1
|
Feng X, Chai YH, Jiang KX, Jiang WB, Chen WC, Pan Y. Bibliometric analysis of olaparib and pancreatic cancer from 2009 to 2022: A global perspective. World J Gastrointest Oncol 2024; 16:4489-4505. [DOI: 10.4251/wjgo.v16.i11.4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/24/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Genetic screening for breast cancer gene 1 (BRCA)1/2 mutations can inform breast/ovarian/pancreatic cancer patients of suitable therapeutic interventions. Four to seven percent of pancreatic cancer patients have germline BRCA mutations. BRCA genes aid in DNA repair, especially homologous recombination, which impacts genomic stability and cancer cell growth. BRCA1 regulates the cell cycle, ubiquitination, and chromatin remodeling, whereas BRCA2 stimulates the immune response. They predict the efficacy of platinum chemotherapy or polymerase (PARP) inhibitors such as olaparib.
AIM To determine the trends and future directions in the use of olaparib for pancreatic cancer treatment.
METHODS To evaluate the trends in how olaparib works in pancreatic cancer, we performed a bibliometric analysis. One hundred and ninety-six related publications were accessed from the Web of Science Core Collection and were published between 2009 and 2022. The analytic parameters included publications, related citations, productive countries and institutes, influential authors, and keyword development.
RESULTS This study visualizes and discusses the current research, including the present global trends and future directions in olaparib and pancreatic cancer. Overall, this study sheds light on optimizing the use of olaparib in pancreatic cancer treatment, offering valuable guidance for researchers in this field.
CONCLUSION Our findings identified trends in olaparib and pancreatic cancer, with China and the USA leading and with global cooperation tightening. O'Reilly EM's team and Memorial Sloan-Kettering had the highest output. The Journal of Clinical Oncology was the most cited journal. More PARP inhibitors are emerging, and combination therapy is suggested for future therapeutic trends.
Collapse
Affiliation(s)
- Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yi-Han Chai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ke-Xin Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Wen-Bin Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Wen-Chao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
2
|
Qureshi Z, Jamil A, Altaf F, Siddique R, Safi A. Efficacy and Safety of BRCA-targeted Therapy (Polyadenosine Diphosphate-ribose Polymerase Inhibitors) in Treatment of BRCA-mutated Breast Cancer: A Systematic Review and Meta-analysis. Am J Clin Oncol 2024; 47:555-562. [PMID: 38899756 DOI: 10.1097/coc.0000000000001120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Breast cancer is the second leading cause of women's cancer deaths after lung cancer. Risk factors such as environment, lifestyle, and genetics contribute to its development, including mutation in the breast cancer (BRCA) gene. Polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) target these mutations, benefiting patients with advanced cancers. This review summarizes PARPi' safety and efficacy in the treatment of BRCA-mutated breast cancer. PubMed, The Cochrane Library for Clinical Trials, and Science Direct, were searched for articles from inception to April 2024. Eligible articles were analyzed, and data were extracted for meta-analysis using RevMan 5.4 software with a random-effect model. Out of 430 articles identified from online databases, only 6 randomized control trials including 3610 patients were included in the analysis. PARPi therapy improved progression-free survival (hazard ratio: 0.64; 95% CI: 0.56, 0.73; P < 0.00001) and overall survival (hazard ratio: 0.84; 95% CI: 0.73, 0.98 P = 0.02), according to the analysis. In our safety analysis, the risk of adverse events was not statistically different between PARPi versus chemotherapy (relative risk [RR]: 1.08; 95% CI: 0.44, 2.68; P = 0.86), and combined PARPi and standard chemotherapy (RR: 1.00; 95% CI: 0.93, 1.07; P = 0.80). The only statistically significant difference was observed in anemia, where PARPi increased the risk of developing anemia compared with standard chemotherapy (RR: 6.17; 95% CI: 2.44, 15.58; P = 0.0001). In BRCA-mutated breast cancer, PARPi treatment shows better overall survival and progression-free survival compared with standard chemotherapy or placebo. Furthermore, PARPi, either alone or in combination therapy, does not increase the risk of adverse events in these patients, as per the meta-analysis.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine, Quinnipiac University, Bridgeport, CT
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre Watertown
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai/BronxCare Health System
| | | | - Adnan Safi
- Department of Medicine Lahore General Hospital, Pakistan
| |
Collapse
|
3
|
Ren S, Peng H, Zhang J, Yang J, He Y, Sun Z, Wang G. A genome-wide association study of escitalopram treatment outcomes in patients with major depressive disorder. Gene 2024; 926:148596. [PMID: 38782219 DOI: 10.1016/j.gene.2024.148596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Major depressive disorder (MDD) is a common psychological condition, the consequences of which, such as suicide, can be severe. Escitalopram, a selective serotonin reuptake inhibitor, is a commonly used antidepressant in clinics. However, more than one-third of patients with MDD do not respond to this drug. Gene polymorphism may affect the efficacy of escitalopram, but the genetic architecture of the antidepressant response in patients with MDD remains unclear. We perform a genome-wide association study (GWAS) of the genetic effect on the outcome of escitalopram in patients with MDD. A total of 203 patients with MDD and 176 healthy control (HC) adults were recruited from Beijing Anding Hospital. Patients received 12 weeks of antidepressant treatment with escitalopram. The Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) or Hamilton depression scale (HAMD) were used to evaluate the severity of depression symptoms at the baseline and the end of 2 and 12 weeks of treatment. A total of 140 variants in MDD patients were identified by GWAS to have genome-wide significance (p < 5e - 8) compared with HCs. Similarly, 189 and 18 variants were identified to be associated with QIDS-SR and HAMD score changes in patients after antidepressant treatment (p < 1e - 5), including rs12602361, rs72799048, rs16842235, and rs2518256. In the two weeks QIDS-SR score study, the gene-level association for these variants and gene set enrichment analyses implicate the enrichment of genes involved in the synaptic plasticity process and nervous system development. Our results implicate the predictive capacity of the effect of escitalopram treatment, supporting a link between genetic basis and remission of depression.
Collapse
Affiliation(s)
- Siyu Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - He Peng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jinniu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Liu Q, Huang C, Chen S, Zhu Y, Huang X, Zhao G, Xu Q, Shi Y, Li W, Wang R, Yin X. ADAR1 promotes cisplatin resistance in intrahepatic cholangiocarcinoma by regulating BRCA2 expression through A-to-I editing manner. Cell Prolif 2024; 57:e13659. [PMID: 38773866 PMCID: PMC11471395 DOI: 10.1111/cpr.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Chen‐Song Huang
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Siyun Chen
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhouChina
| | - Ying‐Qin Zhu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xi‐Tai Huang
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Guang‐Yin Zhao
- Department of Animal Experiment Center, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qiong‐Cong Xu
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yin‐Hao Shi
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ruizhi Wang
- Department of Laboratory Medicine, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Yu Yin
- Department of Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
John AO, Singh A, Yadav P, Joel A, Thumaty DB, Fibi Ninan K, Georgy JT, Cherian AJ, Thomas S, Thomas A, Thomas V, Peedicayil A, Varghese D, Parthiban R, Ravichandran L, Johnson J, Thomas N, Yadav B, Patricia S, Selvamani B, Abraham D, Paul MJ, Chacko RT, Chapla A. The BRCA mutation spectrum among breast and ovarian cancers in India: highlighting the need to screen BRCA1 185delAG among South Indians. Eur J Hum Genet 2024; 32:1319-1326. [PMID: 38538877 PMCID: PMC11499860 DOI: 10.1038/s41431-024-01596-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in BRCA1 and BRCA2 significantly elevate the risk of developing breast and ovarian cancer. Limited data exists regarding the prevalence of BRCA mutations, and optimal, cost-effective testing strategies in developing countries like India. This study aimed to evaluate the utility of a Next Generation Sequencing (NGS) panel for BRCA1/2 mutation testing among women diagnosed with, or at risk of developing hereditary breast and ovarian cancers. We also aimed to identify population specific BRCA1/2 mutation hotspots, to enable the development of more affordable testing strategies. We identified 921 patients with breast and ovarian cancer who underwent mutation testing. The target enrichment was followed by targeted NGS in 772 patients and an allele-specific PCR (ASPCR) based genotyping for BRCA1:c.68_69delAG (or 185delAG), was carried out in 149 patients. We identified 188 (20.4%) patients with BRCA1/2 variants: 118 (62.8%) with pathogenic/likely pathogenic and 70 (37.2%) with VUS. The 185delAG was identified as a recurrent mutation in the Southern Indian population, accounting for 24.6% of the pathogenic variants. In addition, a family history of breast, ovary, pancreas, or prostate (BOPP) cancer was found to be associated with an increased risk of identifying a deleterious BRCA1/2 variant [OR = 2.11 (95% CI 1.45-3.07) p ≤ 0.001]. These results suggest that Targeted NGS is a sensitive and specific strategy for BRCA testing. For Southern Indian patients, a two-tiered approach can be considered: Initial screening with ASPCR for BRCA1 185delAG followed by NGS for those testing negative. Expanding the gene panel and identifying other population-specific mutation hot spots is a promising area with potential for improvements in testing and treatment strategies.
Collapse
Affiliation(s)
- Ajoy Oommen John
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - Ashish Singh
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - Pratibha Yadav
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - Anjana Joel
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - Divya Bala Thumaty
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - K Fibi Ninan
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - Josh Thomas Georgy
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | | | - Shawn Thomas
- Department of Endocrine Surgery, CMC, Vellore, India
| | - Anitha Thomas
- Department of Gynaecologic Oncology, CMC, Vellore, India
| | - Vinotha Thomas
- Department of Gynaecologic Oncology, CMC, Vellore, India
| | | | - Deny Varghese
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - R Parthiban
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - Lavanya Ravichandran
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - Jabasteen Johnson
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - Nihal Thomas
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India
| | - Bijesh Yadav
- Department of Biostatistics, CMC, Vellore, India
| | - S Patricia
- Department of Radiation Oncology, CMC, Vellore, India
| | - B Selvamani
- Department of Radiation Oncology, CMC, Vellore, India
| | | | - M J Paul
- Department of Endocrine Surgery, CMC, Vellore, India
| | - Raju Titus Chacko
- Department of Medical Oncology, Christian Medical College (CMC), Vellore, India
| | - Aaron Chapla
- Molecular Endocrinology Laboratory, Department of Endocrinology, Diabetes and Metabolism, CMC, Vellore, India.
| |
Collapse
|
6
|
Hall R, Bancroft E, Pashayan N, Kote-Jarai Z, Eeles RA. Genetics of prostate cancer: a review of latest evidence. J Med Genet 2024; 61:915-926. [PMID: 39137963 DOI: 10.1136/jmg-2024-109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Prostate cancer (PrCa) is a largely heritable and polygenic disease. It is the most common cancer in people with prostates (PwPs) in Europe and the USA, including in PwPs of African descent. In the UK in 2020, 52% of all cancers were diagnosed at stage I or II. The National Health Service (NHS) long-term plan is to increase this to 75% by 2028, to reduce absolute incidence of late-stage disease. In the absence of a UK PrCa screening programme, we should explore how to identify those at increased risk of clinically significant PrCa.Incorporating genomics into the PrCa screening, diagnostic and treatment pathway has huge potential for transforming patient care. Genomics can increase efficiency of PrCa screening by focusing on those with genetic predisposition to cancer-which when combined with risk factors such as age and ethnicity, can be used for risk stratification in risk-based screening (RBS) programmes. The goal of RBS is to facilitate early diagnosis of clinically significant PrCa and reduce overdiagnosis/overtreatment in those unlikely to experience PrCa-related symptoms in their lifetime. Genetic testing can guide PrCa management, by identifying those at risk of lethal PrCa and enabling access to novel targeted therapies.PrCa is curable if diagnosed below stage III when most people do not experience symptoms. RBS using genetic profiling could be key here if we could show better survival outcomes (or reduction in cancer-specific mortality accounting for lead-time bias), in addition to more cost efficiency than age-based screening alone. Furthermore, PrCa outcomes in underserved communities could be optimised if genetic testing was accessible, minimising health disparities.
Collapse
Affiliation(s)
- Rose Hall
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| | | | | | | | - Rosalind A Eeles
- The Royal Marsden NHS Foundation Trust, London, UK
- Institute for Cancer Research, London, UK
| |
Collapse
|
7
|
Peng P, Yin Q, Sun W, Han J, Guo H, Cheng C, Liu D. Global RNA Interaction and Transcriptome Profiles Demonstrate the Potential Anti-Oncogenic Targets and Pathways of RBM6 in HeLa Cells. FRONT BIOSCI-LANDMRK 2024; 29:330. [PMID: 39344314 DOI: 10.31083/j.fbl2909330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The fate and functions of RNAs are coordinately regulated by RNA-binding proteins (RBPs), which are often dysregulated in various cancers. Known as a splicing regulator, RNA-binding motif protein 6 (RBM6) harbors tumor-suppressor activity in many cancers; however, there is a lack of research on the molecular targets and regulatory mechanisms of RBM6. METHODS In this study, we constructed an RBM6 knock-down (shRBM6) model in the HeLa cell line to investigate its functions and molecular targets. Then we applied improved RNA immunoprecipitation coupled with sequencing (iRIP-seq) and whole transcriptome sequencing approaches to investigate the potential role and RNA targets of RBM6. RESULTS Using The Cancer Genome Atlas dataset, we found that higher expression of RBM6 is associated with a better prognosis in many cancer types. In addition, we found that RBM6 knockdown promoted cell proliferation and inhibited apoptosis, demonstrating that RBM6 may act as an anti-oncogenic protein in cancer cells. RBM6 can regulate the alternative splicing (AS) of genes involved in DNA damage response, proliferation, and apoptosis-associated pathways. Meanwhile, RBM6 knockdown activated type I interferon signaling pathways and inhibited the expression of genes involved in the cell cycle, cellular responses to DNA damage, and DNA repair pathways. The differentially expressed genes (DEGs) by shRBM6 and their involved pathways were likely regulated by the transcription factors undergoing aberrant AS by RBM6 knockdown. For iRIP-seq analysis, we found that RBM6 could interact with a large number of mRNAs, with a tendency for binding motifs GGCGAUG and CUCU. RBM6 bound to the mRNA of cell proliferation- and apoptosis-associated genes with dysregulated AS after RBM6 knockdown. CONCLUSIONS In summary, our study highlights the important role of RBM6, as well as the downstream targets and regulated pathways, suggesting the potential regulatory mechanisms of RBM6 in the development of cancer.
Collapse
Affiliation(s)
- Ping Peng
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qingqing Yin
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Wei Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Jing Han
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Hao Guo
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Chao Cheng
- Center for BioBigData Analysis, ABLife BioBigData Institute, 430075 Wuhan, Hubei, China
| | - Dongbo Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| |
Collapse
|
8
|
Liu Z, Huang Q, Ding M, Wang T, Chen Y, Zhang K. BRCA2 mutations in familial breast cancer with prostate cancer: a case report and literature review. Front Oncol 2024; 14:1428849. [PMID: 39364320 PMCID: PMC11446893 DOI: 10.3389/fonc.2024.1428849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men globally. Its etiology has been attributed to multiple factors, including age and ethnicity, with family history identified as a significant risk factor. The role of family history in prostate cancer risk appears to be more extensive than previously thought, with evidence suggesting that prostate cancer and breast cancer may occur concurrently within families. BRCA2 mutations have been linked to an increased risk of prostate cancer, particularly in patients diagnosed with early-onset disease. It is estimated that BRCA2 mutations account for approximately 5% of familial prostate cancer cases. It is noteworthy that cases of prostate cancer in patients with BRCA2 mutations are rare in clinical practice. Here we report a case of prostatitis carcinoma with a mutation in the BRCA2 gene in a patient who underwent robotic-assisted radical prostatectomy for prostatitis carcinoma after medication was not effective. Genetic testing of him, his son, and his daughter showed that they all had mutations in this gene, and it is noteworthy that the type of BRCA2 mutation in his son has never been reported before, which is rare in clinical practice.
Collapse
Affiliation(s)
- Zhengsheng Liu
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qianhao Huang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meixuan Ding
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuedong Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Kaiyan Zhang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Chen M, Lei N, Guo R, Han L, Zhao Q, Zhao Y, Qiu L, Wu F, Jiang S, Tong N, Wang K, Li S, Chang L. Genetic landscape of homologous recombination repair and practical outcomes of PARPi therapy in ovarian cancer management. Ther Adv Med Oncol 2024; 16:17588359241271845. [PMID: 39246808 PMCID: PMC11378221 DOI: 10.1177/17588359241271845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Genetic studies of ovarian cancer (OC) have historically focused on BRCA1/2 mutations, lacking other studies of homologous recombination repair (HRR). Poly (ADP-ribose) polymerase inhibitors (PARPi) exploit synthetic lethality to significantly improve OC treatment outcomes, especially in BRCA1/2 deficiency patients. Objectives Our study aims to construct a mutation map of HRR genes in OC and identify factors influencing the efficacy of PARPi. Design A retrospective observational analysis of HRR gene variation data from 695 OC patients from March 2019 to February 2022 was performed. Methods The HRR gene variation data of 695 OC patients who underwent next-generation sequencing (NGS) in the First Affiliated Hospital of Zhengzhou University were retrospectively collected. Clinical data on the use of PARPi in these patients were also gathered to identify factors that may interfere with the efficacy of PARPi. Results Out of 127 pathogenic variants in the BRCA1/2 genes, 104 (81.9%) were BRCA1 mutations, and 23 (18.1%) were BRCA2 mutations. Among the 59 variants of uncertain significance (VUS), 20 (33.9%) were BRCA1, while 39 (66.1%) were BRCA2 mutations. In addition to BRCA1/2, HRR gene results showed that 9 (69%) of 13 were HRR pathway pathogenic variants; and 16 (1.7%) of 116 VUS were Food and Drug Administration (FDA)-approved mutated HRR genes. Notably, the treatment regimen significantly influenced the effectiveness of PARPi, especially when using first-line maintenance therapy, leading to enhanced progression-free survival (PFS) compared to alternative protocols. Conclusion Focusing on HRR gene mutations and supporting clinical research about PARPi in OC patients is crucial for developing precision treatment strategies and enhancing prognosis.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qinghe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningyao Tong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kunmei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
10
|
van der Merwe NC, Buccimazza I, Rossouw B, Araujo M, Ntaita KS, Schoeman M, Vorster K, Napo K, Kotze MJ, Oosthuizen J. Clinical relevance of double heterozygosity revealed by next-generation sequencing of homologous recombination repair pathway genes in South African breast cancer patients. Breast Cancer Res Treat 2024; 207:331-342. [PMID: 38814507 PMCID: PMC11297091 DOI: 10.1007/s10549-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.
Collapse
Affiliation(s)
- Nerina C van der Merwe
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa.
| | - Ines Buccimazza
- Genetics Unit, Inkosi Albert Luthuli General Hospital, Durban, South Africa
- Department of Surgery, Nelson R Mandela School of Medicine, Inkosi Albert Luthuli General Hospital, Durban, South Africa
| | - Bianca Rossouw
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Araujo
- Division of Human Genetics, National Health Laboratory Service, Braamfontein, Johannesburg, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kholiwe S Ntaita
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karin Vorster
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Kgabo Napo
- Department of Oncology, Free State Department of Health, Universitas Annex Hospital, Bloemfontein, South Africa
- Department of Oncology, Faculty of Health Science, University of the Free State, Bloemfontein, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| |
Collapse
|
11
|
Li C, Sun S, Zhuang Y, Luo Z, Ji G, Liu Z. CTSB Nuclear Translocation Facilitates DNA Damage and Lysosomal Stress to Promote Retinoblastoma Cell Death. Mol Biotechnol 2024; 66:2583-2594. [PMID: 38159170 PMCID: PMC11424708 DOI: 10.1007/s12033-023-01042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Retinoblastoma (RB) is a pernicious tumor originating from photoreceptor precursor cells that often endangers the lives of children. The purpose of our study was to further investigate the influence of cathepsin B (CTSB) nuclear translocation on RB cell death. Y79 cells were injected into the vitreous cavity of nude mice at a dose of 4 µL/mouse to establish an animal model of RB. Real-time quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, a comet assay, a Cell Counting Kit-8 (CCK-8) assay and flow cytometry were used to measure the levels of the interrelated genes and proteins and to evaluate alterations in autophagy, apoptosis, proliferation, DNA damage and cell cycle arrest. CTSB was found to be expressed at low levels in RB animal model samples and RB cell lines. Functionally, CTSB nuclear translocation promoted DNA damage, cell cycle arrest, ferroptosis and autophagy in Y79 cells and inhibited their proliferation. Downstream mechanistic studies showed that nuclear translocation of CTSB facilitates DNA damage and cell cycle arrest in RB cells by inhibiting breast cancer 1 protein (BRCA1) expression and also activates the signal transducer and activator of transcription 3/stimulator of interferon response cGAMP interactor 1 (STAT3/STING1) pathway to induce lysosomal stress, leading to ferroptosis and autophagy in Y79 cells and alleviating RB. Nuclear translocation of CTSB facilitates DNA damage and cell cycle arrest in RB cells by inhibiting BRCA1 expression and activating the STAT3/STING1 pathway and induces lysosomal stress, which eventually leads to ferroptosis and autophagy and mitigates RB.
Collapse
Affiliation(s)
- Cairui Li
- Department of Ophthalmology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, Yunnan, 671003, China.
| | - Shuguang Sun
- Department of Endocrine, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671003, China
| | - Yanmei Zhuang
- Department of Ophthalmology, Weishan County People's Hospital, Weishan, Yunnan, 672400, China
| | - Zhaokui Luo
- Department of Ophthalmology, Jingdong County Hospital in Yunnan Province, Jingdong, Yunnan, 665700, China
| | - Guangquan Ji
- Department of Ophthalmology, Jingdong County Traditional Chinese Medicine Hospital in Yunnan Province, Jingdong, Yunnan, 665700, China
| | - Zhong Liu
- Department of Surgery, Weishan County People's Hospital, Weishan, Yunnan, 672400, China
| |
Collapse
|
12
|
Bews HJ, Mackic L, Jassal DS. Preventing broken hearts in women with breast cancer: a concise review on chemotherapy-mediated cardiotoxicity. Can J Physiol Pharmacol 2024; 102:487-497. [PMID: 38039515 DOI: 10.1139/cjpp-2023-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Cancer and cardiovascular disease are the leading causes of death for Canadian women. One in eight Canadian women will receive the life-changing diagnosis of breast cancer (BC) in their lifetime, with 1 in 34 dying from the disease. Although doxorubicin (DOX) and trastuzumab (TRZ) have significantly improved survival in women diagnosed with human epidermal growth factor receptor 2 (HER2)-positive BC, approximately one in four women who receive this treatment are at risk of developing chemotherapy-induced cardiotoxicity. Cardiotoxicity is defined as a decline in left ventricular ejection fraction (LVEF) of >10% to an absolute value of <53%. Current guidelines recommend the serial monitoring of LVEF in this patient population using non-invasive cardiac imaging modalities including transthoracic echocardiography or multi-gated acquisition scan; however, this will only allow for the detection of established cardiotoxicity. Recent studies have demonstrated that a reduction in global longitudinal strain by speckle tracking echocardiography can identify pre-clinical systolic dysfunction prior to a decline in overall LVEF. Implementation of early detection techniques would allow for the prompt initiation of cardioprotective strategies. In addition to the early detection of chemotherapy-mediated cardiotoxicity, the prophylactic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, statins, exercise, and nutraceutical therapies have been studied in the setting of cardio-oncology.
Collapse
Affiliation(s)
- Hilary J Bews
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lana Mackic
- Institute of Cardiovascular Sciences, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
| | - Davinder S Jassal
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
- Department of Radiology, St. Boniface Hospital, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Sevimli TS, Ghorbani A, Gakhiyeva F, Cevizlidere BD, Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells. Biol Trace Elem Res 2024; 202:3980-3987. [PMID: 38087035 DOI: 10.1007/s12011-023-03987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Breast cancer pathology ranks second in mortality among women worldwide due to the resistance of cancer stem cells in tumor tissue to radiotherapy and chemotherapy and their effective DNA damage response system (DDR). Targeting the expression of DNA double-strand break (DSB) repair genes in breast cancer stem cells (BC-SCs) is essential for facilitating their elimination with conventional therapies. This study aims to investigate the effects of boric acid (BA) on the expression of DNA DSB repair genes in BC-SCs, which has not been studied in the literature before. BS-SCs were isolated by the MACS method and characterized by flow cytometry. The effects of BA on BC-SCs' DNA DSB repair genes were deciphered by cell viability assay, inverted microscopy, and RT-qPCR. While the expression of the BRCA1 and BRCA2 was upregulated, the expression of the ATM (p < 0.001), RAD51 (p < 0.001), and KU70 (p < 0.001) was downregulated in dose-treated BC-SCs (p < 0.001) to the qPCR results. Consequently, BA affects some of the DNA DSB repair genes of breast cancer stem cells. Findings from this study could provide new insights into the potential therapeutic application of BA in BC-SC elimination and cancer intervention.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
| | - Aynaz Ghorbani
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Fidan Gakhiyeva
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Bahar Demir Cevizlidere
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, 26040, Turkey
| |
Collapse
|
14
|
Chen S, Huang L, Liang M, Xie Y, Zhou Z, Ke Y, Wu Z. Advances in understanding the molecular mechanisms of borderline ovarian tumors. Front Mol Biosci 2024; 11:1429852. [PMID: 39281319 PMCID: PMC11392903 DOI: 10.3389/fmolb.2024.1429852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Borderline ovarian tumors (BOTs), which are a special type of epithelial tumor of the ovary, lie between benign and malignant tumors and have low malignant potential. Due to the fact that the early symptoms of these tumors are relatively subtle, they are not easy to diagnose clinically. This study explores advancements in clinical detection methods and provides a comprehensive overview of molecules such as cell migration factors, cell transcription factors, cell damage repair factors, cell cycle regulators, and tumor suppressor genes that are related to the development of BOTs and their related mechanisms in recent years, thus aiming to provide more sensitive, specific, and efficient differential diagnosis and treatment plans for patients to improve their prognosis and survival outcomes.
Collapse
Affiliation(s)
- Shiying Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Li Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yajing Xie
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhimei Zhou
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
15
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2024:10.1007/s11030-024-10964-z. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
16
|
Romaniuk-Drapala A, Skupin-Mrugalska P, Garbuzenko O, Hatefi A, Minko T. Synergistic antitumor effect of liposomal-based formulations of olaparib and topotecan in primary epithelial ovarian cancer cells. Cancer Cell Int 2024; 24:285. [PMID: 39135053 PMCID: PMC11320834 DOI: 10.1186/s12935-024-03469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Olaparib is a PARP inhibitor inducing synthetic lethality in tumors with deficient homologous recombination (HRD) caused by BRCA1/2 mutations. The FDA has approved monotherapy for first-line platinum-sensitive, recurrent high-grade epithelial ovarian cancer. Combination therapy alongside DNA-damaging therapeutics is a promising solution to overcome the limited efficacy in patients with HRD. The present study was designed to develop topotecan- and olaparib-loaded liposomes (TLL and OLL) and assess the effectiveness of their combination in patient-derived ovarian cancer samples. METHODS We used HEOC, four clear-cell tumors (EOC 1-4), malignant ascites, and an OCI-E1p endometrioid primary ovarian cancer cell line and performed NGS analysis of BRCA1/2 mutation status. Antiproliferative activity was determined with the MTT assay. The Chou-Talalay algorithm was used to investigate the in vitro pharmacodynamic interactions of TLLs and OLLs. RESULTS The OLL showed significantly higher efficacy in all ovarian cancer types with wild-type BRCA1/2 than a conventional formulation, suggesting potential for increased in vivo efficacy. The TLL revealed substantially higher toxicity to EOC 1, EOC 3, ascites and lower toxicity to HEOC than the standard formulation, suggesting better therapeutic efficacy and safety profile. The combination of studied compounds showed a higher reduction in cell viability than drugs used individually, demonstrating a synergistic antitumor effect at most of the selected concentrations. CONCLUSIONS The concentration-dependent response of different ovarian cancer cell types to combination therapy confirms the need for in vitro optimization to maximize drug cytotoxicity. The OLL and TLL combination is a promising formulation for further animal studies, especially for eliminating epithelial ovarian cancer with wild-type BRCA1/2.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapala
- Department of Clinical Chemistry and Molecular Diagnostics, Collegium Pharmaceuticum, Poznan University of Medical Sciences, 3 Rokietnicka Str, 60-806, Poznan, Poland.
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, 3 Rokietnicka Str, 60-806, Poznan, Poland
| | - Olga Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| |
Collapse
|
17
|
Chehade H, Gogoi R, Adzibolosu NK, Galoforo S, Fehmi RA, Kheil M, Fox A, Kim S, Rattan R, Hou Z, Morris RT, Matherly LH, Mor G, Alvero AB. BRCA Status Dictates Wnt Responsiveness in Epithelial Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2075-2088. [PMID: 39028933 PMCID: PMC11320024 DOI: 10.1158/2767-9764.crc-24-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The association of BRCA1 and BRCA2 mutations with increased risk for developing epithelial ovarian cancer is well established. However, the observed clinical differences, particularly the improved therapy response and patient survival in BRCA2-mutant patients, are unexplained. Our objective is to identify molecular pathways that are differentially regulated upon the loss of BRCA1 and BRCA2 functions in ovarian cancer. Transcriptomic and pathway analyses comparing BRCA1-mutant, BRCA2-mutant, and homologous recombination wild-type ovarian tumors showed differential regulation of the Wnt/β-catenin pathway. Using Wnt3A-treated BRCA1/2 wild-type, BRCA1-null, and BRCA2-null mouse ovarian cancer cells, we observed preferential activation of canonical Wnt/β-catenin signaling in BRCA1/2 wild-type ovarian cancer cells, whereas noncanonical Wnt/β-catenin signaling was preferentially activated in the BRCA1-null ovarian cancer cells. Interestingly, BRCA2-null mouse ovarian cancer cells demonstrated a unique response to Wnt3A with the preferential upregulation of the Wnt signaling inhibitor Axin2. In addition, decreased phosphorylation and enhanced stability of β-catenin were observed in BRCA2-null mouse ovarian cancer cells, which correlated with increased inhibitory phosphorylation on GSK3β. These findings open venues for the translation of these molecular observations into modalities that can impact patient survival. SIGNIFICANCE We show that BRCA1 and BRCA2 mutation statuses differentially impact the regulation of the Wnt/β-catenin signaling pathway, a major effector of cancer initiation and progression. Our findings provide a better understanding of molecular mechanisms that promote the known differential clinical profile in these patient populations.
Collapse
Affiliation(s)
- Hussein Chehade
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Nicholas K. Adzibolosu
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Sandra Galoforo
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Rouba-Ali Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Mira Kheil
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Alexandra Fox
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Seongho Kim
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women’s Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, Michigan.
| | - Zhanjun Hou
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Larry H. Matherly
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Gil Mor
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
18
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
19
|
Zhang W, Xiao Y, Zhu X, Zhang Y, Xiang Q, Wu S, Song X, Zhao J, Yuan R, Li Q, Xiao B, Li L. Integrative Pan-Cancer Analysis Reveals the Oncogenic Role of MND1 and Validation of MND1's Role in Breast Cancer. J Inflamm Res 2024; 17:4721-4746. [PMID: 39051055 PMCID: PMC11268618 DOI: 10.2147/jir.s458832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Meiotic nuclear division 1 (MND1) is a meiosis-specific protein that promotes lung adenocarcinoma progression. However, its expression and biological function across cancers remain largely unexplored. Patients and Methods The expression, prognostic significance, mutation status, and methylation profile of MND1 in various cancers were comprehensively analyzed using the TIMER, GTEX, Kaplan-Meier plotter, cBioPortal, and GSCA databases. Additionally, we constructed a PPI network, enrichment analysis and single-cell transcriptomic sequencing to elucidate the underlying mechanism of MND1. Furthermore, we investigated the association between MND1 expression and drug sensitivity using CellMiner. Moreover, we also explored the correlation between MND1 expression and immune infiltration. Finally, we validated the functional role of MND1 in breast cancer through IHC staining, CCK8, EdU, colony formation, and flow cytometry assays. Results MND1 has been reported to be highly expressed in Pan-cancer, High MND1 expression was significantly associated with poor prognosis in cancers. Additionally, MND1 mutation frequency is high in most cancers, and its expression correlates with methylation. Furthermore, MND1 expression significantly correlates with immune checkpoint blockade (ICB) markers, including PD-L1, PD-1, and CTLA-4. The PPI network reveals interactions between MND1 and PSMC3IP, BRCA1, and BRCA2. Enrichment analysis and single-cell sequencing indicate that MND1 positively correlates with cell cycle. ROC curve reveals favorable diagnostic efficacy of MND1 in breast cancer. In vitro, MND1 overexpression promotes breast cancer cell proliferation and increases the expression of key cell cycle regulators (CDK4, CDK6, and cyclin D3), accelerating the G1/S phase transition and leading to abnormal breast cancer cell proliferation. The immunohistochemical analysis revealed a robust expression of MND1 in breast cancer tissues, exhibiting a significant positive correlation with PD-L1 and FOXP3. Conclusion MND1 is an oncogene and may serve as a biomarker for cancer prognosis and immunotherapy. Targeting MND1 may be a potential tumor treatment strategy.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
- Department of Laboratory Medicine, Suzhou Municipal Hospital, Affiliated to Nanjing Medical University, Suzhou, 21500, People’s Republic of China
| | - Yuhan Xiao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Xin Zhu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qin Xiang
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Xiaoyu Song
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Junxiu Zhao
- School of Public Health, Dali University, Dali, 671000, People’s Republic of China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Qiguang Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Bin Xiao
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| | - Linhai Li
- Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, People’s Republic of China
| |
Collapse
|
20
|
Wang F, Fu X, Chang M, Wei T, Lin R, Tong H, Zhang X, Yuan R, Zhou Z, Huang X, Zhang W, Su W, Lu Y, Liang Z, Zhang J. The Interaction of Calcium-Sensing Receptor with KIF11 Enhances Cisplatin Resistance in Lung Adenocarcinoma via BRCA1/cyclin B1 pathway. Int J Biol Sci 2024; 20:3892-3910. [PMID: 39113697 PMCID: PMC11302892 DOI: 10.7150/ijbs.92046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Cisplatin (DDP) is commonly used in the treatment of non-small cell lung cancer (NSCLC), including lung adenocarcinoma (LUAD), and the primary cause for its clinical inefficacy is chemoresistance. Here, we aimed to investigate a novel mechanism of chemoresistance in LUAD cells, focusing on the calcium-sensing receptor (CaSR). In this study, high CaSR expression was detected in DDP-resistant LUAD cells, and elevated CaSR expression is strongly correlated with poor prognosis in LUAD patients receiving chemotherapy. LUAD cells with high CaSR expression exhibited decreased sensitivity to cisplatin, and the growth of DDP-resistant LUAD cells was inhibited by cisplatin treatment in combination with CaSR suppression, accompanied by changes in BRCA1 and cyclin B1 protein expression both in vitro and in vivo. Additionally, an interaction between CaSR and KIF11 was identified. Importantly, suppressing KIF11 resulted in decreased protein levels of BRCA1 and cyclin B1, enhancing the sensitivity of DDP-resistant LUAD cells to cisplatin with no obvious decrease in CaSR. Here, our findings established the critical role of CaSR in promoting cisplatin resistance in LUAD cells by modulating cyclin B1 and BRCA1 and identified KIF11 as a mediator, highlighting the potential therapeutic value of targeting CaSR to overcome chemoresistance in LUAD.
Collapse
Affiliation(s)
- Fuhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ming Chang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tianzi Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Risheng Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xiao Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Runzhu Yuan
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Huang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Liang
- The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Matuszczak M, Kiljańczyk A, Marciniak W, Derkacz R, Stempa K, Baszuk P, Bryśkiewicz M, Cybulski C, Dębniak T, Gronwald J, Huzarski T, Lener M, Jakubowska A, Szwiec M, Stawicka-Niełacna M, Godlewski D, Prusaczyk A, Jasiewicz A, Kluz T, Tomiczek-Szwiec J, Kilar-Kobierzycka E, Siołek M, Wiśniowski R, Posmyk R, Jarkiewicz-Tretyn J, Scott R, Lubiński J. Antioxidant Properties of Zinc and Copper-Blood Zinc-to Copper-Ratio as a Marker of Cancer Risk BRCA1 Mutation Carriers. Antioxidants (Basel) 2024; 13:841. [PMID: 39061909 PMCID: PMC11273827 DOI: 10.3390/antiox13070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic mutations in BRCA1 (BReast CAncer gene 1) confer high risks of both breast (up to 70%) and ovarian (up to 40%) cancers. Zinc (Zn) and copper (Cu) are essential for various physiological functions, including antioxidant reactions. Their balance, reflected in the Zn/Cu ratio, plays a crucial role in maintaining redox homeostasis, which is vital for cancer prevention. This study examines the antioxidant properties of Zn and Cu, specifically focusing on the blood Zn/Cu ratio as a potential marker for cancer risk among BRCA1 mutation carriers. The study cohort consisted of 989 initially unaffected women, followed up for 7.5 years. Blood samples were analyzed using inductively coupled plasma mass spectrometry. Although individual Zn and Cu levels did not significantly correlate with overall cancer risk, those women with a Zn/Cu ratio above 6.38 experienced a significantly lower cancer risk than women with a ratio below this cut-off point. This suggests that the Zn/Cu ratio may be a valuable biomarker for cancer prevention in this high-risk group. Given the increased cancer risk in BRCA1 mutation carriers, optimizing Zn and Cu levels through dietary and active interventions could provide a preventive strategy.
Collapse
Affiliation(s)
- Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Klaudia Stempa
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
| | - Małgorzata Stawicka-Niełacna
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | | | | | - Andrzej Jasiewicz
- Genetic Counseling Center, Subcarpatian Oncological Hospital, 18 Bielawskiego St, 36-200 Brzozów, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College, Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland;
| | - Joanna Tomiczek-Szwiec
- Department of Histology, Department of Biology and Genetics, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Ewa Kilar-Kobierzycka
- Department of Oncology, District Specialist Hospital, Leśna 27-29 St, 58-100 Świdnica, Poland;
| | - Monika Siołek
- Holycross Cancer Center, Artwińskiego 3 St, 25-734 Kielce, Poland;
| | - Rafał Wiśniowski
- Regional Oncology Hospital, Wyzwolenia 18 St, 43-300 Bielsko Biała, Poland;
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, 15-089 Bialystok, Poland;
| | | | - Rodney Scott
- Medical Genetics, Hunter Medical Research Institute, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle; Pathology North, John Hunter Hospital, King and Auckland Streets, Newcastle, NSW 2300, Australia;
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
22
|
Merlino F, Marzano S, Zizza P, D’Aria F, Grasso N, Carachino A, Iachettini S, Biroccio A, Fonzo SD, Grieco P, Randazzo A, Amato J, Pagano B. Unlocking the potential of protein-derived peptides to target G-quadruplex DNA: from recognition to anticancer activity. Nucleic Acids Res 2024; 52:6748-6762. [PMID: 38828773 PMCID: PMC11229374 DOI: 10.1093/nar/gkae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Noncanonical nucleic acid structures, particularly G-quadruplexes, have garnered significant attention as potential therapeutic targets in cancer treatment. Here, the recognition of G-quadruplex DNA by peptides derived from the Rap1 protein is explored, with the aim of developing novel peptide-based G-quadruplex ligands with enhanced selectivity and anticancer activity. Biophysical techniques were employed to assess the interaction of a peptide derived from the G-quadruplex-binding domain of the protein with various biologically relevant G-quadruplex structures. Through alanine scanning mutagenesis, key amino acids crucial for G-quadruplex recognition were identified, leading to the discovery of two peptides with improved G-quadruplex-binding properties. However, despite their in vitro efficacy, these peptides showed limited cell penetration and anticancer activity. To overcome this challenge, cell-penetrating peptide (CPP)-conjugated derivatives were designed, some of which exhibited significant cytotoxic effects on cancer cells. Interestingly, selected CPP-conjugated peptides exerted potent anticancer activity across various tumour types via a G-quadruplex-dependent mechanism. These findings underscore the potential of peptide-based G-quadruplex ligands in cancer therapy and pave the way for the development of novel therapeutic strategies targeting these DNA structures.
Collapse
Affiliation(s)
- Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Alice Carachino
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sara Iachettini
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Annamaria Biroccio
- Translational Oncology Research Unit, IRCCS-Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste 34149, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
23
|
Lavigne D, Sideris L, de Guerke L, Marchand EL, Fortin S, Dubé P, Vavassis P, Auclair MH, Yassa M. Concurrent Olaparib and Radiation Therapy for BRCA2-Mutated Breast Cancer. Adv Radiat Oncol 2024; 9:101528. [PMID: 38799106 PMCID: PMC11127196 DOI: 10.1016/j.adro.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Danny Lavigne
- Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Lucas Sideris
- Department of Surgery, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Lara de Guerke
- Department of Gynecology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Eve-Lyne Marchand
- Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Suzanne Fortin
- Department of Gynecology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Dubé
- Department of Surgery, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Peter Vavassis
- Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Marie-Hélène Auclair
- Department of Gynecology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - Michael Yassa
- Department of Radiation Oncology, Hôpital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Kunihisa T, Inubushi S, Tanino H, Hoffman RM. Induction of the DNA-Repair Gene POLQ only in BRCA1-mutant Breast-Cancer Cells by Methionine Restriction. Cancer Genomics Proteomics 2024; 21:399-404. [PMID: 38944428 PMCID: PMC11215430 DOI: 10.21873/cgp.20458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM BRCA1/2 mutations in breast cancer cells impair homologous recombination and promote alternative end joining (Alt-EJ) for DNA-damage repair. DNA polymerase theta, encoded by POLQ, plays a crucial role in Alt-EJ, making it a potential therapeutic target, particularly in BRCA1/2-mutant cancers. Methionine restriction is a promising approach to target cancer cells due to their addiction to this amino acid. The present study investigated the expression of POLQ in BRCA1/2 wild-type and BRCA1-mutant breast cancer cells under methionine restriction. MATERIALS AND METHODS POLQ mRNA expression was measured using qRT-PCR in BRCA1/2 wild-type (MDA-MB-231) and BRCA1- mutant (HCC1937 and MDA-MB-436) breast-cancer cells under normal, or serum-restricted, or serum- and methionine-restricted conditions. RESULTS Compared to BRCA1/2 wild-type cells, BRCA1-mutant cells displayed significantly higher basal POLQ expression in normal medium. Methionine restriction further increased POLQ expression in the BRCA1-mutant cells but decreased it in the BRCA1/2 wild-type cells. CONCLUSION The present findings suggest that methionine restriction showed differential effects on POLQ expression, potentially impacting Alt-EJ activity, in BRCA1/2 wild-type and BRCA1-mutant breast-cancer cells. Further investigation is needed to explore the potential of combining methionine restriction with DNA-repair inhibitors, such as PARP inhibitors, to overcome drug resistance in BRCA1/2 mutant cancers.
Collapse
Affiliation(s)
- Tomonari Kunihisa
- Division of Breast and Endocrine Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Sachiko Inubushi
- Division of Breast and Endocrine Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Hirokazu Tanino
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.;
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
25
|
Nikolić I, Milisavljević M, Timotijević G. Assessing Transcriptomic Responses to Oxidative Stress: Contrasting Wild-Type Arabidopsis Seedlings with dss1(I) and dss1(V) Gene Knockout Mutants. Int J Mol Sci 2024; 25:6291. [PMID: 38927997 PMCID: PMC11203560 DOI: 10.3390/ijms25126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress represents a critical facet of the array of abiotic stresses affecting crop growth and yield. In this paper, we investigated the potential differences in the functions of two highly homologous Arabidopsis DSS1 proteins in terms of maintaining genome integrity and response to oxidative stress. In the context of homologous recombination (HR), it was shown that overexpressing AtDSS1(I) using a functional complementation test increases the resistance of the Δdss1 mutant of Ustilago maydis to genotoxic agents. This indicates its conserved role in DNA repair via HR. To investigate the global transcriptome changes occurring in dss1 plant mutant lines, gene expression analysis was conducted using Illumina RNA sequencing technology. Individual RNA libraries were constructed from three total RNA samples isolated from dss1(I), dss1(V), and wild-type (WT) plants under hydrogen peroxide-induced stress. RNA-Seq data analysis and real-time PCR identification revealed major changes in gene expression between mutant lines and WT, while the dss1(I) and dss1(V) mutant lines exhibited analogous transcription profiles. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed significantly enriched metabolic pathways. Notably, genes associated with HR were upregulated in dss1 mutants compared to the WT. Otherwise, genes of the metabolic pathway responsible for the synthesis of secondary metabolites were downregulated in both dss1 mutant lines. These findings highlight the importance of understanding the molecular mechanisms of plant responses to oxidative stress.
Collapse
Affiliation(s)
| | | | - Gordana Timotijević
- Group for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (I.N.); (M.M.)
| |
Collapse
|
26
|
De Lorenzo A, Dos Santos Fernandes MC, Romeiro F, Arpini AP, Dias GM. DNA damage and repair in patients undergoing myocardial perfusion single-photon emission computed tomography. Sci Rep 2024; 14:13079. [PMID: 38844507 PMCID: PMC11156974 DOI: 10.1038/s41598-024-63537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
As patient exposure to ionizing radiation from medical imaging and its risks are continuing issues, this study aimed to evaluate DNA damage and repair markers after myocardial perfusion single-photon emission computed tomography (MPS). Thirty-two patients undergoing Tc-99m sestamibi MPS were studied. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. The comet assay (single-cell gel electrophoresis) was performed with peripheral blood cells to detect DNA strand breaks. Three descriptors were evaluated: the percentage of DNA in the comet tail, tail length, and tail moment (the product of DNA tail percentage and tail length). Quantitative PCR (qPCR) was performed to evaluate the expression of five genes related to signaling pathways in response to DNA damage and repair (ATM, ATR, BRCA1, CDKN1A, and XPC). Mann-Whitney's test was employed for statistical analysis; p < 0.05 was considered significant. Mean Tc-99m sestamibi dose was 15.1 mCi. After radiotracer injection, comparing post-exposure to pre-exposure samples of each of the 32 patients, no statistically significant differences of the DNA percentage in the tail, tail length or tail moment were found. qPCR revealed increased expression of BRCA1 and XPC, without any significant difference regarding the other genes. No significant increase in DNA strand breaks was detected after a single radiotracer injection for MPS. There was activation of only two repair genes, which may indicate that, in the current patient sample, the effects of ionizing radiation on the DNA were not large enough to trigger intense repair responses, suggesting the absence of significant DNA damage.
Collapse
Affiliation(s)
- Andrea De Lorenzo
- Coordenação de Ensino e Pesquisa, Instituto Nacional de Cardiologia, Rua das Laranjeiras 374, Rio de Janeiro, RJ, Brazil.
| | | | - Francisco Romeiro
- Serviço de Medicina Nuclear, Instituto Nacional de Cardiologia, Rio de Janeiro, Brazil
| | - Anna Paula Arpini
- Coordenação de Ensino e Pesquisa, Instituto Nacional de Cardiologia, Rua das Laranjeiras 374, Rio de Janeiro, RJ, Brazil
| | - Glauber Monteiro Dias
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Buckley DN, Tew BY, Gooden C, Salhia B. A comprehensive analysis of minimally differentially methylated regions common to pediatric and adult solid tumors. NPJ Precis Oncol 2024; 8:125. [PMID: 38824198 PMCID: PMC11144230 DOI: 10.1038/s41698-024-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2024] [Indexed: 06/03/2024] Open
Abstract
Cancer is the second most common cause of death in children aged 1-14 years in the United States, with 11,000 new cases and 1200 deaths annually. Pediatric cancers typically have lower mutational burden compared to adult-onset cancers, however, the epigenomes in pediatric cancer are highly altered, with widespread DNA methylation changes. The rarity of pediatric cancers poses a significant challenge to developing cancer-type specific biomarkers for diagnosis, prognosis, or treatment monitoring. In the current study, we explored the potential of a DNA methylation profile common across various pediatric cancers. To do this, we conducted whole genome bisulfite sequencing (WGBS) on 31 recurrent pediatric tumor tissues, 13 normal tissues, and 20 plasma cell-free (cf)DNA samples, representing 11 different pediatric cancer types. We defined minimal focal regions that were differentially methylated across samples in the multiple cancer types which we termed minimally differentially methylated regions (mDMRs). These methylation changes were also observed in 506 pediatric and 5691 adult cancer samples accessed from publicly available databases, and in 44 pediatric cancer samples we analyzed using a targeted hybridization probe capture assay. Finally, we found that these methylation changes were detectable in cfDNA and could serve as potential cfDNA methylation biomarkers for early detection or minimal residual disease.
Collapse
Affiliation(s)
- David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Chang XY, Uchechukwu Edna O, Wang J, Zhang HJ, Zhou JM, Qiu K, Wu SG. Histological and molecular difference in albumen quality between post-adolescent hens and aged hens. Poult Sci 2024; 103:103618. [PMID: 38564835 PMCID: PMC10999699 DOI: 10.1016/j.psj.2024.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
The decline in albumen quality resulting from aging hens poses a threat to the financial benefits of the egg industry. Exploring the underlying mechanisms from the perspective of cell molecules of albumen formation is significant for the efficient regulation of albumen quality. Two individual groups of Hy-Line Brown layers with ages of 40 (W40) and 100 (W100) wk old were used in the present study. Each group contained over 2,000 birds. This study assessed the egg quality, biochemical indicators and physiological status of hens between W40 and W100. Subsequently, a quantitative proteomic analysis was conducted to identify differences in protein abundance in magnum tissues between W40 and W100. In the W40 group, significant increases (P < 0.05) were notable for albumen quality (thick albumen solid content, albumen height, Haugh unit), serum indices (calcium, estrogen, and progesterone levels), magnum histomorphology (myosin light-chain kinase content, secretory capacity, mucosal fold, goblet cell count and proportion) as well as the total antioxidant capacity of the liver. However, the luminal diameter of the magnum, albumen gel properties and random coil of the albumen were increased (P < 0.05) in the W100 group. The activity of glutathione, superoxidase dismutase, and malondialdehyde in the liver, magnum, and serum did not vary (P > 0.05) among the groups. Proteomic analysis revealed the identification of 118 differentially expressed proteins between the groups, which comprised proteins associated with protein secretion, DNA damage and repair, cell proliferation, growth, antioxidants, and apoptosis. Furthermore, Kyoto Encyclopedia of Genes pathway analysis revealed that BRCA2 and FBN1 were significantly downregulated in Fanconi anemia (FA) and TGF-β signaling pathways in W100, validated through quantitative real-time PCR (qRT-PCR). In conclusion, significant age-related variations in albumen quality, and magnum morphology are regulated by proteins involved in antioxidant capacity.
Collapse
Affiliation(s)
- Xin-Yu Chang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Obianwuna Uchechukwu Edna
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Min Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
29
|
Gassib N, Issa H, Loubaki L, Behaz S, Almutairi MH, Rouabhia M, Semlali A. Cellular mechanisms mediating the anti-cancer effects of carnosol on gingiva carcinoma. Sci Rep 2024; 14:12266. [PMID: 38806527 PMCID: PMC11133392 DOI: 10.1038/s41598-024-60797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.
Collapse
Affiliation(s)
- Nassima Gassib
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hawraa Issa
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Lionel Loubaki
- Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sarah Behaz
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abdelhabib Semlali
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
30
|
Muvaffak A, Coleman KG. PARP inhibitor synthetic lethality in ATM biallelic mutant cancer cell lines is associated with BRCA1/2 and RAD51 downregulation. Front Oncol 2024; 14:1380633. [PMID: 38807759 PMCID: PMC11131418 DOI: 10.3389/fonc.2024.1380633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
Background Ataxia telangiectasia-mutated (ATM) kinase is a central regulator of the DNA damage response (DDR) signaling pathway, and its function is critical for the maintenance of genomic stability in cells that coordinate a network of cellular processes, including DNA replication, DNA repair, and cell cycle progression. ATM is frequently mutated in human cancers, and approximately 3% of lung cancers have biallelic mutations in ATM, i.e., including 3.5% of lung adenocarcinomas (LUAD) and 1.4% of lung squamous cell carcinomas (LUSC). Methods We investigated the potential of targeting the DDR pathway in lung cancer as a potential therapeutic approach. In this context, we examined whether ATM loss is synthetically lethal with niraparib monotherapy. This exploration involved the use of hATM knockout (KO) isogenic cell lines containing hATM homozygous (-/-) and heterozygous (+/-) generated via CRISPR/Cas9 gene knockout technology in DLD-1, a human colorectal adenocarcinoma cell line. Subsequently, we extended our investigation to non-small cell lung cancer (NSCLC) patient derived xenograft (PDX) models for further validation of poly ADP-ribose polymerase inhibitor (PARPi) synthetic lethality in ATM mutant NSCLC models. Results Here, we demonstared that biallelic hATM deletion (-/-) in DLD-1 impairs homologous recombination (HR) repair function and sensitizes cells to the PARPi, niraparib. Niraparib also caused significant tumor regression in one-third of the NSCLC PDX models harboring deleterious biallelic ATM mutations. Loss of hATM (-/-) was concomitantly associated with low BRCA1 and BRCA2 protein expression in both the hATM (-/-) DLD-1 cell line and PARPi-sensitive ATM mutant NSCLC PDX models, suggesting a downstream effect on the impairment of HR-mediated DNA checkpoint signaling. Further analysis revealed that loss of ATM led to inhibition of phosphorylation of MRN (Mre11-Rad50-NBS1) complex proteins, which are required for ATM-mediated downstream phosphorylation of p53, BRCA1, and CHK2. Conclusions Taken together, our findings highlight that the synthetic lethality of niraparib in ATM-deficient tumors can be regulated through a subsequent effect on the modulation of BRCA1/2 expression and its effect on HR function.
Collapse
Affiliation(s)
- Asli Muvaffak
- Oncology, GlaxoSmithKline, Cambridge, MA, United States
| | | |
Collapse
|
31
|
Guo X, Ma Y, Zhang T, Liu R, Chang F, Yan X, Yu T, Wu P, Li Q, Xu L, Duan J, Li L, Su Y, Shao G. The deubiquitinating enzyme USP4 regulates BRCA1 stability and function. NPJ Breast Cancer 2024; 10:35. [PMID: 38734703 PMCID: PMC11088691 DOI: 10.1038/s41523-024-00641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
BRCA1 plays a suppressive role in breast tumorigenesis. Ubiquitin-dependent degradation is a common mechanism that regulates BRCA1 protein stability, and several ubiquitin ligases involved have been identified. However, the deubiquitinating enzyme for BRCA1 remains less defined. Here, we report that the deubiquitinase USP4 interacts with, deubiquitinates and stabilizes BRCA1, maintaining the protein level of BRCA1. USP4 knockdown results in a decreased BRCA1 protein level, impairment in homologous recombination mediated double-stranded break repair, and increased genome instability, and confers resistance to DNA damage-inducing agents and PARP inhibitors. Ectopic expression of USP4 stabilizes BRCA1 and reverse the effects caused by USP4 knockdown. Moreover, USP4 is low expressed in human breast cancer tissues and its low expression correlates with poorer survival of patients. Furthermore, we identified several loss-of-function mutations of USP4 in human gynecological cancers, the catalytic activity of which or their interaction with BRCA1 is disrupted. Together, we reveal that USP4 is a deubiquitinase for BRCA1. USP4 positively regulates the stability and function of BRCA1 through de-ubiquitination, and plays important role in the suppression of breast cancer.
Collapse
Affiliation(s)
- Xueyuan Guo
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanfang Ma
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ting Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Runyu Liu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Fen Chang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingyue Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Tianyun Yu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengfei Wu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qin Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, China
| | - Junyi Duan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Li Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
32
|
Sahu RK, Tandon S, Singh S, Das BC, Hedau ST. Methyl CpG binding protein MBD2 has a regulatory role on the BRCA1 gene expression and its modulation by resveratrol in ER+, PR+ & triple-negative breast cancer cells. BMC Cancer 2024; 24:566. [PMID: 38711004 PMCID: PMC11071212 DOI: 10.1186/s12885-024-12274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.
Collapse
Affiliation(s)
- Ram Krishna Sahu
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | | | - Shalini Singh
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Suresh T Hedau
- Division of Molecular Oncology, ICMR-National Institute of Cancer Prevention and Research, I -7, Sector - 39, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
33
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
34
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
35
|
Gant KL, Patankar MS, Campagnola PJ. A Perspective Review: Analyzing Collagen Alterations in Ovarian Cancer by High-Resolution Optical Microscopy. Cancers (Basel) 2024; 16:1560. [PMID: 38672642 PMCID: PMC11048585 DOI: 10.3390/cancers16081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several microscopic imaging techniques used to analyze the structural modifications in the extracellular matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools available to visualize these alterations and the invaluable insights these data provide on HGSOC initiation. We also discuss the clinical implications of these findings and how these data may help novel tools for early diagnosis of HGSOC.
Collapse
Affiliation(s)
- Kristal L. Gant
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J. Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
36
|
Wang J, Cai L, Huang G, Wang C, Zhang Z, Xu J. CENPA and BRCA1 are potential biomarkers associated with immune infiltration in heart failure and pan-cancer. Heliyon 2024; 10:e28786. [PMID: 38576566 PMCID: PMC10990859 DOI: 10.1016/j.heliyon.2024.e28786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Heart failure (HF) and cancer are the two leading causes of death worldwide and affect one another in a bidirectional way. We aimed to identify hub therapeutic genes as potential biomarkers for the identification and treatment of HF and cancer. Gene expression data of heart samples from patients with ischemic HF (IHF) and healthy controls were retrieved from the GSE42955 and GSE57338 databases. Difference analysis and weighted gene co-expression network analysis (WGCNA) were used to identify key modules associated with IHF. The overlapping genes were subjected to gene and protein enrichment analyses to construct a protein-protein interaction (PPI) network, which was screened for hub genes among the overlapping genes. A total of eight hub genes were subjected to correlation, immune cell infiltration, and ROC analyses. Then we analyzed the roles of two significant genes in 33 tumor types to explore their potential as common targets in HF and cancer. A total of 85 genes were identified by WGCNA and differentially expressed gene (DEG) analyses. BRCA1, MED17, CENPA, RXRA, RXRB, SMARCA2, CDCA2, and PMS2 were identified as the hub genes with IHF. Finally, CENPA and BRCA1 were identified as potential common targets for IHF and cancer. These findings provide new perspectives for expanding our understanding of the etiology and underlying mechanisms of HF and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Lin Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Gang Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Chunbin Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
| | - Zhen Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| | - Junbo Xu
- Department of Cardiology, The Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu, 610014, China
- Department of Cardiology, The Third People's Hospital of Chengdu, 82 Qinglong Street, Chengdu, 610014, China
- Chengdu Institute of Cardiovascular Disease, 82 Qinglong Street, Chengdu, 610014, China
| |
Collapse
|
37
|
Zhou Y, Peng S, Wang H, Cai X, Wang Q. Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products. Genes (Basel) 2024; 15:468. [PMID: 38674402 PMCID: PMC11049652 DOI: 10.3390/genes15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 04/28/2024] Open
Abstract
In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.
Collapse
Affiliation(s)
- Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Huizhen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Xinyin Cai
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 202103, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| |
Collapse
|
38
|
Nie H, Saini P, Miyamoto T, Liao L, Zielinski RJ, Liu H, Zhou W, Wang C, Murphy B, Towers M, Yang T, Qi Y, Kannan T, Kossenkov A, Tateno H, Claiborne DT, Zhang N, Abdel-Mohsen M, Zhang R. Targeting branched N-glycans and fucosylation sensitizes ovarian tumors to immune checkpoint blockade. Nat Commun 2024; 15:2853. [PMID: 38565883 PMCID: PMC10987604 DOI: 10.1038/s41467-024-47069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aberrant glycosylation is a crucial strategy employed by cancer cells to evade cellular immunity. However, it's unclear whether homologous recombination (HR) status-dependent glycosylation can be therapeutically explored. Here, we show that the inhibition of branched N-glycans sensitizes HR-proficient, but not HR-deficient, epithelial ovarian cancers (EOCs) to immune checkpoint blockade (ICB). In contrast to fucosylation whose inhibition sensitizes EOCs to anti-PD-L1 immunotherapy regardless of HR-status, we observe an enrichment of branched N-glycans on HR-proficient compared to HR-deficient EOCs. Mechanistically, BRCA1/2 transcriptionally promotes the expression of MGAT5, the enzyme responsible for catalyzing branched N-glycans. The branched N-glycans on HR-proficient tumors augment their resistance to anti-PD-L1 by enhancing its binding with PD-1 on CD8+ T cells. In orthotopic, syngeneic EOC models in female mice, inhibiting branched N-glycans using 2-Deoxy-D-glucose sensitizes HR-proficient, but not HR-deficient EOCs, to anti-PD-L1. These findings indicate branched N-glycans as promising therapeutic targets whose inhibition sensitizes HR-proficient EOCs to ICB by overcoming immune evasion.
Collapse
Affiliation(s)
- Hao Nie
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Pratima Saini
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Taito Miyamoto
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Liping Liao
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Rafal J Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Chen Wang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Brennah Murphy
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Martina Towers
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Tyler Yang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuan Qi
- Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Toshitha Kannan
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Andrew Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Daniel T Claiborne
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Nan Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| | - Rugang Zhang
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
O'Quigley J. Making sense of breast cancer risk estimates. Genet Epidemiol 2024; 48:141-147. [PMID: 38334222 DOI: 10.1002/gepi.22550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Individual probabilistic assessments on the risk of cancer, primary or secondary, will not be understood by most patients. That is the essence of our arguments in this paper. Greater understanding can be achieved by extensive, intensive, and detailed counseling. But since probability itself is a concept that easily escapes our everyday intuition-consider the famous Monte Hall paradox-then it would also be wise to advise patients and potential patients, to not put undue weight on any probabilistic assessment. Such assessments can be of value to the epidemiologist in the investigation of different potential etiologies describing cancer evolution or to the clinical trialist as a way to maximize design efficiency. But to an ordinary individual we cannot anticipate that these assessments will be correctly interpreted.
Collapse
Affiliation(s)
- John O'Quigley
- Department of Statistical Science, University College London, London, UK
| |
Collapse
|
40
|
Rodrigues DB, Moreira HR, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Generation of 3D melanoma models using an assembloid-based approach. Acta Biomater 2024; 178:93-110. [PMID: 38382833 DOI: 10.1016/j.actbio.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal.
| |
Collapse
|
41
|
Zhang X, Xu Q, Zhang Y. Remarkable response to pazopanib plus vivolumab in a patient with pericardial synovial sarcoma carrying a novel genotype BRCA2 c.968dupT: A case report. Thorac Cancer 2024; 15:667-671. [PMID: 38323364 DOI: 10.1111/1759-7714.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Pericardial synovial sarcomas (PSS) have a low incidence rate and are highly invasive with a dismal prognosis. Standard treatment includes surgery, radiotherapy and chemotherapy but with limited response. Here, we report the case of a 15-year-old nonsmoking youngster diagnosed with PSS who developed disease relapsed from surgery after 1 month. Next-generation sequencing (NGS) using baseline tissue was performed, and BRCA2 c.968dupT was detected. Then pazopanib (a multitargeted inhibitor) plus nivolumab (an immune checkpoint inhibitor) was administered, with a partial response and progression-free survival of 14 months. BRCA2 c.968dupT has not previously been reported in PSS and its response to targeted combination immunotherapy are not well characterized. Here, we report the efficacy of pazopanib combined with nivolumab in a PSS patient harboring BRCA2 c.968dupT and also provide the clinical evidence of the utility of NGS in exploring actionable mutations for solid tumor. Combination therapy based on immunotherapy may be a potential treatment choice for PSS harboring BRCA2 mutation.
Collapse
Affiliation(s)
- Xing Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Yongchang Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
42
|
Panahandeh AR, Delashoub M, Aval SF. The effect of human umbilical cord mesenchymal stem cells conditioned medium combined with tamoxifen drug on BRCA1 and BRCA2 expression in breast cancer mouse models. Mol Biol Rep 2024; 51:241. [PMID: 38300337 DOI: 10.1007/s11033-023-08926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND A growing number of studies has indicated that the expression of Breast Cancer Susceptibility Genes 1 (BRCA1) and BRCA2 contribute to the resistance to DNA-damaging chemotherapies. Tamoxifen induces tumor cell death by suppressing estrogen receptor (ER) signaling and inducing DNA damage, and BRCA1 upregulation causes Tamoxifen chemoresistance in breast cancer cells. Consequently, this research study aimed to investigate the possible therapeutic effect of Human Umbilical Cord Mesenchymal Stem Cells Conditioned Medium (UCMSCs-CM) on sensitizing breast cancer cells to Tamoxifen by regulating BRCA1 and BRCA2 expression in vivo. METHODS Forty female mice, 4-8 weeks old, with weight of 150 g, were used for this study. Mouse 4T1 breast tumor models were established and then treated with UCMSCs-CM and Tamoxifen alone or in combination. After 10 days, the tumor masses were collected and the expression levels of BRCA1 and BRCA2 were evaluated using qRT-PCR assay. RESULTS The results obtained from qRT-PCR assay illustrated that UCMSCs-CM, either alone or in combination with Tamoxifen, significantly downregulated the mRNA expression levels of BRCA1 in breast cancer mouse models. However, both UCMSCs-CM and Tamoxifen indicated no statistically significant impact on BRCA2 mRNA expression compared to controls. CONCLUSION Our findings evidenced that UCMSCs-CM could be considered as a potential therapeutic option to modulate Tamoxifen chemosensitivity by regulating BRCA1 in breast cancer.
Collapse
Affiliation(s)
- Ahmad Reza Panahandeh
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Masoud Delashoub
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
- Department of basic science, Biotechnology Research Centre, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sedigheh Fekri Aval
- Department of Basic Science, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
43
|
Ticha P, Sukop A. Patient-reported outcomes in bilateral prophylactic mastectomy with breast reconstruction: A narrative review. Breast 2024; 73:103602. [PMID: 37995427 PMCID: PMC10709055 DOI: 10.1016/j.breast.2023.103602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
In women at high risk of developing breast cancer, bilateral prophylactic mastectomy (BPM) 1 significantly reduces the risk; simultaneously, breast reconstruction preserves body integrity. Given the complex and personal nature of such surgical procedures, patient assessment of satisfaction and health-related quality of life (HRQoL) 2 is essential in evaluation of surgical outcomes. With this review, we aim to organize the current knowledge on patient-reported outcomes (PROs) 3 in bilateral prophylactic surgery. Literature search was conducted using the databases Google Scholar, PubMed, and Web of Science to address the following questions, which can help clinicians and women undergoing the procedures navigate their healthcare decision-making process: How does BPM with reconstruction influence cancer-related distress? How does the surgery impact patient satisfaction and HRQoL? How do preoperative PROs differ from postoperative outcomes? Does the type of BPM and the type of reconstruction impact patient satisfaction and HRQoL? Furthermore, we summarize available patient-reported outcome measures (PROMs) 4 that can be administered to women undergoing BPM with reconstruction. In addition, we discuss possible future directions for PRO research in prophylactic breast surgery.
Collapse
Affiliation(s)
- Pavla Ticha
- Department of Plastic Surgery, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Srobarova 50, 10034, Praha 10, Czech Republic.
| | - Andrej Sukop
- Department of Plastic Surgery, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Srobarova 50, 10034, Praha 10, Czech Republic.
| |
Collapse
|
44
|
Li L, Li S, Zhang X, Mei L, Fu X, Dai M, Wei N. Establishing the role of BRCA1 in the diagnosis, prognosis and immune infiltrates of breast invasive cancer by bioinformatics analysis and experimental validation. Aging (Albany NY) 2024; 16:1077-1095. [PMID: 38224491 PMCID: PMC10866431 DOI: 10.18632/aging.205366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Breast cancer susceptibility gene 1 (BRCA1) is a well-known gene that acts a vital role in suppressing the growth of tumors. Previous studies have primarily focused on the genetic mutations of BRCA1 and its association with hereditary breast invasive carcinoma (BRCA). However, little research has been done to investigate the relationship between BRCA1 and immune infiltrates and prognosis in BRCA. METHODS We obtained the expression profiles and clinical information of patients with BRCA from the Cancer Genome Atlas (TCGA) database. The levels of the BRCA1 gene between BRCA tissues and normal breast tissues were compared through the Wilcoxon rank-sum test. Additionally, we performed WB and RT-qPCR techniques to detect the expression of BRCA1. We conducted functional enrichment analyses. Furthermore, we assessed immune cell infiltration using a single-sample gene set enrichment analysis. The methylation status of the BRCA1 gene was analyzed using the UALCAN and MethSurv databases. The Cox regression analysis and (KM) Kaplan-Meier method were employed to determine the prognostic value of BRCA1. In order to provide a practical tool for predicting the overall survival rates at different time points, we also constructed a nomogram. RESULTS Our analysis revealed that the expression of BRCA1 was significantly higher in BRCA tissues compared to normal tissues. Furthermore, this increased level of BRCA1 was found to be associated with specific BRCA subtypes, including T2, stage II, ER positive, ect. Importantly, the overexpression of BRCA1 was shown to be a negative prognostic marker for the overall survival rates of BRCA patients. Moreover, low methylation status of the BRCA1 gene was related to a poorer prognosis. Furthermore, our results indicated that high levels of BRCA1 are related to a decrease in level of killer immune cells, such as natural killer (NK) cells, macrophages, CD8+ T cells, and plasma-like dendritic cells (pDCs) within the tumor microenvironment. CONCLUSIONS Our study is the first to provide evidence indicating that the presence of BRCA1 can serve as a reliable marker for both diagnosing and determining the prognosis of BRCA. Moreover, BRCA1 acts as a crucial indicator of the cancer's potential to infiltrate and invade the immune system, which has important implications for developing targeted therapies in BRCA.
Collapse
Affiliation(s)
- Leilei Li
- Department of Pathology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Shuangyan Li
- Department of Oncology, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Xuyang Zhang
- Department of Hepatobiliary, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Liying Mei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Xueqin Fu
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Min Dai
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| | - Na Wei
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou, China
| |
Collapse
|
45
|
Li PC, Zhu YF, Cao WM, Li B. ER-positive and BRCA2-mutated breast cancer: a literature review. Eur J Med Res 2024; 29:30. [PMID: 38184581 PMCID: PMC10770892 DOI: 10.1186/s40001-023-01618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
BRCA2-mutated carriers have a high lifetime risk of breast cancer (BC), an early age of onset, and an increased risk of other cancers (including ovarian, pancreatic, and prostate cancer). Almost 70-80% of BRCA2-mutated BC are estrogen receptor (ER)-positive, which is a particular type of ER-positive BC that differs from sporadic ER-positive BC. This article reviews the clinicopathological features, treatment, and prognosis of ER-positive and BRCA2-mutated BC to provide a reference for clinical decision-making.
Collapse
Affiliation(s)
- Pu-Chun Li
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Yi-Fan Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
46
|
Li Y, Du W, Yang R, Wei X, Li H, Zhang X. Copper Chaperone for Superoxide Dismutase Subtypes as a Prognostic Marker in Luminal B Breast Cancer. Clin Med Insights Oncol 2024; 18:11795549231219239. [PMID: 38187458 PMCID: PMC10771053 DOI: 10.1177/11795549231219239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Background Copper chaperone for superoxide dismutase (CCS) is an essential component of the oxidation-reduction system. In breast cancer cells, CCS expression is highly up-regulated, which contributes to cellular proliferation and migration. Breast cancer is a multifaceted disease with different tumor prognoses and responses to clinical treatments, which may be associated with multiple molecular subtypes of CCS. Methods The CCS expression patterns in breast cancer were investigated by TNMplot, cBioPortal, and HPA network database. The correlation of CCS expression with clinicopathological parameters was analyzed using the UALCAN database. The Cancer Genome Atlas (TCGA) data set was used to analyze the Clinical characteristics of CCS in luminal B patients. The bc-GenExMiner database was used to analyze the effects of BReast-CAncer susceptibility gene (BRCA)1/2, TP53 mutation status, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER) expression on CCS expression. The survival curves and prognostic value of CCS in luminal B breast cancer were performed through Kaplan-Meier curves, univariate and multivariate Cox regression using the PrognoScan, bc-GenExMiner, and Clinical bioinformatics analysis platform. Results We found that CCS expression was associated with patient age, race, ER, and PR status. We also discovered that BRCA1/2 mutations had an effect on CCS expression. The luminal B subtype had the highest CCS expression, which was linked to poor survival compared with other subtypes. In addition, Kaplan-Meier curve analysis showed that luminal B patients with high CCS mRNA expression showed a poor survival and the CCS gene is an independent predictor of outcome in patients with luminal B breast cancer by univariate and multivariate Cox regression. Conclusions Our findings emphasize the significant expression of CCS in luminal B breast cancer and its potential as an autonomous prognostic determinant for this specific molecular subtype. These findings suggest that CCS holds promise as a prospective marker for the treatment of luminal B breast cancer.
Collapse
Affiliation(s)
- Yanping Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Wenfei Du
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Rui Yang
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaonan Wei
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Haibin Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaoyuan Zhang
- Comprehensive Medical Training Center, Jining Medical University, Jining, China
| |
Collapse
|
47
|
Tornillo G, Warrington L, Kendrick H, Higgins AT, Hay T, Beck S, Smalley MJ. Conditional in vivo deletion of LYN kinase has little effect on a BRCA1 loss-of-function-associated mammary tumour model. Dis Model Mech 2024; 17:dmm050211. [PMID: 38149669 PMCID: PMC10846530 DOI: 10.1242/dmm.050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Giusy Tornillo
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lauren Warrington
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Adam T. Higgins
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor Hay
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sam Beck
- Independent Anatomic Pathology Ltd, Calyx House, South Road, Taunton TA1 3DU, UK
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
48
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
49
|
Wang N. Editorial: Case reports in breast cancer : 2022. Front Oncol 2023; 13:1330225. [PMID: 38162508 PMCID: PMC10755864 DOI: 10.3389/fonc.2023.1330225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Mohebifar H, Sabbaghian A, Farazmandfar T, Golalipour M. Construction and analysis of pseudogene-related ceRNA network in breast cancer. Sci Rep 2023; 13:21874. [PMID: 38072995 PMCID: PMC10711010 DOI: 10.1038/s41598-023-49110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women. The present study explored the potential role of pseudogenes in BC via construction and analysis of a competing endogenous RNA (ceRNA) network through a three-step process. First, we screened differentially expressed genes in nine BC datasets. Then the gene-pseudogenes pairs (nine hub genes) were selected according to the functional enrichment and correlation analysis. Second, the candidate hub genes and interacting miRNAs were used to construct the ceRNA network. Further analysis of the ceRNA network revealed a crucial ceRNA module with two genes-pseudogene pairs and two miRNAs. The in-depth analysis identified the GBP1/hsa-miR-30d-5p/GBP1P1 axis as a potential tumorigenic axis in BC patients. In the third step, the GBP1/hsa-miR-30d-5p/GBP1P1 axis expression level was assessed in 40 tumor/normal BC patients and MCF-7 cell lines. The expression of GBP1 and GBP1P1 was significantly higher in the tumor compared to the normal tissue. However, the expression of hsa-miR-30d-5p was lower in tumor samples. Then, we introduced the GBP1P1 pseudogene into the MCF-7 cell line to evaluate its effect on GBP1 and hsa-miR-30d-5p expression. As expected, the GBP1 level increased while the hsa-miR-30d-5p level decreased in the GBP1P1-overexprsssing cell line. In addition, the oncogenic properties of MCF-7 (cell viability, clonogenicity, and migration) were improved after GBP1P1 overexpression. In conclusion, we report a ceRNA network that may provide new insight into the role of pseudogenes in BC development.
Collapse
Affiliation(s)
- Hossein Mohebifar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Amir Sabbaghian
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Touraj Farazmandfar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran.
| |
Collapse
|