1
|
Ülfer G, Polat B, Yabalak A, Çakıcı Ç. Evaluation of zonulin levels in patients with migraine. BMC Neurol 2025; 25:46. [PMID: 39905280 PMCID: PMC11792365 DOI: 10.1186/s12883-025-04058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Zonulin regulates permeability in blood-brain and intestinal barriers. The pathophysiology of migraine is based on the effect of neurogenic inflammation. The aim of the current investigation was to examine the serum zonulin level in individuals suffering from migraine. METHODS The sample comprised 40 individuals who had migraine and 40 controls. Disease duration, attack duration, attack frequency, Visual Analog Scale (VAS) scores, and comorbidities were available for the migraine group. Serum zonulin levels were evaluated by using the ELISA method. RESULTS There were no statistically significant differences between the two groups concerning age or gender (p > 0.05). The zonulin value of patients with migraine was higher when compared to the controls, indicating a significant difference (p = 0.037; p < 0.05). The zonulin level did not correlate with disease duration, attack duration, VAS score, or attack frequency (p > 0.05). The receiver operating characteristic curve analysis of zonulin revealed a cut-off value of 30.58 and above, at which it had 52.50% sensitivity, 77.5% specificity, 70% positive predictive value, and 62% a negative predictive value. The area under the curve was 63.6%, and the standard error value was 6.3%. The analysis also showed a statistically significant correlation between migraine diagnosis and a zonulin level of 30.58 (p = 0.006; p < 0.01). CONCLUSIONS Elevated zonulin levels in patients with migraine support the disruption of the intestinal barrier and neuroinflammation in these patients. The zonulin level may be a predictive biomarker of migraine. Multicenter, randomized trials are needed to evaluate treatments for intestinal permeability and zonulin levels in migraine patients.
Collapse
Affiliation(s)
- Gözde Ülfer
- Faculty of Medicine, Department of Biochemistry, İstanbul Medipol University, İstanbul, Turkey.
| | - Burcu Polat
- Department of Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Ahmet Yabalak
- Department of Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Çağrı Çakıcı
- Faculty of Medicine, Department of Biochemistry, İstanbul Medipol University, İstanbul, Turkey
| |
Collapse
|
2
|
Michelson AD, Frelinger AL, Haynes RL, Kinney HC, Gremmel T. Platelet Pathophysiology: Unexpected New Research Directions. Semin Thromb Hemost 2024; 50:1187-1190. [PMID: 38889800 PMCID: PMC11471377 DOI: 10.1055/s-0044-1787663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Alan D. Michelson
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew L. Frelinger
- Division of Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Robin L. Haynes
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah C. Kinney
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
3
|
Terenina NB, Kreshchenko ND, Movsesyan SO. Serotonergic elements in the nervous system of parasite of acipenserid fishes, Acrolichanus auriculatus (Digenea: Allocreadiidae). Micron 2024; 185:103690. [PMID: 38991625 DOI: 10.1016/j.micron.2024.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
The trematode Acrolichanus auriculatus is a widely distributed intestine parasite of acipenserid fishes. For the first time the localization and distribution of the serotonergic nerve elements in A. auriculatus was studied using immunocytochemical method and confocal laser scanning microscopy. The study revealed the presence of biogenic amine, serotonin, in the central and peripheral nervous systems of A. auriculatus, that is in the neurons and neurites of the brain ganglia, brain commissure, the longitudinal nerve cords, and the connective nerve commissures. The innervation of the attachment organs, pharynx, oesophagus and distal regions of the reproductive system by the serotonergic nerve elements is observed. The distribution of serotonergic neurons in A. auriculatus is schematically marked. The comparative analysis of findings obtained in A. auriculatus with those recorded for other digeneans reveals the presence of both conservative and distinctive features in the organization of the serotonergic nervous system in various representatives of trematodes.
Collapse
Affiliation(s)
- Nadezhda B Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prosp., 33, Moscow, Russia.
| | - Natalia D Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskya str., 3, Pushchino, Moscow Region 142290, Russia.
| | - Sergey O Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky Prosp., 33, Moscow, Russia
| |
Collapse
|
4
|
Wang B, Cheng P, Jin B, Jiang Y, Wang Q, Xu H. Effect of Tryptophan Restriction in the Therapy of Irritable Bowel Syndrome: a Systematic Review. Int J Gen Med 2024; 17:4141-4151. [PMID: 39308964 PMCID: PMC11414632 DOI: 10.2147/ijgm.s474525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims The metabolic pathways of tryptophan (TRP) have been implicated in the pathophysiology of irritable bowel syndrome (IBS), positing that the strategic modulation of TRP consumption may exert regulatory effects on serotonin levels, consequently altering the clinical manifestation of IBS. This systematic review was meticulously orchestrated to evaluate the effect of TRP restriction on IBS. Methods A comprehensive search of the MEDLINE/PubMed, Cochrane Library, and Embase databases was conducted. Controlled trials that compared the efficacy of TRP restriction in IBS patients were scrutinized. The primary outcomes were gastrointestinal symptoms, quality of life, and pain, whereas the secondary outcomes included anxiety, mood, and safety. The risk of bias was meticulously assessed according to the guidelines recommended by the Cochrane Collaboration. Results A total of five trials, enrolling 135 participants, were incorporated into the qualitative synthesis. Low-TRP intake attenuated gastrointestinal discomfort and enhanced psychological well-being in IBS patients, while the effects of acute TRP depletion were controversial. Safety data from one randomized controlled trial reported no occurrence of adverse events. Conclusion This systematic review suggests that moderating, rather than depleting, TRP intake may potentially be a feasible and safe adjunctive treatment for patients with IBS. Future research incorporating a high-quality study design and consensus on clinical outcome measurements for IBS is warranted.
Collapse
Affiliation(s)
- Ben Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Peilin Cheng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Bingjie Jin
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Ying Jiang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qingcai Wang
- Department of Gastroenterology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, People’s Republic of China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| |
Collapse
|
5
|
Xiong L, Xuan J, Zhao H, Zhang Z, Wang H, Yan P, Zhang Y, Liu Y, Zhang L. Revealing the material basis and mechanism for the inhibition of intestinal peristalsis by Zingiber officinale Roscoe through integrated metabolomics, serum pharmacochemistry, and network pharmacology. Biomed Chromatogr 2024; 38:e5932. [PMID: 38922712 DOI: 10.1002/bmc.5932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.
Collapse
Affiliation(s)
- Lewen Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Xuan
- Shandong Agriculture and Engineering University, Jinan, China
| | - Hongwei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoyu Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longfei Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Waemong A, Sattayachiti S, Cheaha D, Konthapakdee N. Effects of oral administration of ondansetron, a 5-HT 3 receptor antagonist, on anxiety-related behaviors and colonic hypercontractility in repeated stress-induced mice. Auton Neurosci 2024; 253:103178. [PMID: 38642511 DOI: 10.1016/j.autneu.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT3 receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT3 receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress. MATERIALS AND METHODS Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique. RESULTS FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation. CONCLUSIONS Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT3 receptors. Our findings suggest the modulatory roles of 5-HT3 receptors to mediate stress-induced colonic dysfunction.
Collapse
Affiliation(s)
- Affan Waemong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunnuch Sattayachiti
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Dania Cheaha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; Biosignal Research Center for Health, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nipaporn Konthapakdee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
| |
Collapse
|
7
|
Ghaffari MH, Sanz-Fernandez MV, Sadri H, Sauerwein H, Schuchardt S, Martín-Tereso J, Doelman J, Daniel JB. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in the liver. J Dairy Sci 2024; 107:4000-4016. [PMID: 38246557 DOI: 10.3168/jds.2023-24432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
This study aimed to investigate the metabolic changes in the livers of dairy cows from 1 wk before dry off to 1 wk after calving. Twelve high-yielding Holstein cows were included in a longitudinal study and housed in a tiestall barn. The cows were dried off at 6 wk before the expected calving date (dry period length = 42 d). During the entire lactation, the cows were milked twice daily at 0600 and 1700 h. Liver biopsies were taken from each cow at 4 different times: wk -7 (before drying off), -5 (after drying off), -1 and +1 relative to calving. A targeted metabolomics approach was performed by liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 185 metabolites in the liver were used for the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a notable shift in metabolic phenotype from late lactation to the dry period and further changes after calving. Changes were observed in several classes of compounds, including AA and biogenic amines. In particular, the changes in acylcarnitines (AcylCN), phosphatidylcholines (PC), sphingomyelins (SM), and bile acids (BA) indicated extensive remodeling of the hepatic lipidome. The changes in AcylCN concentrations in early lactation suggest incomplete fatty acid oxidation in the liver, possibly indicating mitochondrial dysfunction or enzymatic imbalance. In addition, the changes in PC and SM species in early lactation indicate altered cell membrane composition, which may affect cell signaling and functionality. In addition, changes in BA concentrations and profiles indicate dynamic adaptations in BA synthesis, as well as lipid digestion and absorption during the observation period. In particular, principal component analysis showed an overlapping distribution of liver metabolites in primiparous and multiparous cows, indicating no significant difference between these groups. In addition, Volcano plots showed similar liver metabolism between primiparous and multiparous cows, with no significant fold changes (>1.5) in any metabolite at significant P-values (false discovery rate <0.05). These results provide valuable insight into the physiological ranges of liver metabolites during dry period and calving in healthy dairy cows and should contribute to the design and interpretation of future metabolite-based studies of the transition dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | | | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - J Doelman
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands
| | - J-B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| |
Collapse
|
8
|
Felt K, Stauffer M, Salas-Estrada L, Guzzo PR, Xie D, Huang J, Filizola M, Chakrapani S. Structural basis for partial agonism in 5-HT 3A receptors. Nat Struct Mol Biol 2024; 31:598-609. [PMID: 38177669 DOI: 10.1038/s41594-023-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/26/2023] [Indexed: 01/06/2024]
Abstract
Hyperactivity of serotonin 3 receptors (5-HT3R) underlies pathologies associated with irritable bowel syndrome and chemotherapy-induced nausea and vomiting. Setrons, a class of high-affinity competitive antagonists, are used in the treatment of these conditions. Although generally effective for chemotherapy-induced nausea and vomiting, the use of setrons for treating irritable bowel syndrome has been impaired by adverse side effects. Partial agonists are now being considered as an alternative strategy, with potentially less severe side effects than full antagonists. However, a structural understanding of how these ligands work is lacking. Here, we present high-resolution cryogenic electron microscopy structures of the mouse 5-HT3AR in complex with partial agonists (SMP-100 and ALB-148471) captured in pre-activated and open-like conformational states. Molecular dynamics simulations were used to assess the stability of drug-binding poses and interactions with the receptor over time. Together, these studies reveal mechanisms for the functional differences between orthosteric partial agonists, full agonists and antagonists of the 5-HT3AR.
Collapse
Affiliation(s)
- Kevin Felt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Madeleine Stauffer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter R Guzzo
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Dejian Xie
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Jinkun Huang
- SciMount Therapeutics (Shenzhen) Co. Ltd., Shenzhen, China
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Velez A, Kaul A, El-Chammas KI, Knowlton L, Madis E, Sahay R, Fei L, Stiehl S, Santucci NR. Safety and Effectiveness of Prucalopride in Children with Functional Constipation with and without Upper Symptoms. Paediatr Drugs 2024; 26:187-195. [PMID: 38175354 PMCID: PMC11114085 DOI: 10.1007/s40272-023-00612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Pediatric prucalopride studies for treatment of gastrointestinal (GI) disorders have reported mixed results. We aimed to assess the safety and effectiveness of prucalopride in functional constipation (FC) with and without upper GI symptoms. METHODS Retrospective data on patients with FC receiving combined prucalopride and conventional therapy was compared with those receiving conventional therapy alone within 12 months. Thirty patients on combined therapy and those on conventional therapy were each matched on the basis of age, gender, race, and presence of fecal soiling. Response (complete, partial, or no resolution) was compared. Similarly, response to concurrent functional upper GI symptoms (postprandial pain, bloating, weight loss, vomiting, early satiety, or nausea) and dysphagia, as well as adverse effects, were evaluated in the combined group. RESULTS Mean age of 57 cases was 14.7 ± 4.9 years and 68% were female. Comorbidities included functional upper GI (UGI) symptoms (84%), dysphagia (12%), mood disorders (49%), and hypermobility spectrum disorder (37%). Unmatched cases reported 63% improvement to FC; response did not differ between the matched cohorts (70% versus 76.6%, p = 0.84). Cases showed a 56% improvement in functional UGI symptoms and 100% in dysphagia. Adverse effects were reported in 30%, abdominal cramps being most common. Four (7%) patients with a known mood disorder reported worsened mood, of which two endorsed suicidal ideation. CONCLUSION Prucalopride efficaciously treated concurrent UGI symptoms and dysphagia in constipated pediatric patients and was overall well tolerated. Preexisting mood disorders seemed to worsen in a small subset of cases.
Collapse
Affiliation(s)
- Alejandro Velez
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Ajay Kaul
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Khalil I El-Chammas
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lesley Knowlton
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Erick Madis
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Rashmi Sahay
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lin Fei
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Stiehl
- Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Neha R Santucci
- Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Suite T8.382, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
- University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Haralambus R, Juri M, Mokry A, Jenner F. The impact of opioid administration on the incidence of postanaesthetic colic in horses. FRONTIERS IN PAIN RESEARCH 2024; 5:1347548. [PMID: 38440199 PMCID: PMC10910105 DOI: 10.3389/fpain.2024.1347548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Effective management of postoperative pain is essential to ensure patient welfare, reduce morbidity and optimize recovery. Opioids are effective in managing moderate to severe pain in horses but concerns over their adverse effects on gastrointestinal (GI) motility and associated increased colic risk limit their widespread use. Studies investigating the impact of systemic opioids on both GI motility and colic incidence in horses have yielded inconclusive outcomes. Therefore, this retrospective study aims to assess the influence of systemic administration of butorphanol, morphine, and methadone on post-anaesthetic colic (PAC) incidence. Horses undergoing general anaesthesia for non-gastrointestinal procedures that were hospitalized for at least 72 h post-anaesthesia were included in this study. Anaesthetised horses were stratified by procedure type into horses undergoing diagnostic imaging without surgical intervention, emergency or elective surgery. In addition, patients were grouped by opioid treatment regime into horses receiving no opioids, intraanaesthetic, short- (<24 h) or long-term (>24 h) postoperative opioids. Administered opioids encompassed butorphanol, morphine and methadone. The number of horses showing signs of colic in the 72 h after anaesthesia was assessed for each group. A total of 782 horses were included, comprising 659 undergoing surgical procedures and 123 undergoing diagnostic imaging. The overall PAC incidence was 15.1%. Notably, horses undergoing diagnostic imaging without surgery had a significantly lower PAC rate of 6.5% compared to those undergoing surgery (16.7%, p = 0.0146). Emergency surgeries had a significantly lower PAC rate of 5.8% compared to elective procedures (18%, p = 0.0113). Of the 782 horses, 740 received intraoperative opioids and 204 postoperative opioids, 102 of which long-term (≥24 h). Neither intraoperative (p = 0.4243) nor short-term postoperative opioids (p = 0.5744) increased PAC rates. Notably, only the long-term (≥24 h) administration of morphine significantly increased PAC incidence to 34% (p = 0.0038). In contrast, long-term butorphanol (5.3% PAC, p = 0.8482) and methadone (18.4% PAC, p = 0.6161) did not affect PAC rates. In summary, extended morphine administration was the only opioid treatment associated with a significantly increased risk of PAC.
Collapse
Affiliation(s)
- Rhea Haralambus
- Equine Surgery Unit, University Equine Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | - Florien Jenner
- Equine Surgery Unit, University Equine Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
11
|
Popeskou SG, Roesel R, Faes S, Vanoni A, Galafassi J, di Tor Vajana AF, Piotet LM, Christoforidis D. Ondansetron for Low Anterior Resection Syndrome (LARS): A Double-Blind, Placebo-Controlled, Cross-Over, Randomized Study. Ann Surg 2024; 279:196-202. [PMID: 37436844 DOI: 10.1097/sla.0000000000005995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
OBJECTIVE The aim of the study was to examine the efficacity and safety of ondansetron, a serotonin receptor antagonist, to treat patients with low anterior resection syndrome (LARS). BACKGROUND LARS after rectal resection is common and debilitating. Current management strategies include behavioral and dietary modifications, physiotherapy, antidiarrheal drugs, enemas, and neuromodulation, but the results are not always satisfactory. METHODS This is a randomized, multicentric, double-blinded, placebo-controlled, and cross-over study. Patients with LARS (LARS score >20) no longer than 2 years after rectal resection were randomized to receive either 4 weeks of ondansetron followed by 4 weeks of placebo (O-P group) or 4 weeks of placebo followed by 4 weeks of ondansetron (P-O group). The primary endpoint was LARS severity measured using the LARS score; secondary endpoints were incontinence (Vaizey score) and irritable bowel syndrome quality of life (IBS-QoL questionnaire). Patients' scores and questionnaires were completed at baseline and after each 4-week treatment period. RESULTS Of 46 randomized patients, 38 were included in the analysis. From baseline to the end of the first period, in the O-P group, the mean (SD) LARS score decreased by 25% [from 36.6 (5.6) to 27.3 (11.5)] and the proportion of patients with major LARS (score >30) went from 15/17 (88%) to 7/17 (41%), ( P =0.001). In the P-O group, the mean (SD) LARS score decreased by 12% [from 37 (4.8) to 32.6 (9.1)], and the proportion of major LARS went from 19/21 (90%) to 16/21 (76%). After crossover, LARS scores deteriorated again in the O-P group receiving placebo, but further improved in the P-O group receiving ondansetron. Mean Vaizey scores and IBS QoL scores followed a similar pattern. CONCLUSIONS Ondansetron is a safe and simple treatment that appears to improve both symptoms and QoL in LARS patients.
Collapse
Affiliation(s)
| | - Raffaello Roesel
- Department of Visceral Surgery, Hospital of Lugano (EOC), Lugano, Switzerland
| | - Seraina Faes
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alice Vanoni
- Department of Visceral Surgery, Hospital of Lugano (EOC), Lugano, Switzerland
| | - Jacopo Galafassi
- Department of Visceral Surgery, Hospital of Lugano (EOC), Lugano, Switzerland
| | | | - Laure-Meline Piotet
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Dimitri Christoforidis
- Department of Visceral Surgery, Hospital of Lugano (EOC), Lugano, Switzerland
- Department of Visceral Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
12
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
14
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
15
|
Prowse KL, Law H, Raez-Villanueva S, Markovic F, Wang M, Borojevic R, Parsons SP, Vincent AD, Holloway AC, Ratcliffe EM. Effects of in utero exposure to fluoxetine on the gastrointestinal tract of rat offspring. Am J Physiol Gastrointest Liver Physiol 2023; 325:G528-G538. [PMID: 37724979 DOI: 10.1152/ajpgi.00223.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) has been shown to disrupt the development of serotonergic signaling pathways in the brain and enteric nervous system. Serotonin (5-hydroxytryptamine; 5-HT) signaling is critical for gastrointestinal homeostasis; changes in 5-HT expression and regulation have been associated with gastrointestinal diseases of motility and inflammation. We tested the hypothesis that perinatal exposure to the SSRI fluoxetine can influence the development of the gastrointestinal tract in exposed offspring. Female nulliparous Wistar rats were given fluoxetine (10 mg/kg) or vehicle control from 2 wk before mating until weaning; small and large intestines of female and male offspring were collected at postnatal days 1, 21 (P1, P21, respectively), and 6 mo of age. In histological preparations, the proportion of serotonergic neurons significantly increased in the colons of both female and male fluoxetine-exposed compared with control offspring at P21, a time point that signifies maximal exposure to fluoxetine. At 6 mo of age, male but not female fluoxetine-exposed offspring had a significant increase in circulating 5-HT, with a significant decrease in transcripts encoding the 5-HT2A receptor and monoamine oxidase as compared with control offspring. Measurement of spatiotemporal mapping of contractile activity of the small and large intestine at 6 mo of age revealed no changes in motility in the small bowel of fluoxetine-exposed offspring but revealed a significant increase in the frequency of colonic contractions in the female fluoxetine-exposed compared with control animals. Susceptibility to inflammation was examined at 6 mo using the dextran sulfate sodium model of acute colitis. In utero exposure to fluoxetine was not found to exacerbate colitis severity. These findings suggest that fluoxetine exposure during fetal and early postnatal development can lead to changes in serotonergic neurons at the peak of exposure with sex-specific changes in 5-HT signaling and colonic motility in adulthood.NEW & NOTEWORTHY There is increasing recognition of the relevance of in utero and early postnatal exposures in the developmental programming of the gastrointestinal tract. Perinatal exposure to selective serotonin reuptake inhibitors and antidepressant medications is of particular relevance as they are commonly prescribed during pregnancy, and serotonergic pathways play key roles during gastrointestinal development and in postnatal homeostasis. Here, we provide a comprehensive evaluation of clinically relevant outcomes of gastrointestinal motility and susceptibility to colitis in fluoxetine-exposed offspring and highlight changes in colonic serotonergic neurons at the peak of perinatal fluoxetine exposure with sex-dependent changes in serotonin signaling and colonic motility in adulthood.
Collapse
Affiliation(s)
- Katherine L Prowse
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Harriet Law
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | | | - Filip Markovic
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Megan Wang
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Rajka Borojevic
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sean P Parsons
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alexander D Vincent
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Elyanne M Ratcliffe
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Ryu JJ, Jang CH. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin. Biotechnol Appl Biochem 2023; 70:1972-1982. [PMID: 37479671 DOI: 10.1002/bab.2503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
We report here a liquid crystal (LC)-based sensor for detecting serotonin (5-HT); the proposed sensor uses target-specific aptamer recognition at a cationic surfactant decorated-aqueous/LC interface. Our detection strategy focuses on the orientational transition of LCs upon biological interactions at the interface. In this sensing system, the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) forms a self-assembled monolayer at the aqueous/LC interface and triggers the homeotropic orientation of LCs. After introducing the 5-HT specific aptamer, an electrostatic attraction occurs between the cationic CTAB and anionic aptamer. This interaction destructs the surfactant monolayer at the interface, inducing reorganization of LC alignment from homeotropic to tilted conditions. In the increasing 5-HT levels, specific binding between 5-HT and the aptamer diminishes the interaction between the aptamer and CTAB, thereby maintaining the homeotropic alignment of LCs. The orientational transition of the LCs was observed under a polarized optical microscope. The developed biosensor has a linear detection range from 1 to 1000 nM and a detection limit of 1.68 nM. Moreover, the sensor was applied to a human urine sample and a detection limit of 2.25 nM was obtained. Overall, the designed LC-based sensor is a sensitive, simple, cost effective, and selective platform for detecting 5-HT in aqueous solutions.
Collapse
Affiliation(s)
- Je-Jin Ryu
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
17
|
Rybakova EY, Avdonin PP, Trufanov SK, Goncharov NV, Avdonin PV. Synergistic Interaction of 5-HT 1B and 5-HT 2B Receptors in Cytoplasmic Ca 2+ Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies. Int J Mol Sci 2023; 24:13833. [PMID: 37762136 PMCID: PMC10530667 DOI: 10.3390/ijms241813833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to explore the involvement of 5-HT1B and 5-HT2B receptors (5-HT1BR and 5-HT2BR) in the regulation of free cytoplasmic calcium concentration ([Ca2+]i) in human umbilical vein endothelial cells (HUVEC). We have shown by quantitative PCR analysis, that 5-HT1BR and 5-HT2BR mRNAs levels are almost equal in HUVEC. Immunofluorescent staining demonstrated, that 5-HT1BR and 5-HT2BR are expressed both in plasma membrane and inside the cells. Intracellular 5-HT1BR are localized mainly in the nuclear region, whereas 5-HT2BR receptors are almost evenly distributed in HUVEC. 5-HT, 5-HT1BR agonist CGS12066B, or 5-HT2BR agonist BW723C86 added to HUVEC caused a slight increase in [Ca2+]i, which was much lower than that of histamine, ATP, or SFLLRN, an agonist of protease-activated receptors (PAR1). However, activation of 5-HT1BR with CGS12066B followed by activation of 5-HT2BR with BW723C86 manifested a synergism of response, since several-fold higher rise in [Ca2+]i occurred. CGS12066B caused more than a 5-fold increase in [Ca2+]i rise in HUVEC in response to 5-HT. This 5-HT induced [Ca2+]i rise was abolished by 5-HT2BR antagonist RS127445, indicating that extracellular 5-HT acts through 5-HT2BR. Synergistic [Ca2+]i rise in response to activation of 5-HT1BR and 5-HT2BR persisted in a calcium-free medium. It was suppressed by the phospholipase C inhibitor U73122 and was not inhibited by the ryanodine and NAADP receptors antagonists dantrolene and NED-19. [Ca2+]i measurements in single cells demonstrated that activation of 5-HT2BR alone by BW723C86 caused single asynchronous [Ca2+]i oscillations in 19.8 ± 4.2% (n = 3) of HUVEC that occur with a long delay (66.1 ± 4.3 s, n = 71). On the contrary, histamine causes a simultaneous and almost immediate increase in [Ca2+]i in all the cells. Pre-activation of 5-HT1BR by CGS12066B led to a 3-4 fold increase in the number of HUVEC responding to BW723C86, to synchronization of their responses with a delay shortening, and to the bursts of [Ca2+]i oscillations in addition to single oscillations. In conclusion, to get a full rise of [Ca2+]i in HUVEC in response to 5-HT, simultaneous activation of 5-HT1BR and 5-HT2BR is required. 5-HT causes an increase in [Ca2+]i via 5-HT2BR while 5-HT1BR could be activated by the membrane-permeable agonist CGS12066B. We hypothesized that CGS12066B acts via intracellular 5-HT1BR inaccessible to extracellular 5-HT. Intracellular 5-HT1BR might be activated by 5-HT which could be accumulated in EC under certain pathological conditions.
Collapse
Affiliation(s)
- Elena Yu. Rybakova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Sergei K. Trufanov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia;
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (E.Y.R.); (P.P.A.); (S.K.T.)
| |
Collapse
|
18
|
Liu F, Shen Y, Li J, Bi L, Ye X, Li Y, Zhi D. Characteristics of ginsenoside Rd-induced effects on rat intestinal contractility with irritable bowel syndrome. Nat Prod Res 2023; 37:3152-3157. [PMID: 36412543 DOI: 10.1080/14786419.2022.2146686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Irritable bowel syndrome (IBS) is a very common refractory disease. Its exact pathophysiological mechanism is still unclear. Despite the availability of plentiful drugs to control IBS, most patients do not respond well. Ginsenoside Rd is one of the major active components of Panax ginseng, which has been verified to produce various pharmacological actions. However, the role of ginsenoside Rd in modulating smooth muscle contractility is still undefined. The aim of this study is to investigate the effects of ginsenoside Rd on intestinal contractility and related mechanisms in IBS.
Collapse
Affiliation(s)
- Fangfei Liu
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yating Shen
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiabin Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lixia Bi
- Department of Obstetrics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Ye
- Department of Medical Administration, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanhong Li
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Du Zhi
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Jeong JJ, Ganesan R, Jin YJ, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Choi J, Moon JH, Min U, Lim JH, Lee DY, Han SH, Ham YL, Kim BY, Suk KT. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front Microbiol 2023; 14:1174968. [PMID: 37333632 PMCID: PMC10272585 DOI: 10.3389/fmicb.2023.1174968] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
20
|
Bernabè G, Shalata MEM, Zatta V, Bellato M, Porzionato A, Castagliuolo I, Brun P. Antibiotic Treatment Induces Long-Lasting Effects on Gut Microbiota and the Enteric Nervous System in Mice. Antibiotics (Basel) 2023; 12:1000. [PMID: 37370319 DOI: 10.3390/antibiotics12061000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The side effects of antibiotic treatment directly correlate with intestinal dysbiosis. However, a balanced gut microbiota supports the integrity of the enteric nervous system (ENS), which controls gastrointestinal neuromuscular functions. In this study, we investigated the long-term effects of antibiotic-induced microbial dysbiosis on the ENS and the impact of the spontaneous re-establishment of the gut microbiota on gastrointestinal functions. C57BL/6J mice were treated daily for two weeks with antibiotics. After 0-6 weeks of antibiotics wash-out, we determined (a) gut microbiota composition, (b) gastrointestinal motility, (c) integrity of the ENS, (d) neurochemical code, and (e) inflammation. Two weeks of antibiotic treatment significantly altered gut microbial composition; the genera Clostridium, Lachnoclostridium, and Akkermansia did not regain their relative abundance following six weeks of antibiotic discontinuation. Mice treated with antibiotics experienced delayed gastrointestinal transit and altered expression of neuronal markers. The anomalies of the ENS persisted for up to 4 weeks after the antibiotic interruption; the expression of neuronal HuC/D, glial-derived neurotrophic factor (Gdnf), and nerve growth factor (Ngf) mRNA transcripts did not recover. In this study, we strengthened the idea that antibiotic-induced gastrointestinal dysmotility directly correlates with gut dysbiosis as well as structural and functional damage to the ENS.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| | | | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| | - Massimo Bellato
- Department of Information Engineering, University of Padova, Via G. Gradenigo, 6-35131 Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, University of Padova, Via A. Gabelli, 61-35127 Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
- Microbiology and Virology Unit of Padua University Hospital, School of Medicine, Via Ospedale, 1-35127 Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via A. Gabelli, 63-35127 Padova, Italy
| |
Collapse
|
21
|
Öz Tunçer G, Akbaş Y, Köker A, Aydın Köker S, Tural Kara T, Çoban Y, Kömüroğlu AU. Serum Zonulin Levels in Pediatric Migraine. Pediatr Neurol 2023; 144:80-83. [PMID: 37196600 DOI: 10.1016/j.pediatrneurol.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/05/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Migraine is a complex neurogenic inflammatory disorder. There are strong neuronal, endocrine, and immunologic connections between the brain and gastrointestinal system. Damage to the intestinal barrier is thought to cause systemic immune dysregulation. Zonulin is a protein produced by the small intestine epithelium in humans that regulates intestinal permeability through intracellular tight junctions and is a potential marker for inflammation. Zonulin increases in positive correlation with permeability. In our study, we aimed to research the correlation between serum zonulin levels in the period between attacks in pediatric patients with migraine. METHODS The study included 30 patients with migraine and 24 healthy controls, matched in terms of sex and age. Demographic and clinical characteristics were recorded. Serum zonulin levels were studied with the enzyme-linked immunosorbent assay method. RESULTS Patients had a mean of 5.6 ± 3.5 attacks per month. The mean serum zonulin was 5.68 ± 1.21 ng/mL in the migraine group and 5.72 ± 2.1 ng/mL in the control group with no significant difference found (P = 0.084). In the migraine group, no correlations were identified between serum zonulin levels and age, body mass index, pain frequency, pain duration, onset time, visual analog scale score, and presence of gastrointestinal systems apart from nausea-vomiting. CONCLUSIONS More than 50 proteins were identified to affect the intestinal permeability apart from zonulin. There is a need for prospective studies encompassing the time of attack, but our study is important as it is the first study about zonulin levels in pediatric migraine.
Collapse
Affiliation(s)
- Gökçen Öz Tunçer
- Department of Pediatric Neurology, Hatay State Hospital, Hatay, Turkey.
| | - Yılmaz Akbaş
- Department of Pediatric Neurology, Hatay State Hospital, Hatay, Turkey
| | - Alper Köker
- Department of Pediatrics, Hatay State Hospital, Hatay, Turkey
| | | | | | - Yasemin Çoban
- Department of Pediatrics, Hatay State Hospital, Hatay, Turkey
| | | |
Collapse
|
22
|
Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids. ACS Sens 2023; 8:712-720. [PMID: 36749605 DOI: 10.1021/acssensors.2c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.
Collapse
Affiliation(s)
- Emily L Brooks
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khalil K Hussain
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khushboo Kotecha
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Aya Abdalla
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
23
|
Perkins D, Ruffell SGD, Day K, Pinzon Rubiano D, Sarris J. Psychotherapeutic and neurobiological processes associated with ayahuasca: A proposed model and implications for therapeutic use. Front Neurosci 2023; 16:879221. [PMID: 36798604 PMCID: PMC9928213 DOI: 10.3389/fnins.2022.879221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ayahuasca is a psychoactive Amazonian plant brew. It is usually made from the Banisteriopsis caapi vine (Spruce ex Griseb. Morton, Malpighiaceae), which contains three primary harmala alkaloids, along with the leaves of Psychotria viridis (Ruiz et Pavon, Rubiaceae) in which the potent psychedelic dimethyltryptamine (DMT) is found. DMT-harmaloid concoctions have gained popularity in recent years, due to growing anecdotal and scientific reports of therapeutic benefits associated with their consumption. Ayahuasca is now ingested in a variety of different settings across the globe, from traditional ethnobotanical to so called "neo-shamanic" ceremonies. Furthermore, related preparations involving alternative sources of DMT and harmala alkaloids are becoming increasingly common as knowledge of ayahuasca continues to spread internationally. This article reviews the existing literature and draws on original qualitative data from a large cross-sectional study of ayahuasca drinkers, to propose a model of psychotherapeutic processes associated with the consumption of ayahuasca. We assert that it is these processes, facilitated by a range of neurobiological effects, that lead to beneficial mental health and wellbeing outcomes. Our proposed model identifies five key psychotherapeutic processes or effects inherent to the ayahuasca experience; somatic effects; introspection and emotional processing; increased Self-connection; increased spiritual connection, and finally the gaining of insights and new perspectives. We note some important differences in these processes compared with other classic psychedelics as well as the implications of the model for the therapeutic use of ayahuasca. Improved understanding of the psychotherapeutic processes involved with the ayahuasca experience will better equip practitioners to work with this potentially transformative concoction and enable the optimization of therapeutic treatment models for potential clinical use.
Collapse
Affiliation(s)
- Daniel Perkins
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia,School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia,Psychae Institute, Melbourne, VIC, Australia,Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia,*Correspondence: Daniel Perkins,
| | - Simon G. D. Ruffell
- School of Social and Political Science, University of Melbourne, Melbourne, VIC, Australia,Psychae Institute, Melbourne, VIC, Australia,Centre for Mental Health, Swinburne University, Melbourne, VIC, Australia,Onaya Science, Iquitos, Peru
| | | | | | - Jerome Sarris
- Psychae Institute, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Sydney, NSW, Australia,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Guan J, Liao Y, Guo Y, Yu S, Wei R, Niu M, Gan J, Zhang L, Li T, Lv J, Shichen M, Chang P, Chen P, Liu Z. Adjunctive granisetron therapy in patients with sepsis or septic shock (GRANTISS): A single-center, single-blinded, randomized, controlled clinical trial. Front Pharmacol 2022; 13:1013284. [PMID: 36582527 PMCID: PMC9792607 DOI: 10.3389/fphar.2022.1013284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background: In preclinical experiments, we demonstrated that the 5-HT3 receptor antagonist granisetron results in reduced inflammation and improved survival in septic mice. This randomized controlled trial was designed to assess the efficacy and safety of granisetron in patients with sepsis. Methods: Adult patients with sepsis and procalcitonin ≥ 2 ng/ml were randomized in a 1:1 ratio to receive intravenous granisetron (3 mg every 8 h) or normal saline at the same volume and frequency for 4 days or until intensive care unit discharge. The primary outcome was 28-day all-cause mortality. Secondary outcomes included the duration of supportive therapies for organ function, changes in sequential organ failure assessment scores over 96 h, procalcitonin reduction rate over 96 h, the incidence of new organ dysfunction, and changes in laboratory variable over 96 h. Adverse events were monitored as the safety outcome. Results: The modified intention-to-treat analysis included 150 septic patients. The 28-day all-cause mortalities in the granisetron and placebo groups were 34.7% and 35.6%, respectively (odds ratio, 0.96; 95% CI, 0.49-1.89). No differences were observed in secondary outcomes. In the subgroup analysis of patients without abdominal or digestive tract infections, the 28-day mortality in the granisetron group was 10.9% lower than mortality in the placebo group. Adverse events were not statistically different between the groups. Conclusion: Granisetron did not improve 28-day mortality in patients with sepsis. However, a further clinical trial targeted to septic patients without abdominal/digestive tract infections perhaps is worthy of consideration.
Collapse
Affiliation(s)
- Jianbin Guan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Liao
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan, China
| | - Yuexun Guo
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Department of Critical Care Medicine, DongGuan Tungwah Hospital, DongGuan, China
| | - Shuang Yu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mengwei Niu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianwei Gan
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Li
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Lv
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Maoyou Shichen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Chang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| | - Peng Chen
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| | - Zhanguo Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Zhanguo Liu, ; Peng Chen, ; Ping Chang,
| |
Collapse
|
25
|
Xiao Z, Xu J, Tan J, Zhang S, Wang N, Wang R, Yang P, Bai T, Song J, Shi Z, Lyu W, Zhang L, Hou X. Zhizhu Kuanzhong, a traditional Chinese medicine, alleviates gastric hypersensitivity and motor dysfunction on a rat model of functional dyspepsia. Front Pharmacol 2022; 13:1026660. [PMID: 36467071 PMCID: PMC9712737 DOI: 10.3389/fphar.2022.1026660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Ethnopharmacological relevance: Zhizhu Kuanzhong (ZZKZ) is a traditional Chinese medicine modified from classic formula Zhizhu decoction in "Synopsis of Golden Chamber" (Han Dynasty in the 3rd century) and the Zhizhu pill in "Differentiation on Endogenous" in Jin Dynasty (1,115-1,234). ZZKZ contains four botanical drugs, including Citrus × Aurantium L [Rutaceae; Aurantii Fructus Immaturus], Atractylodes Macrocephala Koidz. [Compositae; Rhizoma Atractylodis Macrocephalae], Bupleurum Chinense DC [Apiaceae; Radix Bupleuri Chinensis], and Crataegus Pinnatifida Bunge [Rosaceae; Fructus Crataegi Pinnatifidae], which have been widely used in clinical therapy for functional dyspepsia (FD). Aim of the study: This study aimed to evaluate the pharmacological effects and mechanisms of action of ZZKZ on gastric hypersensitivity and motor dysfunction in a rat model of FD. Materials and methods: FD was induced in Sprague-Dawley rats by neonatal gastric irritation with 0.1% iodoacetamide. The FD rats were treated with ZZKZ (0.5 g/kg, 1.0 g/kg, or 1.5 g/kg respectively) by gavage for 7 days, while domperidone (3 mg/kg) acted as treatment control. Body weight gain, food intake, gastric emptying, and intestinal propulsion were also measured. Ex vivo gastric smooth muscle activity recordings and greater splanchnic afferent (GSN) firing recordings were employed to evaluate gastric motility and sensation. Particularly, the role of 5-HT in the action of ZZKZ in improving gastric dysmotility and hypersensitivity was explored. Results: ZZKZ promoted weight gain, food intake, gastric emptying, and intestinal propulsion in FD rats. ZZKZ promoted spontaneous and ACh-induced contractions of gastric smooth muscle strips in FD rats, alleviated spontaneous activity, and chemical (acid perfusion) and mechanical (intragastric distension) stimulated GSN firing in FD rats. ZZKZ ameliorated gastric smooth muscle contraction and GSN firing induced by 5-HT in FD rats. ZZKZ stimulated the release of serum 5-HT, with reduced 5-HT3 receptor and increased 5-HT4 receptor mRNA expression in the guts of FD rats. Conclusion: This study demonstrated that ZZKZ improves FD-related gastric hypersensitivity and motor dysfunction and should be an effective compound for relieving FD symptoms. The gastric 5-HT system with lower 5-HT3 activity and increased 5-HT4 distribution is involved in the mechanisms of ZZKZ underlying the treatment of FD.
Collapse
Affiliation(s)
- Zhuanglong Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Jun Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengyan Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Wang
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong Shi
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Wenliang Lyu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ustianowska K, Ustianowski Ł, Machaj F, Gorący A, Rosik J, Szostak B, Szostak J, Pawlik A. The Role of the Human Microbiome in the Pathogenesis of Pain. Int J Mol Sci 2022; 23:13267. [PMID: 36362056 PMCID: PMC9659276 DOI: 10.3390/ijms232113267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/22/2023] Open
Abstract
Understanding of the gut microbiome's role in human physiology developed rapidly in recent years. Moreover, any alteration of this microenvironment could lead to a pathophysiological reaction of numerous organs. It results from the bidirectional communication of the gastrointestinal tract with the central nervous system, called the gut-brain axis. The signals in the gut-brain axis are mediated by immunological, hormonal, and neural pathways. However, it is also influenced by microorganisms in the gut. The disturbances in the gut-brain axis are associated with gastrointestinal syndromes, but recently their role in the development of different types of pain was reported. The gut microbiome could be the factor in the central sensitization of chronic pain by regulating microglia, astrocytes, and immune cells. Dysbiosis could lead to incorrect immune responses, resulting in the development of inflammatory pain such as endometriosis. Furthermore, chronic visceral pain, associated with functional gastrointestinal disorders, could result from a disruption in the gut microenvironment. Any alteration in the gut-brain axis could also trigger migraine attacks by affecting cytokine expression. Understanding the gut microbiome's role in pain pathophysiology leads to the development of analgetic therapies targeting microorganisms. Probiotics, FODMAP diet, and fecal microbiota transplantation are reported to be beneficial in treating visceral pain.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
27
|
Grozić A, Coker K, Dussik CM, Sabir MS, Sabir Z, Bradley A, Zhang L, Park J, Yale S, Kaneko I, Hockley M, Harris LA, Lunsford TN, Sandrin TR, Jurutka PW. Identification of putative transcriptomic biomarkers in irritable bowel syndrome (IBS): Differential gene expression and regulation of TPH1 and SERT by vitamin D. PLoS One 2022; 17:e0275683. [PMID: 36264926 PMCID: PMC9584396 DOI: 10.1371/journal.pone.0275683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.
Collapse
Affiliation(s)
- Aleksandra Grozić
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Keaton Coker
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Christopher M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Zhela Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Arianna Bradley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Jin Park
- Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Steven Yale
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
| | - Maryam Hockley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lucinda A. Harris
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Tisha N. Lunsford
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, United States of America
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
- * E-mail:
| |
Collapse
|
28
|
Vomhof-DeKrey EE, Singhal S, Singhal SK, Stover AD, Rajpathy O, Preszler E, Garcia L, Basson MD. RNA Sequencing of Intestinal Enterocytes Pre- and Post-Roux-en-Y Gastric Bypass Reveals Alteration in Gene Expression Related to Enterocyte Differentiation, Restitution, and Obesity with Regulation by Schlafen 12. Cells 2022; 11:3283. [PMID: 36291149 PMCID: PMC9601224 DOI: 10.3390/cells11203283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).
Collapse
Affiliation(s)
- Emilie E. Vomhof-DeKrey
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Allie D. Stover
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Odele Rajpathy
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Elizabeth Preszler
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Luis Garcia
- Sanford Health Clinic, Sioux Falls, ND 57117, USA
| | - Marc D. Basson
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
29
|
Teodósio R, Aragão C, Conceição LEC, Dias J, Engrola S. Metabolic Fate Is Defined by Amino Acid Nature in Gilthead Seabream Fed Different Diet Formulations. Animals (Basel) 2022; 12:1713. [PMID: 35804612 PMCID: PMC9264960 DOI: 10.3390/ani12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
The sustainability of the Aquaculture industry relies on optimising diets to promote nitrogen retention and maximise fish growth. The aim of this study was to assess how different dietary formulations influence the bioavailability and metabolic fate of distinct amino acids in gilthead seabream juveniles. Amino acids (lysine, tryptophan, and methionine) were selected based on their ketogenic and/or glucogenic nature. Seabream were fed practical diets with different protein (44 and 40%) and lipid contents (21 and 18%): 44P21L, 44P18L, 40P21L, and 40P18L. After three weeks of feeding, the fish were tube-fed the correspondent diet labelled with 14C-lysine, 14C-tryptophan, or 14C-methionine. The amino acid utilisation was determined based on the evacuation, retention in gut, liver, and muscle, and the catabolism of the tracer. The metabolic fate of amino acids was mainly determined by their nature. Tryptophan was significantly more evacuated than lysine or methionine, indicating a lower availability for metabolic purposes. Methionine was more retained in muscle, indicating its higher availability. Lysine was mainly catabolised, suggesting that catabolism is preferentially ketogenic, even when this amino acid is deficient in diets. This study underpins the importance of optimising diets considering the amino acids' bioavailability and metabolic fate to maximise protein retention in fish.
Collapse
Affiliation(s)
- Rita Teodósio
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Claúdia Aragão
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
- Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Luís E. C. Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (L.E.C.C.); (J.D.)
| | - Sofia Engrola
- Centro de Ciências do Mar (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (R.T.); (C.A.)
| |
Collapse
|
30
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
31
|
Streptozotocin-Induced Diabetes Causes Changes in Serotonin-Positive Neurons in the Small Intestine in Pig Model. Int J Mol Sci 2022; 23:ijms23094564. [PMID: 35562954 PMCID: PMC9099899 DOI: 10.3390/ijms23094564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter of the central and peripheral nervous systems, predominantly secreted in the gastrointestinal tract, especially in the gut. 5-HT is a crucial enteric signaling molecule and is well known for playing a key role in sensory-motor and secretory functions in the gut. Gastroenteropathy is one of the most clinical problems in diabetic patients with frequent episodes of hyperglycemia. Changes in 5-HT expression may mediate gastrointestinal tract disturbances seen in diabetes, such as nausea and diarrhea. Based on the double immunohistochemical staining, this study determined the variability in the population of 5-HT-positive neurons in the porcine small intestinal enteric neurons in the course of streptozotocin-induced diabetes. The results show changes in the number of 5-HT-positive neurons in the examined intestinal sections. The greatest changes were observed in the jejunum, particularly within the myenteric plexus. In the ileum, both de novo 5-HT synthesis in the inner submucosal plexus neurons and an increase in the number of neurons in the outer submucosal plexus were noted. The changes observed in the duodenum were also increasing in nature. The results of the current study confirm the previous observations concerning the involvement of 5-HT in inflammatory processes, and an increase in the number of 5-HT -positive neurons may also be a result of increased concentration of the 5-HT in the gastrointestinal tract wall and affects the motor and secretory processes, which are particularly intense in the small intestines.
Collapse
|
32
|
Khushboo, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Neuroanatomical, Biochemical, and Functional Modifications in Brain Induced by Treatment with Antidepressants. Mol Neurobiol 2022; 59:3564-3584. [DOI: 10.1007/s12035-022-02780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
|
33
|
Cordeiro Santos ML, da Silva Júnior RT, de Brito BB, França da Silva FA, Santos Marques H, Lima de Souza Gonçalves V, Costa dos Santos T, Ladeia Cirne C, Silva NOE, Oliveira MV, de Melo FF. Non-pharmacological management of pediatric functional abdominal pain disorders: Current evidence and future perspectives. World J Clin Pediatr 2022; 11:105-119. [PMID: 35433299 PMCID: PMC8985495 DOI: 10.5409/wjcp.v11.i2.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/19/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Functional abdominal pain disorders (FAPDs) are an important and prevalent cause of functional gastrointestinal disorders among children, encompassing the diagnoses of functional dyspepsia, irritable bowel syndrome, abdominal migraine, and the one not previously present in Rome III, functional abdominal pain not otherwise specified. In the absence of sufficiently effective and safe pharmacological treatments for this public problem, non-pharmacological therapies emerge as a viable means of treating these patients, avoiding not only possible side effects, but also unnecessary prescription, since many of the pharmacological treatments prescribed do not have good efficacy when compared to placebo. Thus, the present study provides a review of current and relevant evidence on non-pharmacological management of FAPDs, covering the most commonly indicated treatments, from cognitive behavioral therapy to meditation, acupuncture, yoga, massage, spinal manipulation, moxibustion, and physical activities. In addition, this article also analyzes the quality of publications in the area, assessing whether it is possible to state if non-pharmacological therapies are viable, safe, and sufficiently well-based for an appropriate and effective prescription of these treatments. Finally, it is possible to observe an increase not only in the number of publications on the non-pharmacological treatments for FAPDs in recent years, but also an increase in the quality of these publications. Finally, the sample selection of satisfactory age groups in these studies enables the formulation of specific guidelines for this age group, thus avoiding the need for adaptation of prescriptions initially made for adults, but for children use.
Collapse
Affiliation(s)
- Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | | | - Talita Costa dos Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Carolina Ladeia Cirne
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
34
|
Oh YS, Yoo SW, Lyoo CH, Kim JS. Decreased thalamic monoamine availability in drug-induced parkinsonism. Sci Rep 2022; 12:3749. [PMID: 35260679 PMCID: PMC8904448 DOI: 10.1038/s41598-022-07773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
Drug-induced parkinsonism (DIP) is caused by a dopamine receptor blockade and is a major cause of misleading diagnosis of Parkinson’s disease (PD). Striatal dopamine activity has been investigated widely in DIP; however, most studies with dopamine transporter imaging have focused on the clinical characteristics and prognosis. This study investigated differences in striatal subregional monoamine availability among patients with DIP, normal controls, and patients with early PD. Thirty-five DIP patients, the same number of age-matched PD patients, and 46 healthy controls were selected for this study. Parkinsonian motor status was examined. Brain magnetic resonance imaging and positron emission tomography with 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane were performed, and the regional standardized uptake values were analyzed with a volume-of-interest template and compared among the groups. The groups were evenly matched for age, but there were numerically more females in the DIP group. Parkinsonian motor symptoms were similar in the DIP and PD groups. Monoamine availability in the thalamus of the DIP group was lower than that of the normal controls and similar to that of the PD group. In other subregions (putamen, globus pallidus, and ventral striatum), monoamine availability in the DIP group and normal controls did not differ and was higher than that in the PD group. This difference compared to healthy subject suggests that low monoamine availability in the thalamus could be an imaging biomarker of DIP.
Collapse
Affiliation(s)
- Yoon-Sang Oh
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sang-Won Yoo
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
35
|
The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022; 27:molecules27051680. [PMID: 35268781 PMCID: PMC8911970 DOI: 10.3390/molecules27051680] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
5-Hydroxytryptamine (5-HT, serotonin) is a neurotransmitter in both the central nervous system and peripheral structures, acting also as a hormone in platelets. Although its concentration in the gut covers >90% of all organism resources, serotonin is mainly known as a neurotransmitter that takes part in the pathology of mental diseases. Serotonin modulates not only CNS neurons, but also pain transmission and platelet aggregation. In the periphery, 5-HT influences muscle motility in the gut, bronchi, uterus, and vessels directly and through neurons. Serotonin synthesis starts from hydroxylation of orally delivered tryptophan, followed by decarboxylation. Serotonin acts via numerous types of receptors and clinically plays a role in several neural, mental, and other chronic disorders, such as migraine, carcinoid syndrome, and some dysfunctions of the alimentary system. 5-HT acts as a paracrine hormone and growth factor. 5-HT receptors in both the brain and gut are targets for drugs modifying serotonin neurotransmission. The aim of the present article is to review the 5-HT receptors in the gastrointestinal (GI) tract to determine the role of serotonin in GI physiology and pathology, including known GI diseases and the role of serotonin in GI pharmacotherapy.
Collapse
|
36
|
Min D, Kim B, Ko SG, Kim W. Effect and Mechanism of Herbal Medicines on Cisplatin-Induced Anorexia. Pharmaceuticals (Basel) 2022; 15:ph15020208. [PMID: 35215322 PMCID: PMC8877473 DOI: 10.3390/ph15020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Cisplatin is a well-known chemotherapeutic agent used to treat various types of cancers; however, it can also induce anorexia, which results in reduced food intake, loss of body weight, and lower quality of life. Although drugs such as megestrol acetate and cyproheptadine are used to decrease this severe feeding disorder, they can also induce side effects, such as diarrhea and somnolence, which limit their widespread use. Various types of herbal medicines have long been used to prevent and treat numerous gastrointestinal tract diseases; however, to date, no study has been conducted to analyze and summarize their effects on cisplatin-induced anorexia. In this paper, we analyze 12 animal studies that used either a single herbal medicine extract or mixtures thereof to decrease cisplatin-induced anorexia. Among the herbal medicines, Ginseng Radix was the most used, as it was included in seven studies, whereas both Glycyrrhizae Radix et Rhizoma and Angelicae Gigantis Radix were used in four studies. As for the mechanisms of action, the roles of serotonin and its receptors, cytokines, white blood cells, ghrelin, and leptin were investigated. Based on these results, we suggest that herbal medicines could be considered a useful treatment method for cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Daeun Min
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
37
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Montazeri M, Fakhar M, Keighobadi M. The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:23-33. [PMID: 35249526 DOI: 10.2174/1574891x16666220304232301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several in vitro and in vivo biological activities of serotonin, 5- hydroxytryptamine (5-HT), as a bioactive molecule, and its transporter (5-HT-Tr) were evaluated in parasitic infections. OBJECTIVE Herein, the roles of 5-HT and 5-HTR in helminths and protozoan infections with medical and veterinary importance are reviewed. METHODS We searched information in 4 main databases and reviewed published literature about the serotonin transporter's role as a promising therapeutic target against pathogenic parasitic infections between 2000 and 2021. RESULTS Based on recent investigations, 5-HT and 5-HT-Tr play various roles in parasite infections, including biological function, metabolic activity, organism motility, parasite survival, and immune response modulation. Moreover, some of the 5-HT-TR in Schistosoma mansoni showed an excess of favorite substrates for biogenic amine 5-HT compared to their mammalian hosts. Furthermore, the main neuronal protein related to the G protein-coupled receptor (GPCR) was identified in S. mansoni and Echinococcus granulosus, playing main roles in these parasites. In addition, 5-HT increased in toxoplasmosis, giardiasis, and Chagas disease. On the other hand, in Plasmodium spp., different forms of targeted 5-HTR stimulate Ca2+ release, intracellular inositol triphosphate (ITP), cAMP, and protein kinase A (PKA) activity. CONCLUSION This review summarized the several functional roles of the 5-HT and the importance of the 5-HT-TR as a drug target with minimal harm to the host to fight against helminths and protozoan infections. Hopefully, this review will shed light on research regarding serotonin transporter-based therapies as a potential drug target soon.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
39
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Xu Y, Amdanee N, Zhang X. Antipsychotic-Induced Constipation: A Review of the Pathogenesis, Clinical Diagnosis, and Treatment. CNS Drugs 2021; 35:1265-1274. [PMID: 34427901 DOI: 10.1007/s40263-021-00859-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Antipsychotic-induced gastrointestinal hypomotility and, in particular, its manifestation of constipation are common adverse effects in patients with schizophrenia in clinical practice. Serious complications of antipsychotic-induced constipation include ileus, ischaemic bowel disease, colon perforation, aspiration pneumonia, and bacterial septicaemia, which can be life threatening if left untreated, especially in patients prescribed clozapine. The aim of this paper is to review the latest research on the epidemiology, clinical examination methods, pathophysiology, and treatment options and preventive measures for antipsychotic-induced constipation. While clinicians are normally aware of the overall side effects caused by antipsychotics, constipation is often an under-recognized condition despite its relatively high incidence and its impact on daily living. The incidence of constipation differs among individual antipsychotics, but more than 50% of patients prescribed antipsychotics suffer from constipation. Limited fluid intake, poor dietary habits, and a sedentary lifestyle can also worsen constipation. The mechanisms of antipsychotic-induced constipation may be antagonism of cholinergic, histaminergic, and serotonergic receptors, with both parent drug and metabolite(s) contributing to the effects on gastrointestinal motility. Numerous methods, mainly divided into scale evaluations and objective examinations, are applied to evaluate antipsychotic-induced constipation; however, objective examinations have a greater ability to identify cases of gastrointestinal hypomotility since there is often an under-reporting of symptoms in subjective reporting and scale evaluation due to a higher pain threshold, an inability to express pain sensations, and a lack of symptom awareness in these patients. Antipsychotic drug-induced constipation should be closely monitored in patients receiving these medications, with timely intervention to avoid serious gastrointestinal consequences. There is currently no consensus on the efficacy of laxatives in these patients. Further in-depth studies should explore the underlying mechanisms and devise optimal therapeutic approaches to minimize constipation during antipsychotic treatment.
Collapse
Affiliation(s)
- Yue Xu
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, No.264, Guangzhou Road, Gulou District, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
41
|
Jia S, Chai L, Zhang J, Zhang M, Li L, Qi Y, Pang Y, Chen X, Fan N, Wang L, Wang Y, Song J, Sun Y, Wang Y, Miao L, Zhang H. Wei Chang An pill regulates gastrointestinal motility in a bidirectional manner. PHARMACEUTICAL BIOLOGY 2021; 59:1452-1463. [PMID: 34711130 PMCID: PMC8555530 DOI: 10.1080/13880209.2021.1991383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Wei Chang An (WCA) is a commercial prescription developed for the coordination of gastrointestinal movement. OBJECTIVE To investigate the role of WCA in the regulation of diarrhoea and constipation in rats. MATERIAL AND METHODS The diarrhoea and constipation models were prepared by gavage of Folium senna and diphenoxylate hydrochloride. Rats were randomized equally (n = 6) into the normal group given saline daily, the positive group given Pinaverium Bromide (13.5 mg/kg) or Sennoside A (0.1 mg/kg) and three WCA-treated groups (22, 44, and 88 mg/kg) by gavage daily for 7 consecutive days. The effects of WCA were assessed by a series of faecal symptoms and histopathology. Gastrointestinal parameters were determined by ELISA. The effect of WCA on gastrointestinal tissues was evaluated by strip assay. Expression of ROCK-1 and MLCK was measured by RT-PCR and Western blotting. RESULTS Data from Bristol stool form scale, diarrhoea index, visceral sensitivity, defaecation time, and intestinal propulsive rate showed that WCA protected rats against diarrhoea and constipation (p < 0.01). The up-regulation of Substance P and 5-hydroxytryptamine in diarrhoea rats and down-regulation of Substance P and vasoactive intestinal polypeptide in constipation rats were inhibited by WCA (p < 0.05). WCA stimulated the gastrointestinal strip contractions but inhibited ACh-induced contractions (p < 0.01). The decreased ROCK-1 and MLCK expression in diarrhoea rats and increased in constipation rats were suppressed by WCA (p < 0.01). CONCLUSIONS WCA has both antidiarrhea and anti-constipation effects, suggesting its bidirectional role in gastrointestinal modulation, and providing evidence of WCA for irritable bowel syndrome treatment.
Collapse
Affiliation(s)
- Sitong Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Chai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of TCM, Tianjin, China
| | - Jing Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaxin Qi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yafen Pang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nana Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Wang
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Yujing Wang
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Jixiang Song
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Yingjie Sun
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of TCM, Tianjin, China
| |
Collapse
|
42
|
Enteropathogenic infections modulate intestinal serotonin transporter (SERT) function by activating Toll-like receptor 2 (TLR-2) in Crohn's disease. Sci Rep 2021; 11:22624. [PMID: 34799637 PMCID: PMC8604993 DOI: 10.1038/s41598-021-02050-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) is an intestinal neuromodulator that regulates several essential enteric physiological functions such as absorption or secretion of fluids, and peristaltic reflexes. Availability of the intestinal 5-HT is dependent on serotonin transporter (SERT), which uptakes 5-HT and facilitates its degradation. Interestingly, Toll-like receptor 2 (TLR-2) is co-localized with 5-HT, which suggests a possible impact of neuroendocrine cells in the inflammatory response through TLR-2 activation. Serum 5-HT levels were measured in 80 Crohn's disease (CD) patients and 40 healthy control subjects. Additionally, fully differentiated Caco-2 monolayers were infected with Mycobacteria paratuberculosis (MAP), L. monocytogenes, or M. smegmatis in the presence of exogenous 5-HT at different concentrations. Cells were subsequently harvested and used for measuring SERT activity, RNA isolation followed by RT-PCR, protein quantification, and tissue damage markers (DHE, LDH, GSH and MDA). TLR-2 intracellular signaling pathways were assessed by pre-incubating Caco-2 monolayers with selective blockers of ERK, cAMP/PKA, p38 MAPK, and 5-HT3 receptors. MAP-infected CD patients (N = 40) had higher serum 5-HT levels (462.95 ± 8.55 ng/mL, N = 40) than those without MAP infection (385.33 ± 10.3 ng/mL, N = 40). TLR-2 activation by enteropathogenic bacteria inhibited SERT activity in the presence of exogenous 5-HT by up to 50%. These effects were increasing gradually over 72 h, and MAP infection had the greatest effect on SERT inhibition when cells were exposed to 5-HT in a concentration dependent manner. Additionally, inhibition of SERT activity was accompanied with higher levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-8) and oxidative stress markers (DHE, LDH and MDA), whereas SERT expression and protein level were downregulated. Consequently, inhibition of TLR-2 and p38 MAPK signaling or blocking 5-HT3 receptors restored SERT activity and reduced the production of pro-inflammatory cytokines, as reflected by the downregulation of oxidative stress and tissue damage markers. The involvement of TLR-2 in the intestinal pathology might be concluded not only from its innate immune role, but also from its effect on modulating the intestinal serotonergic response. Ultimately, regulating the intestinal serotonergic system can be therapeutically exploited to mitigate other enteropathogenic infections, which will help in understanding the gut-microbiome-brain connection.
Collapse
|
43
|
Singh R, Zogg H, Ro S. Role of microRNAs in Disorders of Gut-Brain Interactions: Clinical Insights and Therapeutic Alternatives. J Pers Med 2021; 11:jpm11101021. [PMID: 34683162 PMCID: PMC8541612 DOI: 10.3390/jpm11101021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of gut–brain interactions (DGBIs) are heterogeneous in nature and intertwine with diverse pathophysiological mechanisms. Regular functioning of the gut requires complex coordinated interplay between a variety of gastrointestinal (GI) cell types and their functions are regulated by multiple mechanisms at the transcriptional, post-transcriptional, translational, and post-translational levels. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by binding to specific mRNA targets to repress their translation and/or promote the target mRNA degradation. Dysregulation of miRNAs might impair gut physiological functions leading to DGBIs and gut motility disorders. Studies have shown miRNAs regulate gut functions such as visceral sensation, gut immune response, GI barrier function, enteric neuronal development, and GI motility. These biological processes are highly relevant to the gut where neuroimmune interactions are key contributors in controlling gut homeostasis and functional defects lead to DGBIs. Although extensive research has explored the pathophysiology of DGBIs, further research is warranted to bolster the molecular mechanisms behind these disorders. The therapeutic targeting of miRNAs represents an attractive approach for the treatment of DGBIs because they offer new insights into disease mechanisms and have great potential to be used in the clinic as diagnostic markers and therapeutic targets. Here, we review recent advances regarding the regulation of miRNAs in GI pacemaking cells, immune cells, and enteric neurons modulating pathophysiological mechanisms of DGBIs. This review aims to assess the impacts of miRNAs on the pathophysiological mechanisms of DGBIs, including GI dysmotility, impaired intestinal barrier function, gut immune dysfunction, and visceral hypersensitivity. We also summarize the therapeutic alternatives for gut microbial dysbiosis in DGBIs, highlighting the clinical insights and areas for further exploration. We further discuss the challenges in miRNA therapeutics and promising emerging approaches.
Collapse
Affiliation(s)
| | | | - Seungil Ro
- Correspondence: ; Tel.: +1-775-784-1462; Fax: +1-775-784-6903
| |
Collapse
|
44
|
Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome. Int J Mol Sci 2021; 22:ijms221910235. [PMID: 34638577 PMCID: PMC8508930 DOI: 10.3390/ijms221910235] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional disorder that affects the gastrointestinal tract. Details regarding the pathogenesis of IBS remain largely unknown, though the dysfunction of the brain-gut-microbiome (BGM) axis is a major etiological factor, in which neurotransmitters serve as a key communication tool between enteric microbiota and the brain. One of the most important neurotransmitters in the pathology of IBS is serotonin (5-HT), as it influences gastrointestinal motility, pain sensation, mucosal inflammation, immune responses, and brain activity, all of which shape IBS features. Genome-wide association studies discovered susceptible genes for IBS in serotonergic signaling pathways. In clinical practice, treatment strategies targeting 5-HT were effective for a certain portion of IBS cases. The synthesis of 5-HT in intestinal enterochromaffin cells and host serotonergic signaling is regulated by enteric resident microbiota. Dysbiosis can trigger IBS development, potentially through aberrant 5-HT signaling in the BGM axis; thus, the manipulation of the gut microbiota may be an alternative treatment strategy. However, precise information regarding the mechanisms underlying the microbiota-mediated intestinal serotonergic pathway related to the pathogenesis of IBS remains unclear. The present review summarizes current knowledge and recent progress in understanding microbiome–serotonin interaction in IBS cases.
Collapse
|
45
|
Su HH, Sung FC, Kao KL, Chen SC, Lin CJ, Wu SI, Lin CL, Stewart R, Chen YS. Relative risk of functional dyspepsia in patients with sleep disturbance: a population-based cohort study. Sci Rep 2021; 11:18605. [PMID: 34545155 PMCID: PMC8452703 DOI: 10.1038/s41598-021-98169-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Increased prevalence of sleep disorders has been found in patients with functional dyspepsia; however, direction of causality remains unclear. Our aim was to compare the risk of incident functional dyspepsia between patients with and without sleep disturbance from a large population-based sample. Utilizing a nation-wide health insurance administrative dataset, we assembled an 11-year historic cohort study to compare subsequent incidence of diagnosed functional dyspepsia between adult patients with any diagnosis of sleep disturbance and age- and gender-matched controls. Hazard ratios adjusted for other relevant comorbidities and medications were calculated using Cox regression models. 45,310 patients with sleep disorder and 90,620 controls were compared. Patients with sleep apnea had a 3.3-fold (95% confidence interval: 2.82 ~ 3.89) increased hazard of functional dyspepsia compared with controls. This increased risk persisted regardless of previously diagnosed depression coexisted. Sleep disturbance was associated with an increased risk of subsequent functional dyspepsia. Potential mechanisms are discussed.
Collapse
Affiliation(s)
- Hsu-Han Su
- Department of Psychiatry, Hsin-Chu Mackay Memorial Hospital, Hsin-Chu, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, Taiwan.,Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Kai-Liang Kao
- Far Eastern Memorial Hospital, Department of Pediatrics, Taipei, Taiwan
| | - Shu-Chin Chen
- Suicide Prevention Center, Section of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Ju Lin
- Suicide Prevention Center, Section of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-I Wu
- Suicide Prevention Center, Section of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan. .,Department of Medicine, Mackay Medical College, Taipei, Taiwan.
| | - Cheng-Li Lin
- Management Office for Health Data, China, Medical University Hospital, Taichung, Taiwan
| | - Robert Stewart
- King's College London (Institute of Psychiatry, Psychology and Neuroscience), London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Yi-Shin Chen
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Wang YM, Chen YF, Lee PY, Ho MW, Huang EY. Radiation-Induced Emesis (RIE) in Extended-Field Radiotherapy for Gynecological Malignancies: Dosimetric and Non-Dosimetric Factors. Curr Oncol 2021; 28:3602-3609. [PMID: 34590609 PMCID: PMC8482175 DOI: 10.3390/curroncol28050308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced emesis (RIE) is usually noted during abdominal-pelvic radiotherapy. In gynecological malignancies, it is usually noted in para-aortic but not whole-pelvic irradiation. Irradiated small bowel (SB) may be associated with RIE. The significance of SB dosimetry remains unclear. Dosimetric and non-dosimetric factors were evaluated and correlated with RIE in 45 patients with gynecological malignancies undergoing extended-field radiotherapy (EFRT) (median 45 Gy) from 2006 to 2021. Early-onset RIE (within 72 h after the first fraction of EFRT) was noted in 10 of 12 RIE patients. RIE was significantly associated with the SB mean dose. The RIE rates were 58.3% and 15.2% (p = 0.007) in patients with a low (<63%) and high (≥63%) SB mean dose. Logistic regression revealed that the SB mean dose remained the independent factor of overall RIE (p = 0.049) and early-onset RIE (p = 0.014). Therefore, constraint of the SB mean dose limited to less than 63% of the prescribed dose is suggested to decrease RIE.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kaohsiung 33302, Taiwan
- Department of Radiation Oncology, Xiamen Chang Gung Hospital, No. 123, Xiafei Rd., Haicang District, Xiamen 361126, China
| | - Yi-Fan Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Pei-Yi Lee
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Meng-Wei Ho
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kaohsiung 33302, Taiwan
- Department of Radiation Oncology, Xiamen Chang Gung Hospital, No. 123, Xiafei Rd., Haicang District, Xiamen 361126, China
| |
Collapse
|
47
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
48
|
Kreshchenko N, Terenina N, Ermakov A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT 7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021; 11:1212. [PMID: 34439878 PMCID: PMC8394519 DOI: 10.3390/biom11081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
The study is dedicated to the investigation of serotonin (5-hydroxytryptamine, 5-HT) and 5-HT7 type serotonin receptor of localisation in larvae of two parasitic flatworms Opisthorchis felineus (Rivolta, 1884) Blanchard, 1895 and Hymenolepis diminuta Rudolphi, 1819, performed using the immunocytochemical method and confocal laser scanning microscopy (CLSM). Using whole mount preparations and specific antibodies, a microscopic analysis of the spatial distribution of 5-HT7-immunoreactivity(-IR) was revealed in worm tissue. In metacercariae of O. felineus 5-HT7-IR was observed in the main nerve cords and in the head commissure connecting the head ganglia. The presence of 5-HT7-IR was also found in several structures located on the oral sucker. 5-HT7-IR was evident in the round glandular cells scattered throughout the larva body. In cysticercoids of H. diminuta immunostaining to 5-HT7 was found in flame cells of the excretory system. Weak staining to 5-HT7 was observed along the longitudinal and transverse muscle fibres comprising the body wall and musculature of suckers, in thin longitudinal nerve cords and a connective commissure of the central nervous system. Available publications on serotonin action in flatworms and serotonin receptors identification were reviewed. Own results and the published data indicate that the muscular structures of flatworms are deeply supplied by 5-HT7-IR elements. It suggests that the 5-HT7 type receptor can mediate the serotonin action in the investigated species and is an important component of the flatworm motor control system. The study of the neurochemical basis of parasitic flatworms can play an important role in the solution of fundamental problems in early development of the nervous system and the evolution of neuronal signalling components.
Collapse
Affiliation(s)
- Natalia Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nadezhda Terenina
- Center of Parasitology A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
49
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
50
|
Jansson A, Harris P, Davey SL, Luthersson N, Ragnarsson S, Ringmark S. Straw as an Alternative to Grass Forage in Horses-Effects on Post-Prandial Metabolic Profile, Energy Intake, Behaviour and Gastric Ulceration. Animals (Basel) 2021; 11:ani11082197. [PMID: 34438656 PMCID: PMC8388405 DOI: 10.3390/ani11082197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Many leisure horses have low energy requirements and obesity is common. Straw has a low energy content and could be a forage option for these horses. However, a previous study suggested that providing straw as the only forage was associated with an increased risk for gastric ulcers. This study evaluated replacing 50% of the daily forage allowance with a good hygienic quality wheat straw. Six horses were fed both the control diet (grass forage only, CON) and the straw diet (50:50 grass forage and straw, S). Each diet was fed for three weeks and all horses were evaluated on both diets. Diet did not affect the prevalence of gastric ulcers. Feed intake time was longer and daily energy intake lower on diet S, compared to CON. Plasma insulin levels were lower on diet S compared to CON, which could be beneficial for horses with overweight or insulin dysregulation. The results suggest that good hygienic wheat straw provided at 50% of the forage ration does not cause gastric ulcers, but may prolong feeding time and promote a metabolic profile more suitable for overweight horses. Including straw as part of the ration therefore may improve welfare for horses with low energy requirements. Abstract Straw’s low energy content means it is a roughage option for horses with low energy requirements. Previously, in a field study, straw was associated with an increased risk for gastric ulcers. This study evaluated the effect on gastric ulcers, metabolic profile and behaviour of replacing, in a forage-only ration, 50% of the daily allowance with wheat straw. Six equines were studied in a 2 × 21-day cross-over design. The control diet (CON: 100% grass forage) and the straw diet (S: 50% grass forage and 50% straw [DM basis]) were iso-energetic. Gastroscopy was performed prior to the study and on day 21 and blood samples were collected and behavioural observations were performed. Diet did not affect squamous or glandular gastric ulcer scores (p > 0.05). Feed intake time was longer (p < 0.05) plus energy intake and plasma insulin concentrations were lower on diet S compared to CON (p < 0.0001). Plasma serotonin concentrations tended to be higher on diet S compared to CON (p = 0.05). The results suggest that good hygienic quality wheat straw can be included for up to 50% of the diet without causing gastric ulcers and that it can extend feeding time and promote a metabolic profile more suitable for overweight horses.
Collapse
Affiliation(s)
- Anna Jansson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Patricia Harris
- WALTHAM Petcare Science Institute Waltham-on-the Wolds, Melton Mowbray, Leics LE14 4RT, UK;
| | - Sara Larsdotter Davey
- University Animal Hospital, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | | | - Sveinn Ragnarsson
- Department of Equine Science, Hólar University, IS-551 Sauðárkrókur, Iceland;
| | - Sara Ringmark
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|