1
|
Miranda M, Navas MC, Zanoni Saad MB, Piromalli Girado D, Weisstaub N, Bekinschtein P. Environmental enrichment in middle age rats improves spatial and object memory discrimination deficits. Front Behav Neurosci 2024; 18:1478656. [PMID: 39494036 PMCID: PMC11528545 DOI: 10.3389/fnbeh.2024.1478656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Changes in memory performance are one of the main symptoms of normal aging. The storage of similar experiences as different memories (ie. behavioral pattern separation), becomes less efficient as aging progresses. Studies have focused on hippocampus dependent spatial memories and their role in the aging related deficits in behavioral pattern separation (BPS) by targeting high similarity interference conditions. However, parahippocampal cortices such as the perirhinal cortex are also particularly vulnerable to aging. Middle age is thought to be the stage where mild mnemonic deficits begin to emerge. Therefore, a better understanding of the timing of the spatial and object domain memory impairment could shed light over how plasticity changes in the parahipocampal-hippocampal system affects mnemonic function in early aging. In the present work, we compared the performance of young and middle-aged rats in both spatial (spontaneous location recognition) and non-spatial (spontaneous object recognition) behavioral pattern separation tasks to understand the comparative progression of these deficits from early stages of aging. Moreover, we explored the impact of environmental enrichment (EE) as an intervention with important translational value. Although a bulk of studies have examined the contribution of EE for preventing age related memory decline in diverse cognitive domains, there is limited knowledge of how this intervention could specifically impact on BPS function in middle-aged animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to revert the deficits caused by normal aging at early stages. We reveal a domain-dependent impairment in behavioral pattern separation in middle-aged rats, with spatial memories affected independently of the similarity of the experiences and object memories only affected when the stimuli are similar, an effect that could be linked to the higher interference seen in this group. Moreover, we found that EE significantly enhanced behavioral performance in middle-aged rats in the spatial and object domain, and this improvement is specific of the high similarity load condition. In conclusion, these results suggest that memory is differentially affected by aging in the object and spatial domains, but that BPS function is responsive to an EE intervention in a multidomain manner.
Collapse
|
2
|
Tooley UA, Latham A, Kenley JK, Alexopoulos D, Smyser TA, Nielsen AN, Gorham L, Warner BB, Shimony JS, Neil JJ, Luby JL, Barch DM, Rogers CE, Smyser CD. Prenatal environment is associated with the pace of cortical network development over the first three years of life. Nat Commun 2024; 15:7932. [PMID: 39256419 PMCID: PMC11387486 DOI: 10.1038/s41467-024-52242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Environmental influences on brain structure and function during early development have been well-characterized, but whether early environments are associated with the pace of brain development is not clear. In pre-registered analyses, we use flexible non-linear models to test the theory that prenatal disadvantage is associated with differences in trajectories of intrinsic brain network development from birth to three years (n = 261). Prenatal disadvantage was assessed using a latent factor of socioeconomic disadvantage that included measures of mother's income-to-needs ratio, educational attainment, area deprivation index, insurance status, and nutrition. We find that prenatal disadvantage is associated with developmental increases in cortical network segregation, with neonates and toddlers with greater exposure to prenatal disadvantage showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between prenatal disadvantage and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. Disadvantage-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results shed light on associations between the early environment and trajectories of cortical development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Aidan Latham
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lisa Gorham
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan L Luby
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Grünewald B, Wickel J, Hahn N, Rahmati V, Rupp H, Chung HY, Haselmann H, Strauss AS, Schmidl L, Hempel N, Grünewald L, Urbach A, Bauer M, Toyka KV, Blaess M, Claus RA, König R, Geis C. Targeted rescue of synaptic plasticity improves cognitive decline in sepsis-associated encephalopathy. Mol Ther 2024; 32:2113-2129. [PMID: 38788710 PMCID: PMC11286813 DOI: 10.1016/j.ymthe.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.
Collapse
Affiliation(s)
- Benedikt Grünewald
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Pathophysiology and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Wickel
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Nina Hahn
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Vahid Rahmati
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Hanna Rupp
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ha-Yeun Chung
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Holger Haselmann
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Anja S Strauss
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lars Schmidl
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Nina Hempel
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lena Grünewald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, 60528 Frankfurt, Germany
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Jena Center for Healthy Aging, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Leibniz Institute on Aging, Aging Research Center Jena, Beutenbergstr. 11, 07745 Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Klaus V Toyka
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Markus Blaess
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Ralf A Claus
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Rainer König
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Christian Geis
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany.
| |
Collapse
|
4
|
Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, Rounds JS, Rodriguez A, Beardwood JH, Augustynski AS, Al-Shammari A, Alaghband Y, Alizo Vera V, Berchtold NC, Shanur S, Baldi P, Cotman CW, Wood MA. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nat Commun 2024; 15:3836. [PMID: 38714691 PMCID: PMC11076285 DOI: 10.1038/s41467-024-47996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher W Butler
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Alyssa Rodriguez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Joy H Beardwood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Agatha S Augustynski
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Ameer Al-Shammari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Sharmin Shanur
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Martínez-Torres NI, Cárdenas-Bedoya J, Vázquez-Torres BM, Torres-Mendoza BM. Environmental enrichment and cerebrolysin improve motor and cognitive performance in a rat model of stroke, in conjunction with an increase in hippocampal AMPA but not NMDA receptor subunits. Brain Res 2024; 1825:148694. [PMID: 38048977 DOI: 10.1016/j.brainres.2023.148694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Stroke is a pathology related to the vascular system in the brain and it is one of the main causes of disability, representing a burden on public health. This lesion provokes a disorganization of sensory-motor and cognitive systems, the latter associated with hippocampal activity, a structure in which α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA N-methyl-D-aspartate (NMDA) receptors are important for the integration of information. Several molecules have been studied for their capacity to enhance recovery from a stroke, including cerebrolysin that could potentially be reinforced by environmental enrichment. Here, stroke was induced in 40 male rats and 24 h later, they were administered cerebrolysin (2.5 ml/kg), put in an environmentally enriched arena or given both treatments, for 10 days. Subsequently, motor functioning was assessed with the Bederson test and the cognitive domain was assessed through novel object recognition. Hematoxylin/eosin staining was then used to assess the infarct size, and AMPA-GRIA1 and NMDA-R1 subunits in the hippocampus were measured by ELISA. In motor and cognitive performance, the administration of cerebrolysin and environmental enrichment enhanced recovery. Moreover, the infarct size decreased in all the groups that received a treatment, but an increase occurred in AMPA-GRIA1 only in experimental group regarding to control group, while NMDA-R1 had no differences. These results suggest that cerebrolysin and environmental enrichment could act in synergy to recover after a stroke, leading to a smaller infarct area and the presence of more AMPA-GRIA1 subunits in the hippocampus of experimental group. These data encourage further studies in which neurorehabilitation approaches can be combined with cerebrolysin administration to treat the motor and cognitive symptoms of stroke.
Collapse
Affiliation(s)
- Nestor I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco. Mexico; Centro Universitario del Norte, Departamento de Bienestar y Desarrollo Sustentable. Universidad de Guadalajara. Colotlán, Jalisco. Mexico
| | - Jhonathan Cárdenas-Bedoya
- División de Neurociencias, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco. Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales. Universidad de Guadalajara. Guadalajara, Jalisco. Mexico
| | | | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco. Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales. Universidad de Guadalajara. Guadalajara, Jalisco. Mexico.
| |
Collapse
|
7
|
Nachtigall EG, de Freitas JDR, Marcondes LA, Furini CRG. Memory persistence induced by environmental enrichment is dependent on different brain structures. Physiol Behav 2023; 272:114375. [PMID: 37806510 DOI: 10.1016/j.physbeh.2023.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Júlia D R de Freitas
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Lucas Aschidamini Marcondes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Bramati G, Stauffer P, Nigri M, Wolfer DP, Amrein I. Environmental enrichment improves hippocampus-dependent spatial learning in female C57BL/6 mice in novel IntelliCage sweet reward-based behavioral tests. Front Behav Neurosci 2023; 17:1256744. [PMID: 37791111 PMCID: PMC10543696 DOI: 10.3389/fnbeh.2023.1256744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
The IntelliCage is an automated home-cage system that allows researchers to investigate the spontaneous behavior and learning abilities of group-housed mice. The IntelliCage enables us to increase the standardization and reproducibility of behavioral outcomes by the omission of experimenter-mouse interactions. Although the IntelliCage provides a less stressful environment for animals, standard IntelliCage protocols use controlled water access as the motivational driver for learning. To overcome possible water restrictions in slow learners, we developed a series of novel protocols based on appetitive learning, in which mice had permanent access to plain water but were additionally rewarded with sweetened water upon solving the task. C57BL/6NCrl female mice were used to assess the efficacy of these sweet reward-based protocols in a series of learning tasks. Compared to control mice tested with standard protocols, mice motivated with a sweet reward did equal to or better in operant performance and place learning tasks. Learning of temporal rules was slower than that in controls. When faced with a combined temporal x spatial working memory task, sweet-rewarded mice learned little and chose plain water. In a second set of experiments, the impact of environmental enrichment on appetitive learning was tested. Mice kept under enriched environment (EE) or standard housing (SH) conditions prior to the IntelliCage experiments performed similarly in the sweet-rewarded place learning task. EE mice performed better in the hippocampus-dependent spatial working memory task. The improved performance of EE mice in the hippocampus-dependent spatial working memory task might be explained by the observed larger volume of their mossy fibers. Our results confirm that environmental enrichment increases complex spatial learning abilities and leads to long-lasting morphological changes in the hippocampus. Furthermore, simple standard IntelliCage protocols could easily be adapted to sweet rewards, which improve animal welfare by removing the possibility of water restriction. However, complex behavioral tasks motivated by sweet reward-based learning need further adjustments to reach the same efficacy as standard protocols.
Collapse
Affiliation(s)
- Giulia Bramati
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Pia Stauffer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
| | - Martina Nigri
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - David P. Wolfer
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | - Irmgard Amrein
- Division Functional Neuroanatomy, Institute of Anatomy, University Zurich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| |
Collapse
|
9
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
QIAO L, SHI Y, TAN L, JIANG Y, YANG Y. Efficacy of electroacupuncture stimulating Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) on spatial learning and memory deficits in rats with insomnia induced by para-chlorophenylalanine: a single acupoint combined acupoints. J TRADIT CHIN MED 2023; 43:704-714. [PMID: 37454255 PMCID: PMC10320443 DOI: 10.19852/j.cnki.jtcm.20230308.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investiage the effect of electroacupuncture (EA) at a single acupoint of Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6) and at combined acupoints of Shenmen (HT7) and Baihui (GV20) and Sanyinjiao (SP6) on the PKA/CREB and BDNF/TrkB signaling, as well as neuroapoptosis and neurogenesis in hippocampus and elucidate the underlying mechanism of single and combined acupoints on ameliorating spatial learning and memory deficits in a rat model of primary insomnia. METHODS Primary insomnia was modeled by intraperitoneal injection of para-chlorophenylalanine (PCPA) once daily for 2 d. EA was applied at Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), or Shenmen (HT7) + Baihui (GV20) + Sanyinjiao (SP6) (combined) for 30 min daily for 4 d. Spatial learning and memory function was evaluated by the Morris water maze (MWM) test. Protein expressions of hippocampal cAMP-dependent protein kinase (PKA)-Cβ, phosphorylated cAMP-responsive element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and tyrosine kinase receptor B (TrkB) were evaluated by Western blotting. Neuronal apoptosis in the hippocampus was detected with the transferase-mediated dUTP-X nick end labeling assay. Endogenous neurogenesis was examined with bromodeoxyuridine staining. The MWM test and hippocampal p-CREB, BDNF, and TrkB protein levels in the combined acupoints group were evaluated after the administration of a PKA-selective inhibitor (H89). RESULTS Spatial learning and memory were significantly impaired in rats with insomnia. The spatial learning deficits were ameliorated in the Shenmen (HT7), Baihui (GV20), Sanyinjiao (SP6), and combined groups; this improvement was significantly greater in the combined group than the single acupoint groups. The spatial memory impairment was improved in the combined, Baihui (GV20), and Shenmen (HT7) groups, but not the Sanyinjiao (SP6) group. The expressions of PKA-Cβ, p-CREB, BDNF, and TrkB were decreased in rats with insomnia. All these proteins were significantly upregulated in the combined group. PKA/p-CREB protein levels were elevated in the Baihui (GV20) and Shenmen (HT7) groups, whereas BDNF/TrkB expression was upregulated in the Sanyinjiao (SP6) group. The staining results showed significant attenuation of hippocampal cell apoptosis and increased numbers of proliferating cells in the combined group, whereas the single acupoint groups only showed decreased numbers of apoptotic cells. In the combined group, the PKA inhibitor reversed the improvement of spatial memory and upregulation of p-CREB expression caused by EA, but did not affect its activation of BDNF/TrkB signaling. CONCLUSIONS EA at the single acupoints Baihui (GV20), Shenmen (HT7), or Sanyinjiao (SP6) had an ameliorating effect on the spatial learning and memory deficits induced by insomnia. EA at combined acupoints exerted a synergistic effect on the improvements in spatial learning and memory impairment in rats with insomnia by upregulating the hippocampal PKA/CREB and BDNF/TrkB signaling, facilitating neurogenesis, and inhibiting neuronal apoptosis. These findings indicate that EA at combined acupoints [(Baihui (GV20), Shenmen (HT7), and Sanyinjiao (SP6)] achieves a more pronounced regulation of hippocampal neuroplasticity than EA at single acupoints, which may partly explain the underlying mechanisms by which EA at combined acupoints exerts a better ameliorative effect on the cognitive dysfunction caused by insomnia.
Collapse
Affiliation(s)
- Lina QIAO
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yinan SHI
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Lianhong TAN
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| | - Yanshu JIANG
- 2 College of Acupuncture-moxibustion and Massage, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Yongsheng YANG
- 1 Department of Biochemistry and Molecular Biology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing100700, China
| |
Collapse
|
11
|
Pavlova IV, Broshevitskaya ND, Zaichenko MI, Grigoryan GA. The influence of long-term housing in enriched environment on behavior of normal rats and subjected to neonatal pro-inflammatory challenge. Brain Behav Immun Health 2023; 30:100639. [PMID: 37274935 PMCID: PMC10236189 DOI: 10.1016/j.bbih.2023.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
It is well known that neonatal pro-inflammatory challenge (NPC) acquire a predisposition to the development of a number of neuropsychiatric diseases: depression, anxiety disorders, autism, attention deficit hyperactivity disorder. Symptoms of these diseases can manifest themselves in adulthood and adolescent after repeated exposure to negative influences. Preventing the development of the negative consequences of NPC is one of the main tasks for researchers. The exposure to an enriched environment (EE) was shown to have anxiolytic, anti-depressive, and pro-cognitive effects. The present work was aimed to investigate the effects of the long-term EE on anxious-depressive and conditioned fear behavior in normal male and female rats and subjected to NPC. The NPC was induced by subcutaneous administration of lipopolysaccharide (LPS, 50 μg/kg) on 3d and 5th PNDs. The control animals received saline (SAL). The rats were placed in the EE from 25 to 120 PND. Animals housed in the standard conditions (STAND) served as controls. In adult female and male rats of the STAND groups, LPS did not affect the anxiety, depressive-like behavior and conditioned fear. The EE increased motor and search activity in males and females. In the open field, the EE reduced anxiety in males of the SAL and LPS groups and in females of SAL groups compared to the STAND housed animals. In the elevated plus maze, the EE decreased anxiety only in males of the SAL group. In the sucrose preference test, the EE did not change sucrose consumption in males and females of SAL and LPS groups, while, in the forced swimming test, the EE reduced depressive-like behavior in females of both SAL and LPS groups. The enrichment decreased the contextual conditioned fear in male and female of SAL groups, but not of the LPS group, and did not affect the cue conditioned fear. The corticosterone reactivity to the forced swimming stress increased in males of the EE groups. The basal level of IL-1beta in blood serum decreased in males of the SAL-EE group. Thus, the EE reduced anxiety in males, depressive-like behavior in females, and contextual conditioned fear in males and females compared to the STAND housed animals. Although the NPC did not affect these behaviors in the STAND groups, LPS prevented the beneficial EE effects on anxiety and conditioned fear. The opposing effects of LPS were dependent on sex and type of testing.
Collapse
Affiliation(s)
- Irina V. Pavlova
- Corresponding author. Department of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, 5a Butlerov street, Moscow, Russian Federation.
| | | | | | | |
Collapse
|
12
|
Law LM, Griffiths DR, Lifshitz J. Peg Forest Rehabilitation - A novel spatial navigation based cognitive rehabilitation paradigm for experimental neurotrauma. Behav Brain Res 2023; 443:114355. [PMID: 36801425 PMCID: PMC10883691 DOI: 10.1016/j.bbr.2023.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI) results from mechanical forces applied to the head. Ensuing cascades of complex pathophysiology transition the injury event into a disease process. The enduring constellation of emotional, somatic, and cognitive impairments degrade quality of life for the millions of TBI survivors suffering from long-term neurological symptoms. Rehabilitation strategies have reported mixed results, as most have not focused on specific symptomatology or explored cellular processes. The current experiments evaluated a novel cognitive rehabilitation paradigm for brain-injured and uninjured rats. The arena is a plastic floor with a cartesian grid of holes for plastic dowels to create new environments with the rearrangement of threaded pegs. Rats received either two weeks of Peg Forest rehabilitation (PFR) or open field exposure starting at 7 days post-injury; or one week starting at either day 7 or 14 post-injury; or served as caged controls. Cognitive performance was assessed on a battery of novel object tasks at 28 days post-injury. The results revealed that two weeks of PFR was required to prevent the onset of cognitive impairments, while one week of PFR was insufficient regardless of when rehabilitation was initiated after injury. Further assessment of the task showed that novel daily arrangements of the environment were required to impart the cognitive performance benefits, as exposure to a static arrangement of pegs for PFR each day did not improve cognitive performance. The results indicate that PFR prevents the onset of cognitive disorders following acquired a mild to moderate brain injury, and potentially other neurological conditions.
Collapse
Affiliation(s)
- L Matthew Law
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.
| | - Daniel R Griffiths
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Jonathan Lifshitz
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
13
|
Xu L, Jiao M, Cui ZL, Zhao QY, Wang Y, Chen S, Zhang JJ, Jin YH, Mu D, Yang YQ. Enriched environment during adolescence modulates lipid metabolism and emotion-related behaviors in mice. J APPL ANIM WELF SCI 2023; 26:218-228. [PMID: 34470518 DOI: 10.1080/10888705.2021.1972421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Enriched environment (EE) is an important animal experimental paradigm to decipher gene-environment interaction. It is thought to be efficient in aiding recovery from certain metabolism disorders or cognitive impairments. Recently, the effects of EE during adolescence in mice gradually draw much attention. We first established an EE model in adolescent mice, dissected lipid metabolism, and further examined baseline level of anxiety and depression by multiple behavioral tests, including open field test (OFT), elevated zero maze (EZM), tail suspension test (TST), and forced swimming test (FST). EE mice exhibited lower weights, lower cholesterol than standard housing (SH) mice. Behaviorally, EE mice traveled more distance and had higher velocity than SH mice in OFT and EZM. Besides, EE mice showed reduced anxiety levels in OFT and EZM. Furthermore, EE mice also had less immobility time than SH mice in TST and FST. Thus, these results suggest that EE during adolescence has metabolic and behavioral benefits in mice.
Collapse
Affiliation(s)
- Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Jiao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Lin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Ya Zhao
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Chen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Jie Zhang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Hui Jin
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhang Z, Chen L, Guo Y, Li D, Zhang J, Liu L, Fan W, Guo T, Qin S, Zhao Y, Xu Z, Chen Z. The neuroprotective and neural circuit mechanisms of acupoint stimulation for cognitive impairment. Chin Med 2023; 18:8. [PMID: 36670425 PMCID: PMC9863122 DOI: 10.1186/s13020-023-00707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment is a prevalent neurological disorder that burdens families and the healthcare system. Current conventional therapies for cognitive impairment, such as cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, are unable to completely stop or reverse the progression of the disease. Also, these medicines may cause serious problems with the digestive system, cardiovascular system, and sleep. Clinically, stimulation of acupoints has the potential to ameliorate the common symptoms of a variety of cognitive disorders, such as memory deficit, language dysfunction, executive dysfunction, reduced ability to live independently, etc. There are common acupoint stimulation mechanisms for treating various types of cognitive impairment, but few systematic analyses of the underlying mechanisms in this domain have been performed. This study comprehensively reviewed the basic research from the last 20 years and found that acupoint stimulation can effectively improve the spatial learning and memory of animals. The common mechanism may be that acupoint stimulation protects hippocampal neurons by preventing apoptosis and scavenging toxic proteins. Additionally, acupoint stimulation has antioxidant and anti-inflammatory effects, promoting neural regeneration, regulating synaptic plasticity, and normalizing neural circuits by restoring brain functional activity and connectivity. Acupoint stimulation also inhibits the production of amyloid β-peptide and the phosphorylation of Tau protein, suggesting that it may protect neurons by promoting correct protein folding and regulating the degradation of toxic proteins via the autophagy-lysosomal pathway. However, the benefits of acupoint stimulation still need to be further explored in more high-quality studies in the future.
Collapse
Affiliation(s)
- Zichen Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Liuyi Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yi Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Dan Li
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Jingyu Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Ling Liu
- grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Wen Fan
- grid.412879.10000 0004 0374 1074Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka City, 5100293 Japan
| | - Tao Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Siru Qin
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Yadan Zhao
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Zhifang Xu
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Zelin Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| |
Collapse
|
15
|
Riyahi J, Abdoli B, Gelfo F, Petrosini L, Khatami L, Meftahi GH, Haghparast A. Multigenerational effects of paternal spatial training are lasting in the F1 and F2 male offspring. Behav Pharmacol 2022; 33:342-354. [PMID: 35502983 DOI: 10.1097/fbp.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies on intergenerational transmission of learning and memory performances demonstrated that parental spatial training before fertilization could facilitate learning and memory in the offspring, but many questions remain unclarified. Essential issues regarding whether and how long the effects of parental training in a task can last in several generations, and whether learning a task repeated in the successive generations can enhance a load of multigenerational effects. In the present study, the spatial performances of F1 and F2 generations of male offspring of fathers or grandfathers spatially trained in the Morris Water Maze were evaluated and compared with the performance of a control sample matched for age and sex. Further, to investigate the memory process in F1 and F2 male offspring, brain-derived neurotrophic factor (BDNF), p-ERK1/2 and acetylated histone 3 lysine 14 (H3K14) expression levels in the hippocampus were analyzed. The findings showed that paternal training reduced escape latencies and increased time spent in the target quadrant by F1 and F2 male offspring. Besides, paternal spatial training repeated in two generations did not enhance the beneficial effects on offspring's spatial performances. These findings were supported by neurobiologic data showing that paternal training increased BDNF and p-ERK1/2 in the hippocampus of F1 and F2 male offspring. Furthermore, the hippocampal level of acetylated H3K14 increased in the offspring of spatially trained fathers, reinforcing the hypothesis that the augmented histone acetylation might play an essential role in the inheritance of spatial competence.
Collapse
Affiliation(s)
- Javad Riyahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | - Behrouz Abdoli
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Leila Khatami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
16
|
Jethava V, Kadish J, Kakonge L, Wiseman-Hakes C. Early Attachment and the Development of Social Communication: A Neuropsychological Approach. Front Psychiatry 2022; 13:838950. [PMID: 35463524 PMCID: PMC9024310 DOI: 10.3389/fpsyt.2022.838950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Social communication forms the foundation of human relationships. Social communication, i.e., the appropriate understanding and use of verbal and non-verbal communication within a social context, profoundly impacts mental health across the lifespan and is also highly vulnerable to neurodevelopmental threats and social adversities. There exists a strong interconnection between the development of language and other higher cognitive skills, mediated, in part, through the early attachment relationship. Consideration of how attachment links to brain development can help us understand individuals with social communication difficulties across the lifespan. The early attachment relationship supports the development of the foundational constructs of social communication. In this paper, a neuropsychological perspective was applied to social communication, which integrated evidence from early attachment theory, examining the underpinnings of social communication components identified by the SoCom model, namely socio-cognitive, socio-emotional, and socio-linguistic constructs. A neuropsychological perspective underscores the importance of interdisciplinary collaboration. This should also inform approaches to prevention, policy, intervention, and advocacy for individuals with or at risk for social communication impairments, as well as their families.
Collapse
Affiliation(s)
- Vibhuti Jethava
- York Hills Centre for Children, Youth and Families, Richmond Hill, ON, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Kadish
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
| | - Lisa Kakonge
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada
- School of Rehabilitation Science, Speech Language Pathology Program, McMaster University, Hamilton, ON, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Catherine Wiseman-Hakes
- School of Rehabilitation Science, Speech Language Pathology Program, McMaster University, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehab-University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Berlet R, Galang Cabantan DA, Gonzales-Portillo D, Borlongan CV. Enriched Environment and Exercise Enhance Stem Cell Therapy for Stroke, Parkinson’s Disease, and Huntington’s Disease. Front Cell Dev Biol 2022; 10:798826. [PMID: 35309929 PMCID: PMC8927702 DOI: 10.3389/fcell.2022.798826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells, specifically embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), induced pluripotent stem cells (IPSCs), and neural progenitor stem cells (NSCs), are a possible treatment for stroke, Parkinson’s disease (PD), and Huntington’s disease (HD). Current preclinical data suggest stem cell transplantation is a potential treatment for these chronic conditions that lack effective long-term treatment options. Finding treatments with a wider therapeutic window and harnessing a disease-modifying approach will likely improve clinical outcomes. The overarching concept of stem cell therapy entails the use of immature cells, while key in recapitulating brain development and presents the challenge of young grafted cells forming neural circuitry with the mature host brain cells. To this end, exploring strategies designed to nurture graft-host integration will likely enhance the reconstruction of the elusive neural circuitry. Enriched environment (EE) and exercise facilitate stem cell graft-host reconstruction of neural circuitry. It may involve at least a two-pronged mechanism whereby EE and exercise create a conducive microenvironment in the host brain, allowing the newly transplanted cells to survive, proliferate, and differentiate into neural cells; vice versa, EE and exercise may also train the transplanted immature cells to learn the neurochemical, physiological, and anatomical signals in the brain towards better functional graft-host connectivity.
Collapse
Affiliation(s)
- Reed Berlet
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Cesar V. Borlongan,
| |
Collapse
|
18
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Joushi S, Esmaeilpour K, Masoumi-Ardakani Y, Esmaeili-Mahani S, Sheibani V. Effects of short environmental enrichment on early-life adversity induced cognitive alternations in adolescent rats. J Neurosci Res 2021; 99:3373-3391. [PMID: 34676587 DOI: 10.1002/jnr.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023]
Abstract
Early-life experiences, including parental care, affect cognitive performance later in life. Being exposed to early-life maternal separation (MS) increases susceptibility to stress-related psychopathology. Previous studies suggest that MS could induce learning and memory impairments. Since enriched environment (EE) provides more opportunities for exploration and social interaction, in the present study we evaluated the effects of a short EE paradigm with a duration of 13 days on cognitive abilities of maternally separated rats (MS; 180 min/day, postnatal day (PND) 1-21) during adolescence in four experimental groups: Control, Control+EE, MS, and MS+EE. Plasma corticosterone (CORT) and brain-derived neurotrophic factor (BDNF) levels were also measured in experimental animals. We also studied the induction of long-term potentiation (LTP) in the slices of hippocampal CA1 area. The behavioral and electrophysiological assessments were started at PND 35. MS caused higher basal CORT levels in plasma and impaired spatial learning, memory, and social interaction. LTP induction was also impaired in MS rats and plasma BDNF levels were reduced in these animals. MS also induced more anxiety-like behavior. Short EE reduced plasma CORT levels had the potential to improve locomotor activity and anxiety-like behavior in MS+EE rats and reversed MS-induced impairments of spatial learning, memory, and social behavior. LTP induction and plasma BDNF levels were also enhanced in MS+EE rats. We concluded that short EE might be considered as a therapeutic strategy for promoting cognition.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Grigoryan GA. Molecular-Cellular Mechanisms of Plastic Restructuring Produced by an Enriched Environment. Effects on Learning and Memory. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Abstract
An environmental enrichment (EE) cage consisting of a broad living area and various stimulators triggers social, cognitive, and physical activities. EE has been utilized in a wide range of neurological and non-neurological studies. However, the details of the environmental enrichment protocol were not well described in these studies. This has resulted in uncertainty and inconsistency in methodology, which may thus fail to replicate environmental enrichment effects, influencing the study outcome. Here we describe the basic guidelines and present an easy-to-follow protocol for environmental enrichment in rat models. © 2021 Wiley Periodicals LLC. Basic Protocol: Environmental enrichment housing.
Collapse
Affiliation(s)
- Teh Rasyidah Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor Darul Ehsan, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
22
|
Abstract
Childhood socio-economic status (SES), a measure of the availability of material and social resources, is one of the strongest predictors of lifelong well-being. Here we review evidence that experiences associated with childhood SES affect not only the outcome but also the pace of brain development. We argue that higher childhood SES is associated with protracted structural brain development and a prolonged trajectory of functional network segregation, ultimately leading to more efficient cortical networks in adulthood. We hypothesize that greater exposure to chronic stress accelerates brain maturation, whereas greater access to novel positive experiences decelerates maturation. We discuss the impact of variation in the pace of brain development on plasticity and learning. We provide a generative theoretical framework to catalyse future basic science and translational research on environmental influences on brain development.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Soeda F, Toda A, Masuzaki K, Miki R, Koga T, Fujii Y, Takahama K. Effects of enriched environment on micturition activity in freely moving C57BL/6J mice. Low Urin Tract Symptoms 2021; 13:400-409. [PMID: 33648020 DOI: 10.1111/luts.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES An enriched environment (EE) has been known to promote structural changes in the brain and enhance learning and emotional performance. However, little is known about the effect of an EE on brain stem functions, such as the micturition function. In this study, we examined whether an EE affects micturition activity in mice. METHODS Male C57BL/6J mice were used. We assessed the micturition activity of freely moving mice using a novel system developed in-house. RESULTS During the dark period, but not light, the EE significantly increased voiding frequency, total voided volume, mean voided volume, voiding duration, mean flow rate, and maximum flow rate compared with the control environment. This EE effect on micturition function was associated with habituation to novel environments in the open-field test, but not with amelioration of motor coordination in the rotarod test. Interestingly, even after the mice were withdrawn from the EE, the improvements in micturition function persisted, while other behavioral changes were abolished. The relative value of voiding frequency and total voided volume during the light period, expressed as a percentage of 24 hours, increased with age when mice were reared in a standard environment. However, this age-related change was not observed in mice reared in an EE. CONCLUSIONS These results suggest that an EE may promote micturition activity during the active phase of C57BL/6J mice, and its effects persist even after withdrawal from the EE. Furthermore, an EE may mitigate dysfunctions in micturition activity, such as polyuria, during the resting phase in aged mice.
Collapse
Affiliation(s)
- Fumio Soeda
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan.,Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihisa Toda
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kazuya Masuzaki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Risa Miki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Koga
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Yukiko Fujii
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kazuo Takahama
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Dual Profile of Environmental Enrichment and Autistic-Like Behaviors in the Maternal Separated Model in Rats. Int J Mol Sci 2021; 22:ijms22031173. [PMID: 33503967 PMCID: PMC7865216 DOI: 10.3390/ijms22031173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Environmental Enrichment (EE) has been suggested as a possible therapeutic intervention for neurodevelopmental disorders such as autism. Although the benefits of this therapeutic method have been reported in some animal models and human studies, the unknown pathophysiology of autism as well as number of conflicting results, urge for further examination of the therapeutic potential of EE in autism. Therefore, the aim of this study was to examine the effects of environmental enrichment on autism-related behaviors which were induced in the maternal separation (MS) animal model. MATERIAL AND METHODS Maternally separated (post-natal day (PND) 1-14, 3h/day) and control male rats were at weaning (PND21) age equally divided into rats housed in enriched environment and normal environment. At adolescence (PND42-50), the four groups were behaviorally tested for direct social interaction, sociability, repetitive behaviors, anxiety behavior, and locomotion. Following completion of the behavioral tests, the blood and brain tissue samples were harvested in order to assess plasma level of brain derived neurotrophic factor (BDNF) and structural plasticity of brain using ELISA and stereological methods respectively. RESULTS We found that environmental enrichment reduced repetitive behaviors but failed to improve the impaired sociability and anxiety behaviors which were induced by maternal separation. Indeed, EE exacerbated anxiety and social behaviors deficits in association with increased plasma BDNF level, larger volume of the hippocampus and infra-limbic region and higher number of neurons in the infra-limbic area (p < 0.05). Conclusion: We conclude that environmental enrichment has a significant improvement effect on the repetitive behavior as one of the core autistic-like behaviors induced by maternal separation but has negative effect on the anxiety and social behaviors which might have been modulated by BDNF.
Collapse
|
25
|
The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plast 2021; 2021:8868447. [PMID: 33505460 PMCID: PMC7815402 DOI: 10.1155/2021/8868447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.
Collapse
|
26
|
Li J, Jiang RY, Arendt KL, Hsu YT, Zhai SR, Chen L. Defective memory engram reactivation underlies impaired fear memory recall in Fragile X syndrome. eLife 2020; 9:61882. [PMID: 33215988 PMCID: PMC7679137 DOI: 10.7554/elife.61882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is an X chromosome-linked disease associated with severe intellectual disabilities. Previous studies using the Fmr1 knockout (KO) mouse, an FXS mouse model, have attributed behavioral deficits to synaptic dysfunctions. However, how functional deficits at neural network level lead to abnormal behavioral learning remains unexplored. Here, we show that the efficacy of hippocampal engram reactivation is reduced in Fmr1 KO mice performing contextual fear memory recall. Experiencing an enriched environment (EE) prior to learning improved the engram reactivation efficacy and rescued memory recall in the Fmr1 KO mice. In addition, chemogenetically inhibiting EE-engaged neurons in CA1 reverses the rescue effect of EE on memory recall. Thus, our results suggest that inappropriate engram reactivation underlies cognitive deficits in FXS, and enriched environment may rescue cognitive deficits by improving network activation accuracy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Rena Y Jiang
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Kristin L Arendt
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Yu-Tien Hsu
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Sophia R Zhai
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Lu Chen
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
27
|
Smail MA, Smith BL, Nawreen N, Herman JP. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol Biochem Behav 2020; 197:172993. [PMID: 32659243 PMCID: PMC7484282 DOI: 10.1016/j.pbb.2020.172993] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Stress exposure can produce profound changes in physiology and behavior that can impair health and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. The widespread impact of these disorders warrants investigation into treatments to mitigate the harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so recent work has focused on non-pharmacological alternatives. One of the most promising of these alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE successfully reduces the maladaptive effects of various stressors, both as treatment and prophylaxis. While we know that EE can have beneficial effects under stress conditions, the morphological and molecular mechanisms underlying these behavioral effects are still not well understood. EE is known to alter neurogenesis, dendrite development, and expression of neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this complexity, EE has differential effects in different brain regions. Understanding how EE exerts its protective effects on morphological and molecular levels could hold the key to developing more targeted pharmacological treatments. In this review, we summarize the literature on the morphological and molecular consequences of EE and stress in key emotional regulatory pathways in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences among these regions provide some insight into stress-EE interaction that may be exploited in future efforts toward prevention of, and intervention in, stress-related diseases.
Collapse
Affiliation(s)
- Marissa A Smail
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States.
| | - Brittany L Smith
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, United States
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States; Veterans Affairs Medical Center, Cincinnati, OH, United States; Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
28
|
Aghighi Bidgoli F, Salami M, Talaei SA. Environmental enrichment restores impaired spatial memory and synaptic plasticity in prenatally stress exposed rats: The role of GABAergic neurotransmission. Int J Dev Neurosci 2020; 80:573-585. [PMID: 32706909 DOI: 10.1002/jdn.10052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/05/2022] Open
Abstract
Evidence shows that prenatal stress negatively affects cognitive functions and activity of neuronal circuits in postnatal age. Environmental enrichment counteracts deficits induced by early life stress. We examined if behavioural function and synaptic plasticity are sensitive to prenatal stress and, how much environmental enrichment and GABAergic system impact these phenomena. Animals were exposed to noise stress during the third trimester of foetal life. Groups of the stressed animals remained intact (S-SH) or received enrichment (S-EE) from postnatal day 22 for one month. Also, two groups received either saline (S-SH-S) or bicuculline (S-SH-B). One enriched group received muscimol (S-EE-M). The control groups were intact (C-SH), enriched (C-EE), or received bicuculline (C-SH-B) or saline (C-SH-S). We assessed learning and memory and, hippocampal long-term potentiation (LTP). Serum corticosterone levels were detected as a measure of stress condition. We found that stress reduced spatial performance and suppressed LTP in the S-SH animals. Postnatal enrichment restored both spatial learning and memory and synaptic plasticity in the S-EE rats. GABAergic antagonism strengthens maze performance and LTP induction in the S-SH-B group. However, muscimol prevented the positive effects of enrichment in the S-EE-M animals. Environmental enrichment and GABAergic modulation may improve disrupted spatial performance and synaptic plasticity.
Collapse
Affiliation(s)
- Fatemeh Aghighi Bidgoli
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Hsu MH, Sheen JM, Chen YC, Yu HR, Tain YL, Huang LT. Rats with prenatal dexamethasone exposure and postnatal high-fat diet exhibited insulin resistance, and spatial learning and memory impairment: effects of enriched environment. Neuroreport 2020; 31:265-273. [PMID: 32032284 DOI: 10.1097/wnr.0000000000001406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed to examine the combined effects of prenatal glucocorticoid exposure and a postnatal high-fat diet (HFD) on offspring brain development and metabolic disturbance. Besides, the effects of an enriched environment were assessed. Pregnant Sprague-Dawley rats were administered vehicle or dexamethasone between gestation days 14 and 21. Male offspring was then weaned onto either a standard chow or HFD. An enriched environment was implemented between postnatal days 22 and 180 in a subset of rats with prenatal dexamethasone and a postnatal HFD. Adult male offspring with prenatal exposure to dexamethasone and a postnatal HFD showed obesity, increased systolic blood pressure, peripheral and central insulin resistance, and spatial learning and memory impairment detected by Morris water maze. An enriched environment displayed beneficial effects in reducing body weight, decreasing systolic blood pressure, reducing insulin resistance, ameliorating brain molecular alterations, and alleviating spatial deficit in rats with prenatal dexamethasone and a postnatal HFD. In conclusion, adult male offspring with prenatal dexamethasone exposure and a postnatal HFD showed obesity, increased systolic blood pressure, peripheral and central insulin resistance, and spatial learning and memory impairment. In addition, an enriched environment had beneficial effects in this context.
Collapse
Affiliation(s)
- Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Department of Medicine, Chang Gung University, Linkou, Taiwan
| |
Collapse
|
30
|
Antiamnesic effects of tofisopam against scopolamine-induced cognitive impairments in rats. Pharmacol Biochem Behav 2020; 190:172858. [PMID: 31981560 DOI: 10.1016/j.pbb.2020.172858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023]
Abstract
In this study, we investigated the potential therapeutic effects of tofisopam, a 2,3-benzodiazepine derivative anxiolytic, on cognitive deficits in rats with scopolamine-induced amnesia. Cognitive performance of the rats was investigated by using the Morris water maze and passive avoidance tests. Changes in motor activity were assessed by using the activity cage and Rota-rod tests and then morphological changes in the hippocampus were assessed via immunohistochemical stainings. The results indicated that scopolamine impaired learning and memory parameters in rats. Worsened cognitive performance, neuronal loss, and decreased hippocampal synaptophysin, Ki-67, and glial fibrillary acidic protein density were observed. Tofisopam administration at a dose of 50 mg/kg for seven days improved the impaired cognitive performance, enhanced the attenuated synaptic transmission in the hippocampus, increased proliferation in subgranular zones, and improved the decrease in astrocytes in amnesic rats. These findings point out the anti-amnesic effects of tofisopam with concomitant improvements in the hippocampal synaptogenesis, neurogenesis, and glial plasticity, for the first time. Presented beneficial effects of tofisopam on cognitive dysfunctions may have a notable clinical value considering the fact that one of the most important side effects of 1,4-benzodiazepines, which are classical anxiolytic drugs, is amnesia. However, these preclinical results need to be confirmed with further clinical studies, first.
Collapse
|
31
|
Morera-Herreras T, Gioanni Y, Perez S, Vignoud G, Venance L. Environmental enrichment shapes striatal spike-timing-dependent plasticity in vivo. Sci Rep 2019; 9:19451. [PMID: 31857605 PMCID: PMC6923403 DOI: 10.1038/s41598-019-55842-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Behavioural experience, such as environmental enrichment (EE), induces long-term effects on learning and memory. Learning can be assessed with the Hebbian paradigm, such as spike-timing-dependent plasticity (STDP), which relies on the timing of neuronal activity on either side of the synapse. Although EE is known to control neuronal excitability and consequently spike timing, whether EE shapes STDP remains unknown. Here, using in vivo long-duration intracellular recordings at the corticostriatal synapses we show that EE promotes asymmetric anti-Hebbian STDP, i.e. spike-timing-dependent-potentiation (tLTP) for post-pre pairings and spike-timing-dependent-depression (tLTD) for pre-post pairings, whereas animals grown in standard housing show mainly tLTD and a high failure rate of plasticity. Indeed, in adult rats grown in standard conditions, we observed unidirectional plasticity (mainly symmetric anti-Hebbian tLTD) within a large temporal window (~200 ms). However, rats grown for two months in EE displayed a bidirectional STDP (tLTP and tLTD depending on spike timing) in a more restricted temporal window (~100 ms) with low failure rate of plasticity. We also found that the effects of EE on STDP characteristics are influenced by the anaesthesia status: the deeper the anaesthesia, the higher the absence of plasticity. These findings establish a central role for EE and the anaesthetic regime in shaping in vivo, a synaptic Hebbian learning rule such as STDP.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
- Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
| | - Yves Gioanni
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Sylvie Perez
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Gaetan Vignoud
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France
| | - Laurent Venance
- Team Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, Paris, France.
| |
Collapse
|
32
|
Abstract
'Enriched environments' are a key experimental paradigm to decipher how interactions between genes and environment change the structure and function of the brain across the lifespan of an animal. The regulation of adult hippocampal neurogenesis by environmental enrichment is a prime example of this complex interaction. As each animal in an enriched environment will have a slightly different set of experiences that results in downstream differences between individuals, enrichment can be considered not only as an external source of rich stimuli but also to provide the room for individual behaviour that shapes individual patterns of brain plasticity and thus function.
Collapse
|
33
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
34
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
35
|
Abraham WC, Richter-Levin G. From Synaptic Metaplasticity to Behavioral Metaplasticity. Neurobiol Learn Mem 2019; 154:1-4. [PMID: 30217268 DOI: 10.1016/j.nlm.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Gal Richter-Levin
- Sagol Department of Neuroscience, Department of Psychology, The Integrated Brain & Behavior Researcher Center, University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1143-1169. [DOI: 10.3758/s13415-019-00743-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Devulapalli RK, Nelsen JL, Orsi SA, McFadden T, Navabpour S, Jones N, Martin K, O'Donnell M, McCoig EL, Jarome TJ. Males and Females Differ in the Subcellular and Brain Region Dependent Regulation of Proteasome Activity by CaMKII and Protein Kinase A. Neuroscience 2019; 418:1-14. [PMID: 31449987 DOI: 10.1016/j.neuroscience.2019.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls the degradation of ~90% of short-lived proteins in cells and is involved in activity- and learning-dependent synaptic plasticity in the brain. Calcium/calmodulin dependent protein kinase II (CaMKII) and Protein Kinase A (PKA) can regulate activity of the proteasome. However, there have been a number of conflicting reports regarding under what conditions CaMKII and PKA regulate proteasome activity in the brain. Furthermore, this work has been done exclusively in males, leaving questions about whether these kinases also regulate the proteasome in females. Here, using subcellular fractionation protocols in combination with in vitro pharmacology and proteasome activity assays, we investigated the conditions under which CaMKII and PKA regulate proteasome activity in the brains of male and female rats. In males, nuclear proteasome chymotrypsin activity was regulated by PKA in the amygdala but CaMKII in the hippocampus. Conversely, in females CaMKII regulated nuclear chymotrypsin activity in the amygdala, but not hippocampus. Additionally, in males CaMKII and PKA regulated proteasome trypsin activity in the cytoplasm of hippocampal, but not amygdala cells, while in females both CaMKII and PKA could regulate this activity in the nucleus of cells in both regions. Proteasome peptidylglutamyl activity was regulated by CaMKII and PKA activity in the nuclei of amygdala and hippocampus cells in males. However, in females PKA regulated nuclear peptidylglutamyl activity in the amygdala, but not hippocampus. Collectively, these results suggest that CaMKII- and PKA-dependent regulation of proteasome activity in the brain varies significantly across subcellular compartments and between males and females.
Collapse
Affiliation(s)
- Rishi K Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jacob L Nelsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sabrina A Orsi
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Natalie Jones
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madison O'Donnell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Emmarose L McCoig
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA.
| |
Collapse
|
38
|
Wassouf Z, Schulze-Hentrich JM. Alpha-synuclein at the nexus of genes and environment: the impact of environmental enrichment and stress on brain health and disease. J Neurochem 2019; 150:591-604. [PMID: 31165472 PMCID: PMC6771760 DOI: 10.1111/jnc.14787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Accumulation of alpha‐synuclein protein aggregates is the hallmark neuropathologic feature of synucleinopathies such as Parkinson’s disease. Rare point mutations and multiplications in SNCA, the gene encoding alpha‐synuclein, as well as other genetic alterations are linked to familial Parkinson’s disease cases with high penetrance and hence constitute major genetic risk factors for Parkinson’s disease. However, the preponderance of cases seems sporadic, most likely based on a complex interplay between genetic predispositions, aging processes and environmental influences. Deciphering the impact of these environmental factors and their interactions with the individual genetic background in humans is challenging and often requires large cohorts, complicated study designs, and longitudinal set‐ups. In contrast, rodent models offer an ideal system to study the influence of individual environmental aspects under controlled genetic background and standardized conditions. In this review, we highlight findings from studies examining effects of environmental enrichment mimicking stimulation of the brain by its physical and social surroundings as well as of environmental stressors on brain health in the context of Parkinson’s disease. We discuss possible internal molecular transducers of such environmental cues in Parkinson’s disease rodent models and emphasize their potential in developing novel avenues to much‐needed therapies for this still incurable disease. ![]()
This article is part of the Special Issue “Synuclein”
Collapse
Affiliation(s)
- Zinah Wassouf
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
39
|
Electroacupuncture Mitigates Hippocampal Cognitive Impairments by Reducing BACE1 Deposition and Activating PKA in APP/PS1 Double Transgenic Mice. Neural Plast 2019; 2019:2823679. [PMID: 31223308 PMCID: PMC6541940 DOI: 10.1155/2019/2823679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Increased amyloid-β (Aβ) plaque deposition is thought to be the main cause of Alzheimer's disease (AD). β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is the key protein involved in Aβ peptide generation. Excessive expression of BACE1 might cause overproduction of neurotoxins in the central nervous system. Previous studies indicated that BACE1 initially cleaves the amyloid precursor protein (APP) and may subsequently interfere with physiological functions of proteins such as PKA, which is recognized to be closely associated with long-term potentiation (LTP) level and can effectively ameliorate cognitive impairments. Therefore, revealing the underlying mechanism of BACE1 in the pathogenesis of AD might have a significant impact on the future development of therapeutic agents targeting dementia. This study examined the effects of electroacupuncture (EA) stimulation on BACE1, APP, and p-PKA protein levels in hippocampal tissue samples. Memory and learning abilities were assessed using the Morris water maze test after EA intervention. Immunofluorescence, immunohistochemistry, and western blot were employed to assess the distribution patterns and expression levels of BACE1, APP, and p-PKA, respectively. The results showed the downregulation of BACE1 and APP and the activation of PKA by EA. In summary, EA treatment might reduce BACE1 deposition in APP/PS1 transgenic mice and regulate PKA and its associated substrates, such as LTP to change memory and learning abilities.
Collapse
|
40
|
Burgos H, Hernández A, Constandil L, Ríos M, Flores O, Puentes G, Hernández K, Morgan C, Valladares L, Castillo A, Cofre C, Milla LA, Sáez-Briones P, Barra R. Early postnatal environmental enrichment restores neurochemical and functional plasticities of the cerebral cortex and improves learning performance in hidden-prenatally-malnourished young-adult rats. Behav Brain Res 2019; 363:182-190. [DOI: 10.1016/j.bbr.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 02/01/2019] [Indexed: 01/28/2023]
|
41
|
Sase AS, Lombroso SI, Santhumayor BA, Wood RR, Lim CJ, Neve RL, Heller EA. Sex-Specific Regulation of Fear Memory by Targeted Epigenetic Editing of Cdk5. Biol Psychiatry 2019; 85:623-634. [PMID: 30661667 DOI: 10.1016/j.biopsych.2018.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sex differences in the expression and prevalence of trauma- and stress-related disorders have led to a growing interest in the sex-specific molecular and epigenetic mechanisms underlying these diseases. Cyclin-dependent kinase 5 (CDK5) is known to underlie both fear memory and stress behavior in male mice. Given our recent finding that targeted histone acetylation of Cdk5 regulates stress responsivity in male mice, we hypothesized that such a mechanism may be functionally relevant in female mice as well. METHODS We applied epigenetic editing of Cdk5 in the hippocampus and examined the regulation of fear memory retrieval in male and female mice. Viral expression of zinc finger proteins targeting histone acetylation to the Cdk5 promoter was paired with a quantification of learning and memory of contextual fear conditioning, expression of CDK5, and enrichment of histone modifications of the Cdk5 gene. RESULTS We found that male mice exhibit stronger long-term memory retrieval than do female mice, and this finding was associated with male-specific epigenetic activation of hippocampal Cdk5 expression. Sex differences in behavior and epigenetic regulation of Cdk5 occurred after long-term, but not short-term, fear memory retrieval. Finally, targeted histone acetylation of hippocampal Cdk5 promoter attenuated fear memory retrieval and increased tau phosphorylation in female but not male mice. CONCLUSIONS Epigenetic editing uncovered a female-specific role of Cdk5 activation in attenuating fear memory retrieval. This finding may be attributed to CDK5 mediated hyperphosphorylation of tau only in the female hippocampus. Sex-specific epigenetic regulation of Cdk5 may reflect differences in the effect of CDK5 on downstream target proteins that regulate memory.
Collapse
Affiliation(s)
- Ajinkya S Sase
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brandon A Santhumayor
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rozalyn R Wood
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Brandwein NJ, Nguyen PV. Noradrenergic stabilization of heterosynaptic LTP requires activation of Epac in the hippocampus. ACTA ACUST UNITED AC 2019; 26:31-38. [PMID: 30651375 PMCID: PMC6340117 DOI: 10.1101/lm.048660.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
Beta-adrenergic receptor (β-AR) activation by norepinephrine (NE) enhances memory and stabilizes long-term potentiation (LTP), a form of synaptic plasticity believed to underlie some forms of hippocampal memory. LTP can occur at multiple synaptic pathways as a result of strong stimulation to one pathway preceding milder stimulation of an adjacent, independent pathway. Synaptic tagging allows LTP to be transferred, or captured, at heterosynaptic pathways. Previous research has shown that β-AR activation promotes heterosynaptic LTP by engaging various signaling cascades. In particular, cyclic adenosine monophosphate (cAMP) activates cAMP-dependent protein kinase A (PKA) and guanine nucleotide exchange protein activated by cAMP (Epac), to enhance LTP. Epac activation can occlude subsequent induction of stable homosynaptic LTP after β-AR activation, but it is unclear whether Epac activation is required for heterosynaptic LTP following pairing of the natural transmitter, NE, with one 100 Hz train of stimulation ("NE-LTP"). Using electrophysiologic recordings of CA1 field excitatory postsynaptic potentials during stimulation of two independent synaptic pathways in murine hippocampal slices, we show that distinct inhibitors of Epac blocked stabilization of homo- and heterosynaptic NE-LTP. PKA inhibition also attenuated heterosynaptic transfer of NE-LTP, but only when a PKA inhibitor was applied during tetanization of a second, heterosynaptic pathway that was not treated with NE. Our data suggest that NE, paired with 100 Hz, activates Epac to stabilize homo- and heterosynaptic LTP. Epac may regulate the production of plasticity-related proteins and subsequent synaptic capture of NE-LTP at a heterosynaptic pathway. Epac activation under these conditions may enable behavioral experiences that engage noradrenergic inputs to hippocampal circuits to be transformed into stable long-term memories.
Collapse
Affiliation(s)
- Nathan J Brandwein
- Department of Physiology and Institute of Neuroscience and Mental Health, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - Peter V Nguyen
- Department of Physiology and Institute of Neuroscience and Mental Health, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
43
|
Lin TW, Tsai SF, Kuo YM. Physical Exercise Enhances Neuroplasticity and Delays Alzheimer's Disease. Brain Plast 2018; 4:95-110. [PMID: 30564549 PMCID: PMC6296269 DOI: 10.3233/bpl-180073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that exercise can improve learning and memory as well as attenuate neurodegeneration, including Alzheimer's disease (AD). In addition to improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates systems like angiogenesis and glial activation that are known to support neuroplasticity. Moreover, exercise helps to maintain a cerebral microenvironment that facilitates synaptic plasticity by enhancing the clearance of Aβ, one of the main culprits of AD pathogenesis. The purpose of this review is to highlight the positive impacts of exercise on promoting neuroplasticity. Possible mechanisms involved in exercise-modulated neuroplasticity are also discussed. Undoubtedly, more studies are needed to design an optimal personalized exercise protocol for enhancing brain function.
Collapse
Affiliation(s)
- Tzu-Wei Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
44
|
Schroyens N, Bender CL, Alfei JM, Molina VA, Luyten L, Beckers T. Post-weaning housing conditions influence freezing during contextual fear conditioning in adult rats. Behav Brain Res 2018; 359:172-180. [PMID: 30391556 PMCID: PMC6314464 DOI: 10.1016/j.bbr.2018.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/14/2023]
Abstract
The present study aimed to investigate the influence of housing conditions on contextual fear memory malleability. Male Wistar rats were housed in enriched, standard, or impoverished conditions after weaning and remained in these conditions throughout the entire experiment. After six weeks into those housing conditions, all animals underwent a 3-day protocol including contextual fear conditioning (day 1), memory reactivation followed by systemic administration of midazolam or vehicle (day 2), and a retention test (day 3). Percentage freezing was used as a behavioral measure of contextual fear. There was no evidence for an effect of housing conditions on the sensitivity of contextual fear memory to amnestic effects of post-reactivation midazolam administration, and no indication for amnestic effects of post-reactivation midazolam overall (including in the standard group). The inability to replicate previous demonstrations of post-reactivation amnesia using the same protocol underscores the subtle nature of post-reactivation pharmacological memory interference. Notably, impoverished housing resulted in a decrease in contextual freezing during contextual fear conditioning, reactivation and retention testing, compared to enriched and standard housing conditions. This observation warrants caution when interpreting the results from experiments regarding effects of housing on fear memory processes, particularly when freezing is used as a measure of fear.
Collapse
Affiliation(s)
- Natalie Schroyens
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Crhistian Luis Bender
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Joaquín Matias Alfei
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Victor Alejandro Molina
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Laura Luyten
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium.
| | - Tom Beckers
- Centre for the Psychology of Learning and Experimental Psychopathology, Department of Psychology, KU Leuven, Tiensestraat 102 bus 3712, 3000 Leuven, Belgium; Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
45
|
Sampedro-Piquero P, Álvarez-Suárez P, Moreno-Fernández RD, García-Castro G, Cuesta M, Begega A. Environmental Enrichment Results in Both Brain Connectivity Efficiency and Selective Improvement in Different Behavioral Tasks. Neuroscience 2018; 388:374-383. [PMID: 30086366 DOI: 10.1016/j.neuroscience.2018.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Exposure to environmental enrichment (EE) has been a useful model for studying the effects of experience on brain plasticity, but to date, few is known about the impact of this condition on the brain functional networks that probably underlies the multiple behavioral improvements. Hence, we assessed the effect of an EE protocol in adult Wistar rats on the performance in several behavioral tasks testing different domains (Open field (OP): locomotor activity; Elevated-zero maze (EZM): anxiety-related behaviors; 5-choice serial reaction time task (5-CSRTT): attentional processes; 4-arm radial water maze (4-RAWM): spatial memory) in order to check its effectiveness in a wide range of functions. After this, we analyzed the functional brain connectivity underlying each experimental condition through cytochrome C oxidase (COx) histochemistry. Our EE protocol reduced both locomotor activity in the OP and anxiety-related behaviors in the EZM. On the other hand, enriched rats showed more accuracy in the 4-RAWM, whereas 5-CSRTT performance was not significantly ameliorated by EE condition. In relation to COx functional connectivity, we found that EE reduced the number of strong positive correlations both in basal and training conditions, suggesting a modulating effect on specific brain connections. Our results suggest that EE seems to have a selective effect on specific brain regions, such as prefrontal cortex and hippocampus, leading to a more efficient brain connectivity.
Collapse
Affiliation(s)
- P Sampedro-Piquero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | | | - R D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - G García-Castro
- Instituto de Neurociencias del Principado de Asturias INEUROPA, Departamento de Psicología, Facultad de Psicología, Universidad de Oviedo, Spain
| | - M Cuesta
- Instituto de Neurociencias del Principado de Asturias INEUROPA, Departamento de Psicología, Facultad de Psicología, Universidad de Oviedo, Spain
| | - A Begega
- Instituto de Neurociencias del Principado de Asturias INEUROPA, Departamento de Psicología, Facultad de Psicología, Universidad de Oviedo, Spain
| |
Collapse
|
46
|
Environmental Enrichment Induces Changes in Long-Term Memory for Social Transmission of Food Preference in Aged Mice through a Mechanism Associated with Epigenetic Processes. Neural Plast 2018; 2018:3725087. [PMID: 30123245 PMCID: PMC6079387 DOI: 10.1155/2018/3725087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Decline in declarative learning and memory performance is a typical feature of normal aging processes. Exposure of aged animals to an enriched environment (EE) counteracts this decline, an effect correlated with reduction of age-related changes in hippocampal dendritic branching, spine density, neurogenesis, gliogenesis, and neural plasticity, including its epigenetic underpinnings. Declarative memories depend on the medial temporal lobe system, including the hippocampus, for their formation, but, over days to weeks, they become increasingly dependent on other brain regions such as the neocortex and in particular the prefrontal cortex (PFC), a process known as system consolidation. Recently, it has been shown that early tagging of cortical networks is a crucial neurobiological process for remote memory formation and that this tagging involves epigenetic mechanisms in the recipient orbitofrontal (OFC) areas. Whether EE can enhance system consolidation in aged animals has not been tested; in particular, whether the early tagging mechanisms in OFC areas are deficient in aged animals and whether EE can ameliorate them is not known. This study aimed at testing whether EE could affect system consolidation in aged mice using the social transmission of food preference paradigm, which involves an ethologically based form of associative olfactory memory. We found that only EE mice successfully performed the remote memory recall task, showed neuronal activation in OFC, assessed with c-fos immunohistochemistry and early tagging of OFC, assessed with histone H3 acetylation, suggesting a defective system consolidation and early OFC tagging in aged mice which are ameliorated by EE.
Collapse
|
47
|
Bayne K. Environmental enrichment and mouse models: Current perspectives. Animal Model Exp Med 2018; 1:82-90. [PMID: 30891552 PMCID: PMC6388067 DOI: 10.1002/ame2.12015] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022] Open
Abstract
The provision of environmental enrichment to numerous species of laboratory animals is generally considered routine husbandry. However, mouse enrichment has proven to be very complex due to the often contradictory outcomes (animal health and welfare, variability in scientific data, etc.) associated with strain, age of the animal when enrichment is provided, gender of the animal, scientific use of the animal, and other housing attributes. While this has led to some suggesting that mice should not be provided enrichment, more recently opinion is trending toward acknowledging that enrichment actually normalizes the animal and data obtained from a mouse living in a barren environment are likely not to be representative or even reliable. This article offers an overview of the types of impact enrichment can have on various strains of mice and demonstrates that enrichment not only has a role in mouse husbandry, but also can lead to new areas of scientific enquiry in a number of different fields.
Collapse
|
48
|
Ohline SM, Abraham WC. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 2018; 145:3-12. [PMID: 29634984 DOI: 10.1016/j.neuropharm.2018.04.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Exposure of rodents to an enriched environment (EE) has been shown to reliably increase performance on hippocampus-dependent learning and memory tasks, compared to conspecifics living in standard housing conditions. Here we review the EE-related functional changes in synaptic and cellular properties for neurons in the dentate gyrus and area CA1, as assessed through in vivo and ex vivo electrophysiological approaches. There is a growing consensus of findings regarding the pattern of effects seen. Most prominently, there are changes in cellular excitability and synaptic plasticity in CA1, particularly with short-term and/or periodic exposure to EE. Such changes are much less evident after longer term continuous exposure to EE. In the dentate gyrus, increases in synaptic transmission as well as cell excitability become evident after short-term EE exposure, while the induction of long-term potentiation (LTP) in the dentate is remarkably insensitive, even though it is reliably enhanced by voluntary running. Recent evidence has added a new dimension to the understanding of EE effects on hippocampal electrophysiology by revealing an increased sparsity of place cell representations after long periods of EE treatment. It is possible that such connectivity change is one of the key factors contributing to the enhancement of hippocampus-dependent spatial learning over the long-term, even if there are no obvious changes in other markers such as LTP. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- S M Ohline
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand
| | - W C Abraham
- Department of Psychology, Brain Health Research Centre and Brain Research New Zealand, University of Otago, New Zealand.
| |
Collapse
|
49
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
50
|
Sampedro-Piquero P, Begega A. Environmental Enrichment as a Positive Behavioral Intervention Across the Lifespan. Curr Neuropharmacol 2018; 15:459-470. [PMID: 27012955 PMCID: PMC5543669 DOI: 10.2174/1570159x14666160325115909] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/30/2015] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In recent decades, the interest in behavioral interventions has been growing due to the higher prevalence of age-related cognitive impairments. Hence, behavioral interventions, such as cognitive stimulation and physical activity, and along with these, our lifestyle (education level, work position, frequency of cognitive and social activities) have shown important benefits during the cognitive impairment, dementia and even recovery after brain injury. This is due to the fact that this type of intervention and activities promote the formation of a cognitive and brain reserve that allows tolerating brain damage during a long period of time without the appearance of cognitive symptoms. With regard to this, animal models have proved very useful in providing information about the brain mechanisms involved in the development of these cognitive and brain reserves and how they interact with each other. METHODS We summarize several studies showing the positive effects of Environmental Enrichment (EE), understood as a housing condition in which animals benefit from the sensory, physical, cognitive and social stimulation provided, on brain and cognitive functions usually impaired during aging. RESULTS Most of studies have shown that EE is a successful protocol to improve cognitive functions and reduce anxiety-related behaviors across the lifespan, as well as in animal models of neurodegenerative diseases. CONCLUSION Therefore, EE is a laboratory condition in which some aspects of an active lifestyle are reproduced.
Collapse
Affiliation(s)
- P Sampedro-Piquero
- Department of Biological and Health Psychology, Autonomous University of Madrid, Cantoblanco 28049, Madrid, Spain
| | - A Begega
- Neuroscience Laboratory, Psychology Department, University of Oviedo, Plaza Feijoo s/n 33003 Oviedo, INEUROPA, Spain
| |
Collapse
|