescued viruses was verified by quantitative PCR. To evaluate the availability of rSHRV-AmiR-P3 for in vivo control of SVCV, zebrafish (Danio rerio) were (i) infected with either rSHRV-AmiR-C or rSHRV-AmiR-P3 followed by SVCV infection or (ii) infected with SVCV followed by either rSHRV-AmiR-C or rSHRV-AmiR-P3 infection. Fish infected with rSHRVs before and after SVCV infection showed significantly higher survival rates than fish infected with SVCV alone. There was no significant difference in survival rates between groups of fish infected with rSHRV-AmiR-C and rSHRV-AmiR-P3 before SVCV infection; however, fish infected with SVCV followed by infection with rSHRV-AmiR-P3 showed significantly higher survival rates than fish infected with rSHRV-AmiR-C. These results suggest that rSHRV-AmiR-P3 has therapeutic potential against SVCV in fish when administered after SVCV infection, and rSHRVs expressing artificial microRNAs targeting SVCV transcripts could be used as a tool to control SVCV infection in fish for a therapeutic purpose.
Collapse
Affiliation(s)
- Mariem Bessaid
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
20
|
Radosavljevic V, Cuenca A, Wood G, Glisic D, Maksimovic-Zoric J, Stone D. Phylogenetic analysis of spring viraemia of carp virus isolated in Serbia. JOURNAL OF FISH DISEASES 2023; 46:1343-1355. [PMID: 37635442 DOI: 10.1111/jfd.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Spring viraemia of carp (SVC) is an infectious disease responsible for severe economic losses for various cyprinid species, particularly common carp (Cyprinus carpio carpio). The causative agent is the Rhabdovirus carpio or SVC virus (SVCV), a member of the Sprivivirus genus, within the Rhabdoviridae family. Phylogenetically, SVCV is divided into four genogroups (SVCV a, SVCV b, SVCV c and SVCV d), which have a reasonable correlation with the geographical distribution of the virus. In the late twentieth century, the disease was widespread in Serbian aquaculture and caused massive deaths in common carp. This study aimed to molecularly characterize the circulating SVCV isolates in Serbia over a 17-year period. The genetic relationships between 21 SVCV isolates from common carp and rainbow trout in Serbia between 1992 and 2009 were determined based on the partial nucleotide sequence of the glycoprotein gene (G gene). The phylogenetic analysis showed that the dominant SVCV isolates in Serbia belong to the SVCV d genogroup, with only one isolate belonging to genogroup SVCV b. The SVCV strains circulating in Serbia exhibited high homogeneity, as several isolates shared 100% similarity within these genogroups. Most Serbian isolates belonged to SVCV d1 and d2 subgroups, with one isolate notably different and included in a new subgroup SVCV d5. Understanding the SVCV genetic variants circulating in Serbia would be helpful in future epizootic investigations.
Collapse
Affiliation(s)
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gareth Wood
- Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Dorset, UK
| | | | | | - David Stone
- Centre for Environment, Fisheries, and Aquaculture Science (CEFAS), Dorset, UK
| |
Collapse
|
21
|
Zhong H, Li Q, Pei S, Wu Y, Li Z, Liu X, Peng Y, Zheng T, Xiao J, Feng H. hnRNPM suppressed IRF7-mediated IFN signaling in the antiviral innate immunity in triploid hybrid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104915. [PMID: 37586670 DOI: 10.1016/j.dci.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Mammalian heterogeneous nuclear ribonucleoproteins M (hnRNPM) is a critical splicing regulatory protein that has been reported to negatively regulate the RLR signaling pathway by impairing the binding of RIG-I and MDA5 to viral RNA. To explore the role of hnRNPM in the antiviral innate immune response in teleost fish, the hnRNPM homologue of triploid fish (3nhnRNPM) has been cloned and identified in this paper. The CDS of 3nhnRNPM gene is composed of 2016 nucleotides and encodes 671 amino acids. 3nhnRNPM migrated around 71 kDa in immunoblotting assay and was mainly detected in the nucleus in nucleo-cytoplasmic separation assay and immunofluorescent staining test. When 3nhnRNPM and 3nIRF7 were co-expressed in EPC cells, 3nhnRNPM significantly reduced the 3nIRF7-induced interferon (IFN) promoter transcription. Correspondingly, the mRNA levels of the SVCV-M, -N, -P, and -G genes were noteworthily enhanced, but the transcription levels of epcIFNφ1, epcMx1, epcPKR, and epcISG15 were dramatically decreased. Additionally, the knockdown of 3nhnRNPM resulted in restricted SVCV replication and enhanced host cell antiviral activity. Furthermore, the association between 3nhnRNPM and 3nIRF7 has been identified by the co-immunoprecipitation assay. In addition, we found that 3nIRF7 was detained in the nucleus when co-expressed with 3nhnRNPM. To sum up, our data supported the conclusion that 3nhnRNPM suppressed 3nIRF7-mediated IFN signaling in the antiviral innate immunity.
Collapse
Affiliation(s)
- Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qian Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuaibin Pei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yanfang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhenghao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaoyu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Tianle Zheng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
22
|
Liu R, Meng F, Li X, Li H, Yang G, Shan S. Characterization of STING from common carp (Cyprinus carpio L.) involved in spring viremia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109164. [PMID: 37839543 DOI: 10.1016/j.fsi.2023.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Stimulator of interferon genes (STING) serve as an endoplasmic reticulum (ER) protein and modulates innate immune responses to viral contagion. Most investigations involving teleost STING antiviral immunity have examined DNA viruses. Therefore, fish STING signaling events against RNA viruses require additional exploration. Here, common carp STING (named CcSTING) was cloned and characterized. The bioinformatics analyses of CcSTING showed evolutionary conservations and were most closely related to other cyprinid STINGs. Immunofluorescence staining discovered that the CcSTING was chiefly placed in the cytoplasm, specifically within the ER. CcSTING was ubiquitously generated in all analyzed organs, with especially strong expression in the gills and head kidney. Spring viremia of carp virus (SVCV) stimulation and poly(I:C) infection induced the generation of CcSTING in immune-associated organs, as well as in peripheral blood leukocytes. Additional investigations revealed that CcSTING overexpression strongly suppressed SVCV replication in EPC cells. Mechanistically, CcSTING enhanced IFN-1 and ISGs expression following SVCV infection. CcSTING also substantially increased both IFN and NF-κB promoter luciferase activity via a dosage-dependent fashion. Lastly, CcSTING significantly up-regulated both TBK1 and p65 phosphorylation. Collectively, these findings demonstrated the critical role and underlying mechanism of fish STING in response to RNA virus.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Fei Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
23
|
Zhou Y, Qiu TX, Wang H, Hu L, Liu L, Chen J. Application of rhein as an immunostimulant controls spring viremia of carp virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109128. [PMID: 37777100 DOI: 10.1016/j.fsi.2023.109128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
In recent years, the exploration of natural compounds possessing both immunostimulatory and antiviral activities has attracted growing attention in aquaculture research. Consequently, the pursuit of identifying natural products exhibiting anti-SVCV potential as immunostimulants holds significant promise, offering a pathway to mitigate the economic ramifications inflicted by SVCV outbreaks in aquaculture settings. Among them, rhein emerges as a particularly compelling contender. Boasting a widespread distribution, well-established extraction methods, and multiple biological activities, it has exhibited the capacity to enhance the antiviral activity of host cells in vitro by blocking the viral internalization process, with a peak inhibition rate of 44.0%. Based on this intervention, rhein inhibited apoptosis and mitochondrial damage triggered by SVCV infection, ultimately producing a significant antiviral effect. Moving beyond the laboratory setting, rhein's efficacy translates effectively into in vivo scenarios. It has demonstrated substantial antiviral potency by increasing the expression of antiviral-related genes, most notably, retinoic acid-inducible gene I (RIG-I), interferon-φ (IFN-φ) and IFN-stimulated gene product 15 (ISG15). In concert with this genetic modulation, rhein efficiently reduces the viral load, precipitating a consequential enhancement in the survival rate of SVCV-infected fish, elevating it to an encouraging 16%. In conclusion, the outcomes of our investigation offer a compelling testament to rhein's potential as a valuable immunomodulator in the battle against SVCV infections in aquaculture, and the remarkable attributes exhibited by rhein underscore its viability for future commercial deployment.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo, 315000, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
24
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin MS, Michel V, Miranda Chueca MÁ, Padalino B, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou SE, Karagianni AE, Broglia A, Papanikolaou A, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) 2016/429): Spring Viraemia of Carp (SVC). EFSA J 2023; 21:e08324. [PMID: 37908451 PMCID: PMC10613943 DOI: 10.2903/j.efsa.2023.8324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Spring Viraemia of Carp (SVC) was assessed according to the criteria of the Animal Health Law (AHL), in particular the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9 and Article 8 for listing animal species related to SVC. The assessment was performed following the ad hoc method for data collection and assessment previously developed by the AHAW panel and already published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment performed here, it is uncertain whether SVC can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (45-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that SVC does not meet the criteria in Section 1 (Category A; 5-33% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 10-66%, 45-90% and 45-90% probability of meeting the criteria, respectively). The animal species to be listed for SVC according to Article 8 criteria are provided.
Collapse
|
25
|
Li MS. Discovery of two novel tilapia lake virus-like virus isolates in the transcriptomic data of guppy fish (Poecilia reticulata). JOURNAL OF FISH DISEASES 2023; 46:1015-1019. [PMID: 37310857 DOI: 10.1111/jfd.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Meng-Syun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
26
|
Zhang C, Lu LF, Li ZC, Han KJ, Wang XL, Chen DD, Xiong F, Li XY, Zhou L, Ge F, Li S. Zebrafish MAP2K7 Simultaneously Enhances Host IRF7 Stability and Degrades Spring Viremia of Carp Virus P Protein via Ubiquitination Pathway. J Virol 2023; 97:e0053223. [PMID: 37367226 PMCID: PMC10373533 DOI: 10.1128/jvi.00532-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.
Collapse
Affiliation(s)
- Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Feng Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xi-Yin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Feng Ge
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
27
|
Qin W, Liu Y, Xiao J, Chen N, Tu J, Wu H, Zhang Y, Feng H. DDX23 of black carp negatively regulates MAVS-mediated antiviral signaling in innate immune activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104727. [PMID: 37164277 DOI: 10.1016/j.dci.2023.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Mammalian DDX23 is involved in multiple biological processes, such as RNA processing and antiviral responses. However, the function of teleost DDX23 still remains unclear. In this paper, we have cloned the DDX23 homologue of black carp (Mylopharyngodon piceus) (bcDDX23) and elucidated its role in the antiviral innate immunity. The coding region of bcDDX23 comprises 2427 nucleotides and encodes 809 amino acids. The transcription of bcDDX23 was promoted by the stimulation of LPS, poly(I:C), and SVCV; and immunoblotting (IB) assay showed that bcDDX23 migrated aground 94.5 kDa. Immunofluorescence (IF) assay revealed that bcDDX23 was mainly distributed in the nucleus, and the amount of cytosolic bcDDX23 was significantly increased after SVCV infection. The reporter assay showed that bcDDX23 inhibited bcMAVS-mediated transcription of the IFN promoter. And the co-immunoprecipitation (co-IP) assays identified the interaction between bcDDX23 and bcMAVS. Furthermore, co-expressed bcDDX23 significantly inhibited bcMAVS-mediated antiviral ability against SVCV in EPC cells, and knockdown of bcDDX23 enhanced the resistance of host cells against SVCV. Overall, our results conclude that bcDDX23 targets bcMAVS and suppresses MAVS-mediated IFN signaling, which sheds light on the regulation of IFN signaling in teleost fish.
Collapse
Affiliation(s)
- Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yankai Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Nianfeng Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiagang Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
28
|
Wang ZX, Liu B, Yang T, Yu D, Zhang C, Zheng L, Xie J, Liu B, Liu M, Peng H, Lai L, Ouyang Q, Ouyang S, Zhang YA. Structure of the Spring Viraemia of Carp Virus Ribonucleoprotein Complex Reveals Its Assembly Mechanism and Application in Antiviral Drug Screening. J Virol 2023; 97:e0182922. [PMID: 36943056 PMCID: PMC10134867 DOI: 10.1128/jvi.01829-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/23/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a highly pathogenic Vesiculovirus infecting the common carp, yet neither a vaccine nor effective therapies are available to treat spring viremia of carp (SVC). Like all negative-sense viruses, SVCV contains an RNA genome that is encapsidated by the nucleoprotein (N) in the form of a ribonucleoprotein (RNP) complex, which serves as the template for viral replication and transcription. Here, the three-dimensional (3D) structure of SVCV RNP was resolved through cryo-electron microscopy (cryo-EM) at a resolution of 3.7 Å. RNP assembly was stabilized by N and C loops; RNA was wrapped in the groove between the N and C lobes with 9 nt nucleotide per protomer. Combined with mutational analysis, our results elucidated the mechanism of RNP formation. The RNA binding groove of SVCV N was used as a target for drug virtual screening, and it was found suramin had a good antiviral effect. This study provided insights into RNP assembly, and anti-SVCV drug screening was performed on the basis of this structure, providing a theoretical basis and efficient drug screening method for the prevention and treatment of SVC. IMPORTANCE Aquaculture accounts for about 70% of global aquatic products, and viral diseases severely harm the development of aquaculture industry. Spring viremia of carp virus (SVCV) is the pathogen causing highly contagious spring viremia of carp (SVC) disease in cyprinids, especially common carp (Cyprinus carpio), yet neither a vaccine nor effective therapies are available to treat this disease. In this study, we have elucidated the mechanism of SVCV ribonucleoprotein complex (RNP) formation by resolving the 3D structure of SVCV RNP and screened antiviral drugs based on the structure. It is found that suramin could competitively bind to the RNA binding groove and has good antiviral effects both in vivo and in vitro. Our study provides a template for rational drug discovery efforts to treat and prevent SVCV infections.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Bing Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tian Yang
- School of Physics, Peking University, Beijing, China
| | - Daqi Yu
- School of Physics, Peking University, Beijing, China
| | - Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liming Zheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jin Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bin Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Mengxi Liu
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hailin Peng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- School of Physics, Peking University, Beijing, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Li C, Zhang W, Shi L, Lu Y, Ye J, Liu X. Prohibitin mediates the cellular invasion of spring viremia of the carp virus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108689. [PMID: 36931480 DOI: 10.1016/j.fsi.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Spring viremia of carp virus (SVCV) is strongly contagious and pathogenic to common carp and cyprinoid species. However, knowledge of how SVCV enters host cells is still inadequate. In this study, mass spectrometry (MS) was incorporated with tandem affinity purification (TAP) to identify host proteins that interact with SVCV glycoprotein, the main attachment protein of SVCV. Specifically, prohibitin (PHB) received the utmost attention from all the candidate proteins, and its interaction with the SVCV-G protein was confirmed by immunoprecipitation and immunofluorescence assays. Treatment with PHB-specific inhibitors or knockdown of the expression of PHB by siRNAs resulted in a marked reduction in binding and entry of SVCV on host cells, while overexpression of PHB increased SVCV attachment and invasion. Furthermore, binding of SVCV to ZF4 and FHM cells was inhibited by pre-incubating the virus with recombinant PHB protein (rPHB) or blocking the cell surface PHB with its polyclonal antibodies. In addition, overexpression of PHB on SVCV-nonpermissive Grouper spleen cells (GSs) conferred susceptibility to SVCV infection. In vivo, treatment of rPHB could significantly inhibit SVCV propagation within zebrafish and benefit the survival rate of SVCV-infected zebrafish. These results demonstrate that PHB plays a crucial role in both the attachment and entry stages of SVCV infection.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Wenyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Lin Shi
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, The University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Song Y, Fan S, Zhang D, Li J, Li Z, Li Z, Xiao W, Wang J. Zebrafish maoc1 Attenuates Spring Viremia of Carp Virus Propagation by Promoting Autophagy-Lysosome-Dependent Degradation of Viral Phosphoprotein. J Virol 2023; 97:e0133822. [PMID: 36744960 PMCID: PMC9972956 DOI: 10.1128/jvi.01338-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is the causative agent of spring viremia of carp (SVC), an important infectious disease that causes high mortality in aquaculture cyprinids. How the host defends against SVCV infection and the underlying mechanisms are still elusive. In this study, we identify that a novel gene named maoc1 is induced by SVCV infection. maoc1-deficient zebrafish are more susceptible to SVCV infection, with higher virus replication and antiviral gene induction. Further assays indicate that maoc1 interacts with the P protein of SVCV to trigger P protein degradation through the autophagy-lysosomal pathway, leading to the restriction of SVCV propagation. These findings reveal a unique zebrafish defense machinery in response to SVCV infection. IMPORTANCE SVCV P protein plays an essential role in the virus replication and viral immune evasion process. Here, we identify maoc1 as a novel SVCV-inducible gene and demonstrate its antiviral capacity through attenuating SVCV replication, by directly binding to P protein and mediating its degradation via the autophagy-lysosomal pathway. Therefore, this study not only reveals an essential role of maoc1 in fighting against SVCV infection but also demonstrates an unusual host defense mechanism in response to invading viruses.
Collapse
Affiliation(s)
- Yanan Song
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, People’s Republic of China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ziyi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Transcriptomes of Zebrafish in Early Stages of Multiple Viral Invasions Reveal the Role of Sterols in Innate Immune Switch-On. Int J Mol Sci 2023; 24:ijms24054427. [PMID: 36901854 PMCID: PMC10003308 DOI: 10.3390/ijms24054427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Although it is widely accepted that in the early stages of virus infection, fish pattern recognition receptors are the first to identify viruses and initiate innate immune responses, this process has never been thoroughly investigated. In this study, we infected larval zebrafish with four different viruses and analyzed whole-fish expression profiles from five groups of fish, including controls, at 10 h after infection. At this early stage of virus infection, 60.28% of the differentially expressed genes displayed the same expression pattern across all viruses, with the majority of immune-related genes downregulated and genes associated with protein synthesis and sterol synthesis upregulated. Furthermore, these protein synthesis- and sterol synthesis-related genes were strongly positively correlated in the expression pattern of the rare key upregulated immune genes, IRF3 and IRF7, which were not positively correlated with any known pattern recognition receptor gene. We hypothesize that viral infection triggered a large amount of protein synthesis that stressed the endoplasmic reticulum and the organism responded to this stress by suppressing the body's immune system while also mediating an increase in steroids. The increase in sterols then participates the activation of IRF3 and IRF7 and triggers the fish's innate immunological response to the virus infection.
Collapse
|
32
|
Kim SY, Kim JY, Kim HJ, Kim MS, Kim KH. Protection of rainbow trout (Oncorhynchus mykiss) against VHSV genotype Ia and IHNV by immunization with VHSV genotype IVa backbone-based single-cycle viruses. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108476. [PMID: 36481290 DOI: 10.1016/j.fsi.2022.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
To evaluate the protective effect of viral hemorrhagic septicemia virus genotype IVa (VHSV IVa) genome-based single-cycle viruses against VHSV genotype Ia (VHSV Ia) and infectious hematopoietic necrosis virus (IHNV) in rainbow trout, three kinds of single-cycle VHSVs were rescued using reverse genetic technology: i) rVHSV-IaGΔTM-IVaG containing the transmembrane and cytoplasmic region-deleted G protein (GΔTM) of VHSV Ia instead of VHSV IVa full G gene ORF and having VHSV IVa G proteins on the envelope; ii) rVHSV-IaGΔTM-IaG containing VHSV Ia GΔTM instead of VHSV IVa full G gene ORF and having VHSV Ia G proteins on the envelope; iii) rVHSV-IaGΔTM-ihnvGΔTM-IVaG containing not only VHSV Ia GΔTM instead of full G gene but also IHNV GΔTM instead of NV gene and having VHSV IVa G proteins on the envelope. Rainbow trout immunized with rVHSV-IaGΔTM-IaG and rVHSV-IaGΔTM-IVaG showed significantly higher serum antibody titers against both VHSV Ia and VHSV IVa, and showed no mortality against VHSV Ia infection, while fish in the control groups showed 100% mortalities. Fish immunized with rVHSV-IaGΔTM-ihnvGΔTM-IVaG showed significantly higher serum antibody titers against VHSV IVa, VHSV Ia, and IHNV compared to fish in the control group. Immunization with rVHSV-IaGΔTM-ihnvGΔTM-IVaG induced significantly higher protection against not only VHSV Ia but also IHNV. These results suggest that the present single-cycle rVHSV-based system can be used as a platform to produce combined vaccines that can protect fish from multiple pathogenic species. However, the mechanism of the high protection against IHNV despite comparatively low antibody titer remains to be investigated.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Jae Young Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Hyoung Jun Kim
- OIE Reference Laboratory for VHS, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
33
|
Qiu T, Wang H, Liu L, Chen J. Long-term exposure to azoxystrobin induces immunodeficiency in fish that are vulnerable to subsequent rhabdovirus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114331. [PMID: 36435002 DOI: 10.1016/j.ecoenv.2022.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Azoxystrobin (AZ) is one of the most widely used strobilurin fungicides in the world, and its residue has seriously endangered aquatic ecological security. Our previous data showed that AZ exposure may reduce the resistance of fish to rhabdovirus infection in aquatic environment. Here, we further reported a potential long-term adverse effect of AZ exposure on the antiviral and immunosuppressive recovery in fish, and observed that mitochondrial dynamic balance was disturbed by AZ in which excessive mitochondrial fission occurred in response to decreased ATP levels. When a recovery operation was performed in AZ-exposed cells and fish, infectivity of our model virus, spring viraemia of carp virus (SVCV), was significantly decreased in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using zebrafish) in a time-dependent manner. Also, the expression of eight innate antiviral immune genes (IFNs, ISG15, MX1, RIG-I, IRF3, Nrf2 and HO-1) showed a similar change to SVCV replication between the longer exposure period and the expression recovery. Additionally, AZ facilitated horizontal transmission of SVCV in a static cohabitation challenge model, predicting the increase of the potential for the viral outbreak. Therefore, our data suggest that long-term effect of AZ on irreparable impairment in fish made AZ residue potentially greater for ecological risks.
Collapse
Affiliation(s)
- Tianxiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
34
|
Ma R, Chen W, Guo Z, Jia Y, Zhu B, Wang E, Wang G. Screening the potential part of the G protein antigen is an achievable strategy to improve the immune effect of DNA vaccine against MSRV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1101-1108. [PMID: 36372202 DOI: 10.1016/j.fsi.2022.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
DNA vaccines, as an effective prophylactic technology to induce both humoral and cellular immune responses, have already been widely studied to prevent and control viral and bacterial infections in aquaculture. To find a more effective and safer way to control Micropterus salmoides rhabdovirus (MSRV) infection in largemouth bass, two different DNA vaccines expressing partial (pcDNA3.1-G2) and full-length (pcDNA3.1-G) of the MSRV G protein were developed and injected intramuscularly with different doses. The immune effect was comprehensively compared and evaluated by detecting immune-related parameters including serum antibody levels, immune-related physiological indexes, immune-related gene expression and relative survival rates in this study. The results showed that compared with the pcDNA3.1-G vaccine, the pcDNA3.1-G2 vaccine induced higher serum antibody levels, a lower nonspecific immune response in serum (ACP, SOD and T-AOC activities), higher immune-related gene expression and a higher relative survival rate. Moreover, the immune effect of pcDNA3.1-G2-vaccinated fish showed gradually higher with the increasing pcDNA3.1-G2 concentration, especially in pcDNA3.1-G2 (10μg/per fish) group, the relative survival rate reached to 82.5%, which was significant higher (p < 0.05) than pcDNA3.1-G (10μg/per fish) group. This study indicated that screening the potential core part of an antigen is an achievable strategy to improve the immunogenicity and immunoprotective effect of DNA vaccine.
Collapse
Affiliation(s)
- Rui Ma
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weichao Chen
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zirao Guo
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yijun Jia
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
35
|
Wu S, Meng K, Wu Z, Sun R, Han G, Qin D, He Y, Qin C, Deng P, Cao J, Ji W, Zhang L, Xu Z. Expression analysis of Igs and mucosal immune responses upon SVCV infection in common carp (Cyprinus carpio L.). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100048. [PMID: 36419606 PMCID: PMC9680059 DOI: 10.1016/j.fsirep.2021.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
The immunoglobulin (Ig) is a crucial component of adaptive immune system in vertebrates including teleost fish. Here complete cDNA sequence of IgD heavy chain gene from common carp (Cyprinus carpio) was cloned and analyzed. The full-length cDNA of IgD heavy chain gene contained an open reading frame (ORF) of 2460 bp encoding 813 amino acids. According to amino acids sequence, multiple alignment and phylogenetic analysis showed that carp Igs are closely related to those of Cyprinidae fish. Transcriptional expression of IgD as well as IgM, IgZ1 and IgZ2 showed similar expression patterns in different organs, this is, high expression level in systemic immune tissues (ie, head kidney, heart and spleen) and low expression in mucosal tissues (ie, gill, skin and gut). Following viral infection with spring viraemia of carp virus (SVCV), obvious pathological changes in skin, gill and gut mucosa and up-regulated expression of antiviral related genes in skin, gill, gut and spleen were observed, indicating that SVCV successfully infected common carp and activated the systemic and mucosal immune system. Interestingly, IgM showed a significant up-regulation only in systemic tissue (spleen), but not in mucosal tissues (gut, gills and skin), while increased expression of IgZ1 and IgZ2 was found in gut. In contrast, the expression of IgD increased significantly in spleen, gills and skin. These strongly suggest that fish Ig isotypes play different roles in mucosal and systemic immunity during viral infection. Common carp (Cyprinus carpio); Igs; Spring viraemia of carp virus (SVCV)
Collapse
|
36
|
Rojas-Peña M, Aceituno P, Salvador ME, Garcia-Ordoñez M, Teles M, Ortega-Villaizan MDM, Perez L, Roher N. How modular protein nanoparticles may expand the ability of subunit anti-viral vaccines: The spring viremia carp virus (SVCV) case. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1051-1062. [PMID: 36371050 DOI: 10.1016/j.fsi.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Spring viremia of carp (SVC) remains as a vaccine orphan disease mostly affecting juvenile specimens. Young fish are especially difficult to vaccinate and oral administration of vaccine combined with food would be the election system to minimise stress and the vaccination costs associated to injection. However, administration of prophylactics with food pellets faces off several drawbacks mainly related with vaccine degradation and weak protection correlates of oral vaccines. Here we present a platform based on recombinant proteins (subunit vaccines) manufactured as highly resistant nanostructured materials, and providing excellent levels of protection against SVC virus in a preliminary i.p injection challenge. The G3 domain of SVCV glycoprotein G was overexpressed in E. coli together with IFNγ and the modular protein was purified from bacterial aggregates (inclusion bodies) as highly organised nanostructured biomaterial (nanopellets, NP). These SVCV-IFNNP were taken up by zebrafish cells leading to the enhanced expression of different antiviral and IFN markers (e.g vig1, mx, lmp2 or ifngr1 among others) in zebrafish liver cells (ZFL). To monitor if SVCVNP and SVCV-IFNNP can be taken up by intestinal epithelia and can induce antiviral response we performed experiments with SVCVNP and SVCV-IFNNP in 3 days post fertilization (dpf) zebrafish larvae. Both, SVCVNP and SVCV-IFNNP were taken up and accumulated in the intestine without signs of toxicity. The antiviral response in larvae showed a different induction pattern: SVCV-IFNNP did not induce an antiviral response while SVCVNP showed a good antiviral induction. Interestingly ZF4, an embryonic derived cell line, showed an antiviral response like ZFL cells, although the lmp2 and ifngr1 (markers of the IFNγ response) were not overexpressed. Experiments with adult zebrafish indicated an excellent level of protection against a SVCV model infection where SVCV-IFNNP vaccinated fish reached 20% cumulative mortality while control fish reached over 80% cumulative mortality.
Collapse
Affiliation(s)
- Mauricio Rojas-Peña
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Patricia Aceituno
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria E Salvador
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Marlid Garcia-Ordoñez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Mariana Teles
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain.
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; Department of Cell Biology, Animal Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
37
|
Zhou Y, Qiu TX, Hu Y, Liu L, Chen J. Antiviral effects of natural small molecules on aquatic rhabdovirus by interfering with early viral replication. Zool Res 2022; 43:966-976. [PMID: 36257828 PMCID: PMC9700502 DOI: 10.24272/j.issn.2095-8137.2022.234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 10/02/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is globally widespread and poses a serious threat to aquatic ecology and aquaculture due to its broad host range. To develop effective agents to control SVCV infection, we selected 16 naturally active small molecules to assess their anti-SVCV activity. Notably, dihydroartemisinin (DHA) (100 µmol/L) and (S, S)-(+)-tetrandrine (TET) (16 µmol/L) exhibited high antiviral effects in epithelioma papulosum cyprinid (EPC) cells, with inhibitory rates of 70.11% and 73.54%, respectively. The possible antiviral mechanisms were determined as follows: 1. Pre-incubation with DHA and TET decreased viral particle infectivity in fish cells, suggesting that horizontal transmission of SVCV in the aquatic environment was disrupted; 2. Although neither had an effect on viral adhesion, TET (but not DHA) interfered with SVCV entry into host cells (>80%), suggesting that TET may have an antiviral function in early viral replication. For in vivo study, both agents enhanced the survival rate of SVCV-infected zebrafish by 53.3%, significantly decreased viral load, and modulated the expression of antiviral-related genes, indicating that DHA and TET may stimulate the host innate immune response to prevent viral infection. Overall, our findings indicated that DHA and TET had positive effects on suppressing SVCV infection by affecting early-stage viral replication, thus holding great potential as immunostimulants to reduce the risk of aquatic rhabdovirus disease outbreaks.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
38
|
Dual-Targeting Polymer Nanoparticles Efficiently Deliver DNA Vaccine and Induce Robust Prophylactic Immunity against Spring Viremia of Carp Virus Infection. Microbiol Spectr 2022; 10:e0308522. [PMID: 36073822 PMCID: PMC9603200 DOI: 10.1128/spectrum.03085-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is highly contagious and lethal to most cyprinid fish, causing serious economic losses to the carp aquaculture industry. Although DNA vaccines can generate long-term humoral and cellular immune responses, which provide protective immunity against SVCV, the major drawback of DNA vaccines is their low immunogenicity in clinical tests. Here, we construct a dual-targeted polymer DNA vaccine delivery platform (MCS-PCHG) by using mannosylated chitosan to encapsulate the poly(d,l-lactide-co-glycolide)-loaded DNA vaccine containing the heavy-chain CH3 region (CH3) of common carp IgM and the antigenic domain (G131c). The developed nanovaccine delivery platform showed good biocompatibility in vivo and in vitro. With the modification of the mannose moiety and the modification of CH3, the constructed MCS-PCHG could efficiently activate the maturation of antigen-presenting cells. Moreover, we observe significantly high level of immune-related genes expression, serum antigen-specific IgM, SVCV-neutralizing antibody titers in fish vaccinated with MCS-PCHG. Next, the protective efficacy of MCS-PCHG was further evaluated by challenge test. The highest survival rate (ca. 84%) was observed in fish vaccinated with MCS-PCHG after challenging with SVCV. This study presents a novel design for smart, dual-targeted polymer nanoparticles, which are inherently biocompatible, promising for targeted vaccine delivery. IMPORTANCE Spring viremia of carp virus (SVCV) affects global cyprinid fish farming industry, with no available commercial vaccine. Herein, we developed a dual-targeting polymer nanovaccine (MCS-PCHG) by using mannose and common carp IgM heavy chain CH3 region (CH3) as antigen presenting cell (APCs) recognition moiety, attaining the effective delivery of antigen. This dual-targeting polymer vaccine can efficiently activate the APCs, and further induce robust and durable adaptive immune response with good protection against SVCV infection. Our study provides valuable theoretical basis for developing efficient vaccine against infectious diseases in aquaculture.
Collapse
|
39
|
Liu R, Niu Y, Qi Y, Li H, Yang G, Shan S. Transcriptome analysis identifies LGP2 as an MDA5-mediated signaling activator following spring viremia of carp virus infection in common carp (Cyprinus carpio L.). Front Immunol 2022; 13:1019872. [PMID: 36330521 PMCID: PMC9623169 DOI: 10.3389/fimmu.2022.1019872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The common carp (Cyprinus carpio L.) is an important farmed species worldwide. Mucosal-associated lymphoid tissues play an essential role in the fight against pathogen infection. Spring viremia of carp virus (SVCV) poses a serious threat to the common carp aquaculture industry. Understanding the molecular mechanisms driving mucosal immune responses to SVCV infection is critical. In this study, the mucosal tissues (gills, foregut and hindgut) were collected from normal and infected fishes for transcriptome analysis. A total of 932,378,600 clean reads were obtained, of which approximately 80% were successfully mapped to the common carp genome. 577, 1,054 and 1,014 differential expressed genes (DEGs) were identified in the gills, foregut and hindgut, respectively. A quantitative polymerase chain reaction assay indicated that the DEGs expression in the foregut following SVCV infection was consistent with the transcriptome results. Among them, two key genes of the retinoic acid-inducible gene I (RIG-I)-like receptor family, melanoma-differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) (i.e., CcMDA5 and CcLGP2), underwent further analysis. Overexpression of CcMDA5 or CcLGP2 increased phosphorylation of TANK-binding kinase 1 and interferon regulatory factor 3 and the expression of interferon-1 (ifn-1), myxovirus resistance (mx), viperin and interferon-stimulated gene 15 (isg15), and inhibited SVCV replication in epithelioma papulosum cyprini cells. Furthermore, CcLGP2 significantly upregulated the CcMDA5-induced ifn-1 mRNA expression and the activation of the ifn-1 promoter. Finally, confocal microscopy and coimmunoprecipitation experiments revealed that CcLGP2 colocalizes and interacts with CcMDA5 via the C-terminal regulatory domain. This study provides essential gene resources for understanding the fish immune response to SVCV infection and sheds light on the potential role of fish LGP2 in the MDA5 regulation.
Collapse
Affiliation(s)
| | | | | | | | - Guiwen Yang
- *Correspondence: Shijuan Shan, ; Guiwen Yang,
| | | |
Collapse
|
40
|
Zhao Z, Jiang FY, Zhou GQ, Duan HX, Xia JY, Zhu B. Protective immunity against spring viremia of carp virus by mannose modified chitosan loaded DNA vaccine. Virus Res 2022; 320:198896. [PMID: 35977626 DOI: 10.1016/j.virusres.2022.198896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022]
Abstract
Spring viremia of carp virus (SVCV) usually be considered as one of the serious in viral diseases of aquaculture, and DNA vaccine with novel delivery mechanism or adjuvant has proven to be a promising and effective strategy to control aquatic animal diseases. In this study, the mannose-modified chitosan, a carrier system for vaccine delivery, were used to developed a chitosan-encapsulated DNA vaccine (CS-M-G) against SVCV, then investigated immune response induced by the vaccine. Our results showed that CS-M-G was confirmed the spherical or elliptical with even distribution and ranging from approximately 50 to 150 nm in size, the expression of the antigen gene could still be detected after 21 d post vaccination. The CS-M-G induces the highest antibody levels in the 20 μg dose group which is about 3 times than naked plasmid group at 21 d post vaccination, and still hold a higher level than control group at 28 d post vaccination. On the side, strongest protection with relative percent survival of 62.1% in the 20 μg CS-M-G group, which could produce significantly higher enzyme activities and up-regulated expression of immune-associated genes than control group. Thus, our results indicate that DNA vaccine loaded with mannose-modified chitosan induces strong immune response and provided an effective protection against SVCV infection, may be helpful and extended for developing more aquatic animal vaccines in the future.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fu-Yi Jiang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Guo-Qing Zhou
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Hui-Xin Duan
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Jun-Yao Xia
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Negative Regulatory Role of the Spring Viremia of Carp Virus Matrix Protein in the Host Interferon Response by Targeting the MAVS/TRAF3 Signaling Axis. J Virol 2022; 96:e0079122. [PMID: 35913215 PMCID: PMC9400495 DOI: 10.1128/jvi.00791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.
Collapse
|
42
|
Fish Innate Immune Response to Viral Infection-An Overview of Five Major Antiviral Genes. Viruses 2022; 14:v14071546. [PMID: 35891526 PMCID: PMC9317989 DOI: 10.3390/v14071546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fish viral diseases represent a constant threat to aquaculture production. Thus, a better understanding of the cellular mechanisms involved in establishing an antiviral state associated with protection against virus replication and pathogenesis is paramount for a sustainable aquaculture industry. This review summarizes the current state of knowledge on five selected host innate immune-related genes in response to the most relevant viral pathogens in fish farming. Viruses have been classified as ssRNA, dsRNA, and dsDNA according to their genomes, in order to shed light on what those viruses may share in common and what response may be virus-specific, both in vitro (cell culture) as well as in vivo. Special emphasis has been put on trying to identify markers of resistance to viral pathogenesis. That is, those genes more often associated with protection against viral disease, a key issue bearing in mind potential applications into the aquaculture industry.
Collapse
|
43
|
Zhang W, Zhao J, Ma Y, Li J, Chen X. The effective components of herbal medicines used for prevention and control of fish diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 126:73-83. [PMID: 35609759 DOI: 10.1016/j.fsi.2022.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The increasing demand for fish consumption has promoted the rapid development of fish aquaculture. With the continuous expansion of culture scale and the deterioration of culture environment, various diseases have broken out frequently, leading to huge economic losses to fish farming. Antibiotics and chemicals are common options to prevent and control of fish diseases, but their use is now restricted or even banned due to serious problems such as drug residues, pathogen resistance, and environmental pollution. Herbs and their extracts have increasingly become promising supplements and alternatives, because of their effectiveness, safety, environmental friendliness and less drug resistance. The application of herbal medicines in prevention and control of fish diseases is mainly attributed to the powerful immune enhancement, antioxidation or direct anti-pathogenic efficacies of their effective components, including mainly polyphenols, polysaccharides, saponins, flavonoids, alkaloids, and essential oils. Recently these herbal active ingredients have been extensively studied for their efficacies in prevention and control of viral, bacterial, parasitic, and fungal diseases in fish. In the present paper, we comprehensively summarize the research progress of the active ingredients of herbal medicines used for prevention and control of fish diseases, especially of their action mechanisms, and highlight the potential application of the herbal medicines in fish aquaculture.
Collapse
Affiliation(s)
- Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jinpeng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yufang Ma
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
44
|
Cai X, Zhou Z, Zhu J, Liu X, Ouyang G, Wang J, Li Z, Li X, Zha H, Zhu C, Rong F, Tang J, Liao Q, Chen X, Xiao W. Opposing effects of deubiquitinase OTUD3 in innate immunity against RNA and DNA viruses. Cell Rep 2022; 39:110920. [PMID: 35675783 DOI: 10.1016/j.celrep.2022.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/29/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.
Collapse
Affiliation(s)
- Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P. R. China; Hubei Hongshan Laboratory, Wuhan 430070, P. R. China.
| |
Collapse
|
45
|
Walker PJ, Bigarré L, Kurath G, Dacheux L, Pallandre L. Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals. Animals (Basel) 2022; 12:ani12111363. [PMID: 35681827 PMCID: PMC9179924 DOI: 10.3390/ani12111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Rhabdoviridae is a family of viruses that includes some important pathogens of fish and marine mammals. Aspects of the taxonomic classification of fish viruses assigned to this family have recently been reviewed by the International Committee on Taxonomy of Viruses (ICTV). This paper describes the newly approved taxonomy, including the assignment of new subfamilies and new virus species. The paper also considers a taxonomic conundrum presented by viruses assigned to one group of fish rhabdoviruses (genus Novirhabdovirus) for which assignment to the family Rhabdoviridae may not be appropriate. Abstract The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification.
Collapse
Affiliation(s)
- Peter J. Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4067, Australia
- Correspondence:
| | - Laurent Bigarré
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| | - Gael Kurath
- Western Fisheries Research Center, US Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Laurent Dacheux
- Unit Lyssavirus Epidemiology and Neuropathology, Université Paris Cité, Institut Pasteur, 28 Rue du Docteur Roux, CEDEX 15, 75724 Paris, France;
| | - Laurane Pallandre
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| |
Collapse
|
46
|
In vitro and in vivo inhibition of a novel arctigenin derivative on aquatic rhabdovirus. Virus Res 2022; 316:198798. [PMID: 35562080 DOI: 10.1016/j.virusres.2022.198798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Spring viraemia of carp virus (SVCV) poses a serious threat to aquaculture industry due to the lack of approved antiviral treatments. Therefore, a novel arctigenin derivative, 4-(2-methylimidazole) octanoxy-arctigenin (MON), was synthesized to assess the antiviral activity against SVCV in vitro and in vivo. The results indicated MON decreased the SVCV glycoprotein (G) gene expression in vitro by a maximum inhibitory rate of > 99% at 3.5 μM. Furthermore, MON showed the protective effect on epithelioma papulosum cyprinid (EPC) cells and considerably decreased the cytopathic effect (CPE). More importantly, MON inhibited SVCV G gene expression levels in vitro at the half-maximal activity (IC50) of 0.18 μM at 48 h. For in vivo studies, MON demonstrated anti-SVCV activity by enhancing the survival rate of zebrafish (Danio rerio) after infection via pelvic fin base injection. These results tended to be consistent with MON decreasing the SVCV titer of infected zebrafish. During this time, viral loads of the spleen and kidney have declined in SVSV-infected zebrafish. Based on the histopathological assay, MON exhibited the high protective effect in the spleen and kidney of SVCV-infected fish. Combined, MON is on track to become a novel agent to address SVCV infection in aquaculture.
Collapse
|
47
|
Mondal H, Thomas J. A review on the recent advances and application of vaccines against fish pathogens in aquaculture. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1971-2000. [PMID: 35528247 PMCID: PMC9059915 DOI: 10.1007/s10499-022-00884-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 05/03/2023]
Abstract
Globally, aquaculture has faced serious economic problems due to bacterial, viral, and various other infectious diseases of different origins. Even though such diseases are being detected and simultaneously treated with several therapeutic and prophylactic methods, the broad-spectrum activity of vaccines plays a vital role as a preventive measure in aquaculture. However, treatments like use of antibiotics and probiotics seem to be less effective when new mutant strains develop and disease causing pathogens become resistant to commonly used antibiotics. Therefore, vaccines developed by using recent advanced molecular techniques can be considered as an effective way of treating disease causing pathogens in aquatic organisms. The present review emphasizes on the current advances in technology and future outlook with reference to different types of vaccines used in the aquaculture industries. Beginning with traditional killed/inactivated and live attenuated vaccines, this work culminates in the review of modern new generation ones including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent vaccines.
Collapse
Affiliation(s)
- Haimanti Mondal
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu India
| |
Collapse
|
48
|
Chen DD, Lu LF, Xiong F, Wang XL, Jiang JY, Zhang C, Li ZC, Han KJ, Li S. Zebrafish CERKL Enhances Host TBK1 Stability and Simultaneously Degrades Viral Protein via Ubiquitination Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2196-2206. [PMID: 35418468 DOI: 10.4049/jimmunol.2101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Feng Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China;
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
49
|
Shi L, Li C, Gao Y, Ye J, Lu Y, Liu X. STUB1 activates antiviral response in zebrafish by promoting the expression of RIG-I. FISH & SHELLFISH IMMUNOLOGY 2022; 123:182-193. [PMID: 35227882 DOI: 10.1016/j.fsi.2022.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Spring viraemia of carp virus (SVCV) is a fierce pathogen causing high mortality in the common carp. At present, the treatment of spring viraemia of carp (SVC) is limited. Innate immunity is the host's first line of defense against microbial pathogens. Retinoic acid-inducible gene I (RIG-I) activation plays an essential role in the antiviral immune response. Virus infection can activate the RIG-I signaling and induce the production of interferon (IFN) and the expression of IFN-stimulated genes (ISGs). STUB1 (STIP1 homology and U-box containing protein 1) is a highly conserved cytoplasmic protein. This protein is known to exist widely in many biological systems and plays an important role in the process of immune regulation, but little is known in fish. To explore the immune function of STUB1 in fish, STUB1 gene was cloned from zebrafish and analyzed in this study. Zebrafish STUB1 showed 77% and 79% amino acid sequence homology with those from human and mouse, respectively. The amino acid sequence of zebrafish STUB1 contains three TPR domains and one U-box domain. Subcellular localization study revealed that STUB1 is located in the cytoplasm. And overexpression of zebrafish STUB1 resulted in the activation of the transcription of IFN1 and ISGs. Functional analysis showed that STUB1 was able to activate RIG-I signaling, and promote the expression of RIG-I, but STUB1 can degrade RIG-I in mammals. The proliferation of SVCV was significantly inhibited after the overexpression of STUB1 and N-terminal TPR domain of STUB1 in EPC cells. And through secondary structure analysis, overexpression of the mutant of STUB1 110 amino acid resulted in weakened antiviral ability. The expression of STUB1 was attenuated by poly(I:C) treatment and SVCV infection. In summary, this study demonstrated for the first time that STUB1 can induce the production of IFN, enhance the expression of ISGs by promoting the expression of RIG-I and inhibiting viral replication in fish. These findings may form the essential basis for the development of antiviral targets and drugs.
Collapse
Affiliation(s)
- Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
50
|
Liu J, Zhang P, Wang B, Lu Y, Li L, Li Y, Liu S. Evaluation of the effects of Astragalus polysaccharides as immunostimulants on the immune response of crucian carp and against SVCV in vitro and in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109249. [PMID: 34822998 DOI: 10.1016/j.cbpc.2021.109249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
This experiment was conducted to evaluate the immunomodulatory effect and antiviral activity of Astragalus polysaccharides (APS) in crucian carp and epithelioma papulosum cyprinid (EPC) cells. Two diets containing 0 and 2 g/kg, APS were fed crucian carp for 56 days. The results showed that supplementation with APS significantly upregulated the immune-related indices including the levels of IgM, the activities of LZM, AKP and ACP, and the contents of C3 and C4. At the same time, compared with the CK group, adding APS to the feed significantly upregulated the expression of IL-8, IL-10, IL-1β, IFN-α, IFN-γ, MyD88, TGF-β and TNF-α in the spleen, kidney, liver and intestine of crucian carp. In addition, when the crucian carp were injected with SVCV, the survival rates of fish in the APS group and the control group were 48.87% and 13.76%, respectively. These results indicated that dietary APS could improve the resistance of crucian carp against SVCV infection. APS also significantly decreased viral titer and inhibited apoptosis induced by SVCV in EPC cells. These results indicated that APS could stimulate the immune response of crucian carp and improve the abilities of crucian carp and EPC cells to resist SVCV infection.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Yuting Lu
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|