1
|
Ciura P, Smardz P, Spodzieja M, Sieradzan AK, Krupa P. Multilayered Computational Framework for Designing Peptide Inhibitors of HVEM-LIGHT Interaction. J Phys Chem B 2024; 128:6770-6785. [PMID: 38958133 PMCID: PMC11264271 DOI: 10.1021/acs.jpcb.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The herpesvirus entry mediator (HVEM) and its ligand LIGHT play crucial roles in immune system regulation, including T-cell proliferation, B-cell differentiation, and immunoglobulin secretion. However, excessive T-cell activation can lead to chronic inflammation and autoimmune diseases. Thus, inhibiting the HVEM-LIGHT interaction emerges as a promising therapeutic strategy for these conditions and in preventing adverse reactions in organ transplantation. This study focused on designing peptide inhibitors, targeting the HVEM-LIGHT interaction, using molecular dynamics (MD) simulations of 65 peptides derived from HVEM. These peptides varied in length and disulfide-bond configurations, crucial for their interaction with the LIGHT trimer. By simulating 31 HVEM domain variants, including the full-length protein, we assessed conformational changes upon LIGHT binding to understand the influence of HVEM segments and disulfide bonds on the binding mechanism. Employing multitrajectory microsecond-scale, all-atom MD simulations and molecular mechanics with generalized Born and surface area (MM-GBSA) binding energy estimation, we identified promising CRD2 domain variants with high LIGHT affinity. Notably, point mutations in these variants led to a peptide with a single disulfide bond (C58-C73) and a K54E substitution, exhibiting the highest binding affinity. The importance of the CRD2 domain and Cys58-Cys73 disulfide bond for interrupting HVEM-LIGHT interaction was further supported by analyzing truncated CRD2 variants, demonstrating similar binding strengths and mechanisms. Further investigations into the binding mechanism utilized steered MD simulations at various pulling speeds and umbrella sampling to estimate the energy profile of HVEM-based inhibitors with LIGHT. These comprehensive analyses revealed key interactions and different binding mechanisms, highlighting the increased binding affinity of selected peptide variants. Experimental circular dichroism techniques confirmed the structural properties of these variants. This study not only advances our understanding of the molecular basis of HVEM-LIGHT interactions but also provides a foundation for developing novel therapeutic strategies for immune-related disorders. Furthermore, it sets a gold standard for peptide inhibitor design in drug development due to its systematic approach.
Collapse
Affiliation(s)
- Piotr Ciura
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Pamela Smardz
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Marta Spodzieja
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Adam K. Sieradzan
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Pawel Krupa
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
2
|
Esberg A, Kindstedt E, Isehed C, Lindquist S, Holmlund A, Lundberg P. LIGHT protein: A novel gingival crevicular fluid biomarker associated with increased probing depth after periodontal surgery. J Clin Periodontol 2024; 51:852-862. [PMID: 38390754 DOI: 10.1111/jcpe.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
AIM To evaluate the protein profiles in gingival crevicular fluid (GCF) in relation to clinical outcomes after periodontal surgery and examine if any selected proteins affect the mRNA expression of pro-inflammatory cytokines in human gingival fibroblasts. MATERIALS AND METHODS This exploratory study included 21 consecutive patients with periodontitis. GCF was collected, and the protein pattern (n = 92) and clinical parameters were evaluated prior to surgery and 3, 6 and 12 months after surgery. Fibroblastic gene expression was analysed by real-time quantitative polymerase chain reaction. RESULTS Surgical treatment reduced periodontal pocket depth (PPD) and changed the GCF protein pattern. Twelve months after surgery, 17% of the pockets showed an increase in PPD. Levels of a number of proteins in the GCF decreased after surgical treatment but increased with early signs of tissue destruction, with LIGHT being one of the proteins that showed the strongest association. Furthermore, LIGHT up-regulated the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6, IL-8 and MMP9 in human gingival fibroblasts. CONCLUSIONS LIGHT can potentially detect subjects at high risk of periodontitis recurrence after surgical treatment. Moreover, LIGHT induces the expression of inflammatory cytokines and tissue-degrading enzymes in gingival fibroblasts.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Elin Kindstedt
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Catrine Isehed
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Susanne Lindquist
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anders Holmlund
- Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle County Hospital, Gävle, Sweden
- Center for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Wu Y, Zhan S, Chen L, Sun M, Li M, Mou X, Zhang Z, Xu L, Xu Y. TNFSF14/LIGHT promotes cardiac fibrosis and atrial fibrillation vulnerability via PI3Kγ/SGK1 pathway-dependent M2 macrophage polarisation. J Transl Med 2023; 21:544. [PMID: 37580750 PMCID: PMC10424430 DOI: 10.1186/s12967-023-04381-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-β1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Lian Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Mingrui Sun
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuanting Mou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Zhen Zhang
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
4
|
Diray-Arce J, Fourati S, Doni Jayavelu N, Patel R, Maguire C, Chang AC, Dandekar R, Qi J, Lee BH, van Zalm P, Schroeder A, Chen E, Konstorum A, Brito A, Gygi JP, Kho A, Chen J, Pawar S, Gonzalez-Reiche AS, Hoch A, Milliren CE, Overton JA, Westendorf K, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen L, Grubaugh ND, van Bakel H, Wilson M, Rajan J, Steen H, Eckalbar W, Cotsapas C, Langelier CR, Levy O, Altman MC, Maecker H, Montgomery RR, Haddad EK, Sekaly RP, Esserman D, Ozonoff A, Becker PM, Augustine AD, Guan L, Peters B, Kleinstein SH. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023; 4:101079. [PMID: 37327781 PMCID: PMC10203880 DOI: 10.1016/j.xcrm.2023.101079] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Slim Fourati
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | - Ravi Patel
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana C Chang
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian H Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Schroeder
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ernie Chen
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | - Alvin Kho
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jing Chen
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Annmarie Hoch
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carly E Milliren
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Charles B Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | | | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jayant Rajan
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Chris Cotsapas
- Yale School of Medicine, New Haven, CT 06510, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Elias K Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | - Al Ozonoff
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
PPARβ/δ Ligands Regulate Oxidative Status and Inflammatory Response in Inflamed Corpus Luteum-An In Vitro Study. Int J Mol Sci 2023; 24:ijms24054993. [PMID: 36902426 PMCID: PMC10003567 DOI: 10.3390/ijms24054993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Inflammation in the female reproductive system causes serious health problems including infertility. The aim of this study was to determine the in vitro effects of peroxisome proliferator-activated receptor-beta/delta (PPARβ/δ) ligands on the transcriptomic profile of the lipopolysaccharide (LPS)-stimulated pig corpus luteum (CL) in the mid-luteal phase of the estrous cycle using RNA-seq technology. The CL slices were incubated in the presence of LPS or in combination with LPS and the PPARβ/δ agonist-GW0724 (1 μmol/L or 10 μmol/L) or the antagonist-GSK3787 (25 μmol/L). We identified 117 differentially expressed genes after treatment with LPS; 102 and 97 differentially expressed genes after treatment, respectively, with the PPARβ/δ agonist at a concentration of 1 μmol/L or 10 μmol/L, as well as 88 after the treatment with the PPARβ/δ antagonist. In addition, biochemical analyses of oxidative status were performed (total antioxidant capacity and activity of peroxidase, catalase, superoxide dismutase, and glutathione S-transferase). This study revealed that PPARβ/δ agonists regulate genes involved in the inflammatory response in a dose-dependent manner. The results indicate that the lower dose of GW0724 showed an anti-inflammatory character, while the higher dose seems to be pro-inflammatory. We propose that GW0724 should be considered for further research to alleviate chronic inflammation (at the lower dose) or to support the natural immune response against pathogens (at the higher dose) in the inflamed corpus luteum.
Collapse
|
6
|
Szilagyi IA, Vallerga CL, Boer CG, Schiphof D, Ikram MA, Bierma-Zeinstra SMA, van Meurs JBJ. Plasma proteomics identifies CRTAC1 as a biomarker for osteoarthritis severity and progression. Rheumatology (Oxford) 2022; 62:1286-1295. [PMID: 35924962 PMCID: PMC9977119 DOI: 10.1093/rheumatology/keac415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The aim of this study was to identify biomarkers for radiographic OA severity and progression acting within the inflammation and metabolic pathways. METHODS For 3517 Rotterdam Study participants, 184 plasma protein levels were measured using Olink inflammation and cardiometabolic panels. We studied associations with severity and progression of knee, hip and hand OA and a composite overall OA burden score by multivariable regression models, adjusting for age, sex, cell counts and BMI. RESULTS We found 18 significantly associated proteins for overall OA burden, of which 5 stayed significant after multiple testing correction: circulating cartilage acidic protein 1 (CRTAC1), cartilage oligomeric matrix protein (COMP), thrombospondin 4, IL-18 receptor 1 (IL-18R1) and TNF ligand superfamily member 14. These proteins were also associated with progression of knee OA, with the exception of IL-18R1. The strongest association was found for the level of CRTAC1, with 1 s.d. increase in protein level resulting in an increase of 0.09 (95% CI 0.06, 0.12) in the overall OA Kellgren-Lawrence sum score (P = 2.9 × 10-8) in the model adjusted for age, sex, BMI and cell counts. This association was also present with the severity of OA in all three joints and progression of knee OA and was independent of BMI. We observed a stronger association for CRTAC1 with OA than for the well-known OA biomarker COMP. CONCLUSION We identified several compelling biomarkers reflecting the overall OA burden and the increased risk for OA progression. CRTAC1 was the most compelling and robust biomarker for OA severity and progression. Such a biomarker may be used for disease monitoring.
Collapse
Affiliation(s)
| | | | | | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Joyce B J van Meurs
- Correspondence to: Prof. dr. Joyce B. J. van Meurs, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands. E-mail:
| |
Collapse
|
7
|
Molecular Characterization, Evolution and Expression Analysis of TNFSF14 and Three TNFSF Receptors in Spotted Gar Lepisosteus oculatus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor necrosis superfamily (TNFSF) and their receptors (TNFRs) play an essential role in inflammatory responses. In this study, tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 were identified in spotted gar. All the genes have conserved genomic organization and synteny with their respective homologs in zebrafish and humans. The putative TNFSF protein contains a typical TNF homology domain in the extracellular region. All three TNFRSFs possess characteristic cysteine-rich domains. TNFRSF1a has a death domain in the cytosolic region which is absent in the TNFRSF1b and TNFRSF14. Notably, TNFRSF14 lacks a transmembrane domain and is predicted to be secreted. Protein structure modeling revealed that the key residues involved in the interaction between TNFSF14 and TNFRSF14 are well conserved in spotted gar. All four genes were ubiquitously expressed in the spleen, liver, kidney, gills and intestine. Infection with Klebsiella pneumoniae resulted in remarkable downregulation of tnfsf14 and tnfrsf14 in tissues but upregulation of tnfrsf1a and tnfrsf1b. The results indicate that tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 are involved in the immune response to bacterial infection, and expand knowledge on the TNF system in the primitive ray-finned fish.
Collapse
|
8
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [PMID: 35537322 DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|
9
|
Fineschi S, Klar J, Gustafsson KA, Jonsson K, Karlsson B, Dahl N. Inflammation and Interferon Signatures in Peripheral B-Lymphocytes and Sera of Individuals With Fibromyalgia. Front Immunol 2022; 13:874490. [PMID: 35693781 PMCID: PMC9177944 DOI: 10.3389/fimmu.2022.874490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fibromyalgia (FM) is an idiopathic chronic disease characterized by widespread musculoskeletal pain, hyperalgesia and allodynia, often accompanied by fatigue, cognitive dysfunction and other symptoms. Autoimmunity and neuroinflammatory mechanisms have been suggested to play important roles in the pathophysiology of FM supported by recently identified interferon signatures in affected individuals. However, the contribution of different components in the immune system, such as the B-lymphocytes, in the progression to FM are yet unknown. Furthermore, there is a great need for biomarkers that may improve diagnostics of FM. Herein, we investigated the gene expression profile in peripheral B-cells, as well as a panel of inflammatory serum proteins, in 30 FM patients and 23 healthy matched control individuals. RNA sequence analysis revealed 60 differentially expressed genes when comparing the two groups. The group of FM patients showed increased expression of twenty-five interferon-regulated genes, such as S100A8 and S100A9, VCAM, CD163, SERPINA1, ANXA1, and an increased interferon score. Furthermore, FM was associated with elevated levels of 19 inflammatory serum proteins, such as IL8, AXIN1, SIRT2 and STAMBP, that correlated with the FM severity score. Together, the results shows that FM is associated with an interferon signature in B-cells and increased levels of a set of inflammatory serum proteins. Our findings bring further support for immune activation in the pathogenesis of FM and highlight candidate biomarkers for diagnosis and intervention in the management of FM.
Collapse
Affiliation(s)
- Serena Fineschi
- Östhammar Health Care Centre, Östhammar, Sweden
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
- *Correspondence: Serena Fineschi,
| | - Joakim Klar
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| | - Kristin Ayoola Gustafsson
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| | - Kent Jonsson
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
- Department of Geriatric and Rehabilitation Medicine, Nyköping Hospital, Nyköping, Sweden
| | - Bo Karlsson
- Department of Public Health and Caring Sciences, Unit of General Practice, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Science for Life Laboratory, Genetics and Pathology, Department of Immunology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Yin H, Guo R, Zhang H, Liu S, Gong Y, Yuan Y. A Dynamic Transcriptome Map of Different Tissue Microenvironment Cells Identified During Gastric Cancer Development Using Single-Cell RNA Sequencing. Front Immunol 2021; 12:728169. [PMID: 34745098 PMCID: PMC8566821 DOI: 10.3389/fimmu.2021.728169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) development trends have identified multiple processes ranging from inflammation to carcinogenesis, however, key pathogenic mechanisms remain unclear. Tissue microenvironment (TME) cells are critical for the progression of malignant tumors. Here, we generated a dynamic transcriptome map of various TME cells during multi-disease stages using single-cell sequencing analysis. We observed a set of key transition markers related to TME cell carcinogenic evolution, and delineated landmark dynamic carcinogenic trajectories of these cells. Of these, macrophages, fibroblasts, and endothelial cells exerted considerable effects toward epithelial cells, suggesting these cells may be key TME factors promoting GC occurrence and development. Our results suggest a phenotypic convergence of different TME cell types toward tumor formation processes in GC. We believe our data would pave the way for early GC detection, diagnosis, and treatment therapies.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Huanyu Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Li X, Tang X, Wang Y, Chai C, Zhao Z, Zhang H, Peng Y, Wu L. CS-semi5 Inhibits NF-κB Activation to Block Synovial Inflammation, Cartilage Loss and Bone Erosion Associated With Collagen-Induced Arthritis. Front Pharmacol 2021; 12:655101. [PMID: 34305585 PMCID: PMC8298759 DOI: 10.3389/fphar.2021.655101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects 1% of the population. CS-semi5 is a semisynthetic chondroitin sulfate. In this study, CS-semi5 was shown to have positive effects on a model of collagen-induced arthritis (CIA). CS-semi5 treatment had obvious effects on weight loss and paw swelling in CIA mice. Post-treatment analysis revealed that CS-semi5 alleviated three main pathologies (i.e., synovial inflammation, cartilage erosion and bone loss) in a dose-dependent manner. Further study showed that CS-semi5 could effectively reduce TNF-α and IL-1β production in activated macrophages via the NF-κB pathway. CS-semi5 also blocked RANKL-trigged osteoclast differentiation from macrophages. Therefore, CS-semi5 may effectively ameliorate synovial inflammation, cartilage erosion and bone loss in RA through NF-κB deactivation.
Collapse
Affiliation(s)
- Xiang Li
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Tang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufei Wang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changwei Chai
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhehui Zhao
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haijing Zhang
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Peng
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianqiu Wu
- Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Deng C, Zhang Q, He P, Zhou B, He K, Sun X, Lei G, Gong T, Zhang Z. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun 2021; 12:2174. [PMID: 33846342 PMCID: PMC8042091 DOI: 10.1038/s41467-021-22454-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient apoptosis of inflammatory macrophages and osteoclasts (OCs) in rheumatoid arthritis (RA) joints contributes toward the persistent progression of joint inflammation and destruction. Here, we deliver celastrol (CEL) to selectively induce apoptosis of OCs and macrophages in arthritic joints, with enzyme-responsive nanoparticles (termed PRNPs) composed of RGD modified nanoparticles (termed RNPs) covered with cleavable PEG chains. CEL-loaded PRNPs (CEL-PRNPs) dually target OCs and inflammatory macrophages derived from patients with RA via an RGD-αvβ3 integrin interaction after PEG cleavage by matrix metalloprotease 9, leading to increased apoptosis of these cells. In an adjuvant-induced arthritis rat model, PRNPs have an arthritic joint-specific distribution and CEL-PRNPs efficiently reduce the number of OCs and inflammatory macrophages within these joints. Additionally, rats with advanced arthritis go into inflammatory remission with bone erosion repair and negligible side effects after CEL-PRNPs treatment. These findings indicate potential for targeting chemotherapy-induced apoptosis in the treatment of advanced inflammatory arthritis.
Collapse
Affiliation(s)
- Caifeng Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Pathology, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, 610500, China
| | - Penghui He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Bin Zhou
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
| | - Ke He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, 410008, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
13
|
Kasperska-Zając A, Damasiewicz-Bodzek A, Grzanka R, Skrzypulec-Frankel A, Bieniek K, Sikora-Żydek A, Jochem J. Circulating soluble LIGHT/TNFSF14 is increased and associated with IL-8 concentration in chronic spontaneous urticaria. Int J Immunopathol Pharmacol 2018; 32:2058738418784431. [PMID: 29952668 PMCID: PMC6073820 DOI: 10.1177/2058738418784431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
LIGHT (homologous to lymphotoxins, exhibiting inducible expression, and competing
with herpes simplex virus (HSV) glycoprotein D for herpes virus entry mediator
(HVEM), a receptor expressed by T lymphocytes) has been involved in various
autoimmune and inflammatory disorders. LIGHT induces the expression of
interleukin-8 (IL-8), which is up-regulated in chronic spontaneous urticaria
(CSU). To determine circulating soluble LIGHT concentration and its relationship
with IL-8 concentration in patients with CSU. Concentrations of LIGHT, IL-8, and
C-reactive protein (CRP) were determined in plasma or serum of CSU patients by
an enzyme-linked immunosorbent assay. LIGHT plasma concentration was
significantly higher in moderate–severe CSU patients as compared with the
healthy subjects, but not with mild CSU patients. There were significant
correlations between increased LIGHT and IL-8 concentrations, but not with
increased CRP in CSU patients. Enhanced plasma concentrations of soluble LIGHT
and its association with IL-8 concentration suggest the role of LIGHT in
systemic inflammatory activation in CSU patients. We hypothesize that
LIGHT-mediated immune–inflammatory response plays a role in severe phenotypes of
the disease.
Collapse
Affiliation(s)
- Alicja Kasperska-Zając
- 1 Department of Internal Diseases, Dermatology and Allergology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland.,2 European Center for Diagnosis and Treatment of Urticaria (GA2LEN UCARE Network), Zabrze, Poland
| | - Aleksandra Damasiewicz-Bodzek
- 3 Department of Chemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Ryszard Grzanka
- 1 Department of Internal Diseases, Dermatology and Allergology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Agnieszka Skrzypulec-Frankel
- 1 Department of Internal Diseases, Dermatology and Allergology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland.,2 European Center for Diagnosis and Treatment of Urticaria (GA2LEN UCARE Network), Zabrze, Poland
| | - Katarzyna Bieniek
- 1 Department of Internal Diseases, Dermatology and Allergology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland.,2 European Center for Diagnosis and Treatment of Urticaria (GA2LEN UCARE Network), Zabrze, Poland
| | - Agnieszka Sikora-Żydek
- 1 Department of Internal Diseases, Dermatology and Allergology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland.,2 European Center for Diagnosis and Treatment of Urticaria (GA2LEN UCARE Network), Zabrze, Poland
| | - Jerzy Jochem
- 4 Department of Physiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
14
|
Wang Q, Zhou X, Zhao Y, Xiao J, Lu Y, Shi Q, Wang Y, Wang H, Liang Q. Polyphyllin I Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response in Macrophages Through the NF-κB Pathway. Front Immunol 2018; 9:2091. [PMID: 30319603 PMCID: PMC6170622 DOI: 10.3389/fimmu.2018.02091] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder, characterized by an increased number of M1-like macrophages in the joints. Polyphyllin I (PPI), one of the main components in the Rhizoma of Paris polyphyllin, displays a selective inhibitory effect on various tumor cells. Here we sought to investigate the anti-rheumatoid arthritis effects and mechanisms of PPI on macrophages in vivo and in vitro. Materials and Methods:In vitro, primary bone marrow-derived macrophages (BMMs) and peritoneal elucidated macrophages (PEMs) were stimulated by lipopolysaccharide (LPS) and Interferon (IFN)-γ and then treated with PPI. We determined the degree of activation of IKKα/β and p65, two key mediators of the NF-κB-mediated inflammatory pathway, by measuring their phosphorylated forms by Western blot. The p65 nuclear localization was detected by immunofluorescent staining. Further, a NF-κB-linked luciferase reporter plasmid, as well as those expressing key mediators of the Toll-like receptor 4 pathway, such as myeloid differentiation primary response 88 (MYD88), interleukin-1 receptor (IL-1R) associated kinase (IRAK)-1, TNF receptor associated factors (TRAF)-6, Transforming growth factor-b–activated kinase 1 (TAK1) and p65, were used to identify the mechanism by which PPI achieves its inhibitory effects on macrophage-mediated inflammation. Moreover, a NF-κB inhibitor, p65-targeted siRNAs, and a p65 plasmid were further used to validate the anti-inflammatory mechanism of PPI. In vivo, PPI (1 mg/kg) was administered intragastrically one time a day for 7 weeks starting on the 42nd day after the first immunization with collagen in a collagen-induced arthritis (CIA) mouse model. Micro-computed Tomography scanning, histological examination, F4/80 and iNOS double immunofluorescent staining and CD4 immunohistochemical staining were performed to determine the effect of PPI treatment on joint structure and inflammation in this model. Results: PPI reduced the inflammatory cytokines production of PEMs stimulated by LPS/IFN-γ, inhibited the phosphorylation of IKKα/β and p65, and prevented p65 nuclear localization. The NF-κB luciferase assay showed that the target of PPI was closely related to the NF-κB pathway. Moreover, NF-κB inhibition, siRNA-mediated knockdown of p65, and p65 overexpression eliminated PPI's inhibitory effect. In addition, PPI attenuated the bone erosion and synovitis, as well as M1-like macrophage and T cell infiltration, in the ankle joint of the CIA model. Conclusion: PPI demonstrated effective amelioration of synovial inflammation in the ankle joint of CIA mice while suppressing NF-κB-mediated production of pro-inflammatory effectors in activated macrophages.
Collapse
Affiliation(s)
- Qiong Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhou
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Yao Lu
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
15
|
The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep 2017; 7:8707. [PMID: 28821884 PMCID: PMC5562859 DOI: 10.1038/s41598-017-09207-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Beyond classic “allergic”/atopic comorbidities, atopic dermatitis (AD) emerges as systemic disease with increased cardiovascular risk. To better define serum inflammatory and cardiovascular risk proteins, we used an OLINK high-throughput proteomic assay to analyze moderate-to-severe AD (n = 59) compared to psoriasis (n = 22) and healthy controls (n = 18). Compared to controls, 10 proteins were increased in serum of both diseases, including Th1 (IFN-γ, CXCL9, TNF-β) and Th17 (CCL20) markers. 48 proteins each were uniquely upregulated in AD and psoriasis. Consistent with skin expression, AD serum showed up-regulation of Th2 (IL-13, CCL17, eotaxin-1/CCL11, CCL13, CCL4, IL-10), Th1 (CXCL10, CXCL11) and Th1/Th17/Th22 (IL-12/IL-23p40) responses. Surprisingly, some markers of atherosclerosis (fractalkine/CX3CL1, CCL8, M-CSF, HGF), T-cell development/activation (CD40L, IL-7, CCL25, IL-2RB, IL-15RA, CD6) and angiogenesis (VEGF-A) were significantly increased only in AD. Multiple inflammatory pathways showed stronger enrichment in AD than psoriasis. Several atherosclerosis mediators in serum (e.g. E-selectin, PI3/elafin, CCL7, IL-16) correlated with SCORAD, but not BMI. Also, AD inflammatory mediators (e.g. MMP12, IL-12/IL-23p40, CXCL9, CCL22, PI3/Elafin) correlated between blood and lesional as well as non-lesional skin. Overall, the AD blood signature was largely different compared to psoriasis, with dysregulation of inflammatory and cardiovascular risk markers, strongly supporting its systemic nature beyond atopic/allergic association.
Collapse
|
16
|
Sabokbar A, Afrough S, Mahoney DJ, Uchihara Y, Swales C, Athanasou NA. Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis. World J Exp Med 2017; 7:49-57. [PMID: 28589079 PMCID: PMC5439172 DOI: 10.5493/wjem.v7.i2.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction.
METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique.
RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF.
CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.
Collapse
|
17
|
Kotani T, Takeuchi T, Ishida T, Masutani R, Isoda K, Hata K, Yoshida S, Makino S, Hanafusa T. Increased Serum LIGHT Levels Correlate with Disease Progression and Severity of Interstitial Pneumonia in Patients with Dermatomyositis: A Case Control Study. PLoS One 2015; 10:e0140117. [PMID: 26448572 PMCID: PMC4598117 DOI: 10.1371/journal.pone.0140117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activated CD8+ T cells play an important role in the pathogenesis of dermatomyositis (DM) with interstitial pneumonia (IP). Serum CD8+ T-cell activator, LIGHT, and Th1/Th2/Th17 cytokines were measured in DM-IP patients and compared with clinical parameters to investigate their usefulness. METHODS The correlations between the clinical findings and serum LIGHT and Th1/Th2/Th17 cytokine levels were investigated in 21 patients with DM-IP (14 with rapidly progressive IP [RPIP] and 7 with chronic IP [CIP], including 4 fatal cases of IP). RESULTS The median serum LIGHT level was 119 (16-335.4) pg/ml, which was higher than that in healthy control subjects and DM patients without IP. The median serum IL-6 level was 14.7 (2.4-154.5) pg/ml (n = 13). The other cytokines were detected in only a few patients. The median serum LIGHT level in DM-RPIP patients (156 [49.6-335.4] pg/ml) was significantly higher than that in DM-CIP patients (94.3 [16-164.2] pg/ml) (P = 0.02). The serum IL-6 level did not correlate with either progression or outcome of DM-IP. ROC curve analysis determined a serum LIGHT level of ≥120 pg/ml to be the cut-off value for the rapid progression of DM-IP. Serum LIGHT levels correlated significantly with %DLco (R = 0.55, P = 0.04) and total ground-glass opacity scores (R = 0.72, P = 0.0002). The serum LIGHT level significantly decreased to 100.5 (12.4-259.3) pg/ml 4 weeks after treatment initiation (P = 0.04). CONCLUSIONS The serum LIGHT level may be a promising marker of disease progression and severity in patients with DM-IP.
Collapse
Affiliation(s)
- Takuya Kotani
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
- * E-mail:
| | - Tohru Takeuchi
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takaaki Ishida
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ryota Masutani
- Department of Central Laboratory, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kentaro Isoda
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kenichiro Hata
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shuzo Yoshida
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shigeki Makino
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| | - Toshiaki Hanafusa
- Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
18
|
Seifeldin NS, El Sayed SB, Asaad MK, Aly AA. Role of the tumor necrosis factor family member LIGHT in the pathogenesis of atopic dermatitis. Int J Dermatol 2015; 54:e376-82. [PMID: 26043794 DOI: 10.1111/ijd.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/16/2014] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND LIGHT (the name of which is derived from "homologous to lymphotoxins, exhibits inducible expression, competes with herpes simplex virus glycoprotein D for herpes simplex virus entry mediator, and expressed by T lymphocytes"), is a member of the tumor necrosis factor superfamily that is involved in various inflammatory diseases. OBJECTIVES To assess serum LIGHT levels in patients with atopic dermatitis (AD) before and after treatment and compare it with controls. To correlate serum LIGHT with the severity scoring of AD (SCORAD) index. Another objective is to compare LIGHT levels between lesional skin in patients with AD and controls. METHODS Twenty patients with AD and 20 healthy controls were enrolled in the study. Serum LIGHT levels were examined using an enzyme immunoassay technique. Serum total IgE levels, absolute eosinophil count, and eosinophil percentage were also done for both patients and controls. The SCORAD index was done for every patient before and after treatment. Skin LIGHT levels were analyzed using enzyme-linked immunosorbent assay kit and compared with control skin. RESULTS Serum LIGHT levels in patients with AD were significantly higher than that of healthy controls and correlated positively with SCORAD index. LIGHT concentrations decreased as the symptoms were improved by treatment. A significant correlation was found on comparing the LIGHT serum levels and other established markers of disease severity. LIGHT levels in lesional skin in these patients were markedly higher than LIGHT levels in normal skin. CONCLUSION LIGHT may play an important role in the pathogenesis of AD. This may presumably have possible future implications on the treatment of this chronic disease.
Collapse
Affiliation(s)
- Neveen Salah Seifeldin
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen Bendary El Sayed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Kamal Asaad
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alaa Ahmed Aly
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Noort AR, Tak PP, Tas SW. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther 2015; 17:15. [PMID: 25774937 PMCID: PMC4308835 DOI: 10.1186/s13075-015-0527-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is essential for the expression of pro-inflammatory cytokines, but can also induce regulatory pathways. NF-κB can be activated via two distinct pathways: the classical or canonical pathway, and the alternative or non-canonical pathway. It is well established that the canonical NF-κB pathway is essential both in acute inflammatory responses and in chronic inflammatory diseases, including rheumatoid arthritis (RA). Although less extensively studied, the non-canonical NF-κB pathway is not only central in lymphoid organ development and adaptive immune responses, but is also thought to play an important role in the pathogenesis of RA. Importantly, this pathway appears to have cell type-specific functions and, since many different cell types are involved in the pathogenesis of RA, it is difficult to predict the net overall contribution of the non-canonical NF-κB pathway to synovial inflammation. In this review, we describe the current understanding of non-canonical NF-κB signaling in various important cell types in the context of RA and consider the relevance to the pathogenesis of the disease. In addition, we discuss current drugs targeting this pathway, as well as future therapeutic prospects.
Collapse
|
20
|
Reverse signaling from LIGHT promotes pro-inflammatory responses in the human monocytic leukemia cell line, THP-1. Cell Immunol 2013; 285:10-7. [PMID: 24044961 DOI: 10.1016/j.cellimm.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 12/23/2022]
Abstract
LIGHT is a type II transmembrane protein belonging to the TNF superfamily which is involved in co-stimulation of T cells or apoptosis in tumors. In this study, the possibility of LIGHT-mediated reverse signaling was tested in the human monocytic leukemia cell line, THP-1. For stimulation of LIGHT, cells were stimulated with specific monoclonal antibody and changes in macrophage-related functions such as phagocytosis, adhesion, migration, cytokine secretion, and production of pro-inflammatory mediators were tested. Triggering of LIGHT induced production of pro-inflammatory mediators such as interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 while suppressing the phagocytic activity. Utilization of signaling inhibitors and Western blot demonstrated that LIGHT activated ERK MAPK and PI3K and the major inflammatory transcription factor NF-κB. These data indicate that LIGHT-mediated signaling could modulate the macrophage activities and that successful regulation of its activity could be beneficial to the treatment of chronic inflammatory conditions where macrophages play an important role.
Collapse
|
21
|
Isolation and characterization of LIGHT (TNFSF14) gene homologue in zebrafish (Danio rerio). Int Immunopharmacol 2012; 14:629-34. [PMID: 23041296 DOI: 10.1016/j.intimp.2012.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/16/2012] [Accepted: 09/18/2012] [Indexed: 11/24/2022]
Abstract
The tumor necrosis factor superfamily (TNFSF) proteins are cytokines involved in many biological processes. In this study, the TNF superfamily member 14 (TNFSF14, LIGHT) has been isolated from zebrafish Danio rerio (designated zLIGHT). The full-length open reading frame (ORF) of zLIGHT cDNA consists of 708 bp encoding a protein of 235 amino acids. The zLIGHT open reading frame (ORF) genomic sequence consists of three introns and four exons, is about 9.9 kb in size. Real-time quantitative PCR (qPCR) analysis suggested that zLIGHT was predominantly expressed in zebrafish spleen. The soluble LIGHT (zsLIGHT) had been cloned into the pSUMO vector, SDS-PAGE and Western blotting analysis confirmed that the recombinant protein SUMO-zsLIGHT was efficiently expressed in Escherichia coli BL21 (DE3). Laser scanning confocal microscopy analysis showed that SUMO-zsLIGHT could bind to its receptors on T cells. LIGHT is involved in many important biological effects, including up-regulating proinflammatory chemokines, cytokines, inducing cell death, apoptosis, and enhancing T cell survival. Zebrafish may conduct as a model animal for further research on LIGHT.
Collapse
|
22
|
Garrido VT, Proença-Ferreira R, Dominical VM, Traina F, Bezerra MAC, Mello MRB, Colella MP, Araújo AS, Saad STO, Costa FF, Conran N. Elevated plasma levels and platelet-associated expression of the pro-thrombotic and pro-inflammatory protein, TNFSF14 (LIGHT), in sickle cell disease. Br J Haematol 2012; 158:788-97. [DOI: 10.1111/j.1365-2141.2012.09218.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/28/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa T. Garrido
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Renata Proença-Ferreira
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Venina M. Dominical
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Fabiola Traina
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Marcos A. C. Bezerra
- Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife; PE; PE; Brazil
| | - Mariana R. B. Mello
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Marina P. Colella
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Aderson S. Araújo
- Haematology and Haemotherapy Foundation of Pernambuco (HEMOPE); Recife; PE; Brazil
| | - Sara T. O. Saad
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Fernando F. Costa
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| | - Nicola Conran
- INCT de Sangue, Haematology and Haemotherapy Centre; School of Medicine; University of Campinas -UNICAMP; Campinas; SP; Brazil
| |
Collapse
|
23
|
Kotani H, Masuda K, Tamagawa-Mineoka R, Nomiyama T, Soga F, Nin M, Asai J, Kishimoto S, Katoh N. Increased plasma LIGHT levels in patients with atopic dermatitis. Clin Exp Immunol 2012; 168:318-24. [PMID: 22519595 DOI: 10.1111/j.1365-2249.2012.04576.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
LIGHT [the name of which is derived from 'homologous to lymphotoxins, exhibits inducible expression, competes with herpes simplex virus glycoprotein D for herpes simplex virus entry mediator (HVEM), and expressed by T lymphocytes'], is a member of the tumour necrosis factor superfamily that is involved in various inflammatory diseases. We aimed to estimate the relevance of plasma LIGHT levels as a biomarker for atopic dermatitis (AD). In order to understand the putative role of LIGHT in AD pathogenesis, we also investigate the effects of LIGHT on a monocytic cell line, human acute monocytic leukaemia cell line (THP-1). We examined plasma LIGHT levels, total serum IgE, serum value of CCL17 and peripheral blood eosinophil counts in patients with AD and healthy subjects. The effects of LIGHT on activation and apoptosis in THP-1 cells were also investigated. The plasma concentrations of LIGHT in AD patients were significantly higher than those in healthy individuals and the concentrations decreased as the symptoms were improved by treatment. The LIGHT plasma concentrations correlated with IgE levels and the Severity Scoring of AD (SCORAD) index. In addition, LIGHT stimulation increased expression of CD86 and induced production of interleukin-1β in THP-1 cells. Apoptosis was inhibited, the Bcl-2 level increased and the caspase-3 level decreased in THP-1 cells stimulated with LIGHT, compared to unstimulated control cells. These results suggest that plasma LIGHT levels may be one of the promising biomarkers for AD.
Collapse
Affiliation(s)
- H Kotani
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Miyagaki T, Sugaya M, Suga H, Morimura S, Ohmatsu H, Fujita H, Asano Y, Tada Y, Kadono T, Sato S. Low herpesvirus entry mediator (HVEM) expression on dermal fibroblasts contributes to a Th2-dominant microenvironment in advanced cutaneous T-cell lymphoma. J Invest Dermatol 2012; 132:1280-9. [PMID: 22297640 DOI: 10.1038/jid.2011.470] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
LIGHT (lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for herpesvirus entry mediator (HVEM), a receptor expressed by T lymphocytes) is a ligand for HVEM. LIGHT-HVEM interactions are important in T helper type 1 (Th1) immune responses. In some cases with early stages of cutaneous T cell lymphoma (CTCL), IL-2, IFN-γ, and Th1 chemokines are expressed in lesional skin, while IL-4, IL-5, and Th2 chemokines are dominant in advanced CTCL. In this study, we investigated roles of LIGHT and HVEM in the microenvironment of CTCL. LIGHT enhanced production of Th1 chemokines, such as CXC chemokine ligand (CXCL) 9, CXCL10, and CXCL11, from IFN-γ-treated dermal fibroblasts via phosphorylation of inhibitor κBα. Messenger RNA levels of these chemokines were increased in lesional skin of early CTCL. Interestingly, while LIGHT expression in CTCL skin correlated with disease progression, HVEM expression was significantly decreased in advanced CTCL skin. HVEM was detected in dermal fibroblasts in early CTCL skin, but not in advanced CTCL skin in situ. These results suggest that low HVEM expression on dermal fibroblasts in advanced CTCL skin attenuates expression of Th1 chemokines, which may contribute to a shift to a Th2-dominant microenvironment as disease progresses.
Collapse
Affiliation(s)
- Tomomitsu Miyagaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mabilleau G, Pascaretti-Grizon F, Baslé MF, Chappard D. Depth and volume of resorption induced by osteoclasts generated in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Cytokine 2011; 57:294-9. [PMID: 22172512 DOI: 10.1016/j.cyto.2011.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/18/2011] [Accepted: 11/20/2011] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) is associated with pathological bone destruction mediated by osteoclasts. Although RANKL has been reported as a crucial factor for osteoclastogenesis, several other factors increased in RA support osteoclast formation and resorption in the absence of RANKL such as TNF-alpha and LIGHT. To date, in vitro bone resorption experiments are reported as the mean area of bone resorption per cortical or dentine slices and do not provide any information about depth and volume of resorption. The aims of this study were to assess these parameters by light microscopy and vertical scanning profilometry (VSP). Peripheral blood mononuclear cells were used as a source of osteoclast precursors and were cultured for up to 21 days in the presence of RANKL, TNF-alpha/IL-1 or LIGHT. Mean area, depth and volume of resorption were assessed by light microscopy and vertical scanning profilometry. As expected, RANKL induced large resorption pits (10,876 ± 2190μm(2)) whereas TNF-alpha/IL-1 and LIGHT generated smaller pits (respectively 1328 ± 210 and 1267 ± 173μm(2)) with no noticeable differences between these two cytokines. Depth and volume of resorption measured by VSP showed that RANKL promoted deep resorption pits resulting in large volume of resorption. Interestingly, although mean area of resorption was similar between TNF-alpha/IL-1 and LIGHT, the depth and volume of resorption of these lacunae were significantly increased by 2-fold with TNF-alpha/IL-1. These results provide evidence that although LIGHT appeared elevated in the synovial fluid of RA patients, its role in bone resorption is less than TNF-alpha/IL-1 or RANKL.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- INSERM, U922 - LHEA "Remodelage osseux et Biomatériaux", IRIS-IBS, Institut de Biologie en Santé, CHU d'Angers, 49933 Angers, France.
| | | | | | | |
Collapse
|
26
|
The tumor necrosis factor superfamily of cytokines in the inflammatory myopathies: potential targets for therapy. Clin Dev Immunol 2011; 2012:369432. [PMID: 22110532 PMCID: PMC3202109 DOI: 10.1155/2012/369432] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 08/15/2011] [Indexed: 12/11/2022]
Abstract
The idiopathic inflammatory myopathies (IM) represent a heterogeneous group of autoimmune diseases, of which dermatomyositis (DM), polymyositis (PM), and sporadic inclusion body myositis (IBM) are the most common. The crucial role played by tumor necrosis factor alpha (TNFα) in the IM has long been recognized. However, so far, 18 other members of the TNF superfamily have been characterized, and many of these have not yet received the attention they deserve. In this paper, we summarize current findings for all TNF cytokines in IM, pinpointing what we know already and where current knowledge fails. For each TNF family member, possibilities for treating inflammatory diseases in general and the IM in particular are explored.
Collapse
|
27
|
Kim HJ, Kim HM, Kim CS, Jeong CS, Choi HS, Kawada T, Kim BS, Yu R. HVEM-deficient mice fed a high-fat diet are protected from adipose tissue inflammation and glucose intolerance. FEBS Lett 2011; 585:2285-90. [PMID: 21679708 DOI: 10.1016/j.febslet.2011.05.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/12/2011] [Accepted: 05/26/2011] [Indexed: 01/13/2023]
Abstract
HVEM is a member of the TNF receptor superfamily that plays a role in the development of various inflammatory diseases. In this study, we show that HVEM deficiency attenuates adipose tissue inflammatory responses and glucose intolerance in diet-induced obesity. Feeding a high-fat diet (HFD) to HVEM-deficient mice elicited a reduction in the number of macrophages and T cells infiltrated into adipose tissue. Proinflammatory cytokine levels in the adipose tissue decreased in HFD-fed HVEM-deficient mice, while levels of the anti-inflammatory cytokine IL-10 increased. Moreover, glucose intolerance and insulin sensitivity were markedly improved in the HFD-fed HVEM-deficient mice. These findings indicate that HVEM may be a useful target for combating obesity-induced inflammatory responses and insulin resistance.
Collapse
Affiliation(s)
- Ha-Jung Kim
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim HM, Jeong CS, Choi HS, Kawada T, Yu R. LIGHT/TNFSF14 enhances adipose tissue inflammatory responses through its interaction with HVEM. FEBS Lett 2011; 585:579-84. [PMID: 21236258 DOI: 10.1016/j.febslet.2011.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 11/19/2022]
Abstract
Obesity-induced adipose tissue inflammation is characterized by increased macrophage infiltration and cytokine production, and is associated with metabolic disorders. LIGHT/TNFSF14, a member of the TNF superfamily, plays a role in the development of various inflammatory diseases. The purpose of this study was to examine the involvement of soluble LIGHT (sLIGHT) in obesity-induced adipose tissue inflammatory responses. LIGHT gene expression on macrophages/adipocytes was upregulated by treatment with obesity-related factors. sLIGHT displayed chemotactic activity for macrophages and T cells, and enhanced inflammatory cytokine release from macrophages, adipocytes, and adipose tissue-derived SVF cells. The sLIGHT-induced inflammatory responses were blunted by neutralizing anti-HVEM antibody or knockout of HVEM, a receptor for sLIGHT. These findings indicate that sLIGHT enhances adipose tissue inflammatory responses through its interaction with HVEM.
Collapse
MESH Headings
- Adipocytes/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/metabolism
- Animals
- Cell Line
- Cells, Cultured
- Chemotaxis
- Culture Media, Conditioned
- Cytokines/metabolism
- Dietary Fats/administration & dosage
- Gene Expression Regulation
- Inflammation Mediators/metabolism
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/metabolism
- Oxidative Stress
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Stromal Cells/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
Collapse
Affiliation(s)
- Hong-Min Kim
- Department of Biological Science, University of Ulsan, Nam-ku, Ulsan, South Korea
| | | | | | | | | |
Collapse
|
29
|
The rheumatoid joint. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Randall LM, Engwerda CR. TNF family members and malaria: old observations, new insights and future directions. Exp Parasitol 2010; 126:326-31. [PMID: 20433831 DOI: 10.1016/j.exppara.2010.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/26/2010] [Accepted: 04/19/2010] [Indexed: 11/27/2022]
Abstract
Tumor necrosis factor (TNF) has long been recognized to promote malaria parasite killing, but also to contribute to the development of severe malaria disease. The precise molecular mechanisms that influence these different outcomes in malaria patients are not well understood, but the virulence and drug-resistance phenotype of malaria parasites and the genetic background and age of patients are likely to be important determinants. In the past few years, important roles for other TNF family members in host immune responses to malaria parasites and the induction of disease pathology have been discovered. In this review, we will summarize these more recent findings and highlight major gaps in our current knowledge. We will also discuss future research strategies that may allow us to better understand the sometimes subtle and intricate effects of TNF family molecules during malaria infection.
Collapse
Affiliation(s)
- Louise M Randall
- Immunology and Infection Laboratory, Queensland Institute of Medical Research and The Australian Centre for Vaccine Development, 300 Herston Road, Herston, Brisbane, Queensland, Qld 4006, Australia
| | | |
Collapse
|
31
|
Grcevic D, Jajic Z, Kovacic N, Lukic IK, Velagic V, Grubisic F, Ivcevic S, Marusic A. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J Rheumatol 2009; 37:246-56. [PMID: 20008919 DOI: 10.3899/jrheum.090167] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To assess whether different forms of arthritis and disease activity could be distinguished by peripheral blood expression profiles of bone-regulatory factors including tumor necrosis factor (TNF)-superfamily [TNF-related apoptosis-inducing ligand (TRAIL), the Fas ligand (FasL), and the ligand for herpesvirus entry mediator (LIGHT)] and bone morphogenetic protein (BMP)-family members (BMP-2, BMP-4, BMP-6) as well as osteoblast differentiation gene Runx2. METHODS Blood cells from healthy controls (n = 25) and patients at different disease stages with rheumatoid arthritis (RA; n = 49), osteoarthritis (OA; n = 17), or spondyloarthritis, including ankylosing spondylitis (AS; n = 27) or psoriatic arthritis (PsA; n = 23), were processed for quantitative polymerase chain reaction. Gene expression was assessed in comparison with control samples, correlated with clinical data of different forms of arthritis, and analyzed for discriminative efficacy between groups by receiver-operation characteristic (ROC) curves. Results were confirmed on diagnostic RA (n = 5) and AS (n = 8) samples. RESULTS BMP-4, BMP-6, and Runx2 expressions were significantly decreased in patients with RA and OA versus controls. Patients with RA also had decreased FasL and LIGHT expression, while patients with AS had increased Runx2 expression. Negative correlation with disease activity was found for BMP-4, FasL, and Runx2 in RA and for Runx2 in PsA, while positive correlation was found for BMP-4 in PsA. Gene expression was higher in the therapy-resistant form of AS (for BMP-4, LIGHT, and Runx2) and in methotrexate-treated patients in RA (for BMP-2 and LIGHT). ROC curve analysis confirmed discrimination between groups, particularly decreased LIGHT and Runx2 for RA and increased Runx2 for AS. CONCLUSION Our study identified BMP and Runx2 as possible biomarkers of bone metabolism in several forms of arthritis, while lower FasL and LIGHT were associated with RA. Correlation between gene expression and disease activity may be clinically useful in assessing therapeutic effectiveness and disease monitoring.
Collapse
Affiliation(s)
- Danka Grcevic
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pasero C, Barbarat B, Just-Landi S, Bernard A, Aurran-Schleinitz T, Rey J, Eldering E, Truneh A, Costello RT, Olive D. A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumor cell death and chemokine production. Eur J Immunol 2009; 39:2502-14. [PMID: 19701890 DOI: 10.1002/eji.200939069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The TNF member LIGHT also known as TL4 or TNFSF14) can play a major role in cancer control via its two receptors; it induces tumor cell death through lymphotoxin-beta receptor (LT-betaR) and ligation to the herpes virus entry mediator (HVEM) amplifies the immune response. By studying the effect of LIGHT in the transcriptional profile of a lymphoid malignancy, we found that HVEM, but not LT-betaR, stimulation induces a significant increase in the expression of chemokine genes such as IL-8, and an unexpected upregulation of apoptotic genes. This had functional consequences, since LIGHT, or HVEM mAb, thus far known to costimulate T- and B-cell activation, induced chronic lymphocytic leukemia cell death. Many of the mediators involved were identified here, with an apoptotic pathway as demonstrated by caspases activation, decrease in mitochondrial membrane potential, upregulation of the pro-apoptotic protein Bax, but also a role of TRAIL. Moreover, HVEM induced endogenous TNF-alpha production and TNF-alpha enhanced HVEM-mediated cell death. HVEM function was mainly dependent on LIGHT, since other ligands like HSV-glycoprotein D and B and T lymphocyte attenuator were essentially ineffective. In conclusion, we describe a novel, as yet unknown killing effect of LIGHT through HVEM on a lymphoid malignancy, and combined with induction of chemokine release this may represent an additional tool to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Christine Pasero
- INSERM UMR891, Centre de Recherche en Cancérologie de Marseille, Université de Méditerranée, Institut de Cancérologie et d'Immunologie de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Rourke RW, Metcalf MD, White AE, Madala A, Winters BR, Maizlin II, Jobe BA, Roberts CT, Slifka MK, Marks DL. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes (Lond) 2009; 33:978-90. [PMID: 19564875 DOI: 10.1038/ijo.2009.133] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adipose tissue is a primary in vivo site of inflammation in obesity. Excess visceral adipose tissue (VAT), when compared to subcutaneous adipose tissue (SAT), imparts an increased risk of obesity-related comorbidities and mortality, and exhibits differences in inflammation. Defining depot-specific differences in inflammatory function may reveal underlying mechanisms of adipose-tissue-based inflammation. METHODS Stromovascular cell fractions (SVFs) from VAT and SAT from obese humans undergoing bariatric surgery were studied in an in vitro culture system with transcriptional profiling, flow cytometric phenotyping, enzyme-linked immunosorbent assay and intracellular cytokine staining. RESULTS Transcriptional profiling of SVF revealed differences in inflammatory transcript levels in VAT relative to SAT, including elevated interferon-gamma (IFN-gamma) transcript levels. VAT demonstrated a broad leukocytosis relative to SAT that included macrophages, T cells and natural killer (NK) cells. IFN-gamma induced a proinflammatory cytokine expression pattern in SVF and adipose tissue macrophages (ATM). NK cells, which constitutively expressed IFN-gamma, were present at higher frequency in VAT relative to SAT. Both T and NK cells from SVF expressed IFN-gamma on activation, which was associated with tumor necrosis factor-alpha expression in macrophages. CONCLUSION These data suggest involvement of NK cells and IFN-gamma in regulating ATM phenotype and function in human obesity and a potential mechanism for the adverse physiologic effects of VAT.
Collapse
Affiliation(s)
- R W O'Rourke
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Celik S, Shankar V, Richter A, Hippe HJ, Akhavanpoor M, Bea F, Erbel C, Urban S, Blank N, Wambsganss N, Katus HA, Dengler TJ. Proinflammatory and prothrombotic effects on human vascular endothelial cells of immune-cell-derived LIGHT. Eur J Med Res 2009; 14:147-56. [PMID: 19380287 PMCID: PMC3474183 DOI: 10.1186/2047-783x-14-4-147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective LIGHT (TNFSF 14) belongs to the tumor necrosis factor superfamily and is expressed by activated T cells as well as various types of antigen presenting cells. LIGHT binds to its cellular receptors TR2 and LTßR and has a co-stimulatory role in T cell activation. Here, we compared the relative expression of LIGHT in different immune cells and the biological activity of immune cell-derived LIGHT on endothelial cells. Methods and Results Surface expression of LIGHT and mRNA production by PBMC and isolated T cells (CD4+ or CD8+) significantly increased after stimulation with PMA (Phorbolester-12-Myristat-13-Acetat) + ionomycin. No LIGHT expression on PMA stimulated monocytes or monocytic-like THP-1 cells could be detected; differentiation of monocytes and THP-1 cells into macrophages, however, resulted in up-regulation of LIGHT. Supernatants of stimulated T cells contained higher concentrations of soluble LIGHT than macrophage supernatants normalized to cell numbers; release of soluble LIGHT was found to be dependent on metalloproteinase activity. Size determination of released soluble LIGHT by size exclusion chromatography revealed a molecular mass of ~60 kDa, suggesting a trimeric form. Released soluble LIGHT induced expression of proinflammatory antigens ICAM-1, tissue factor and IL-8 in human endothelial cells and caused apoptosis of IFN-γ pretreated endothelial cells. Soluble LIGHT was detected at low levels in sera of healthy controls and was significantly enhanced in sera of patients with chronic hepatitis C and rheumatoid arthritis (24.93 ± 9.41 vs.129.53 ± 49.14 and 172.13 ± 77.64; p < 0.0005). Conclusion These findings suggest that among immune cells activated T lymphocytes are the main source of soluble LIGHT with released amounts of soluble LIGHT markedly higher compared to platelets. Immune cell-derived membrane-bound and soluble trimeric LIGHT is biologically active, inducing proinflammatory changes in endothelial cells. Enhanced plasma levels of soluble LIGHT in patients with chronic infections suggest a role of LIGHT in systemic inflammatory activation.
Collapse
Affiliation(s)
- S Celik
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Steinberg MW, Shui JW, Ware CF, Kronenberg M. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners. Semin Immunopathol 2009; 31:207-21. [PMID: 19495760 DOI: 10.1007/s00281-009-0157-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/13/2009] [Indexed: 12/23/2022]
Abstract
LIGHT and herpes virus entry mediator (HVEM) comprise a ligand-receptor pair in the tumor necrosis factor superfamily. These molecules play an important role in regulating immunity, particularly in the intestinal mucosa. LIGHT also binds the lymphotoxin beta receptor, and HVEM can act as a ligand for immunoglobulin family molecules, including B- and T-lymphocyte attenuator, which suppresses immune responses. Complexity in this pivotal system arises from several factors, including the non-monogamous pairing of ligands and receptors, and reverse signaling or the ability of some ligands to serve as receptors. As a result, recognition events in this fascinating network of interacting molecules can have pro- or anti-inflammatory consequences. Despite complexity, experiments we and others are carrying out are establishing rules for understanding when and in what cell types these molecules contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Marcos W Steinberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
36
|
Pierer M, Schulz A, Rossol M, Kendzia E, Kyburz D, Haentzschel H, Baerwald C, Wagner U. Herpesvirus entry mediator-Ig treatment during immunization aggravates rheumatoid arthritis in the collagen-induced arthritis model. THE JOURNAL OF IMMUNOLOGY 2009; 182:3139-45. [PMID: 19234211 DOI: 10.4049/jimmunol.0713715] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous studies attempting to influence the severity of collagen-induced arthritis (CIA) by modulating the LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpesvirus entry mediator (HVEM) on T cells)/lymphotoxin pathway have yielded conflicting results. To further clarify the role of LIGHT in autoimmune arthritis, a HVEM-Ig fusion protein was used. CIA was induced in DBA1 mice, which were injected i.p. with recombinant HVEM-Ig fusion protein and control Ig at different time points. Severity of clinical arthritis and histologic joint destruction were significantly increased in HVEM-Ig-treated mice compared with control-Ig-treated mice. Collagen II-induced in vitro T cell proliferation and IFN-gamma production was augmented in mice treated with HVEM-Ig, as was the production of IgG2a anti-collagen II Ab. Accordingly, serum concentrations of IFN-gamma and IL-6 were higher in mice treated with HVEM-Ig. In conclusion, HVEM-Ig aggravates autoimmunity in collagen-induced arthritis, which is possibly mediated by interaction with B and T lymphocyte attenuator (BTLA) or CD160, despite the blockade of LIGHT. Hence, HVEM-Ig seems not to be a valid therapeutic option in autoimmune arthritis.
Collapse
Affiliation(s)
- Matthias Pierer
- Medical Department I, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ishida S, Yamane S, Nakano S, Yanagimoto T, Hanamoto Y, Maeda-Tanimura M, Toyosaki-Maeda T, Ishizaki J, Matsuo Y, Fukui N, Itoh T, Ochi T, Suzuki R. The interaction of monocytes with rheumatoid synovial cells is a key step in LIGHT-mediated inflammatory bone destruction. Immunology 2008; 128:e315-24. [PMID: 19019090 DOI: 10.1111/j.1365-2567.2008.02965.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Formation of osteoclasts and consequent joint destruction are hallmarks of rheumatoid arthritis (RA). Here we show that LIGHT, a member of the tumour necrosis factor (TNF) superfamily, induced the differentiation into tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) of CD14(+) monocytes cocultured with nurse-like cells isolated from RA synovium, but not of freshly isolated CD14(+) monocytes. Receptor activator of nuclear factor-kappaB ligand (RANKL) enhanced this LIGHT-induced generation of TRAP-positive MNCs. The MNCs showed the phenotypical and functional characteristics of osteoclasts; they showed the expression of osteoclast markers such as cathepsin K, actin-ring formation, and the ability to resorb bone. Moreover, the MNCs expressed both matrix metalloproteinase 9 (MMP-9) and MMP-12, but the latter was not expressed in osteoclasts induced from CD14(+) monocytes by RANKL. Immunohistochemical analysis showed that the MMP-12-producing MNCs were present in the erosive areas of joints in RA, but not in the affected joints of osteoarthritic patients. These findings suggested that LIGHT might be involved in the progression of inflammatory bone destruction in RA, and that osteoclast progenitors might become competent for LIGHT-mediated osteoclastogenesis via interactions with synoviocyte-like nurse-like cells.
Collapse
Affiliation(s)
- Satoru Ishida
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oxelius VA. Personal glimpses of Robert A. Good. Immunol Res 2007. [DOI: 10.1007/s12026-007-0008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Pawlak K, Mysliwiec M, Pawlak D. Chronic viral hepatitis and iron affect the plasma levels of LIGHT--a new member of the TNF superfamily in uraemic haemodialyzed patients. Cytokine 2007; 39:201-6. [PMID: 17827030 DOI: 10.1016/j.cyto.2007.07.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/18/2007] [Accepted: 07/26/2007] [Indexed: 01/04/2023]
Abstract
LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for binding herpesvirus entry mediator on T cells) is a recently identified of the tumor necrosis factor alpha (TNF-alpha) ligand superfamily. We wanted to establish whether the presence of chronic viral hepatitis could be implicated in enhanced inflammation as well as the elevation of plasma LIGHT levels in haemodialyzed (HD) patients. The plasma levels of LIGHT, high sensitivity C-reactive protein (hs CRP) and TNF-alpha were measured in HD patients with hepatitis in comparison to subjects without hepatitis and to healthy volunteers. The values of hs CRP and TNF-alpha were significantly elevated in HD patients when compared to the controls. TNF-alpha levels were significantly higher in the hepatitis-positive relative to the hepatitis-negative group (p <0.01). LIGHT levels were significantly decreased in hepatitis-negative patients as compared to controls (p <0.001) and hepatitis-positive group (p < 0.01). Both LIGHT and TNF-alpha were directly associated with the presence of hepatitis. Multiple stepwise regression analysis identified increased iron levels as the only independent variable significantly associated with increased LIGHT (beta=0.475, p=0.003). These results suggest the presence of chronic viral hepatitis and iron levels are novel determinants of the increased LIGHT in the plasma of HD patients.
Collapse
Affiliation(s)
- Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University in Bialystok, Mickiewicza 2C Street, 15-089 Bialystok, Poland.
| | | | | |
Collapse
|
40
|
Kang YM, Kim SY, Kang JH, Han SW, Nam EJ, Kyung HS, Park JY, Kim IS. LIGHT up-regulated on B lymphocytes and monocytes in rheumatoid arthritis mediates cellular adhesion and metalloproteinase production by synoviocytes. ACTA ACUST UNITED AC 2007; 56:1106-17. [PMID: 17393389 DOI: 10.1002/art.22493] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To study the expression of LIGHT (tumor necrosis factor superfamily 14) and herpesvirus entry mediator (HVEM; tumor necrosis factor receptor superfamily 14) in rheumatoid arthritis (RA) and to determine the regulatory role of LIGHT on the effector functions of fibroblast-like synoviocytes (FLS). METHODS The expression of LIGHT and HVEM was assessed by immunohistochemical staining of synovial tissue and by flow cytometric analysis of mononuclear cells. The presence of HVEM and lymphotoxin beta receptor was measured by reverse transcriptase-polymerase chain reaction and by flow cytometry. The regulation of effector molecules, including matrix metalloproteinases (MMPs) and adhesion molecules, was evaluated. The adhesiveness of FLS was determined by adhesion assay. RESULTS HVEM was detected in most cell types within rheumatoid synovial tissue, while only a few cells were positive for LIGHT. In RA patients, LIGHT expression was significantly up-regulated only in CD20+ B cells and monocytes, whereas the mean fluorescence intensity of HVEM was down-regulated in mononuclear cells. The stimulation of FLS with LIGHT resulted in the production of MMPs and the expression of adhesion molecules, which were efficiently inhibited by dexamethasone. LIGHT-mediated up-regulation of MMPs and intercellular adhesion molecule 1 was blocked by inhibitors of NF-kappaB and JNK, whereas up-regulation of vascular cell adhesion molecule 1 was blocked by inhibitors of phosphatidylinositol 3-kinase, as well as NF-kappaB. CONCLUSION These data suggest that binding of LIGHT with its receptors may play a role in the progression of inflammation within rheumatoid synovium, especially by mediating the interactions between infiltrating inflammatory cells and stromal cells. These findings thus emphasize the relevance of LIGHT as a potential therapeutic target in RA.
Collapse
Affiliation(s)
- Young Mo Kang
- Kyungpook National University School of Medicine, and Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pierer M, Brentano F, Rethage J, Wagner U, Hantzschel H, Gay RE, Gay S, Kyburz D. The TNF superfamily member LIGHT contributes to survival and activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology (Oxford) 2007; 46:1063-70. [PMID: 17426140 DOI: 10.1093/rheumatology/kem063] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The TNF superfamily member LIGHT has a T-cell co-stimulatory role and has previously been associated with inflammation and autoimmunity. To investigate its role in rheumatoid arthritis (RA), a disease where activated T cells contribute in a prominent way, we have analysed the expression of LIGHT and its receptors in RA and analysed its effects on synovial fibroblasts in vitro. METHODS The expression of LIGHT was measured in synovial tissues and fluids and the receptors of LIGHT were detected on synovial fibroblasts derived from patients with RA and osteoarthritis (OA). The effects of recombinant LIGHT on the production of proinflammatory cytokines and proteases and on the apoptosis of synovial fibroblasts was assessed. RESULTS LIGHT mRNA was present in synovial tissues of patients with RA but not with OA. Correspondingly, soluble LIGHT protein could be detected in RA synovial fluid samples at much higher levels than in synovial fluid from patients with OA. Immunohistochemical detection of LIGHT and analysis of synovial fluid cells by flow cytometry revealed CD4 T cells as the major source of LIGHT in the rheumatoid joint. Synovial fibroblasts from RA patients were found to express the LIGHT receptors HVEM and LTbetaR. Recombinant LIGHT induced RA synovial fibroblasts to upregulate MMP-9 mRNA, CD54 and IL-6 in an NF-kappaB-dependent fashion. In vitro, exposure of cultured synovial fibroblasts to LIGHT reduced FAS-mediated apoptosis significantly, without affecting the rate of spontaneous apoptosis. CONCLUSIONS The results provide evidence for a novel T-cell-dependent activation of synovial fibroblasts by LIGHT in joints of patients with RA, contributing to an inflammatory and destructive phenotype.
Collapse
MESH Headings
- Aged
- Apoptosis/drug effects
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- CD4-Positive T-Lymphocytes/chemistry
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Flow Cytometry
- Humans
- Immunohistochemistry
- Intercellular Adhesion Molecule-1/analysis
- Interleukin-6/analysis
- Leukotriene B4/analysis
- Leukotriene B4/metabolism
- Male
- Matrix Metalloproteinase 9/analysis
- Middle Aged
- NF-kappa B/analysis
- NF-kappa B/metabolism
- Osteoarthritis/immunology
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- RNA, Messenger/analysis
- Receptors, Tumor Necrosis Factor, Member 14/analysis
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Recombinant Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Statistics, Nonparametric
- Synovial Fluid/chemistry
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Tumor Necrosis Factor Ligand Superfamily Member 14/analysis
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
Collapse
Affiliation(s)
- M Pierer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital of Zurich, Gloriastrasse 25, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xu Y, Tamada K, Chen L. LIGHT-related molecular network in the regulation of innate and adaptive immunity. Immunol Res 2007; 37:17-32. [PMID: 17496344 DOI: 10.1007/bf02686093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The LIGHT-related molecular network is composed of at least seven interacting receptors and ligands. Recent studies reveal that this network has profound immune regulatory functions for both innate and adaptive immunity. Experimental data support the concept that this network may also play roles in the pathogenesis of human diseases including cancer, infection, transplantation tolerance, and autoimmune diseases. In this review, we attempt to dissect each molecular interaction in detail and assemble them in the context of their roles in the pathogenesis and possible therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Yanhui Xu
- Molecular Biology Graduate Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
43
|
Xu Y, Flies AS, Flies DB, Zhu G, Anand S, Flies SJ, Xu H, Anders RA, Hancock WW, Chen L, Tamada K. Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood 2006; 109:4097-104. [PMID: 17179227 PMCID: PMC1874563 DOI: 10.1182/blood-2006-09-047332] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Decoy lymphotoxin beta receptor (LTbetaR) has potent immune inhibitory activities and thus represents a promising biologic for the treatment of inflammation, autoimmune diseases, and graft-versus-host disease (GVHD). As this reagent interrupts multiple molecular interactions, including LTbeta-LTbetaR and LIGHT-HVEM/LTbetaR, underlying molecular mechanisms have yet to be fully understood. In this study, we demonstrate that blockade of the LIGHT-HVEM pathway is sufficient to induce amelioration of GVHD in mouse models. Anti-host cytotoxic T lymphocyte (CTL) activity following in vivo transfer of allogeneic lymphocytes was completely abrogated when LIGHT- or HVEM-deficient (KO) T cells were used as donor cells. Accordingly, survival of the recipient mice following the transfer of allogeneic bone marrow cells plus LIGHT-KO or HVEM-KO T cells was significantly prolonged. In the absence of LIGHT-HVEM costimulation, alloreactive donor T cells undergo vigorous apoptosis while their proliferative potential remains intact. Furthermore, we prepared a neutralizing monoclonal antibody (mAb) specific to HVEM and showed that administration of anti-HVEM mAb profoundly ameliorated GVHD and led to complete hematopoietic chimerism with donor cells. Collectively, our results demonstrate an indispensable role of LIGHT-HVEM costimulation in the pathogenesis of GVHD and illustrate a novel target for selective immunotherapy in allogeneic bone marrow transplantation.
Collapse
Affiliation(s)
- Yanhui Xu
- Department of Molecular Biology and Biochemistry, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Killedar SJ, Killedar SY, Eckenrode SE, McIndoe RA, She JX, Nguyen CQ, Peck AB, Cha SR, Cha S. Early pathogenic events associated with Sjögren's syndrome (SjS)-like disease of the NOD mouse using microarray analysis. J Transl Med 2006; 86:1243-60. [PMID: 17075579 DOI: 10.1038/labinvest.3700487] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recently, we reported development of the C57BL/6.NOD-Aec1Aec2 mouse carrying two genetic intervals derived from the NOD mouse. These two genetic regions confer full Sjögren's syndrome (SjS)-like disease in SjS-non-susceptible C57BL/6 mice. The current study was undertaken to apply microarray technology to define the molecular basis underlying onset of SjS-disease in C57BL/6.NOD-Aec1Aec2 mice. Using oligonucleotide microarrays, gene expression profiles of submandibular glands derived from 8- to 12-week-old C57BL/6.NOD-Aec1Aec2 mice and 8-week-old C57BL/6 mice were performed for comparison. Significant differential expressions were determined using the Mann-Whitney U test. Hybridizations using submandibular cDNA probes revealed 75 differentially expressed genes at 8 weeks and 105 differentially expressed genes at 12 weeks of age in C57BL/6.NOD-Aec1Aec2 mice compared to 8-week-old C57BL/6 mice. These genes were related generally to basic cellular activities such as transcription, translation, DNA replication, and protein folding. During the predisease phase, genes upregulated encode proteins associated with the IFN-gamma signal-transduction-pathway (Jak/Stat1), TLR-3 (Irf3 and Traf6) and apoptosis (casp11 and casp3), indicative of chronic proinflammatory stimuli, especially IL-1. Between 8 and 12 weeks of age, sets of clustered genes were upregulated that are associated with adaptive immune responses, especially B cell activation, proliferation and differentiation (Baffr, Taci, Bcma, Blys, April, CD70, CD40L, Traf1, Traf3, Pax5, c-Jun, Elk1 and Nf-kB), and neural receptors (Taj/Troy). Altered gene expressions of TLR3 and TNF-superfamily-receptors and ligands during this early phase of SjS suggest a possible viral etiology in the altered glandular homeostasis with an upregulated, possibly overstimulated, B-lymphocyte activation in the early autoimmune response present in the submandibular glands. The importance of NF-kappaB as a critical signal transduction pathway is also suggested but its link is not yet clear.
Collapse
Affiliation(s)
- Smruti J Killedar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ikema K, Matsumoto K, Inomata Y, Komohara Y, Miyajima S, Takeya M, Tanihara H. Induction of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs correlates with outcome of acute experimental pseudomonal keratitis. Exp Eye Res 2006; 83:1396-404. [PMID: 16968651 DOI: 10.1016/j.exer.2006.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 07/04/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate expressions and sources of matrix metalloproteinases (MMP)-2 and MMP-9, and of tissue inhibitors of MMP (TIMP)-1 and TIMP-2 in experimental Pseudomonas aeruginosa keratitis in rabbits. Pseudomonal keratitis was induced in New Zealand white rabbits, and macroscopic and microscopic examinations were performed at appropriate time points (3, 9, 12, 18, 24, 72 h). Expressions and sources of MMP-2, 9, and TIMP-1, 2 were determined using immunohistochemistry, gelatin zymography, ELISA, and RT-PCR. A typical corneal ulcer with a ring abscess was observed 12-72 h post-infection (p.i.) with P. aeruginosa. In microscopic examinations, massive inflammatory cell (mostly polymorphonuclear leukocytes, PMNs) infiltration and liquefactive necrosis were characteristic features. MMP-2 was constitutively expressed in keratocytes, and its expression was not apparently enhanced after pseudomonal infection as evidenced by zymography, immunostaining, and RT-PCR. However, MMP-9 and its activated form were induced, and were significantly enhanced 12-24 h p.i. MMP-9 appeared to derive from PMNs rather than from resident corneal cells. TIMP-1 was expressed in PMNs, macrophages, and keratocytes, and its expression was enhanced 72 h p.i. Although TIMP-2 was constitutively expressed as seen by immunostaining and RT-PCR, its concentration was below detection limits during the experiments. We demonstrated that MMP-9 was one of the important factors for corneal tissue destruction, because it was induced and significantly expressed in keratocytes and inflammatory cells after pseudomonal infection. Although TIMP-1 was expressed in later stages of infection, enhancement and activation of MMP-9 were much faster and stronger than those of TIMP-1, thereby facilitating tissue destruction leading to corneal ulceration.
Collapse
Affiliation(s)
- Kousuke Ikema
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Otterdal K, Smith C, Oie E, Pedersen TM, Yndestad A, Stang E, Endresen K, Solum NO, Aukrust P, Damås JK. Platelet-derived LIGHT induces inflammatory responses in endothelial cells and monocytes. Blood 2006; 108:928-35. [PMID: 16861346 DOI: 10.1182/blood-2005-09-010629] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Traditionally, platelets are known to play an important role in hemostasis, thrombosis, and wound healing, but increasing evidence suggests that activated platelets also may promote inflammation. Platelet-induced modulation of inflammation seems to involve platelet expression of ligands in the tumor necrosis factor (TNF) superfamily such as CD40 ligand and Fas ligand. The present study demonstrates that LIGHT, another member of the TNF superfamily, is associated with platelets and is released as a soluble ligand on platelet activation. The release of LIGHT involves GP IIb/IIIa-dependent mechanisms and action of metal-dependent proteases as well as intracellular processes such as actin polymerization. We also report that platelet-derived LIGHT is biologically active and can induce an inflammatory response in monocytes and particularly within endothelial cells measured as up-regulation of adhesion molecules and release of chemokines. Moreover, we demonstrate that thrombus material, obtained at the site of plaque rupture in patients with acute myocardial infarction, contains platelet-associated LIGHT, suggesting that LIGHT-mediated inflammation also is operating in vivo within an inflamed and thrombotic vessel wall. The data may suggest a pathogenic role for platelet-derived LIGHT in atherogenesis and plaque destabilization as well as in other inflammatory disorders involving leukocyte infiltration into the vessel wall.
Collapse
Affiliation(s)
- Kari Otterdal
- Research Institute for Internal Medicine, Rikshospitalet, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, Sabokbar A. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. ACTA ACUST UNITED AC 2006; 54:1451-62. [PMID: 16649193 DOI: 10.1002/art.21821] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. LIGHT is a transmembrane protein expressed and shed from the surface of activated T cells. Since activated T cells have been implicated in osteoclastogenesis in rheumatoid arthritis (RA), this study sought to determine whether LIGHT can regulate RANKL/cytokine-induced osteoclast formation, to identify the mechanism by which LIGHT influences osteoclastogenesis, and to investigate the presence of LIGHT in the serum of RA patients. METHODS The effect of LIGHT on human and murine osteoclast formation was assessed in the presence and absence of neutralizing reagents to known osteoclastogenic factors. Serum levels of LIGHT in RA patients were measured by enzyme-linked immunosorbent assay. RESULTS In the presence and absence of RANKL, LIGHT induced osteoclast formation from both human peripheral blood mononuclear cells and murine macrophage precursors, in a dose-dependent manner, whereas no inhibition was observed by adding osteoprotegerin, RANK:Fc, TNFalpha, or interleukin-8 or by blocking the LIGHT receptors herpesvirus entry mediator or lymphotoxin beta receptor. However, formation of osteoclasts was significantly decreased by the soluble decoy receptor for LIGHT, DcR3, and by blocking antibodies to the p75 component of the TNF receptor. A significant increase in LIGHT levels in the serum of RA patients compared with normal controls was also noted. CONCLUSION Our results indicate that LIGHT promotes RANKL-mediated osteoclastogenesis and that it can induce osteoclast formation by a mechanism independent of RANKL. The increased concentration of LIGHT in patients with RA raises the possibility that LIGHT may play a role in immunopathogenic conditions that are associated with localized or systemic bone loss.
Collapse
Affiliation(s)
- J R Edwards
- Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Seth D, Gorrell MD, Cordoba S, McCaughan GW, Haber PS. Intrahepatic gene expression in human alcoholic hepatitis. J Hepatol 2006; 45:306-20. [PMID: 16797773 DOI: 10.1016/j.jhep.2006.04.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/20/2006] [Accepted: 04/25/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Alcoholic hepatitis remains an important cause of morbidity and mortality. Treatment remains unsatisfactory, in part, due to limited understanding of the pathogenesis. The aim of this study is to define the global intrahepatic expression profile of human alcoholic hepatitis. METHODS Gene expression was analysed by DNA microarray on RNA isolated from liver of patients with alcoholic hepatitis (AH, n = 8), alcoholic steatosis (AS, n = 9) and explants from non-diseased donor liver controls (ND, n = 7). Differential expression of selected genes was confirmed by real-time RT-PCR and immunohistochemistry. RESULTS Cluster analysis allowed differentiation of alcoholic hepatitis from alcoholic steatosis. The gene expression profile of AH revealed 586 genes differentially expressed from AS and 211 genes differentially expressed from that of ND liver. In comparison, only 98 genes were differentially expressed in AS from ND. Novel differentially expressed genes in AH in comparison to ND and AS included claudins, osteopontin, CD209, selenoprotein and genes related to bile duct proliferation. Real-time RT-PCR confirmed up-regulation of IL-8, osteopontin, and TNFRSF14 and down-regulation of SAMeS and CD209. CONCLUSIONS This study has defined the intrahepatic gene expression profile of human alcoholic hepatitis and revealed a number of novel differentially expressed genes.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia.
| | | | | | | | | |
Collapse
|
49
|
Sakai A, Ohshima M, Sugano N, Otsuka K, Ito K. Profiling the Cytokines in Gingival Crevicular Fluid Using a Cytokine Antibody Array. J Periodontol 2006; 77:856-64. [PMID: 16671879 DOI: 10.1902/jop.2006.050340] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Various compounds have been detected in gingival crevicular fluid (GCF) as indicators of periodontal disease activity. Therefore, the analysis of GCF may be especially beneficial for diagnosing current periodontal status and addressing the effects of treatment. Moreover, the identification of new markers in GCF may also contribute to elucidating novel mechanisms involved in periodontal disease. This study sought novel marker proteins specific to chronic periodontitis by profiling cytokines in GCF using a cytokine antibody array system. METHODS Human cytokine array V, which detects 79 cytokines on one membrane, was used to determine the profile of cytokines in GCF from seven subjects with chronic periodontitis and seven subjects with healthy periodontia. The profile was exposed to x-ray film and quantified using image analysis software. Healthy and diseased sites were compared statistically. RESULTS We detected 10 cytokines in periodontally healthy sites and 36 cytokines in periodontally diseased sites. Interleukin-8 (IL-8) and transforming growth factor-beta 2 (TGF-beta2) were detected at high levels in healthy and diseased subjects. There were significant differences between healthy and diseased subjects in the levels of tissue inhibitor of metalloproteinases-2 (TIMP-2), tumor necrosis factor-beta (TNF-beta), growth-related oncogene (GRO), interferon-inducible protein-10 (IP-10), angiogenin (Ang), vascular endothelial growth factor (VEGF), insulin-like growth factor binding protein-3 (IGFBP-3), osteoprotegerin (OPG), epidermal growth factor (EGF), glial-derived neurotrophic factor (GDNF), pulmonary and activation-regulated chemokine (PARC), oncostatin M (OSM), fibroblast growth factor-4 (FGF-4), IL-16, homologous to lymphotoxins (LIGHT), and placenta growth factor (PlGF). Of these, the newly detected cytokines were GRO, Ang, IGFBP-3, GDNF, PARC, OSM, FGF-4, IL-16, LIGHT, and PlGF. CONCLUSIONS In this study, we detected several cytokines in GCF using a cytokine antibody array system, including both inflammatory cytokines and various growth factors. Therefore, periodontal disease may participate in the wound healing process and in tissue destruction via the inflammatory process. Our results suggest that the quantification of these cytokines in GCF provides useful information for the diagnosis of periodontal disease status.
Collapse
Affiliation(s)
- Akihiko Sakai
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Anand S, Wang P, Yoshimura K, Choi IH, Hilliard A, Chen YH, Wang CR, Schulick R, Flies AS, Flies DB, Zhu G, Xu Y, Pardoll DM, Chen L, Tamada K. Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. J Clin Invest 2006; 116:1045-51. [PMID: 16557300 PMCID: PMC1409742 DOI: 10.1172/jci27083] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 01/31/2006] [Indexed: 12/21/2022] Open
Abstract
LIGHT is an important costimulatory molecule for T cell immunity. Recent studies have further implicated its role in innate immunity and inflammatory diseases, but its cellular and molecular mechanisms remain elusive. We report here that LIGHT is upregulated and functions as a proinflammatory cytokine in 2 independent experimental hepatitis models, induced by concanavalin A and Listeria monocytogenes. Molecular mutagenesis studies suggest that soluble LIGHT protein produced by cleavage from the cell membrane plays an important role in this effect through the interaction with the lymphotoxin-beta receptor (LTbetaR) but not herpes virus entry mediator. NK1.1+ T cells contribute to the production, but not the cleavage or effector functions, of soluble LIGHT. Importantly, treatment with a mAb that specifically interferes with the LIGHT-LTbetaR interaction protects mice from lethal hepatitis. Our studies thus identify a what we believe to be a novel function of soluble LIGHT in vivo and offer a potential target for therapeutic interventions in hepatic inflammatory diseases.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Antigens, Surface/metabolism
- Concanavalin A/metabolism
- Concanavalin A/pharmacology
- Cytokines/metabolism
- Hepatitis/etiology
- Hepatitis/metabolism
- Inflammation/metabolism
- Lectins, C-Type/metabolism
- Listeria monocytogenes/metabolism
- Listeria monocytogenes/pathogenicity
- Lymphotoxin beta Receptor
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NK Cell Lectin-Like Receptor Subfamily B
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Solubility
- Tumor Necrosis Factor Ligand Superfamily Member 14
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Sudarshan Anand
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pu Wang
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kiyoshi Yoshimura
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - In-Hak Choi
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anja Hilliard
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Youhai H. Chen
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chyung-Ru Wang
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard Schulick
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew S. Flies
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dallas B. Flies
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gefeng Zhu
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanhui Xu
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Drew M. Pardoll
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lieping Chen
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Koji Tamada
- Immunology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Microbiology, Inje University College of Medicine, Pusan, Republic of Korea.
Committee on Immunology and Department of Pathology, University of Chicago, Chicago, Illinois, USA.
Department of Surgery and
Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Biochemistry Graduate Program, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|