1
|
Liu JY, Liu ZL, Yang M, Du CL, Zhu Y, Sun LJ, Lv XW, Huang C, Li J. Involvement of BRD4 in Alcoholic Liver Injury: Autophagy Modulation via Regulation of the SIRT1/Beclin1 Axis. J Transl Med 2024; 104:102134. [PMID: 39307311 DOI: 10.1016/j.labinv.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Alcoholic liver disease (ALD) caused by chronic alcohol abuse involves complex processes from steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma, posing a global health issue. Bromodomain protein 4 (BRD4) typically serves as a "reader" modulating the functions of transcription factors involved in various biological processes and disease progression. However, the specific mechanisms underlying alcoholic liver injury remain unclear. In this study, we detected aberrant BRD4 expression in the alcohol-induced ALD mouse model of chronic and binge ethanol feeding developed by the National Institute on Alcohol Abuse and Alcoholism, consistent with the in vitro results in Aml-12 mouse hepatocytes. Blocking and inhibiting BRD4 restored the impaired autophagic flux and lysosomal functions in alcohol-treated Aml-12 cells, whereas BRD4 overexpression reduced the expression levels of autophagy marker and lysosomal genes. Furthermore, mouse BRD4 knockdown, mediated by a short hairpin RNA carried by the adeno-associated virus serotype 8, significantly attenuated the alcohol-induced hepatocyte damage, including lipid deposition and inflammatory cell infiltration. Mechanistically, BRD4 overexpression in alcoholic liver injury inhibited the expression of sirtuin (SIRT)1 in Aml-12 cells. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that BRD4 functions as a transcription factor and suppressor, actively binding to the SIRT1 promoter region and inhibiting its transcription. SIRT1 activated autophagy, which was suppressed in alcoholic liver injury via Beclin1 deacetylation. In conclusion, our study revealed that BRD4 negatively regulated the SIRT1/Beclin1 axis and that its deficiency alleviated alcohol-induced liver injury in mice, thus providing a new strategy for ALD treatment.
Collapse
Affiliation(s)
- Jin-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhen-Long Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ming Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chang-Lin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Benedetti R, Romeo MA, Arena A, Gilardini Montani MS, D’Orazi G, Cirone M. ATF6 supports lysosomal function in tumor cells to enable ER stress-activated macroautophagy and CMA: impact on mutant TP53 expression. Autophagy 2024; 20:1854-1867. [PMID: 38566314 PMCID: PMC11262222 DOI: 10.1080/15548627.2024.2338577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/31/2024] [Indexed: 04/04/2024] Open
Abstract
The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
4
|
Song SS, Druschel LN, Kasthuri NM, Wang JJ, Conard JH, Chan ER, Acharya AP, Capadona JR. Comprehensive proteomic analysis of the differential expression of 62 proteins following intracortical microelectrode implantation. Sci Rep 2024; 14:17596. [PMID: 39080300 PMCID: PMC11289480 DOI: 10.1038/s41598-024-68017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Intracortical microelectrodes (IMEs) are devices designed to be implanted into the cerebral cortex for various neuroscience and neuro-engineering applications. A critical feature of IMEs is their ability to detect neural activity from individual neurons. Currently, IMEs are limited by chronic failure, largely considered to be caused by the prolonged neuroinflammatory response to the implanted devices. Over the past few years, the characterization of the neuroinflammatory response has grown in sophistication, with the most recent advances focusing on mRNA expression following IME implantation. While gene expression studies increase our broad understanding of the relationship between IMEs and cortical tissue, advanced proteomic techniques have not been reported. Proteomic evaluation is necessary to describe the diverse changes in protein expression specific to neuroinflammation, neurodegeneration, or tissue and cellular viability, which could lead to the further development of targeted intervention strategies designed to improve IME functionality. In this study, we have characterized the expression of 62 proteins within 180 μm of the IME implant site at 4-, 8-, and 16-weeks post-implantation. We identified potential targets for immunotherapies, as well as key pathways that contribute to neuronal dieback around the IME implant.
Collapse
Affiliation(s)
- Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Jacob H Conard
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Balboa E, Saud F, Parra-Ruiz C, de la Fuente M, Landskron G, Zanlungo S. Exploring the lutein therapeutic potential in steatotic liver disease: mechanistic insights and future directions. Front Pharmacol 2024; 15:1406784. [PMID: 38978979 PMCID: PMC11228318 DOI: 10.3389/fphar.2024.1406784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.
Collapse
Affiliation(s)
- Elisa Balboa
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Faride Saud
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Glauben Landskron
- Center for Biomedical Research, Universidad Finis Terrae, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Du X, Fan R, Kong J. What improvements do general exercise training and traditional Chinese exercises have on knee osteoarthritis? A narrative review based on biological mechanisms and clinical efficacy. Front Med (Lausanne) 2024; 11:1395375. [PMID: 38841568 PMCID: PMC11150680 DOI: 10.3389/fmed.2024.1395375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Knee osteoarthritis (KOA) is a disease that significantly affects the quality of life of patients, with a complex pathophysiology that includes degeneration of cartilage and subchondral bone, synovitis, and associations with mechanical load, inflammation, metabolic factors, hormonal changes, and aging. Objective This article aims to comprehensively review the biological mechanisms and clinical effects of general exercise training and traditional Chinese exercises (such as Tai Chi and Qigong) on the treatment of KOA, providing references for the development of clinical exercise prescriptions. Methods A systematic search of databases including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI) was conducted, reviewing studies including randomized controlled trials (RCTs), observational studies, systematic reviews, and meta-analyses. Keywords included "knee osteoarthritis," "exercise therapy," "physical activity," and "traditional Chinese exercise." Results and conclusion General exercise training positively affects KOA by mechanisms such as promoting blood circulation, improving the metabolism of inflammatory factors, enhancing the expression of anti-inflammatory cytokines, and reducing cartilage cell aging. Traditional Chinese exercises, like Tai Chi and Qigong, benefit the improvement of KOA symptoms and tissue repair by regulating immune function and alleviating joint inflammation. Clinical studies have shown that both types of exercise can improve physical function, quality of life, and pain relief in patients with KOA. Both general exercise training and traditional Chinese exercises are non-pharmacological treatment options for KOA that can effectively improve patients' physiological function and quality of life. Future research should further explore the long-term effects and biological mechanisms of these exercise interventions and develop personalized exercise programs based on the specific needs of patients.
Collapse
Affiliation(s)
- Xingbin Du
- Shandong Huayu University of Technology, Dezhou, China
- Faculty of Education, Qufu Normal University, Qufu, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Qufu, China
| | - Jianda Kong
- College of Sports Science, Qufu Normal University, Qufu, China
| |
Collapse
|
7
|
Kaise T, Kageyama R. Transcriptional control of neural stem cell activity. Biochem Soc Trans 2024; 52:617-626. [PMID: 38477464 DOI: 10.1042/bst20230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
In the adult brain, neural stem cells (NSCs) are under the control of various molecular mechanisms to produce an appropriate number of neurons that are essential for specific brain functions. Usually, the majority of adult NSCs stay in a non-proliferative and undifferentiated state known as quiescence, occasionally transitioning to an active state to produce newborn neurons. This transition between the quiescent and active states is crucial for the activity of NSCs. Another significant state of adult NSCs is senescence, in which quiescent cells become more dormant and less reactive, ceasing the production of newborn neurons. Although many genes involved in the regulation of NSCs have been identified using genetic manipulation and omics analyses, the entire regulatory network is complicated and ambiguous. In this review, we focus on transcription factors, whose importance has been elucidated in NSCs by knockout or overexpression studies. We mainly discuss the transcription factors with roles in the active, quiescent, and rejuvenation states of adult NSCs.
Collapse
Affiliation(s)
- Takashi Kaise
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | | |
Collapse
|
8
|
Yang N, Yu G, Lai Y, Zhao J, Chen Z, Chen L, Fu Y, Fang P, Gao W, Cai Y, Li Z, Xiao J, Zhou K, Ding J. A snake cathelicidin enhances transcription factor EB-mediated autophagy and alleviates ROS-induced pyroptosis after ischaemia-reperfusion injury of island skin flaps. Br J Pharmacol 2024; 181:1068-1090. [PMID: 37850255 DOI: 10.1111/bph.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.
Collapse
Affiliation(s)
- Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuedong Fu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Pin Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Song S, Druschel L, Kasthuri N, Wang J, Conard J, Chan E, Acharya A, Capadona J. Comprehensive Proteomic Analysis of the Differential Expression of 83 Proteins Following Intracortical Microelectrode Implantation. RESEARCH SQUARE 2024:rs.3.rs-4039586. [PMID: 38559066 PMCID: PMC10980140 DOI: 10.21203/rs.3.rs-4039586/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intracortical microelectrodes (IMEs) are devices designed to be implanted into the cerebral cortex for various neuroscience and neuro-engineering applications. A critical feature of these devices is their ability to detect neural activity from individual neurons. Currently, IMEs are limited by chronic failure, largely considered to be caused by the prolonged neuroinflammatory response to the implanted devices. Over the decades, characterization of the neuroinflammatory response has grown in sophistication, with the most recent advances including advanced genomics and spatially resolved transcriptomics. While gene expression studies increase our broad understanding of the relationship between IMEs and cortical tissue, advanced proteomic techniques have not been reported. Proteomic evaluation is necessary to describe the diverse changes in protein expression specific to neuroinflammation, neurodegeneration, or tissue and cellular viability, which could lead to the development of more targeted intervention strategies designed to improve IME function. In this study, we have characterized the expression of 83 proteins within 180 μm of the IME implant site at 4-, 8-, and 16-weeks post-implantation. We identified potential targets for immunotherapies, as well as key pathways and functions that contribute to neuronal dieback around the IME implant.
Collapse
|
10
|
Capadona J, Hoeferlin G, Grabinski S, Druschel L, Duncan J, Burkhart G, Weagraff G, Lee A, Hong C, Bambroo M, Olivares H, Bajwa T, Memberg W, Sweet J, Hamedani HA, Acharya A, Hernandez-Reynoso A, Donskey C, Jaskiw G, Chan R, Ajiboye A, von Recum H, Zhang L. Bacteria Invade the Brain Following Sterile Intracortical Microelectrode Implantation. RESEARCH SQUARE 2024:rs.3.rs-3980065. [PMID: 38496527 PMCID: PMC10942555 DOI: 10.21203/rs.3.rs-3980065/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis. Here, we report that bacteria, including those commonly found in the gut, enter the brain following intracortical microelectrode implantation in mice implanted with single-shank silicon microelectrodes. Systemic antibiotic treatment of mice implanted with microelectrodes to suppress bacteria resulted in differential expression of bacteria in the brain tissue and a reduced acute inflammatory response compared to untreated controls, correlating with temporary improvements in microelectrode recording performance. Long-term antibiotic treatment resulted in worsening microelectrode recording performance and dysregulation of neurodegenerative pathways. Fecal microbiome composition was similar between implanted mice and an implanted human, suggesting translational findings. However, a significant portion of invading bacteria was not resident in the brain or gut. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ricky Chan
- Institute for Computational Biology, Case Western Reserve University
| | | | | | | |
Collapse
|
11
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Chen H, Gong S, Zhang H, Chen Y, Liu Y, Hao J, Liu H, Li X. From the regulatory mechanism of TFEB to its therapeutic implications. Cell Death Discov 2024; 10:84. [PMID: 38365838 PMCID: PMC10873368 DOI: 10.1038/s41420-024-01850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Transcription factor EB (TFEB), known as a major transcriptional regulator of the autophagy-lysosomal pathway, regulates target gene expression by binding to coordinated lysosomal expression and regulation (CLEAR) elements. TFEB are regulated by multiple links, such as transcriptional regulation, post-transcriptional regulation, translational-level regulation, post-translational modification (PTM), and nuclear competitive regulation. Targeted regulation of TFEB has been victoriously used as a treatment strategy in several disease models such as ischemic injury, lysosomal storage disorders (LSDs), cancer, metabolic disorders, neurodegenerative diseases, and inflammation. In this review, we aimed to elucidate the regulatory mechanism of TFEB and its applications in several disease models by targeting the regulation of TFEB as a treatment strategy.
Collapse
Affiliation(s)
- Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hongyong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhan-jiang Central Hospital, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yonghan Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
13
|
Zhang H, Ishii K, Shibata T, Ishii S, Hirao M, Lu Z, Takamura R, Kitano S, Miyachi H, Kageyama R, Itakura E, Kobayashi T. Fluctuation of lysosomal protein degradation in neural stem cells of the postnatal mouse brain. Development 2024; 151:dev202231. [PMID: 38265146 PMCID: PMC10911176 DOI: 10.1242/dev.202231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Karan Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Tatsuya Shibata
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shunsuke Ishii
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Marika Hirao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Zhou Lu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Risa Takamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Satsuki Kitano
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Eisuke Itakura
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Taeko Kobayashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
14
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
15
|
Cai M, Chen Y, Lin Y, Hu Z, Li L, Huang H, Lin J. SIRT1 Asn346 sugar chain promoting collagen deacetylation protective effect on osteoblasts under stress. Biochem Biophys Res Commun 2023; 682:148-155. [PMID: 37806254 DOI: 10.1016/j.bbrc.2023.09.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
Silencing type information regulator homolog 1 (SIRT1) is a class of nicotinamide adenine dinucleotide (NAD+) dependent deacetylases, which is the convergence point of important physiological processes in vivo, namely, osteoblast aging, energy metabolism, and bone remodeling. To verify whether the O-acetylglucosamine (O-GlcNAc) modification of SIRT1 in the nucleus of osteoblasts enhances its deacetylase activity under stress and protects osteoblasts through the RANK/RANKL signaling pathway by collagen deacetylation. The R language and online data research identified SIRT1 as being involved in bone metabolism. Enrichment analysis showed that SIRT1 is involved in osteoblast transcription, apoptosis, and deacetylation pathways. Interactive Immuno-blotting and immunofluorescence experiments revealed that SIRT1 and O-glycosylation catalytic enzyme (OGT) were localized in the nucleus. Mass Spectrometry analysis showed that O-glycosylation occurred on the asparagine at the 346th position of SIRT1, and N346th was located in the central domain of SIRT1. Furthermore, the protein structure analysis of PyMol also proved that the OGT binding region was in the central domain of SIRT1. Under physiological conditions, both wtSIRT1 and SIRT1N346R can inhibit RANKL-mediated transcriptional activation. The RT-PCR detection results showed that wtSIRT1 reduced RANKL transcription under the conditions of apoptotic agent treatment. The finding that SIRT1 can regulate the physiological process of bone remodeling through the RANK/RANKL signaling pathway in osteoblasts under stress. The O-glycosylation and deacetylation activity of SIRT1 significantly increased, regulating the balance between osteoblast survival and apoptosis by deacetylation of key proteins such as RANKL.
Collapse
Affiliation(s)
- Min Cai
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaoqi Chen
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiting Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangjie Hu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lizhi Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China; Department of Pediatric Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Huping Huang
- Department of Gastroenterology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianli Lin
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
16
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
18
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
19
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
20
|
Goenawan H, Kiasati S, Sylviana N, Megantara I, Lesmana R. Exercise-Induced Autophagy Ameliorates Motor Symptoms Progressivity in Parkinson's Disease Through Alpha-Synuclein Degradation: A Review. Neuropsychiatr Dis Treat 2023; 19:1253-1262. [PMID: 37255530 PMCID: PMC10226548 DOI: 10.2147/ndt.s401416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
This study reviews the molecular mechanism of exercise-induced autophagy/mitophagy and its possible mechanism in delaying motor symptoms progressivity in Parkinson's disease (PD). Relevant articles obtained from PubMed and EBSCOhost were reviewed. After analyzing the articles, it was found that autophagy can be induced by exercise and can possibly be activated through the AMPK-ULK1 pathway. Mitophagy can also be induced by exercise and can possibly be activated through PINK1/Parkin pathway and AMPK-dependent pathway. Moreover, exercise-induced autophagy can decrease the accumulation of toxic α-synuclein aggregates in PD and therefore can delay motor symptoms progressivity.
Collapse
Affiliation(s)
- Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Shabrina Kiasati
- Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Imam Megantara
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
21
|
Bai X, Zhang Z, Li X, Yang Y, Ding S. FUNDC1: An Emerging Mitochondrial and MAMs Protein for Mitochondrial Quality Control in Heart Diseases. Int J Mol Sci 2023; 24:ijms24119151. [PMID: 37298100 DOI: 10.3390/ijms24119151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Heart diseases (HDs) are the leading cause of mortality worldwide, with mitochondrial dysfunction being a significant factor in their development. The recently discovered mitophagy receptor, FUNDC1, plays a critical role in regulating the homeostasis of the Mitochondrial Quality Control (MQC) system and contributing to HDs. The phosphorylation of specific regions of FUNDC1 and varying levels of its expression have been shown to have diverse effects on cardiac injury. This review presents a comprehensive consolidation and summary of the latest evidence regarding the role of FUNDC1 in the MQC system. The review elucidates the association of FUNDC1 with prevalent HDs, such as metabolic cardiomyopathy (MCM), cardiac remodeling/heart failure, and myocardial ischemia-reperfusion (IR) injury. The results indicate that the expression of FUNDC1 is elevated in MCM but reduced in instances of cardiac remodeling, heart failure, and myocardial IR injury, with divergent impacts on mitochondrial function among distinct HDs. Exercise has been identified as a powerful preventive and therapeutic approach for managing HDs. Additionally, it has been suggested that exercise-induced enhancement of cardiac function may be attributed to the AMPK/FUNDC1 pathway.
Collapse
Affiliation(s)
- Xizhe Bai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
22
|
Hao X, Sun J, Zhong L, Baudry M, Bi X. UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways. Exp Neurol 2023; 363:114358. [PMID: 36849003 PMCID: PMC10073344 DOI: 10.1016/j.expneurol.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by deficiency of the maternally expressed UBE3A gene. The UBE3A proteins functions both as an E3 ligase in the ubiquitin-proteasome system (UPS), and as a transcriptional co-activator for steroid hormone receptors. Here we investigated the effects of UBE3A deficiency on autophagy in the cerebellum of AS mice and in COS1 cells. Numbers and size of LC3- and LAMP2-immunopositive puncta were increased in cerebellar Purkinje cells of AS mice, as compared to wildtype mice. Western blot analysis showed an increase in the conversion of LC3I to LC3II in AS mice, as expected from increased autophagy. Levels of active AMPK and of one of its substrates, ULK1, a factor involved in autophagy initiation, were also increased. Colocalization of LC3 with LAMP2 was increased and p62 levels were decreased, indicating an increase in autophagy flux. UBE3A deficiency was also associated with reduced levels of phosphorylated p53 in the cytosol and increased levels in nuclei, which favors autophagy induction. UBE3A siRNA knockdown in COS-1 cells resulted in increased size and intensity of LC3-immunopositive puncta and increased the LC3 II/I ratio, as compared to control siRNA-treated cells, confirming the results found in the cerebellum of AS mice. These results indicate that UBE3A deficiency enhances autophagic activity through activation of the AMPK-ULK1 pathway and alterations in p53.
Collapse
Affiliation(s)
- Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
23
|
Kopczynski A, Carteri RB, Rodolphi MS, Oses JP, Portela LO, Geller CA, de Oliveira VG, De Bastiani MA, Strogulski NR, Smith DH, Portela LV. Lower and higher volumes of physical exercise build up brain reserves against memory deficits triggered by a head injury in mice. Exp Neurol 2023; 363:114352. [PMID: 36813223 PMCID: PMC10103909 DOI: 10.1016/j.expneurol.2023.114352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Decreasing neurotrophic support and impaired mitochondrial bioenergetics are key mechanisms for long-term neurodegeneration and cognitive decline after traumatic brain injury (TBI). We hypothesize that preconditioning with lower and higher volumes of physical exercise upregulates the CREB-BDNF axis and bioenergetic capability, which might serve as neural reserves against cognitive impairment after severe TBI. Using a running wheel mounted in the home cage, mice were engaged in lower (LV, 48 h free access, and 48 h locked) and higher (HV, daily free access) exercise volumes for thirty days. Subsequently, LV and HV mice remained for additional thirty days in the home cage with the running wheel locked and were euthanized. The sedentary group had the running wheel always locked. For the same type of exercise stimulus in a given time, daily workout presents higher volume than alternate days workout. The total distance ran in the wheel was the reference parameter to confirm distinct exercise volumes. On average, LV exercise ran 27.522 m and HV exercise ran 52.076 m. Primarily, we investigate whether LV and HV protocols increase neurotrophic and bioenergetic support in the hippocampus thirty days after exercise ceased. Regardless of volume, exercise increased hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling and mitochondrial coupling efficiency, excess capacity, and leak control, that may compose the neurobiological basis for neural reserves. Further, we challenge these neural reserves against secondary memory deficits triggered by a severe TBI. After thirty days of exercise LV and HV, and sedentary (SED) mice were submitted to the CCI model. Mice remained for additional thirty days in the home cage with the running wheel locked. The mortality after severe TBI was approximately 20% in LV and HV, while in the SED was 40%. Also, LV and HV exercise sustained hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling, mitochondrial coupling efficiency, excess capacity, and leak control for thirty days after severe TBI. Corroborating these benefits, the mitochondrial H2O2 production linked to complexes I and II was attenuated by exercise regardless of the volume. These adaptations attenuated spatial learning and memory deficits caused by TBI. In summary, preconditioning with LV and HV exercise builds up long-lasting CREB-BDNF and bioenergetic neural reserves that preserve memory fitness after severe TBI.
Collapse
Affiliation(s)
- Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista, Departamento de Nutrição, Instituto Porto Alegre, IPA, Porto Alegre, Brazil; CESUCA Centro Universitário, Departamento de Nutrição, Cachoeirinha, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Luiz O Portela
- Laboratório de Performance em Ambiente Simulado (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Cesar A Geller
- Laboratório de Performance em Ambiente Simulado (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Vitória G de Oliveira
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marco Antonio De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis V Portela
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Khoury R, Saad J, Jabre V, Ghayad LM, Khalifeh M, Houbeika R, El Ahmad P, Mezher A, El Masri D, Haddad Z, Eid F, Barmo N, Nasrallah P, Sleiman SF, Stephan JS. Autophagy regulates the release of exercise factors and their beneficial effects on spatial memory recall. Heliyon 2023; 9:e14705. [PMID: 37025840 PMCID: PMC10070545 DOI: 10.1016/j.heliyon.2023.e14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Exercise promotes learning and memory recall as well as rescues cognitive decline associated with aging. The positive effects of exercise are mediated by circulatory factors that predominantly increase Brain Derived Neurotrophic Factor (BDNF) signaling in the hippocampus. Identifying the pathways that regulate the release of the circulatory factors by various tissues during exercise and that mediate hippocampal Mus musculus Bdnf expression will allow us to harness the therapeutic potential of exercise. Here, we report that two weeks of voluntary exercise in male mice activates autophagy in the hippocampus by increasing LC3B protein levels (p = 0.0425) and that autophagy is necessary for exercise-induced spatial learning and memory retention (p < 0.001; exercise + autophagy inhibitor chloroquine CQ versus exercise). We place autophagy downstream of hippocampal BDNF signaling and identify a positive feedback activation between the pathways. We also assess whether the modulation of autophagy outside the nervous system is involved in mediating exercise's effect on learning and memory recall. Indeed, plasma collected from young exercise mice promote spatial learning (p = 0.0446; exercise versus sedentary plasma) and memory retention in aged inactive mice (p = 0.0303; exercise versus sedentary plasma), whereas plasma collected from young exercise mice that received the autophagy inhibitor chloroquine diphosphate failed to do so. We show that the release of exercise factors that reverse the symptoms of aging into the circulation is dependent on the activation of autophagy in young animals. Indeed, we show that the release of the exercise factor, beta-hydroxybutyrate (DBHB), into the circulation, is autophagy-dependent and that DBHB promotes spatial learning and memory formation (p = 0.0005) by inducing hippocampal autophagy (p = 0.0479). These results implicate autophagy in peripheral tissues and in the hippocampus in mediating the effects of exercise on learning and memory recall and identify DBHB as a candidate endogenous exercise factor whose release and positive effects are autophagy-dependent.
Collapse
|
25
|
Ding L, Li ZL, Zhou Y, Liu NC, Liu SS, Zhang XJ, Liu CC, Zhang DJ, Wang GH, Ma RX. Loss of Sirt1 promotes exosome secretion from podocytes by inhibiting lysosomal acidification in diabetic nephropathy. Mol Cell Endocrinol 2023; 568-569:111913. [PMID: 36990198 DOI: 10.1016/j.mce.2023.111913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.
Collapse
Affiliation(s)
- Lin Ding
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Yan Zhou
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan-Chi Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shan-Shan Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xing-Jian Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cong-Cong Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong-Jie Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gui-Hua Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
26
|
Zhao Y, Hong Z, Lin Y, Shen W, Yang Y, Zuo Z, Hu X. Exercise pretreatment alleviates neuroinflammation and oxidative stress by TFEB-mediated autophagic flux in mice with ischemic stroke. Exp Neurol 2023; 364:114380. [PMID: 36914085 DOI: 10.1016/j.expneurol.2023.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Neuroinflammation and oxidative stress are important pathological mechanisms underlying cerebral ischemic stroke. Increasing evidence suggests that regulation autophagy in ischemic stroke may improve neurological functions. In this study, we aimed to explore whether exercise pretreatment attenuates neuroinflammation and oxidative stress in ischemic stroke by improving autophagic flux. METHODS 2,3,5-Triphenyltetrazolium chloride staining was used to determine the infarction volume, and modified Neurological Severity Scores and rotarod test were used to evaluate neurological functions after ischemic stroke. The levels of oxidative stress, neuroinflammation, neuronal apoptosis and degradation, autophagic flux, and signaling pathway proteins were determined using immunofluorescence, dihydroethidium, TUNEL, and Fluoro-Jade B staining, western blotting, and co-immunoprecipitation. RESULTS Our results showed that, in middle cerebral artery occlusion (MCAO) mice, exercise pretreatment improved neurological functions and defective autophagy, and reduced neuroinflammation and oxidative stress. Mechanistically, after using chloroquine, impaired autophagy abolished the neuroprotection of exercise pretreatment. And transcription factor EB (TFEB) activation mediated by exercise pretreatment contributes to improving autophagic flux after MCAO. Furthermore, we showed that TFEB activation mediated by exercise pretreatment in MCAO was regulated by the AMPK-mTOR and AMPK-FOXO3a-SKP2-CARM1 signaling pathways. CONCLUSIONS Exercise pretreatment has the potential to improve the prognosis of ischemic stroke patients, and it can exert neuroprotective effects in ischemic stroke by inhibiting neuroinflammation and oxidative stress, which might be due to the TFEB-mediated autophagic flux. And targeting autophagic flux may be promising strategies for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Yao Lin
- Department of Pediatrics, Taizhou First People's Hospital, 218 Hengjie Road, Taizhou 318020, Zhejiang, China
| | - Weimin Shen
- Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Qingchun East Road No. 3, Hangzhou 310016, Zhejiang, China
| | - Yuhan Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
27
|
Parekh P, Sharma N, Sharma M, Gadepalli A, Sayyed AA, Chatterjee S, Kate A, Khairnar A. AMPK-dependent autophagy activation and alpha-Synuclein clearance: a putative mechanism behind alpha-mangostin's neuroprotection in a rotenone-induced mouse model of Parkinson's disease. Metab Brain Dis 2022; 37:2853-2870. [PMID: 36178640 DOI: 10.1007/s11011-022-01087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Alpha-Synuclein (α-Syn) accumulation is central to the pathogenesis of Parkinson's disease (PD), hence the quest for finding potential therapeutics that may promote the α-Syn clearance is the need of the hour. To this, activation of the evolutionarily conserved protein and key regulator of the autophagy, 5'AMP-activated protein kinase (AMPK) is well-known to induce autophagy and subsequently the clearance of α-Syn aggregates. Alpha-mangostin (AM) a polyphenolic xanthone obtained from Garcinia Mangostana L. was previously reported to activate AMPK-dependent autophagy in various pre-clinical cancer models. However, no studies evidenced the effect of AM on AMPK-dependent autophagy activation in the PD. Therefore, the present study aimed to investigate the neuroprotective activity of AM in the chronic rotenone mouse model of PD against rotenone-induced α-Syn accumulation and to dissect molecular mechanisms underlying the observed neuroprotection. The findings showed that AM exerts neuroprotection against rotenone-induced α-Syn accumulation in the striatum and cortex by activating AMPK, upregulating autophagy (LC3II/I, Beclin-1), and lysosomal (TFEB) markers. Of note, an in-vitro study utilizing rat pheochromocytoma cells verified that AM conferred the neuroprotection only through AMPK activation, as the presence of inhibitors of AMPK (dorsomorphin) and autophagy (3-methyl adenine) failed to mitigate rotenone-induced α-Syn accumulation. Moreover, AM also counteracted rotenone-induced behavioral deficits, oxidative stress, and degeneration of nigro-striatal dopaminergic neurons. In conclusion, AM provided neuroprotection by ameliorating the rotenone-induced α-Syn accumulation through AMPK-dependent autophagy activation and it can be considered as a therapeutic agent which might be having a higher translational value in the treatment of PD.
Collapse
Affiliation(s)
- Pathik Parekh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Anagha Gadepalli
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Adil Ali Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India
| | - Abhijeet Kate
- Department of Natural products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Palaj, Gandhinagar, 382355, Gujarat, Ahmedabad, India.
| |
Collapse
|
28
|
Cho E, Kim K, Kim H, Cho SR. Reelin protects against pathological α-synuclein accumulation and dopaminergic neurodegeneration after environmental enrichment in Parkinson's disease. Neurobiol Dis 2022; 175:105898. [DOI: 10.1016/j.nbd.2022.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
29
|
Wang S, Li H, Yuan M, Fan H, Cai Z. Role of AMPK in autophagy. Front Physiol 2022; 13:1015500. [PMID: 36505072 PMCID: PMC9732440 DOI: 10.3389/fphys.2022.1015500] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a significant energy sensor in the maintenance of cellular energy homeostasis. Autophagy is a highly conserved catabolic process that involves an intracellular degradation system in which cytoplasmic components, such as protein aggregates, organelles, and other macromolecules, are directed to the lysosome through the self-degradative process to maintain cellular homeostasis. Given the triggered autophagy process in various situations including the nutrient deficit, AMPK is potentially linked with different stages of autophagy. Above all, AMPK increases ULK1 activity by directly phosphorylating Ser467, Ser555, Thr574, and Ser637 at least four sites, which increases the recruitment of autophagy-relevant proteins (ATG proteins) to the membrane domains which affects autophagy at the initiation stage. Secondly, AMPK inhibits VPS34 complexes that do not contain pro-autophagic factors and are thus involved in isolation membrane forming processes, by direct phosphorylation of VPS34 on Thr163 and Ser165. After phosphorylation, AMPK can govern autophagosome formation through recruiting downstream autophagy-related proteins to the autophagosome formation site. Finally, the AMPK-SIRT1 signaling pathway can be activated by upregulating the transcription of autophagy-related genes, thereby enhancing autophagosome-lysosome fusion. This review provides an introduction to the role of AMPK in different stages of autophagy.
Collapse
Affiliation(s)
- Shengyuan Wang
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Hongyan Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China,*Correspondence: Zhiyou Cai,
| |
Collapse
|
30
|
Sun L, Liu T, Liu J, Gao C, Zhang X. Physical exercise and mitochondrial function: New therapeutic interventions for psychiatric and neurodegenerative disorders. Front Neurol 2022; 13:929781. [PMID: 36158946 PMCID: PMC9491238 DOI: 10.3389/fneur.2022.929781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Psychiatric and neurodegenerative diseases, including major depression disorder (MDD), bipolar disorder, and Alzheimer's disease, are a burden to society. Deficits of adult hippocampal neurogenesis (AHN) have been widely considered the main hallmark of psychiatric diseases as well as neurodegeneration. Herein, exploring applicable targets for improving hippocampal neural plasticity could provide a breakthrough for the development of new treatments. Emerging evidence indicates the broad functions of mitochondria in regulating cellular behaviors of neural stem cells, neural progenitors, and mature neurons in adulthood could offer multiple neural plasticities for behavioral modulation. Normalizing mitochondrial functions could be a new direction for neural plasticity enhancement. Exercise, a highly encouraged integrative method for preventing disease, has been indicated to be an effective pathway to improving both mitochondrial functions and AHN. Herein, the relative mechanisms of mitochondria in regulating neurogenesis and its effects in linking the effects of exercise to neurological diseases requires a systematic summary. In this review, we have assessed the relationship between mitochondrial functions and AHN to see whether mitochondria can be potential targets for treating neurological diseases. Moreover, as for one of well-established alternative therapeutic approaches, we summarized the evidence to show the underlying mechanisms of exercise to improve mitochondrial functions and AHN.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Tianbiao Liu
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Jingqi Liu
- College of P.E and Sport, Beijing Normal University, Beijing, China
| | - Chong Gao
- Department of Clinical Medicine, Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, Zhejiang University City College, Hangzhou, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Jian Y, Yuan S, Yang J, Lei Y, Li X, Liu W. Aerobic Exercise Alleviates Abnormal Autophagy in Brain Cells of APP/PS1 Mice by Upregulating AdipoR1 Levels. Int J Mol Sci 2022; 23:ijms23179921. [PMID: 36077318 PMCID: PMC9456508 DOI: 10.3390/ijms23179921] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023] Open
Abstract
Abnormalities in autophagy are associated with Alzheimer’s disease (AD)-like lesions. Studies have shown that exercise can significantly improve AD autophagy abnormalities, but the mechanism underlying this phenomenon remains unclear. APN not only has an important regulatory effect on AD autophagy abnormalities, but also is affected by exercise. Therefore, this study aims to reveal the pathway by which exercise regulates abnormal autophagy in AD using the APN–AdipoR1 signaling pathway as an entry point. The results of the study showed that APP/PS1 double transgenic AD model mice (24 weeks) showed decreased AdipoR1 levels in the brain, abnormal autophagy, increased Aβ deposition, and increased cell apoptosis, and dendritic spines and cognitive function were reduced. Twelve weeks of aerobic exercise enhanced lysosomes and alleviated abnormal autophagy by activating the AdipoR1/AMPK/TFEB signaling pathway in the brains of AD mice, thereby alleviating Aβ deposition and its associated AD-like abnormalities. These findings suggest that the AdipoR1 plays an important role in aerobic exercise’s alleviation of abnormal autophagy in AD brain cells and alleviation of AD-like lesions.
Collapse
Affiliation(s)
- Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xuan Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
- Correspondence:
| |
Collapse
|
32
|
Gu Z, Cao H, Zuo C, Huang Y, Miao J, Song Y, Yang Y, Zhu L, Wang F. TFEB in Alzheimer's disease: From molecular mechanisms to therapeutic implications. Neurobiol Dis 2022; 173:105855. [PMID: 36031168 DOI: 10.1016/j.nbd.2022.105855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the most prevalent neurodegenerative disease worldwide. The primary pathological hallmarks of AD are the deposition of β-amyloid plaques and neurofibrillary tangles. Autophagy, a pathway of clearing damaged organelles, macromolecular aggregates, and long-lived proteins via lysosomal degradation, has emerged as critical for proteostasis in the central nervous system (CNS). Studies have demonstrated that defective autophagy is strongly implicated in AD pathogenesis. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, enhances the expression of related genes that control autophagosome formation, lysosome function, and autophagic flux. The study of TFEB has greatly increased over the last decade, and the dysfunction of TFEB has been reported to be strongly associated with the pathogenesis of many neurodegenerative disorders, including AD. Here, we delineate the basic understanding of TFEB dysregulation involved in AD pathogenesis, highlighting the existing work that has been conducted on TFEB-mediated autophagy in neurons and other nonneuronal cells in the CNS. Additionally, we summarize the small molecule compounds that target TFEB-regulated autophagy involved in AD therapy. Our review may yield new insights into therapeutic approaches by targeting TFEB and provide a broadly applicable basis for the clinical treatment of AD.
Collapse
Affiliation(s)
- Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
33
|
Zhou S, Xue J, Shan J, Hong Y, Zhu W, Nie Z, Zhang Y, Ji N, Luo X, Zhang T, Ma W. Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1. Nutrients 2022; 14:3338. [PMID: 36014845 PMCID: PMC9416570 DOI: 10.3390/nu14163338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a gut-microbiota-dependent metabolite after ingesting dietary choline, has been identified as a novel risk factor for atherosclerosis through inducing vascular inflammation. However, the underlying molecular mechanism is poorly understood. Using an in vitro vascular cellular model, we found that the TMAO-induced inflammation responses were correlated with an elevation of ROS levels and downregulation of SIRT1 expression in VSMCs and HUVECs. The overexpression of SIRT1 could abrogate both the stimulation of ROS and inflammation. Further studies revealed that AMPK was also suppressed by TMAO and was a mediator upstream of SIRT1. Activation of AMPK by AICAR could reduce TMAO-induced ROS and inflammation. Moreover, the GSH precursor NAC could attenuate TMAO-induced inflammation. In vivo studies with mice models also showed that choline-induced production of TMAO and the associated glycolipid metabolic changes leading to atherosclerosis could be relieved by NAC and a probiotic LP8198. Collectively, the present study revealed an unrecognized mechanistic link between TMAO and atherosclerosis risk, and probiotics ameliorated TMAO-induced atherosclerosis through affecting the gut microbiota. Consistent with previous studies, our data confirmed that TMAO could stimulate inflammation by modulating cellular ROS levels. However, this was not due to direct cytotoxicity but through complex signaling pathways involving AMPK and SIRT1.
Collapse
Affiliation(s)
- Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiamin Xue
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingbo Shan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingxiang Hong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenkang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiyan Nie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yujie Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nanxi Ji
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Qilu Institute of Technology, Jinan 250200, China
| |
Collapse
|
34
|
Maroofi A, Moro T, Agrimi J, Safari F. Cognitive decline in heart failure: Biomolecular mechanisms and benefits of exercise. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166511. [PMID: 35932891 DOI: 10.1016/j.bbadis.2022.166511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
By definition, heart failure (HF) is a human pathological condition affecting the structure and function of all organs in the body, and the brain is not an exception to that. Failure of the heart to pump enough blood centrally and peripherally is at the foundation of HF patients' inability to attend even the most ordinary daily activities and progressive deterioration of their cognitive capacity. What is more, between heart and brain exists a bidirectional relationship that goes well beyond hemodynamics and concerns bioelectric and endocrine signaling. This increasingly consolidated evidence makes the scenario even more complex. Studies have mainly chased how HF impairs cognition without focusing much on preventive measures, notably cardio-cerebral health proxies. Here, we aim to provide a brief account of known and hypothetical factors that may explain how exercise can help obviate cognitive dysfunction associated with HF in its different forms. As we shall see, there is a stringent need for a deeper grasp of such mechanisms. Indeed, gaining this new knowledge will automatically shed new light on the inner workings of HF itself, thus resulting in more effective prevention and treatment of this escalating syndrome.
Collapse
Affiliation(s)
- Abdulbaset Maroofi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
35
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
36
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
37
|
Pan S, Guo S, Dai J, Gu Y, Wang G, Wang Y, Qin Z, Luo L. Trehalose ameliorates autophagy dysregulation in aged cortex and acts as an exercise mimetic to delay brain aging in elderly mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, Chen CJ, Chen WY. 18β-Glycyrrhetinic Acid Protects against Cholestatic Liver Injury in Bile Duct-Ligated Rats. Antioxidants (Basel) 2022; 11:antiox11050961. [PMID: 35624826 PMCID: PMC9138139 DOI: 10.3390/antiox11050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid is a nutraceutical agent with promising hepatoprotective effects. Its protective mechanisms against cholestatic liver injury were further investigated in a rodent model of extrahepatic cholestasis caused by Bile Duct Ligation (BDL) in rats. The daily oral administration of 18β-Glycyrrhetinic acid improved liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis. 18β-Glycyrrhetinic acid alleviated the BDL-induced hepatic and systemic retention of bile acids, matrix-producing cell activation, hepatic collagen deposition, Transforming Growth Factor beta-1/Smad activation, malondialdehyde elevation, glutathione reduction, High Mobility Group Box-1/Toll-Like Receptor-4 activation, NF-κB activation, inflammatory cell infiltration/accumulation, Interleukin-1β expression, Signal Transducer and Activator of Transcription-1 activation, Endoplasmic Reticulum stress, impairment autophagy, and caspase 3 activation. Conversely, the protein expression of Sirt1, Farnesoid X Receptor, nuclear NF-E2-Related Factor-2, Transcription Factor EB, bile acid efflux transporters, and LC3-II, as well as the protein phosphorylation of AMP-Activated Protein Kinase, was promoted in 18β-Glycyrrhetinic acid-treated BDL rats. The hepatoprotective effects of 18β-Glycyrrhetinic acid in the present investigation correlated well with co-activation and possible interactions among Sirt, FXR, and Nrf2. The concurrent or concomitant activation of Sirt1, FXR, and Nrf2 not only restored the homeostatic regulation of bile acid metabolism, but also alleviated oxidative stress, inflammation, apoptosis, impaired autophagy, and fibrosis.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Yu-Fang Chen
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 840, Taiwan;
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: (C.-J.C.); (W.-Y.C.); Tel.: +886-4-23592525 (ext. 4022) (C.-J.C.); +886-4-2284-0368 (W.-Y.C.)
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan; (P.-H.P.); (W.-C.H.)
- Correspondence: (C.-J.C.); (W.-Y.C.); Tel.: +886-4-23592525 (ext. 4022) (C.-J.C.); +886-4-2284-0368 (W.-Y.C.)
| |
Collapse
|
39
|
Long-term running exercise alleviates cognitive dysfunction in APP/PSEN1 transgenic mice via enhancing brain lysosomal function. Acta Pharmacol Sin 2022; 43:850-861. [PMID: 34272505 DOI: 10.1038/s41401-021-00720-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid-β peptide (Aβ) aggregation is the hallmark of Alzheimer's disease (AD). The imbalance between the production and clearance of Aβ results in the accumulation and aggregation of Aβ in the brain. Thus far, few drugs are available for AD treatment, but exercise has been recognized for its cognition-enhancing properties in AD patients. The underlying mechanisms remain unclear. Our recent study showed that long-term running exercise could activate the lysosomal function in the brains of mice. In this study, we investigated whether exercise could reduce Aβ accumulation by activating lysosomal function in APP/PSEN1 transgenic mice. Started at the age of 5 months, the mice were trained with a running wheel at the speed of 18 r/min, 40 min/d, 6 d/week for 5 months, and were killed at the end of the 10th month, then brain tissue was collected for biochemical analyses. The cognitive ability was assessed in the 9th month. We showed that long-term exercise significantly mitigated cognitive dysfunction in AD mice, accompanied by the enhanced lysosomal function and the clearance of Aβ in the brain. Exercise significantly promoted the nuclear translocation of transcription factor EB (TFEB), and increased the interaction between nuclear TFEB with AMPK-mediated acetyl-CoA synthetase 2, thus enhancing transcription of the genes associated with the biogenesis of lysosomes. Exercise also raised the levels of mature cathepsin D and cathepsin L, suggesting that more Aβ peptides could be degraded in the activated lysosomes. This study demonstrates that exercise may improve the cognitive dysfunction of AD by enhancing lysosomal function.
Collapse
|
40
|
Babaei P, Hoseini R. Exercise training modulates adipokine dysregulations in metabolic syndrome. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:18-28. [PMID: 35782776 PMCID: PMC9219261 DOI: 10.1016/j.smhs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors for various metabolic diseases, and it is characterized by central obesity, dyslipidemia, hypertension, and insulin resistance. The core component for MetS is adipose tissue, which releases adipokines and influences physical health. Adipokines consist of pro and anti-inflammatory cytokines and contribute to various physiological functions. Generally, a sedentary lifestyle promotes fat accumulation and secretion of pro-inflammatory adipokines. However, regular exercise has been known to exert various beneficial effects on metabolic and cognitive disorders. Although the mechanisms underlying exercise beneficial effects in MetS are not fully understood, changes in energy expenditure, fat accumulation, circulatory level of myokines, and adipokines might be involved. This review article focuses on some of the selected adipokines in MetS, and their responses to exercise training considering possible mechanisms.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rastegar Hoseini
- Department of Sports Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
41
|
McCarty MF. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy. Int J Mol Sci 2022; 23:2054. [PMID: 35216170 PMCID: PMC8875972 DOI: 10.3390/ijms23042054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy is a "cell cleansing" process that rids cells of protein aggregates and damaged organelles that may contribute to disease pathogenesis and the dysfunctions associated with aging. Measures which boost longevity and health span in rodents typically up-regulate macroautophagy, and it has often been suggested that safe strategies which can promote this process in humans may contribute to healthful aging. The kinase ULK1 serves as a trigger for autophagy initiation, and the transcription factors TFEB, FOXO1, ATF4 and CHOP promote expression of a number of proteins which mediate macroautophagy. Nutraceutical or dietary measures which stimulate AMPK, SIRT1, eIF5A, and that diminish the activities of AKT and mTORC1, can be expected to boost the activities of these pro-autophagic factors. The activity of AMPK can be stimulated with the phytochemical berberine. SIRT1 activation may be achieved with a range of agents, including ferulic acid, melatonin, urolithin A, N1-methylnicotinamide, nicotinamide riboside, and glucosamine; correction of ubiquinone deficiency may also be useful in this regard, as may dietary strategies such as time-restricted feeding or intermittent fasting. In the context of an age-related decrease in cellular polyamine levels, provision of exogenous spermidine can boost the hypusination reaction required for the appropriate post-translational modification of eIF5A. Low-protein plant-based diets could be expected to increase ATF4 and CHOP expression, while diminishing IGF-I-mediated activation of AKT and mTORC1. Hence, practical strategies for protecting health by up-regulating macroautophagy may be feasible.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA 92109, USA
| |
Collapse
|
42
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Chen Y, Sun Y, Luo Z, Lin J, Qi B, Kang X, Ying C, Guo C, Yao M, Chen X, Wang Y, Wang Q, Chen J, Chen S. Potential Mechanism Underlying Exercise Upregulated Circulating Blood Exosome miR-215-5p to Prevent Necroptosis of Neuronal Cells and a Model for Early Diagnosis of Alzheimer's Disease. Front Aging Neurosci 2022; 14:860364. [PMID: 35615585 PMCID: PMC9126031 DOI: 10.3389/fnagi.2022.860364] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise is crucial for preventing Alzheimer's disease (AD), although the exact underlying mechanism remains unclear. The construction of an accurate AD risk prediction model is beneficial as it can provide a theoretical basis for preventive exercise prescription. In recent years, necroptosis has been confirmed as an important manifestation of AD, and exercise is known to inhibit necroptosis of neuronal cells. In this study, we extracted 67 necroptosis-related genes and 32 necroptosis-related lncRNAs and screened for key predictive AD risk genes through a random forest analysis. Based on the neural network Prediction model, we constructed a new logistic regression-based AD risk prediction model in order to provide a visual basis for the formulation of exercise prescription. The prediction model had an area under the curve (AUC) value of 0.979, indicative of strong predictive power and a robust clinical application prospect. In the exercise group, the expression of exosomal miR-215-5p was found to be upregulated; miR-215-5p could potentially inhibit the expressions of IDH1, BCL2L11, and SIRT1. The single-cell SCENIC assay was used to identify key transcriptional regulators in skeletal muscle. Among them, CEBPB and GATA6 were identified as putative transcriptional regulators of miR-215. After "skeletal muscle removal of load," the expressions of CEBPB and GATA6 increased substantially, which in turn led to the elevation of miR-215 expression, thereby suggesting a putative mechanism for negative feedback regulation of exosomal homeostasis.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | | | - Yi Wang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an, China
- *Correspondence: Qian Wang,
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Jiwu Chen,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shiyi Chen,
| |
Collapse
|
44
|
Liu X, Zheng X, Lu Y, Chen Q, Zheng J, Zhou H. TFEB Dependent Autophagy-Lysosomal Pathway: An Emerging Pharmacological Target in Sepsis. Front Pharmacol 2021; 12:794298. [PMID: 34899355 PMCID: PMC8664376 DOI: 10.3389/fphar.2021.794298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening syndrome induced by aberrant host response towards infection. The autophagy-lysosomal pathway (ALP) plays a fundamental role in maintaining cellular homeostasis and conferring organ protection. However, this pathway is often impaired in sepsis, resulting in dysregulated host response and organ dysfunction. Transcription factor EB (TFEB) is a master modulator of the ALP. TFEB promotes both autophagy and lysosomal biogenesis via transcriptional regulation of target genes bearing the coordinated lysosomal expression and regulation (CLEAR) motif. Recently, increasing evidences have linked TFEB and the TFEB dependent ALP with pathogenetic mechanisms and therapeutic implications in sepsis. Therefore, this review describes the existed knowledge about the mechanisms of TFEB activation in regulating the ALP and the evidences of their protection against sepsis, such as immune modulation and organ protection. In addition, TFEB activators with diversified pharmacological targets are summarized, along with recent advances of their potential therapeutic applications in treating sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
46
|
Abstract
One of the best strategies for healthy brain aging is regular aerobic exercise. Commonly studied "anti-aging" compounds may mimic some effects of exercise on the brain, but novel approaches that target energy-sensing pathways similar to exercise probably will be more effective in this context. We review evidence in support of this hypothesis by focusing on biological hallmarks of brain aging.
Collapse
|
47
|
Trajano GS, Blazevich AJ. Static Stretching Reduces Motoneuron Excitability: The Potential Role of Neuromodulation. Exerc Sport Sci Rev 2021; 49:126-132. [PMID: 33720914 PMCID: PMC7967995 DOI: 10.1249/jes.0000000000000243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Prolonged static muscle stretching transiently reduces maximal muscle force, and this force loss has a strong neural component. In this review, we discuss the evidence suggesting that stretching reduces the motoneuron's ability to amplify excitatory drive. We propose a hypothetical model in which stretching causes physiological relaxation, reducing the brainstem-derived neuromodulatory drive necessary to maximize motoneuron discharge rates.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
48
|
Yu M, Zhang H, Wang B, Zhang Y, Zheng X, Shao B, Zhuge Q, Jin K. Key Signaling Pathways in Aging and Potential Interventions for Healthy Aging. Cells 2021; 10:cells10030660. [PMID: 33809718 PMCID: PMC8002281 DOI: 10.3390/cells10030660] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.
Collapse
Affiliation(s)
- Mengdi Yu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Hongxia Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Brian Wang
- Pathnova Laboratories Pte. Ltd. 1 Research Link, Singapore 117604, Singapore;
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Xiaoying Zheng
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
| | - Bei Shao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; (M.Y.); (Y.Z.); (X.Z.)
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (Q.Z.); (K.J.); Tel.: +86-577-55579339 (Q.Z.); +1-81-7735-2579 (K.J.)
| |
Collapse
|
49
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
50
|
Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD. Life Sci 2021; 273:119314. [PMID: 33667513 DOI: 10.1016/j.lfs.2021.119314] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
AIM To emphasize the mechanism of the effect of exercise on lipid droplet (LD) metabolism disorder in nonalcoholic fatty liver disease (NAFLD). MAIN METHODS C57BL/6J mice were randomly divided into three groups: The first group was fed with a normal diet (CON), the second group was fed a high-fat diet (HF), and finally group with a high-fat diet intervention and swim training (HF-EX). The total intervention period was 16 weeks. RT-PCR and Western blot were performed to evaluate the effect of exercise on LDs metabolism and the AMPK pathway. Histopathological examinations and immunofluorescence were performed to evaluate the lipid deposition and lipophagy in the liver. KEY FINDINGS Exercise reduced liver steatosis and insulin resistance along with the stimulation of AMPK/SIRT1 signaling and downstream regulation of lipid metabolism. In addition, exercise increased the expression of autophagy marker and colocalization of LC3 and LAMP1 with LDs. SIGNIFICANCE Exercise stimulated AMPK/SIRT1 and activated lipophagy in NAFLD. Enhancing lipophagy may be one of the key mechanisms of regulation and resolution of NAFLD by exercise.
Collapse
|