1
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
2
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
3
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
4
|
Hua C, Chen Y, Sun Z, Shi Z, Song Q, Shen L, Lu W, Wang Z, Zang J. Associations of serum arginine acid with sarcopenia in Chinese eldely women. Nutr Metab (Lond) 2024; 21:63. [PMID: 39118134 PMCID: PMC11308234 DOI: 10.1186/s12986-024-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The prevalence of sarcopenia is increasing in worldwide with accelerated aging process. The high dietary protein intakes are associated with improved muscle mass and strength especially in Asian countries. However, there are few researches on amino acid levels or mechanism exploration. We conducted a case-control study to explore the amino acid metabolic characteristics and potential mechanism of elderly women with sarcopenia using targeted amino acid metabolomics approach combined with an analysis of dietary intake. METHODS For our case-control study, we recruited women (65-75 y) from a Shanghai community with 50 patients with sarcopenia and 50 healthy controls. The consensus updated by the Asian Working Group on Sarcopenia in 2019 was used to screening for sarcopenia and control groups. We collected fasting blood samples and evaluated dietary intake. We used the amino acid-targeted metabolomics by ultra performance liquid chromatography tandem mass spectrometry to identify metabolic differentials between the case and control groups and significantly enriched metabolic pathways. RESULTS The case (sarcopenia) group had a lower intake of energy, protein, and high-quality protein (P < 0.05) compared to the control (healthy) group. We identified four differential amino acids: arginine (P < 0.001) and cystine (P = 0.003) were lower, and taurine (P = 0.001) were higher in the case group. CONCLUSION Low levels of arginine in elderly women are associated with a higher risk of sarcopenia.
Collapse
Affiliation(s)
- Chao Hua
- Department of Clinical Nutrition, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuhua Chen
- Department of Clinical Nutrition, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zhuo Sun
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zehuan Shi
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Qi Song
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Liping Shen
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Wei Lu
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Zhengyuan Wang
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Jiajie Zang
- Department of Nutrition and Health, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| |
Collapse
|
5
|
Nielsen RL, Bornæs O, Iversen E, Strejby Christensen LW, Kallemose T, Jawad B, Rasmussen HH, Munk T, Lund TM, Andersen O, Houlind MB, Leegaard Andersen A, Tavenier J. Growth differentiation factor 15 (GDF15) levels are associated with malnutrition in acutely admitted older adults. Clin Nutr 2024; 43:1685-1693. [PMID: 38879915 DOI: 10.1016/j.clnu.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS The aging process is often accompanied by high risk of malnutrition and elevated levels of growth differentiation factor 15 (GDF15). GDF15 is an increasingly recognized biomarker for regulation of metabolism, but few studies have investigated the connection between GDF15 and malnutrition in older age and how it relates to other features of aging such as decreased appetite and physical function. Therefore, we investigated the associations between GDF15 levels and nutritional status, appetite, and physical function in acutely admitted older adults. METHODS Plasma GDF15 levels were measured using immunoassays in 302 older adults (≥65 years) admitted to the emergency department (ED). Nutritional status was evaluated with the Mini Nutritional Assessment Short-Form (MNA®-SF), appetite was evaluated with the Simplified Nutritional Appetite Questionnaire (SNAQ), and physical function was evaluated with handgrip strength (HGS), 30-s chair stand test (30s-RSS), and gait speed (GS). Associations between GDF15 and each outcome was determined by logistic regression adjusted for age, sex, and C-reactive protein (CRP). RESULTS Each doubling in plasma GDF15 level was associated with an adjusted odds ratio (OR) (95% confidence interval) of 1.59 (1.10-2.29, P = 0.01) for risk of malnutrition compared to normal nutrition and 1.19 (0.85-1.69, P = 0.3)) for malnutrition compared to risk of malnutrition. Each doubling in GDF15 was associated with an adjusted OR of 1.63 (1.21-2.23)) for having poor appetite, 1.46 (1.07-1.99) for having low HGS, 1.74 (1.23-2.51) for having low 30s-RSS, and 1.99 (1.39-2.94) for having low GS. CONCLUSION Among older adults admitted to the ED, higher GDF15 levels were significantly associated with malnutrition, poor appetite, and low physical function independent of age, sex, and CRP.
Collapse
Affiliation(s)
- Rikke Lundsgaard Nielsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Olivia Bornæs
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Esben Iversen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Louise Westberg Strejby Christensen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark.
| | - Thomas Kallemose
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Baker Jawad
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Henrik Højgaard Rasmussen
- Center for Nutrition and Intestinal Failure, Aalborg University Hospital, Aalborg University, 9220 Aalborg, Denmark; The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Tina Munk
- The Dietitians and Nutritional Research Unit, EATEN, Copenhagen University Hospital-Herlev and Gentofte, 2100 Copenhagen, Denmark.
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Emergency Department, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark; The Capital Region Pharmacy, Marielundvej 25, 2730 Herlev, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Aino Leegaard Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| | - Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, 2650 Hvidovre, Denmark.
| |
Collapse
|
6
|
Yang Y, Liu H, Zou D, Ji F, Lv R, Wu H, Zhou H, Ren A, Xu T, Hou G, Hu C. Polystyrene microplastics exposure reduces meat quality and disturbs skeletal muscle angiogenesis via thrombospondin 1. Food Res Int 2024; 190:114581. [PMID: 38945601 DOI: 10.1016/j.foodres.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.
Collapse
Affiliation(s)
- Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524013, China
| | - Dongbin Zou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Ao Ren
- Changning Jianghe Hi-Tech Agriculture and Forestry Co., Ltd, Hengyang, Hunan 421500, China
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| |
Collapse
|
7
|
Luo Y, Fujiwara-Tani R, Kawahara I, Goto K, Nukaga S, Nishida R, Nakashima C, Sasaki T, Miyagawa Y, Ogata R, Fujii K, Ohmori H, Kuniyasu H. Cancerous Conditions Accelerate the Aging of Skeletal Muscle via Mitochondrial DNA Damage. Int J Mol Sci 2024; 25:7060. [PMID: 39000167 PMCID: PMC11241065 DOI: 10.3390/ijms25137060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.
Collapse
Grants
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| |
Collapse
|
8
|
Tsai SY. Lost in translation: challenges of current pharmacotherapy for sarcopenia. Trends Mol Med 2024:S1471-4914(24)00138-2. [PMID: 38880726 DOI: 10.1016/j.molmed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
A healthy lifespan relies on independent living, in which active skeletal muscle is a critical element. The cost of not recognizing and acting earlier on unhealthy or aging muscle could be detrimental, since muscular weakness is inversely associated with all-cause mortality. Sarcopenia is characterized by a decline in skeletal muscle mass and strength and is associated with aging. Exercise is the only effective therapy to delay sarcopenia development and improve muscle health in older adults. Although numerous interventions have been proposed to reduce sarcopenia, none has yet succeeded in clinical trials. This review evaluates the biological gap between recent clinical trials targeting sarcopenia and the preclinical studies on which they are based, and suggests an alternative approach to bridge the discrepancy.
Collapse
Affiliation(s)
- Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
El Assar M, Rodríguez-Sánchez I, Álvarez-Bustos A, Rodríguez-Mañas L. Biomarkers of frailty. Mol Aspects Med 2024; 97:101271. [PMID: 38631189 DOI: 10.1016/j.mam.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Several biomarkers have been proposed to identify frailty, a multisystemic age-related syndrome. However, the complex pathophysiology and the absence of a consensus on a comprehensive and universal definition make it challenging to pinpoint a singular biomarker or set of biomarkers that conclusively characterize frailty. This review delves into the main laboratory biomarkers, placing special emphasis on those associated with various pathways closely tied to the frailty condition, such as inflammation, oxidative stress, mitochondrial dysfunction, metabolic and endocrine alterations and microRNA. Additionally, we provide a summary of different clinical biomarkers encompassing different tools that have been proposed to assess frailty. We further address various imaging biomarkers such as Dual Energy X-ray Absorptiometry, Bioelectrical Impedance analysis, Computed Tomography and Magnetic Resonance Imaging, Ultrasound and D3 Creatine dilution. Intervention to treat frailty, including non-pharmacological ones, especially those involving physical exercise and nutrition, and pharmacological interventions, that include those targeting specific mechanisms such as myostatin inhibitors, insulin sensitizer metformin and with special relevance for hormonal treatments are mentioned. We further address the levels of different biomarkers in monitoring the potential positive effects of some of these interventions. Despite the availability of numerous biomarkers, their performance and usefulness in the clinical arena are far from being satisfactory. Considering the multicausality of frailty, there is an increasing need to assess the role of sets of biomarkers and the combination between laboratory, clinical and image biomarkers, in terms of sensitivity, specificity and predictive values for the diagnosis and prognosis of the different outcomes of frailty to improve detection and monitoring of older people with frailty or at risk of developing it, being this a need in the everyday clinical practice.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain.
| |
Collapse
|
10
|
Militello R, Luti S, Gamberi T, Pellegrino A, Modesti A, Modesti PA. Physical Activity and Oxidative Stress in Aging. Antioxidants (Basel) 2024; 13:557. [PMID: 38790662 PMCID: PMC11117672 DOI: 10.3390/antiox13050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Biological aging, characterized by changes in metabolism and physicochemical properties of cells, has an impact on public health. Environment and lifestyle, including factors like diet and physical activity, seem to play a key role in healthy aging. Several studies have shown that regular physical activity can enhance antioxidant defense mechanisms, including the activity of enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase. However, intense or prolonged exercise can also lead to an increase in reactive oxygen species (ROS) production temporarily, resulting in oxidative stress. This phenomenon is referred to as "exercise-induced oxidative stress". The relationship between physical activity and oxidative stress in aging is complex and depends on various factors such as the type, intensity, duration, and frequency of exercise, as well as individual differences in antioxidant capacity and adaptation to exercise. In this review, we analyzed what is reported by several authors regarding the role of physical activity on oxidative stress in the aging process as well as the role of hormesis and physical exercise as tools for the prevention and treatment of sarcopenia, an aging-related disease. Finally, we reported what has recently been studied in relation to the effect of physical activity and sport on aging in women.
Collapse
Affiliation(s)
- Rosamaria Militello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (R.M.); (S.L.); (T.G.)
| | - Simone Luti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (R.M.); (S.L.); (T.G.)
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (R.M.); (S.L.); (T.G.)
| | - Alessio Pellegrino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.P.); (P.A.M.)
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (R.M.); (S.L.); (T.G.)
| | - Pietro Amedeo Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (A.P.); (P.A.M.)
| |
Collapse
|
11
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
12
|
Fielding RA, Atkinson EJ, Aversa Z, White TA, Heeren AA, Mielke MM, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Biomarkers of Cellular Senescence Predict the Onset of Mobility Disability and Are Reduced by Physical Activity in Older Adults. J Gerontol A Biol Sci Med Sci 2024; 79:glad257. [PMID: 37948612 PMCID: PMC10851672 DOI: 10.1093/gerona/glad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/12/2023] Open
Abstract
Studies in mice and cross-sectional studies in humans support the premise that cellular senescence is a contributing mechanism to age-associated deficits in physical function. We tested the hypotheses that circulating proteins secreted by senescent cells are (i) associated with the incidence of major mobility disability (MMD), the development of persistent mobility disability (PMMD), and decrements in physical functioning in older adults, and (ii) influenced by physical activity (PA). Using samples and data obtained longitudinally from the Lifestyle Interventions in Elders Study clinical trial, we measured a panel of 27 proteins secreted by senescent cells. Among 1 377 women and men randomized to either a structured PA intervention or a healthy aging (HA) intervention, we observed significant associations between several senescence biomarkers, most distinctly vascular endothelial growth factor A (VEGFA), tumor necrosis factor receptor 1 (TNFR1), and matrix metallopeptidase 7 (MMP7), and the onset of both MMD and PMMD. Moreover, VEGFA, GDF15, osteopontin, and other senescence biomarkers were associated with reductions in short physical performance battery scores. The change in senescence biomarkers did not differ between PA and HA participants. In the whole cohort, higher levels of PA were associated with significantly greater reductions in 10 senescence-related proteins at 12 and/or 24 months. These data reinforce cellular senescence as a contributing mechanism of age-associated functional decline and the potential for PA to attenuate this hallmark of aging. Clinical Trials Registration Number: NCT01072500.
Collapse
Affiliation(s)
- Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda A Heeren
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Marco Pahor
- Institute on Aging, University of Florida, Gainesville, Florida, USA
| | | | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Marzetti E, Calvani R, Coelho-Júnior HJ, Landi F, Picca A. Mitochondrial Quantity and Quality in Age-Related Sarcopenia. Int J Mol Sci 2024; 25:2052. [PMID: 38396729 PMCID: PMC10889427 DOI: 10.3390/ijms25042052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia, the age-associated decline in skeletal muscle mass and strength, is a condition with a complex pathophysiology. Among the factors underlying the development of sarcopenia are the progressive demise of motor neurons, the transition from fast to slow myosin isoform (type II to type I fiber switch), and the decrease in satellite cell number and function. Mitochondrial dysfunction has been indicated as a key contributor to skeletal myocyte decline and loss of physical performance with aging. Several systems have been implicated in the regulation of muscle plasticity and trophism such as the fine-tuned and complex regulation between the stimulator of protein synthesis, mechanistic target of rapamycin (mTOR), and the inhibitor of mTOR, AMP-activated protein kinase (AMPK), that promotes muscle catabolism. Here, we provide an overview of the molecular mechanisms linking mitochondrial signaling and quality with muscle homeostasis and performance and discuss the main pathways elicited by their imbalance during age-related muscle wasting. We also discuss lifestyle interventions (i.e., physical exercise and nutrition) that may be exploited to preserve mitochondrial function in the aged muscle. Finally, we illustrate the emerging possibility of rescuing muscle tissue homeostasis through mitochondrial transplantation.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy
| |
Collapse
|
14
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
15
|
Gonçalves CES, da Silva RO, Hastreiter AA, Vivian GK, Makiyama EN, Borelli P, Fock RA. Reduced protein intake and aging affects the sustainment of hematopoiesis by impairing bone marrow mesenchymal stem cells. J Nutr Biochem 2024; 124:109511. [PMID: 37913969 DOI: 10.1016/j.jnutbio.2023.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Protein malnourishment (PM) is common among the elderly, but how aging and PM impact hematopoiesis is not fully understood. This study aimed to assess how aging and PM affect the hematopoietic regulatory function of bone marrow (BM) mesenchymal stem cells (MSCs). Young and aged male C57BL/6J mice were fed with normoproteic or hypoproteic diets and had their nutritional, biochemical, and hematological parameters evaluated. BM MSCs were characterized and had their secretome, gene expression, autophagy, reactive oxygen species production (ROS), and DNA double-stranded breaks evaluated. The modulation of hematopoiesis by MSCs was assayed using in vitro and in vivo models. Lastly, BM invasiveness and mice survival were evaluated after being challenged with leukemic cells of the C1498 cell line. Aging and PM alter biochemical parameters, changing the peripheral blood and BM immunophenotype. MSC autophagy was affected by aging and the frequencies for ROS and DNA double-stranded breaks. Regarding the MSCs' secretome, PM and aging affected CXCL12, IL-6, and IL-11 production. Aging and PM up-regulated Akt1 and PPAR-γ while down-regulating Cdh2 and Angpt-1 in MSCs. Aged MSCs increased C1498 cell proliferation while reducing their colony-forming potential. PM and aging lowered mice survival, and malnourishment accumulated C1498 cells at the BM. Finally, aged and/or PM MSCs up-regulated Sox2, Nanog, Pou5f1, and Akt1 expression while down-regulating Cdkn1a in C1498 cells. Together, aging and PM can induce cell-intrinsic shifts in BM MSCs, creating an environment that alters the regulation of hematopoietic populations and favoring the development of malignant cells.
Collapse
Affiliation(s)
- Carlos Eduardo Silva Gonçalves
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renaira Oliveira da Silva
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Kodja Vivian
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity? BMC Biol 2023; 21:287. [PMID: 38066609 PMCID: PMC10709984 DOI: 10.1186/s12915-023-01779-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.
Collapse
Affiliation(s)
- Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rozalyn M Anderson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy W Rhoads
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
17
|
O'Reilly CL, Bodine SC, Miller BF. Current limitations and future opportunities of tracer studies of muscle ageing. J Physiol 2023:10.1113/JP285616. [PMID: 38051758 PMCID: PMC11150331 DOI: 10.1113/jp285616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| |
Collapse
|
18
|
Liu C, Xu X, He X, Ren J, Chi M, Deng G, Li G, Nasser MI. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med 2023; 55:2284890. [PMID: 38039549 PMCID: PMC10836253 DOI: 10.1080/07853890.2023.2284890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Deng
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Guisen Li
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
20
|
Callaway CS, Mouchantat LM, Bitler BG, Bonetto A. Mechanisms of Ovarian Cancer-Associated Cachexia. Endocrinology 2023; 165:bqad176. [PMID: 37980602 PMCID: PMC10699881 DOI: 10.1210/endocr/bqad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Cancer-associated cachexia occurs in 50% to 80% of cancer patients and is responsible for 20% to 30% of cancer-related deaths. Cachexia limits survival and treatment outcomes, and is a major contributor to morbidity and mortality during cancer. Ovarian cancer is one of the leading causes of cancer-related deaths in women, and recent studies have begun to highlight the prevalence and clinical impact of cachexia in this population. Here, we review the existing understanding of cachexia pathophysiology and summarize relevant studies assessing ovarian cancer-associated cachexia in clinical and preclinical studies. In clinical studies, there is increased evidence that reduced skeletal muscle mass and quality associate with worse outcomes in subjects with ovarian cancer. Mouse models of ovarian cancer display cachexia, often characterized by muscle and fat wasting alongside inflammation, although they remain underexplored relative to other cachexia-associated cancer types. Certain soluble factors have been identified and successfully targeted in these models, providing novel therapeutic targets for mitigating cachexia during ovarian cancer. However, given the relatively low number of studies, the translational relevance of these findings is yet to be determined and requires more research. Overall, our current understanding of ovarian cancer-associated cachexia is insufficient and this review highlights the need for future research specifically aimed at exploring mechanisms of ovarian cancer-associated cachexia by using unbiased approaches and animal models representative of the clinical landscape of ovarian cancer.
Collapse
Affiliation(s)
- Chandler S Callaway
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lila M Mouchantat
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrea Bonetto
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Muvhulawa N, Mazibuko-Mbeje SE, Ndwandwe D, Silvestri S, Ziqubu K, Moetlediwa MT, Mthembu SXH, Marnewick JL, Van der Westhuizen FH, Nkambule BB, Basson AK, Tiano L, Dludla PV. Sarcopenia in a type 2 diabetic state: Reviewing literature on the pathological consequences of oxidative stress and inflammation beyond the neutralizing effect of intracellular antioxidants. Life Sci 2023; 332:122125. [PMID: 37769808 DOI: 10.1016/j.lfs.2023.122125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Sarcopenia remains one of the major pathological features of type 2 diabetes (T2D), especially in older individuals. This condition describes gradual loss of muscle mass, strength, and function that reduces the overall vitality and fitness, leading to increased hospitalizations and even fatalities to those affected. Preclinical evidence indicates that dysregulated mitochondrial dynamics, together with impaired activity of the NADPH oxidase system, are the major sources of oxidative stress that drive skeletal muscle damage in T2D. While patients with T2D also display relatively higher levels of circulating inflammatory markers in the serum, including high sensitivity-C-reactive protein, interleukin-6, and tumor necrosis factor-α that are independently linked with the deterioration of muscle function and sarcopenia in T2D. In fact, beyond reporting on the pathological consequences of both oxidative stress and inflammation, the current review highlights the importance of strengthening intracellular antioxidant systems to preserve muscle mass, strength, and function in individuals with T2D.
Collapse
Affiliation(s)
- Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Marakiya T Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | | | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
22
|
Tian X, Pan M, Zhou M, Tang Q, Chen M, Hong W, Zhao F, Liu K. Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. Aging Dis 2023; 14:1700-1713. [PMID: 37196123 PMCID: PMC10529753 DOI: 10.14336/ad.2023.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcopenia is defined as the age-related loss of muscle mass and function that can lead to prolonged hospital stays and decreased independence. It is a significant health and financial burden for individuals, families, and society as a whole. The accumulation of damaged mitochondria in skeletal muscle contributes to the degeneration of muscles with age. Currently, the treatment of sarcopenia is limited to improving nutrition and physical activity. Studying effective methods to alleviate and treat sarcopenia to improve the quality of life and lifespan of older people is a growing area of interest in geriatric medicine. Therapies targeting mitochondria and restoring mitochondrial function are promising treatment strategies. This article provides an overview of stem cell transplantation for sarcopenia, including the mitochondrial delivery pathway and the protective role of stem cells. It also highlights recent advances in preclinical and clinical research on sarcopenia and presents a new treatment method involving stem cell-derived mitochondrial transplantation, outlining its advantages and challenges.
Collapse
Affiliation(s)
- Xiulin Tian
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengxiong Pan
- Department of Neurology, First People’s Hospital of Huzhou, Huzhou, Zhejiang, China.
| | - Mengting Zhou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiaomin Tang
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Miao Chen
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, China.
| | - Wenwu Hong
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai, Taizhou, Zhejiang, China.
| | - Fangling Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
24
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
26
|
Miller MJ, Marcotte GR, Basisty N, Wehrfritz C, Ryan ZC, Strub MD, McKeen AT, Stern JI, Nath KA, Rasmussen BB, Judge AR, Schilling B, Ebert SM, Adams CM. The transcription regulator ATF4 is a mediator of skeletal muscle aging. GeroScience 2023; 45:2525-2543. [PMID: 37014538 PMCID: PMC10071239 DOI: 10.1007/s11357-023-00772-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Aging slowly erodes skeletal muscle strength and mass, eventually leading to profound functional deficits and muscle atrophy. The molecular mechanisms of skeletal muscle aging are not well understood. To better understand mechanisms of muscle aging, we investigated the potential role of ATF4, a transcription regulatory protein that can rapidly promote skeletal muscle atrophy in young animals deprived of adequate nutrition or activity. To test the hypothesis that ATF4 may be involved in skeletal muscle aging, we studied fed and active muscle-specific ATF4 knockout mice (ATF4 mKO mice) at 6 months of age, when wild-type mice have achieved peak muscle mass and function, and at 22 months of age, when wild-type mice have begun to manifest age-related muscle atrophy and weakness. We found that 6-month-old ATF4 mKO mice develop normally and are phenotypically indistinguishable from 6-month-old littermate control mice. However, as ATF4 mKO mice become older, they exhibit significant protection from age-related declines in strength, muscle quality, exercise capacity, and muscle mass. Furthermore, ATF4 mKO muscles are protected from some of the transcriptional changes characteristic of normal muscle aging (repression of certain anabolic mRNAs and induction of certain senescence-associated mRNAs), and ATF4 mKO muscles exhibit altered turnover of several proteins with important roles in skeletal muscle structure and metabolism. Collectively, these data suggest ATF4 as an essential mediator of skeletal muscle aging and provide new insight into a degenerative process that impairs the health and quality of life of many older adults.
Collapse
Affiliation(s)
- Matthew J Miller
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Iowa, Iowa City, IA, USA
| | - George R Marcotte
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- University of Iowa, Iowa City, IA, USA
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, USA
- National Institute on Aging, NIH, Baltimore, MD, USA
| | | | - Zachary C Ryan
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew D Strub
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Jennifer I Stern
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Karl A Nath
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Blake B Rasmussen
- University of Texas Medical Branch, Galveston, TX, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Andrew R Judge
- University of Florida, Gainesville, FL, USA
- Emmyon, Inc., Rochester, MN, USA
| | | | - Scott M Ebert
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Emmyon, Inc., Rochester, MN, USA.
| | - Christopher M Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Departments of Medicine and Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Emmyon, Inc., Rochester, MN, USA.
- Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
27
|
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L, Zhou C, Sun H. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 2023:115664. [PMID: 37331636 DOI: 10.1016/j.bcp.2023.115664] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, PR China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Chun Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
28
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
29
|
Oliveira-Santos A, Dagda M, Wittmann J, Smalley R, Burkin DJ. Vemurafenib improves muscle histopathology in a mouse model of LAMA2-related congenital muscular dystrophy. Dis Model Mech 2023; 16:dmm049916. [PMID: 37021539 PMCID: PMC10184677 DOI: 10.1242/dmm.049916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Jennifer Wittmann
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Robert Smalley
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| | - Dean J. Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno, NV 89557, USA
| |
Collapse
|
30
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
31
|
Yasuda T, Ishihara T, Ichimura A, Ishihara N. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways. Cell Rep 2023; 42:112434. [PMID: 37097817 DOI: 10.1016/j.celrep.2023.112434] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Skeletal muscle is highly developed after birth, consisting of glycolytic fast-twitch and oxidative slow-twitch fibers; however, the mechanisms of fiber-type-specific differentiation are poorly understood. Here, we found an unexpected role of mitochondrial fission in the differentiation of fast-twitch oxidative fibers. Depletion of the mitochondrial fission factor dynamin-related protein 1 (Drp1) in mouse skeletal muscle and cultured myotubes results in specific reduction of fast-twitch muscle fibers independent of respiratory function. Altered mitochondrial fission causes activation of the Akt/mammalian target of rapamycin (mTOR) pathway via mitochondrial accumulation of mTOR complex 2 (mTORC2), and rapamycin administration rescues the reduction of fast-twitch fibers in vivo and in vitro. Under Akt/mTOR activation, the mitochondria-related cytokine growth differentiation factor 15 is upregulated, which represses fast-twitch fiber differentiation. Our findings reveal a crucial role of mitochondrial dynamics in the activation of mTORC2 on mitochondria, resulting in the differentiation of muscle fibers.
Collapse
Affiliation(s)
- Tatsuki Yasuda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takaya Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Ayaka Ichimura
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan.
| |
Collapse
|
32
|
Arosio B, Calvani R, Ferri E, Coelho-Junior HJ, Carandina A, Campanelli F, Ghiglieri V, Marzetti E, Picca A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023; 15:nu15081853. [PMID: 37111070 PMCID: PMC10142447 DOI: 10.3390/nu15081853] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Declines in physical performance and cognition are commonly observed in older adults. The geroscience paradigm posits that a set of processes and pathways shared among age-associated conditions may also serve as a molecular explanation for the complex pathophysiology of physical frailty, sarcopenia, and cognitive decline. Mitochondrial dysfunction, inflammation, metabolic alterations, declines in cellular stemness, and altered intracellular signaling have been observed in muscle aging. Neurological factors have also been included among the determinants of sarcopenia. Neuromuscular junctions (NMJs) are synapses bridging nervous and skeletal muscle systems with a relevant role in age-related musculoskeletal derangement. Patterns of circulating metabolic and neurotrophic factors have been associated with physical frailty and sarcopenia. These factors are mostly related to disarrangements in protein-to-energy conversion as well as reduced calorie and protein intake to sustain muscle mass. A link between sarcopenia and cognitive decline in older adults has also been described with a possible role for muscle-derived mediators (i.e., myokines) in mediating muscle-brain crosstalk. Herein, we discuss the main molecular mechanisms and factors involved in the muscle-brain axis and their possible implication in cognitive decline in older adults. An overview of current behavioral strategies that allegedly act on the muscle-brain axis is also provided.
Collapse
Affiliation(s)
- Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Evelyn Ferri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Hélio José Coelho-Junior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Federica Campanelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- San Raffaele University, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| |
Collapse
|
33
|
Wang Z, Lin D, Zhao Y, Liu H, Yang T, Li A. MiR-214 Expression Is Elevated in Chronic Rhinosinusitis Mucosa and Regulates Lipopolysaccharide-Mediated Responses in Undifferentiated Human Nasal Epithelial Cell Culture. Am J Rhinol Allergy 2023:19458924231152683. [PMID: 36797977 DOI: 10.1177/19458924231152683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory disorder of the upper airways. MicroRNAs (miRs) are reported to regulate several diverse physiological and pathological processes. OBJECTIVE This study aimed to evaluate the impact of miR-214 on lipopolysaccharide (LPS)-mediated inflammation, and mucin 5AC (MUC5AC) expression in human nasal epithelial cells. METHODS The expression of miR-214 was detected in CRS with polyps (CRSwNP) and CRS without polyps (CRSsNP) tissues. Cells were treated with LPS and a miR-214 inhibitor. The level of miR-214 was detected by quantitative real-time reverse transcriptase-PCR (qRT-PCR). The inflammatory cytokines (IL-6, IL-8, TNF, and IL-1β) and MUC5AC production were determined by qRT-PCR and ELISA. MUC5AC protein level was detected using western blot. Similarly, we determined the relationship between miR-214 and Sirtuin 1 (SIRT1) using the Dual luciferase activity assay. RESULTS miR-214 was increased in CRSwNP and CRSsNP tissues. LPS triggered the expression of miR-214, while miR-214 inhibition diminished the level of miR-214. MiR-214 inhibition prevented LPS-mediated the production of inflammatory cytokines. LPS treatment augmented MUC5AC mRNA, protein levels, and secretion, whereas miR-214 loss inhibited MUC5AC production in the presence of LPS. SIRT1 is a direct target of miR-214. Impairing SIRT1 by siRNA (siSIRT1) or EX527 (a selective SIRT1 inhibitor) reversed the effects of miR-214 inhibitor on inflammation and MUC5AC expression. Furthermore, miR-214 depression inhibited the STAT3/GDF15 pathway via targeting SIRT1. Upregulation of STAT3 or GDF15 partly abolished the anti-inflammatory roles of miR-214 inhibitor. CONCLUSION Taken together, miR-214 regulates LPS-mediated inflammation and MUC5AC expression via targeting SIRT1, and STAT3/GDF15 may involve in the regulation of miR-214 inhibitor on inflammation and MUC5AC expression.
Collapse
Affiliation(s)
- Zhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Dong Lin
- Department of Quality Control, Shaanxi Geological and Mineral Hospital, Xi'an, People's Republic of China
| | - Yuxiang Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Hui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Ting Yang
- Xi'an Medical University, Xi'an, People's Republic of China
| | - An Li
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| |
Collapse
|
34
|
Crombie EM, Kim S, Adamson S, Dong H, Lu TC, Wu Y, Wu Y, Levy Y, Stimple N, Lam WMR, Hey HWD, Withers DJ, Hsu AL, Bay BH, Ochala J, Tsai SY. Activation of eIF4E-binding-protein-1 rescues mTORC1-induced sarcopenia by expanding lysosomal degradation capacity. J Cachexia Sarcopenia Muscle 2023; 14:198-213. [PMID: 36398408 PMCID: PMC9891956 DOI: 10.1002/jcsm.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic mTORC1 activation in skeletal muscle is linked with age-associated loss of muscle mass and strength, known as sarcopenia. Genetic activation of mTORC1 by conditionally ablating mTORC1 upstream inhibitor TSC1 in skeletal muscle accelerates sarcopenia development in adult mice. Conversely, genetic suppression of mTORC1 downstream effectors of protein synthesis delays sarcopenia in natural aging mice. mTORC1 promotes protein synthesis by activating ribosomal protein S6 kinases (S6Ks) and inhibiting eIF4E-binding proteins (4EBPs). Whole-body knockout of S6K1 or muscle-specific over-expression of a 4EBP1 mutant transgene (4EBP1mt), which is resistant to mTORC1-mediated inhibition, ameliorates muscle loss with age and preserves muscle function by enhancing mitochondria activities, despite both transgenic mice showing retarded muscle growth at a young age. Why repression of mTORC1-mediated protein synthesis can mitigate progressive muscle atrophy and dysfunction with age remains unclear. METHODS Mice with myofiber-specific knockout of TSC1 (TSC1mKO), in which mTORC1 is hyperactivated in fully differentiated myofibers, were used as a mouse model of sarcopenia. To elucidate the role of mTORC1-mediated protein synthesis in regulating muscle mass and physiology, we bred the 4EBP1mt transgene or S6k1 floxed mice into the TSC1mKO mouse background to generate 4EBP1mt-TSC1mKO or S6K1-TSC1mKO mice, respectively. Functional and molecular analyses were performed to assess their role in sarcopenia development. RESULTS Here, we show that 4EBP1mt-TSC1mKO, but not S6K1-TSC1mKO, preserved muscle mass (36.7% increase compared with TSC1mKO, P < 0.001) and strength (36.8% increase compared with TSC1mKO, P < 0.01) at the level of control mice. Mechanistically, 4EBP1 activation suppressed aberrant protein synthesis (two-fold reduction compared with TSC1mKO, P < 0.05) and restored autophagy flux without relieving mTORC1-mediated inhibition of ULK1, an upstream activator of autophagosome initiation. We discovered a previously unidentified phenotype of lysosomal failure in TSC1mKO mouse muscle, in which the lysosomal defect was also conserved in the naturally aged mouse muscle, whereas 4EBP1 activation enhanced lysosomal protease activities to compensate for impaired autophagy induced by mTORC1 hyperactivity. Consequently, 4EBP1 activation relieved oxidative stress to prevent toxic aggregate accumulation (0.5-fold reduction compared with TSC1mKO, P < 0.05) in muscle and restored mitochondrial homeostasis and function. CONCLUSIONS We identify 4EBP1 as a communication hub coordinating protein synthesis and degradation to protect proteostasis, revealing therapeutic potential for activating lysosomal degradation to mitigate sarcopenia.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seonyoung Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart Adamson
- Buck Institute for Research on Aging, Novato, California, USA
| | - Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tzu-Chiao Lu
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan
| | - Yiju Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yotam Levy
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College, London, UK
| | - Nolan Stimple
- Buck Institute for Research on Aging, Novato, California, USA
| | - Wing Moon R Lam
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwee Weng D Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dominic J Withers
- Metabolic Signalling Group, Medical Research Council London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Ao-Lin Hsu
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College, London, UK.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
36
|
Pérez-Rodríguez M, Huertas JR, Villalba JM, Casuso RA. Mitochondrial adaptations to calorie restriction and bariatric surgery in human skeletal muscle: a systematic review with meta-analysis. Metabolism 2023; 138:155336. [PMID: 36302454 DOI: 10.1016/j.metabol.2022.155336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We performed a meta-analysis to determine the changes induced by calorie restriction (CR) and bariatric surgery on human skeletal muscle mitochondria. METHODS A systematic search of Medline and Web of Science was conducted. Controlled trials exploring CR (≥14 days) and mitochondrial function and/or content assessment were included. Moreover, studies analyzing weight loss following gastric surgery were included for comparison purposes. Human muscle data from 28 studies assessing CR (520 muscle samples) and from 10 studies assessing bariatric surgery (155 muscle samples) were analyzed in a random effect meta-analysis with three a priori chosen covariates. MAIN RESULTS We report a decrease (p < 0.05) (mean (95 % CI)) in maximal mitochondrial state 3 respiration in response to CR (-0.44 (-0.85, -0.03)) but not in response to surgery (-0.33 (-1.18, 0.52)). No changes in mitochondrial content were reported after CR (-0.05 (-0.12, 0.13)) or in response to surgery (0.23 (-0.05, 0.52)). Moreover, data from CR subjects showed a reduction in complex IV (CIV) activity (-0.29 (-0.56, -0.03)) but not in CIV content (-0.21 (-0.63, 0.22)). Similar results were obtained when the length of the protocol, the initial body mass index, and the estimated energy deficit were included in the model as covariates. CONCLUSION The observation of reduced maximal mitochondrial state 3, uncoupled respiration, and CIV activity without altering mitochondrial content suggests that, in human skeletal muscle, CR mainly modulates intrinsic mitochondrial function.
Collapse
Affiliation(s)
- Miguel Pérez-Rodríguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | | | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, and ceiA3Campus of International Excellence in Agrifood, Spain
| | - Rafael A Casuso
- Department of Physiology, University of Granada, Spain; Department of Health Sciences, Universidad Loyola Andalucía, Spain.
| |
Collapse
|
37
|
Chen Y, Hu Q, Wang C, Wang T. The crosstalk between BAT thermogenesis and skeletal muscle dysfunction. Front Physiol 2023; 14:1132830. [PMID: 37153220 PMCID: PMC10160478 DOI: 10.3389/fphys.2023.1132830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Metabolic defects increase the risk of skeletal muscle diseases, and muscle impairment might worsen metabolic disruption, leading to a vicious cycle. Both brown adipose tissue (BAT) and skeletal muscle play important roles in non-shivering thermogenesis to regulate energy homeostasis. BAT regulates body temperature, systemic metabolism, and seretion of batokines that have positive or negative impacts on skeletal muscle. Conversely, muscle can secrete myokines that regulate BAT function. This review explained the crosstalk between BAT and skeletal muscle, and then discussed the batokines and highlighted their impact on skeletal muscle under physiological conditions. BAT is now considered a potential therapeutic target for obesity and diabetes treatment. Moreover, manipulation of BAT may be an attractive approach for the treatment of muscle weakness by correcting metabolic deficits. Therefore, exploring BAT as a potential treatment for sarcopenia could be a promising avenue for future research.
Collapse
Affiliation(s)
- Yao Chen
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Hu
- Health Management Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changyi Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| | - Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Changyi Wang, ; Tiantian Wang,
| |
Collapse
|
38
|
Han X, Goh KY, Lee WX, Choy SM, Tang HW. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int J Mol Sci 2022; 24:297. [PMID: 36613741 PMCID: PMC9820406 DOI: 10.3390/ijms24010297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1, mTORC1, integrates nutrient and growth factor signals with cellular responses and plays critical roles in regulating cell growth, proliferation, and lifespan. mTORC1 signaling has been reported as a central regulator of autophagy by modulating almost all aspects of the autophagic process, including initiation, expansion, and termination. An increasing number of studies suggest that mTORC1 and autophagy are critical for the physiological function of skeletal muscle and are involved in diverse muscle diseases. Here, we review recent insights into the essential roles of mTORC1 and autophagy in skeletal muscles and their implications in human muscle diseases. Multiple inhibitors targeting mTORC1 or autophagy have already been clinically approved, while others are under development. These chemical modulators that target the mTORC1/autophagy pathways represent promising potentials to cure muscle diseases.
Collapse
Affiliation(s)
- Xujun Han
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
39
|
Wedel S, Martic I, Guerrero Navarro L, Ploner C, Pierer G, Jansen‐Dürr P, Cavinato M. Depletion of growth differentiation factor 15 (GDF15) leads to mitochondrial dysfunction and premature senescence in human dermal fibroblasts. Aging Cell 2022; 22:e13752. [PMID: 36547021 PMCID: PMC9835581 DOI: 10.1111/acel.13752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.
Collapse
Affiliation(s)
- Sophia Wedel
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Ines Martic
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Lena Guerrero Navarro
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Pidder Jansen‐Dürr
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| | - Maria Cavinato
- Institute for Biochemical Aging ResearchUniversity of InnsbruckInnsbruckAustria,Center for Molecular Biosciences Innsbruck (CMBI)InnsbruckAustria
| |
Collapse
|
40
|
Muscle 4EBP1 activation modifies the structure and function of the neuromuscular junction in mice. Nat Commun 2022; 13:7792. [PMID: 36526657 PMCID: PMC9758177 DOI: 10.1038/s41467-022-35547-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.
Collapse
|
41
|
Perez K, Ciotlos S, McGirr J, Limbad C, Doi R, Nederveen JP, Nilsson MI, Winer DA, Evans W, Tarnopolsky M, Campisi J, Melov S. Single nuclei profiling identifies cell specific markers of skeletal muscle aging, frailty, and senescence. Aging (Albany NY) 2022; 14:9393-9422. [PMID: 36516485 PMCID: PMC9792217 DOI: 10.18632/aging.204435] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia or frailty include inflammation, muscle stem cell depletion, mitochondrial dysfunction, and loss of motor neurons, but whether there are key drivers of sarcopenia are not yet known. To gain deeper insights into age-related muscle loss, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, elderly, and frail human subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed changes in gene expression that occur with age and frailty in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in aged muscle. We validated several key genes changes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21cip1-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related frailty.
Collapse
Affiliation(s)
- Kevin Perez
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Serban Ciotlos
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Julia McGirr
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | | | - Ryosuke Doi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
- Drug Discovery Research, Astellas Pharma, Tsukuba, Ibaraki, Japan
| | | | | | | | - William Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94952, USA
| |
Collapse
|
42
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
43
|
Abstract
Skeletal muscle mass is a very plastic characteristic of skeletal muscle and is regulated by signaling pathways that control the balance between anabolic and catabolic processes. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR) has been shown to be critically important in the regulation of skeletal muscle mass through its regulation of protein synthesis and degradation pathways. In this commentary, recent advances in the understanding of the role of mTORC1 in the regulation of muscle mass under conditions that induce hypertrophy and atrophy will be highlighted.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
44
|
Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int J Mol Sci 2022; 23:ijms232213823. [PMID: 36430301 PMCID: PMC9696247 DOI: 10.3390/ijms232213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of skeletal myocyte viability. The signaling pathways triggered by mTOR vary according to the type of endogenous and exogenous factors (e.g., redox balance, nutrient availability, physical activity) as well as organismal age. Here, we provide an overview of mTOR signaling in skeletal muscle, with a special focus on the role played by mTOR in the development of sarcopenia. Intervention strategies targeting mTOR in sarcopenia (e.g., supplementation of plant extracts, hormones, inorganic ions, calorie restriction, and exercise) have also been discussed.
Collapse
|
45
|
Kaiser MS, Milan G, Ham DJ, Lin S, Oliveri F, Chojnowska K, Tintignac LA, Mittal N, Zimmerli CE, Glass DJ, Zavolan M, Rüegg MA. Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis. Commun Biol 2022; 5:1141. [PMID: 36302954 PMCID: PMC9613904 DOI: 10.1038/s42003-022-04097-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle size is controlled by the PI3K-PKB/Akt-mTORC1-FoxO pathway, which integrates signals from growth factors, energy and amino acids to activate protein synthesis and inhibit protein breakdown. While mTORC1 activity is necessary for PKB/Akt-induced muscle hypertrophy, its constant activation alone induces muscle atrophy. Here we show that this paradox is based on mTORC1 activity promoting protein breakdown through the ubiquitin-proteasome system (UPS) by simultaneously inducing ubiquitin E3 ligase expression via feedback inhibition of PKB/Akt and proteasome biogenesis via Nuclear Factor Erythroid 2-Like 1 (Nrf1). Muscle growth was restored by reactivation of PKB/Akt, but not by Nrf1 knockdown, implicating ubiquitination as the limiting step. However, both PKB/Akt activation and proteasome depletion by Nrf1 knockdown led to an immediate disruption of proteome integrity with rapid accumulation of damaged material. These data highlight the physiological importance of mTORC1-mediated PKB/Akt inhibition and point to juxtaposed roles of the UPS in atrophy and proteome integrity. Exploring the relationship between mTORC1 and the ubiquitin-proteasome system, light is shed on the paradox between mTORC1-mediated muscle hypertrophy induced by PKB/Akt and the muscle atrophy induced by mTORC1 alone.
Collapse
Affiliation(s)
- Marco S Kaiser
- Biozentrum, University of Basel, Basel, Switzerland.,BIOREBA AG, Christoph Merian-Ring 7, 4153, Reinach, Switzerland
| | - Giulia Milan
- Biozentrum, University of Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Kathrin Chojnowska
- Biozentrum, University of Basel, Basel, Switzerland.,AstraZeneca AG, Neuhofstrasse 34, 6340, Baar, Switzerland
| | - Lionel A Tintignac
- Biozentrum, University of Basel, Basel, Switzerland.,Neuromuscular Research Group, Departments of Neurology and Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | | | - Christian E Zimmerli
- Biozentrum, University of Basel, Basel, Switzerland.,Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.,Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | |
Collapse
|
46
|
Cho CS, Kim Y, Park SR, Kim B, Davis C, Hwang I, Brooks SV, Lee JH, Kim M. Simultaneous loss of TSC1 and DEPDC5 in skeletal and cardiac muscles produces early-onset myopathy and cardiac dysfunction associated with oxidative damage and SQSTM1/p62 accumulation. Autophagy 2022; 18:2303-2322. [PMID: 34964695 PMCID: PMC9542799 DOI: 10.1080/15548627.2021.2016255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Chun-Seok Cho
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yongsung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sung-Rye Park
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Boyoung Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Davis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Irene Hwang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Susan V. Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,CONTACT Jun Hee Lee Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Myungjin Kim
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA,Myungjin Kim
| |
Collapse
|
47
|
Viecelli C, Ewald CY. The non-modifiable factors age, gender, and genetics influence resistance exercise. FRONTIERS IN AGING 2022; 3:1005848. [PMID: 36172603 PMCID: PMC9510838 DOI: 10.3389/fragi.2022.1005848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 06/13/2023]
Abstract
Muscle mass and force are key for movement, life quality, and health. It is well established that resistance exercise is a potent anabolic stimulus increasing muscle mass and force. The response of a physiological system to resistance exercise is composed of non-modifiable (i.e., age, gender, genetics) and modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors are integrated by systemic responses (i.e., molecular signaling, genetic responses, protein metabolism, etc.), consequently resulting in functional and physiological adaptations. Herein, we discuss the influence of non-modifiable factors on resistance exercise: age, gender, and genetics. A solid understanding of the role of non-modifiable factors might help to adjust training regimes towards optimal muscle mass maintenance and health.
Collapse
Affiliation(s)
- Claudio Viecelli
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Collin Y. Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
48
|
Ryan KC, Laboy JT, Norman KR. Deregulation of Mitochondrial Calcium Handling Due to Presenilin Loss Disrupts Redox Homeostasis and Promotes Neuronal Dysfunction. Antioxidants (Basel) 2022; 11:antiox11091642. [PMID: 36139715 PMCID: PMC9495597 DOI: 10.3390/antiox11091642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this imbalance by suppressing SKN-1/Nrf antioxidant activity.
Collapse
|
49
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
50
|
mTOR Complex 1 Content and Regulation Is Adapted to Animal Longevity. Int J Mol Sci 2022; 23:ijms23158747. [PMID: 35955882 PMCID: PMC9369240 DOI: 10.3390/ijms23158747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Decreased content and activity of the mechanistic target of rapamycin (mTOR) signalling pathway, as well as the mTOR complex 1 (mTORC1) itself, are key traits for animal species and human longevity. Since mTORC1 acts as a master regulator of intracellular metabolism, it is responsible, at least in part, for the longevous phenotype. Conversely, increased content and activity of mTOR signalling and mTORC1 are hallmarks of ageing. Additionally, constitutive and aberrant activity of mTORC1 is also found in age-related diseases such as Alzheimer’s disease (AD) and cancer. The downstream processes regulated through this network are diverse, and depend upon nutrient availability. Hence, multiple nutritional strategies capable of regulating mTORC1 activity and, consequently, delaying the ageing process and the development of age-related diseases, are under continuous study. Among these, the restriction of calories is still the most studied and robust intervention capable of downregulating mTOR signalling and feasible for application in the human population.
Collapse
|