1
|
Chiang YR, Lin HT, Chang CW, Lin SM, Lin JHY. Dynamic expression of cathepsin L in the black soldier fly (Hermetia illucens) gut during Escherichia coli challenge. PLoS One 2024; 19:e0298338. [PMID: 38451906 PMCID: PMC10919656 DOI: 10.1371/journal.pone.0298338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has the potential to serve as a valuable resource for waste bioconversion due to the ability of the larvae to thrive in a microbial-rich environment. Being an ecological decomposer, the survival of BSF larvae (BSFL) relies on developing an efficient defense system. Cathepsin L (CTSL) is a cysteine protease that plays roles in physiological and pathological processes. In this study, the full-length of CTSL was obtained from BSF. The 1,020-bp open reading frame encoded a preprotein of 339 amino acids with a predicted molecular weight of 32 kDa. The pro-domain contained the conserved ERFNIN, GNYD, and GCNGG motifs, which are all characteristic of CTSL. Homology revealed that the deduced amino acid sequence of BSF CTSL shared 74.22-72.99% identity with Diptera flies. Immunohistochemical (IHC) analysis showed the CTSL was predominantly localized in the gut, especially in the midgut. The mRNA expression of CTSL in different larval stages was analyzed by quantitative real-time PCR (RT-qPCR), which revealed that CTSL was expressed in the second to sixth instar, with the highest expression in the fifth instar. Following an immune challenge in vivo using Escherichia coli (E. coli), CTSL mRNA was significantly up-regulated at 6 h post-stimulation. The Z-Phe-Arg-AMC was gradually cleaved by the BSFL extract after 3 h post-stimulation. These results shed light on the potential role of CTSL in the defense mechanism that helps BSFL to survive against pathogens in a microbial-rich environment.
Collapse
Affiliation(s)
- Yun-Ru Chiang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Han-Tso Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Chao-Wei Chang
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Science, National Cheng Kung University, Tainan, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Xiong P, Wang WW, Liu XS, Wang YF, Wang JL. A CTL - Lys immune function maintains insect metamorphosis by preventing gut bacterial dysbiosis and limiting opportunistic infections. BMC Biol 2024; 22:54. [PMID: 38448930 PMCID: PMC10918859 DOI: 10.1186/s12915-024-01855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Gut bacteria are beneficial to the host, many of which must be passed on to host offspring. During metamorphosis, the midgut of holometabolous insects undergoes histolysis and remodeling, and thus risks losing gut bacteria. Strategies employed by holometabolous insects to minimize this risk are obscure. How gut bacteria affect host insects after entering the hemocoel and causing opportunistic infections remains largely elusive. RESULTS We used holometabolous Helicoverpa armigera as a model and found low Lactobacillus load, high level of a C-type lectin (CTL) gene CD209 antigen-like protein 2 (CD209) and its downstream lysozyme 1 (Lys1) in the midgut of the wandering stage. CD209 or Lys1 depletion increased the load of midgut Lactobacillus, which further translocate to the hemocoel. In particular, CD209 or Lys1 depletion, injection of Lactobacillus plantarum, or translocation of midgut L. plantarum into the hemocoel suppressed 20-hydroxyecdysone (20E) signaling and delayed pupariation. Injection of L. plantarum decreased triacylglycerol and cholesterol storage, which may result in insufficient energy and 20E available for pupariation. Further, Lysine-type peptidoglycan, the major component of gram-positive bacterial cell wall, contributed to delayed pupariation and decreased levels of triacylglycerols, cholesterols, and 20E, in both H. armigera and Drosophila melanogaster. CONCLUSIONS A mechanism by which (Lactobacillus-induced) opportunistic infections delay insect metamorphosis was found, namely by disturbing the homeostasis of lipid metabolism and reducing 20E production. Moreover, the immune function of CTL - Lys was characterized for insect metamorphosis by maintaining gut homeostasis and limiting the opportunistic infections.
Collapse
Affiliation(s)
- Pei Xiong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Yang L, Cheng Y, Wang Q, Dong H, Shen T, Gong J, Xia Q, Hou Y. Distinct enzyme activities of serine protease p37k in silkworm midgut and molting fluid. Int J Biol Macromol 2024; 261:129778. [PMID: 38296126 DOI: 10.1016/j.ijbiomac.2024.129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Serine proteases possess various biological functions. The serine protease p37k exhibits gelatinolytic activity in the silkworm midgut and degrades cuticular proteins in the molting fluid. In this study, we analyzed the activity changes of recombinant p37k (re-p37k) and p37k in the midgut and molting fluid of Bombyx mori. Firstly, in vitro-expressed re-p37k was activated when a 22 kDa band was observed by western blot. Re-p37k exhibits strong gelatinolytic activity, with the highest activity observed at pH 7.0-9.0 and 45 °C. Compared to p37k in the midgut, re-p37k loses thermal stability but can be restored by midgut extract or ions. E64, AEBSF, and an inhibitor cocktail inhibited the hydrolytic activity of re-p37k on epidermal proteins but did not inhibit the gelatinolytic activity. Subsequently, zymography showed that the positions of gelatinolytic band produced by p37k in the midgut and molting fluid were different, 35 kDa and 40 kDa, respectively. Finally, when heated midgut extract was added to re-p37k or molting fluid, the gelatinolytic band shifted from 40 kDa to 35 kDa, and the proteolytic activity of p37k in the molting fluid was inhibited. Collectively, our results demonstrate that p37k exhibits different activities in various tissues, suggesting its distinct tissue-specific functions during insect metamorphosis.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Taixia Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Jing Gong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Yuan H, Cai P, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y, Qiao H, Fu H. Identification of genes regulated by 20-Hydroxyecdysone in Macrobrachium nipponense using comparative transcriptomic analysis. BMC Genomics 2024; 25:35. [PMID: 38183039 PMCID: PMC10768235 DOI: 10.1186/s12864-023-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
5
|
Wang JL, Sun J, Song YJ, Zheng HH, Wang GJ, Luo WX, Li L, Liu XS. An entomopathogenic fungus exploits its host humoral antibacterial immunity to minimize bacterial competition in the hemolymph. MICROBIOME 2023; 11:116. [PMID: 37210573 DOI: 10.1186/s40168-023-01538-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/29/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The insect hemolymph (blood-equivalent fluid), composed of a large number of hemocytes (blood cells) and a variety of soluble immune effectors, is hostile for pathogens including fungi. In order to survive in the insect hemocoel (body cavity), the entomopathogenic fungus (EPF) has evolved two classical coping strategies, namely evasion and suppression of the host immune reactions. However, it remains unclear whether EPF has other ways of coping with host immunity. RESULTS In this study, we demonstrated that Metarhizium rileyi (an EPF) infection by injection of blastospores into the hemocoel enhanced the plasma antibacterial activity of cotton bollworm (Helicoverpa armigera), which was partially due to the enhanced expression of antimicrobial peptides (AMPs). The early stage of M. rileyi infection induced the translocation of gut bacteria into the hemocoel, where they were subsequently cleared due to the enhanced plasma antibacterial activity. Further, we showed that the enhanced plasma antibacterial activity and AMP expression were attributable to M. rileyi but not the invasive gut bacteria (opportunistic bacteria). Elevated ecdysone (major steroid hormone in insects) levels in the hemolymph at 48 h post-M. rileyi infection might contribute to the enhanced expression of AMPs. The fungus-elicited AMPs, such as cecropin 3 or lebocin, exhibited potent inhibitory activity against the opportunistic bacteria but not against hyphal bodies. In addition, the opportunistic bacteria competed with hyphal bodies for amino acid nutrients. CONCLUSIONS M. rileyi infection induced the translocation of gut bacteria, and then the fungi activated and exploited its host humoral antibacterial immunity to eliminate opportunistic bacteria, preventing them from competing for nutrients in the hemolymph. Unlike the classical strategies, EPF utilizes to evade or suppress host immunity, our findings reveal a novel strategy of interaction between EPF and host immunity. Video Abstract.
Collapse
Affiliation(s)
- Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ya-Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huan-Huan Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Xia Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Li Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Santos Correa KC, Moreira AC, Abd El-Raheem Ibrahim AG, Ramos de Jesus HC, Micocci KC, Crizóstomo Kock FV, Bueno OC, Venâncio T, Henrique-Silva F, Souza DHF. Identification and characterization of a recombinant cysteine peptidase (AsCathL) from leaf-cutting ant Atta sexdens Linnaeus, 1758 (Hymenoptera, Formicidae). Protein Expr Purif 2023; 201:106174. [DOI: 10.1016/j.pep.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
8
|
Pinto CPG, Walker AA, Robinson SD, King GF, Rossi GD. Proteotranscriptomics reveals the secretory dynamics of teratocytes, regulators of parasitization by an endoparasitoid wasp. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104395. [PMID: 35413336 DOI: 10.1016/j.jinsphys.2022.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Parasitoid wasps have evolved sophisticated mechanisms of host regulation that establish a favorable environment for the development of immature parasitoids. While maternal venom and symbiotic virus-like particles are well-known mechanisms of host regulation, another less-studied mechanism is the secretion of host regulation factors by cells called teratocytes, extra-embryonic cells released during parasitoid larval eclosion. Consequently, identification and characterization of teratocyte secretory products has not been reported in detail for any parasitoid wasp. We aimed to analyze teratocyte secretory products released into hemolymph of the larval sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) by its biological control agent, the koinobiont endoparasitoid wasp Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae). Teratocytes were released upon eclosion of parasitoid larvae four days after parasitization (DAP) and increased in number and size until six DAP. Total D. saccharalis hemocyte viability was reduced immediately after parasitization until DAP 2, while total hemocyte count was lower from the third DAP, and phenoloxidase and lysozyme activity were disrupted compared to non-parasitized controls. To examine the secretory products of teratocytes, we generated a teratocyte transcriptome and compared its in silico translated open reading frames to mass spectra obtained from hemolymph from parasitized and unparasitized hosts. This led to the identification of 57 polypeptides secreted by teratocytes, the abundance of which we tracked over 0-10 DAP. Abundant teratocyte products included proteins similar to bracovirus proteins and multiple disulfide-rich peptides. Most teratocyte products accumulated in hemolymph, reaching their highest concentrations immediately before parasitoid pupation. Our results provide insights into host regulation by teratocytes and reveal molecules that may be useful in biotechnology.
Collapse
Affiliation(s)
- Ciro P G Pinto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guilherme D Rossi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
| |
Collapse
|
9
|
Genomic insight into the scale specialization of the biological control agent Novius pumilus (Weise, 1892). BMC Genomics 2022; 23:90. [PMID: 35100986 PMCID: PMC8805230 DOI: 10.1186/s12864-022-08299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the genus Novius Mulsant, 1846 (= Rodolia Mulsant, 1850) (Coleoptera, Coccinellidae), play important roles in the biological control of cotton cushion scale pests, especially those belonging to Icerya. Since the best-known species, the vedalia beetle Novius cardinalis (Mulsant, 1850) was introduced into California from Australia, more than a century of successful use in classical biological control, some species of Novius have begun to exhibit some field adaptations to novel but related prey species. Despite their economic importance, relatively little is known about the underlying genetic adaptations associated with their feeding habits. Knowledge of the genome sequence of Novius is a major step towards further understanding its biology and potential applications in pest control. RESULTS We report the first high-quality genome sequence for Novius pumilus (Weise, 1892), a representative specialist of Novius. Computational Analysis of gene Family Evolution (CAFE) analysis showed that several orthogroups encoding chemosensors, digestive, and immunity-related enzymes were significantly expanded (P < 0.05) in N. pumilus compared to the published genomes of other four ladybirds. Furthermore, some of these orthogroups were under significant positive selection pressure (P < 0.05). Notably, transcriptome profiling demonstrated that many genes among the significantly expanded and positively selected orthogroups, as well as genes related to detoxification were differentially expressed, when N. pumilus feeding on the nature prey Icerya compared with the no feeding set. We speculate that these genes are vital in the Icerya adaptation of Novius species. CONCLUSIONS We report the first Novius genome thus far. In addition, we provide comprehensive transcriptomic resources for N. pumilus. The results from this study may be helpful for understanding the association of the evolution of genes related to chemosensing, digestion, detoxification and immunity with the prey adaptation of insect predators. This will provide a reference for future research and utilization of Novius in biological control programs. Moreover, understanding the possible molecular mechanisms of prey adaptation also inform mass rearing of N. pumilus and other Novius, which may benefit pest control.
Collapse
|
10
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
11
|
Du X, Yan X, Zhang W, Zhu Z, Qin W, Dong X, Zhang X. A SNP in Cathepsin L is associated with carapace length trait in giant freshwater prawn Macrobrachium rosenbergii. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wang GJ, Wang WW, Liu Y, Chai LQ, Wang GX, Liu XS, Wang YF, Wang JL. Steroid hormone 20-hydroxyecdysone promotes CTL1-mediated cellular immunity in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1399-1413. [PMID: 32677271 DOI: 10.1111/1744-7917.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Mermithid nematodes, such as Ovomermis sinensis, are used as biological control agents against many insect pests, including cotton bollworm (Helicoverpa armigera). However, given the host's robust immune system, the infection rate of O. sinensis is low, thus restricting its widespread use. To understand the host defense mechanisms against mermithid nematodes, we identified and characterized a protein involved in the recognition of O. sinensis, the potential O. sinensis-binding protein C-type lectin 1 (HaCTL1a and/or HaCTL1b), which was eluted from the surface of O. sinensis after incubation with H. armigera plasma. HaCTL1b is homologous to the previously reported HaCTL1a protein. HaCTL1 was predominantly expressed in hemocytes and was induced by the steroid hormone 20-hydroxyecdysone through ecdysone receptor (HaEcR) or ultraspiracle (HaUSP), or both. Binding assays confirmed the interactions of the HaCTL1 proteins with O. sinensis but not with Romanomermis wuchangensis, a parasitic nematode of mosquito. Moreover, the HaCTL1 proteins were secreted into the hemocoel and promoted hemocyte-mediated encapsulation and phagocytosis. A knockdown of HaEcR and/or HaUSP resulted in compromised encapsulation and phagocytosis. Thus, HaCTL1 appears to modulate cellular immunity in the defense against parasitic nematodes, and the 20-hydroxyecdysone-HaEcR-HaUSP complex is involved in regulating the process.
Collapse
Affiliation(s)
- Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
13
|
Sun YX, Chen C, Xu WJ, Abbas MN, Mu FF, Ding WJ, Zhang HJ, Li J. Functions of Bombyx mori cathepsin L-like in innate immune response and anti-microbial autophagy. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103927. [PMID: 33197480 DOI: 10.1016/j.dci.2020.103927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Cathepsins belongs to the cysteine protease family, which are activated by an acidic environment. They play essential biological roles in the innate immunity and development of animals. Here, we identified a 62 kDa cathepsin L-like protease from the silkworm Bombyx mori. It contained putative conserved domains, including an I29 inhibitor domain and a peptidase C1A domain. The expression analysis revealed that cathepsin L-like was highly produced in the fat body, and 20-hydroxyecdysone (20 E) induced its expression. After challenge with three different types of heat-killed pathogens (Escherichia coli, Beauveria bassiana, and Bacillus cereus), the mRNA levels of cathepsin L-like significantly increased and displayed variable expression patterns in the immune tissues, suggesting its potential role in the innate immune response. The suppression of cathepsin L-like altered the expression of immune-related genes associated with the Toll and IMD pathway. Besides, autophagy-related genes such as Atg6, Atg8, VAMP2, Vps4, and syntaxin expression were also altered, indicating that cathepsin L-like regulates innate immunity and autophagy. Fluorescence microscopic analysis exhibited that cathepsin L-like was localized in the cytoplasm, and it was activated and dispersed throughout the cytoplasm and nucleus following the induction of anti-microbial autophagy. Altogether, our data suggest that cathepsin L-like may regulate the innate immune response and anti-microbial autophagy in the silkworm, B. mori.
Collapse
Affiliation(s)
- Yu-Xuan Sun
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jie Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Fang-Fang Mu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Wen-Jing Ding
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Hai-Jun Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| | - Jun Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China.
| |
Collapse
|
14
|
Rosen R, Lebedev G, Kontsedalov S, Ben-Yakir D, Ghanim M. A De Novo Transcriptomics Approach Reveals Genes Involved in Thrips Tabaci Resistance to Spinosad. INSECTS 2021; 12:67. [PMID: 33451167 PMCID: PMC7828677 DOI: 10.3390/insects12010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip's damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.
Collapse
Affiliation(s)
| | | | | | | | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion 7505101, Israel; (R.R.); (G.L.); (S.K.); (D.B.-Y.)
| |
Collapse
|
15
|
Rojo-Arreola L, García-Carreño F, Romero R, Díaz Dominguez L. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. PLoS One 2020; 15:e0239413. [PMID: 32946520 PMCID: PMC7500676 DOI: 10.1371/journal.pone.0239413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
In arthropods, the cleavage of specific proteins by peptidases has pivotal roles in multiple physiological processes including oogenesis, immunity, nutrition, and parasitic infection. These enzymes are also key players in the larval development, and well-described triggers of molting and metamorphosis. In this work the peptidase complement throughout the larvae development of Penaeus vannamei was quantified at the transcript and activity level using qPCR and fluorogenic substrates designed to be hydrolyzed by class-specific peptidases respectively, providing a detailed identification of the proteolytic repertoire in P. vannamei larvae. Significant changes in the peptidase activity profile were observed. During the lecithotrophic naupliar instars, the dominant peptidase activity and expression derive from cysteine peptidases, suggesting that enzymes of this class hydrolyze the protein components of yolk as the primary amino acid source. At the first feeding instar, zoea, dominant serine peptidase activity was found where trypsin activity is particularly high, supporting previous observations that during zoea the breakdown of food protein is primarily enzymatic. At decapodid stages the peptidase expression and activity is more diverse indicating that a multienzyme network achieves food digestion. Our results suggest that proteolytic enzymes fulfill specific functions during P. vannamei larval development.
Collapse
Affiliation(s)
| | | | - Rogelio Romero
- Centro de Investigaciones Biológicas del Noroeste, México City, México
| | | |
Collapse
|
16
|
Han P, Gong Q, Fan J, Zhang M, Abbas M, Zhu W, Deng S, Xing S, Zhang J. 20-Hydroxyecdysone regulates the prophenoloxidase cascade to immunize Metarhizium anisopliae in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:3149-3158. [PMID: 32310328 DOI: 10.1002/ps.5869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND PPO (prophenoloxidase) cascade plays an important role in resisting invasion of entomogenous fungus. The 20-hydroxyecdysone (20E) exerts potent effect on the innate immunity in many insects. However, whether 20E controls the PPO cascade system against fungi and the regulatory mechanism in insects remains unclear. RESULTS In this study, both the proteome and transcriptome of Locusta migratoria were determined followed by the induction of 20E. Pattern recognition receptor GNBP-2 (Gram-negative binding proteins) has been identified that responded to 20E at both messenger RNA (mRNA) and protein levels. The PPO gene expression in fat body and PO (phenoloxidase) activity in plasma was found significantly induced after 20E injection and during the high-20E developmental stage. However, when 20E signal was blocked by RNA interference (RNAi) of ecdysone receptor, the expression level of PPO and PO activity failed to be increased by 20E. Thus, 20E could not significantly induce the expression of PPO gene and PO activity after RNAi of GNBP-2. Furthermore, 20E treatment notably enhanced the resistance of L. migratoria against Metarhizium anisopliae. Followed by of GNBP-2 silencing, the mortality of nymphs was significantly increased under the stress of Metarhizium anisopliae, and 20E injection could not increase the resistance. CONCLUSION The 20E regulates the PPO system to resist fungal invasion via regulating GNBP-2 in worldwide pest L. migratoria. Our results provide insight into the mechanism of how 20E enhances the antimicrobial immunity, and will be beneficial for modification of entomogenous fungi targeting on hormones and the immune system. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Qitian Gong
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jiqiao Fan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Mureed Abbas
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Wenya Zhu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Sufang Deng
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Shuping Xing
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| |
Collapse
|
17
|
Ferrara TFS, Schneider VK, Lima PS, Bronze FS, Machado MFM, Henrique-Silva F, Soares-Costa A, Carmona AK. Gene expression studies and molecular characterization of a cathepsin L-like from the Asian citrus psyllid Diaphorina citri, vector of Huanglongbing. Int J Biol Macromol 2020; 158:375-383. [PMID: 32360970 DOI: 10.1016/j.ijbiomac.2020.04.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
Huanglongbing (HLB) is a devastating citrus disease associated with Candidatus Liberibacter asiaticus (CLas) and is transmitted by the psyllid Diaphorina citri Kuwayama. Diaphorina citri belongs to Hemiptera order, which has cysteine peptidases as the most abundant proteolytic enzymes present in digestive tract. As cysteine peptidases are involved in different insect development processes, this class of enzymes has acquired biotechnological importance. In this context, we identified a cathepsin L-like (DCcathL1) from the Diaphorina citri transcriptome database and expressed the enzyme in E. coli. Quantitative real-time RT-PCR was conducted to determine DCcathL1 gene expression in different parts and developmental phases of the insect. We observed that DCcathL1 expression in the gut was 2.59 and 2.87-fold higher than in the head and carcass, respectively. Furthermore, DCcathL1 expression was greater in eggs than in nymphs and adults, suggesting a putative role of the enzyme in the embryonic development. In addition, enzymatic inhibitory activity using four recombinant Citrus cystatins were performed. Among them, CsinCPI-2 was the strongest DCcathL1 inhibitor with a Ki value of 0.005 nM. Our results may contribute in the development of strategies for D. citri control, such as silencing the DCcathL1 gene and the use of transgenic plants that overexpress peptidase inhibitors.
Collapse
Affiliation(s)
- Taise F S Ferrara
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Vanessa K Schneider
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil
| | - Patricia Silva Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Fellipe S Bronze
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Marcelo F M Machado
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil
| | - Flavio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil
| | - Andrea Soares-Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905 São Paulo, Brazil.
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, 04039-032 São Paulo, Brazil.
| |
Collapse
|
18
|
Rauf I, Asif M, Amin I, Naqvi RZ, Umer N, Mansoor S, Jander G. Silencing cathepsin L expression reduces Myzus persicae protein content and the nutritional value as prey for Coccinella septempunctata. INSECT MOLECULAR BIOLOGY 2019; 28:785-797. [PMID: 30980445 DOI: 10.1111/imb.12589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut-expressed aphid genes, which may be more easily inhibited by RNA interference (RNAi) constructs, are attractive targets for pest control efforts involving transgenic plants. Here we show that expression of cathepsin L, which encodes a cysteine protease that functions in aphid guts, can be reduced by expression of an RNAi construct in transgenic tobacco. The effectiveness of this approach is demonstrated by up to 80% adult mortality, reduced fecundity, and delayed nymph production of Myzus persicae (green peach aphids) when cathepsin L expression was reduced by plant-mediated RNAi. Consistent with the function of cathepsin L as a gut protease, M. persicae fed on the RNAi plants had a lower protein content in their bodies and excreted more protein and/or free amino acids in their honeydew. Larvae of Coccinella septempunctata (seven-spotted ladybugs) grew more slowly on aphids having reduced cathepsin L expression, suggesting that prey insect nutritive value, and not just direct negative effects of the RNAi construct, needs to be considered when producing transgenic plants for RNAi-mediated pest control.
Collapse
Affiliation(s)
- I Rauf
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - M Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - I Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - R Z Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - N Umer
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Boyce Thompson Institute, Ithaca, NY, USA
| | - S Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - G Jander
- Boyce Thompson Institute, Ithaca, NY, USA
| |
Collapse
|
19
|
Rahmani A, Corre E, Richard G, Bidault A, Lambert C, Oliveira L, Thompson C, Thompson F, Pichereau V, Paillard C. Transcriptomic analysis of clam extrapallial fluids reveals immunity and cytoskeleton alterations in the first week of Brown Ring Disease development. FISH & SHELLFISH IMMUNOLOGY 2019; 93:940-948. [PMID: 31419531 DOI: 10.1016/j.fsi.2019.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/05/2023]
Abstract
The Brown Ring Disease is an infection caused by the bacterium Vibrio tapetis on the Manila clam Ruditapes philippinarum. The process of infection, in the extrapallial fluids (EPFs) of clams, involves alteration of immune functions, in particular on hemocytes which are the cells responsible of phagocytosis. Disorganization of the actin-cytoskeleton in infected clams is a part of what leads to this alteration. This study is the first transcriptomic approach based on collection of extrapallial fluids on living animals experimentally infected by V. tapetis. We performed differential gene expression analysis of EPFs in two experimental treatments (healthy-against infected-clams by V. tapetis), and showed the deregulation of 135 genes. In infected clams, a downregulation of transcripts implied in immune functions (lysosomal activity and complement- and lectin-dependent PRR pathways) was observed during infection. We also showed a deregulation of transcripts encoding proteins involved in the actin cytoskeleton organization such as an overexpression of β12-Thymosin (which is an actin sequestration protein) or a downregulation of proteins that closely interact with capping proteins such as Coactosin, that counteract action of capping proteins, or Profilin. We validated these transcriptomic results by cellular physiological analyses that showed a decrease of the lysosome amounts and the disorganization of actin cytoskeleton in infected hemocytes.
Collapse
Affiliation(s)
- Alexandra Rahmani
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| | - Erwan Corre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, CNRS, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Gaëlle Richard
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Adeline Bidault
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Christophe Lambert
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France
| | - Louisi Oliveira
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Centro de Ciências da Saúde, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vianney Pichereau
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| | - Christine Paillard
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzane, France.
| |
Collapse
|
20
|
Ma KX, Song GG, Wu M, Zhang HC, Chen GW, Liu DZ. Identification of a potential tissue-specific biomarker cathepsin L-like gene from the planarian Dugesia japonica: Molecular cloning, characterization, and expression in response to heavy metal exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:73-79. [PMID: 31075718 DOI: 10.1016/j.ecoenv.2019.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution is a global health issue affecting people worldwide, and the exploration of sensitive biomarkers to assess the toxicity of heavy metals is an important work for researchers. Cathepsin L, role as a tissue-specific biomarker to assess the biological effects of environmental pollutants, has not received much attention. In this work, the full-length cDNA of cathepsin L gene from the planarian Dugesia japonica (designated DjCatL) was cloned by rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of DjCatL is 1161 bp, which encodes a protein of 346 amino acids with a molecular weight of 39.03 kDa. Sequence analysis revealed that DjCatL contains highly conserved ERF/WNIN, GNFD, and GCXGG motifs, which are the features of the cathepsin L protein family. Whole-mount in situ hybridization (WISH) results revealed that the transcripts of DjCatL are specifically distributed in the intestinal system, suggesting that this gene is related to food digestion in planarians. Both quantitative polymerase chain reaction (qPCR) and WISH results revealed that the transcriptional levels of DjCatL are inhibited significantly by heavy metal (Cd2+, Hg2+, and Cu2+) exposure in a dose-dependent manner. Therefore, we proposed that cathepsin L can be used as a tissue-specific biomarker to assess the heavy metal pollution in the aquatic environment.
Collapse
Affiliation(s)
- Ke-Xue Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ge-Ge Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Meng Wu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Gupta AK, Hein GL, Tatineni S. P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression. Virology 2019; 535:20-31. [PMID: 31254744 DOI: 10.1016/j.virol.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs. In contrast, P8 bound strongly and relatively weakly to 21- and 24-nt ds-siRNAs, respectively, suggesting size-specific binding. In EMSA, neither protein bound to 180-nt and 21-nt ssRNAs at detectable levels. Sequence analysis revealed that P7 contains a conserved GW motif. Mutational disruption of this motif resulted in loss of suppression of RNA silencing and pathogenicity enhancement, and failure to complement the silencing suppression-deficient wheat streak mosaic virus. Collectively, these data suggest that P7 and P8 proteins utilize distinct mechanisms to overcome host RNA silencing for successful establishment of systemic infection in planta.
Collapse
Affiliation(s)
- Adarsh K Gupta
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
22
|
Liu X, Zhang S, Shen ZJ, Liu Y, Li Z, Liu X. Vrille is required for larval moulting and metamorphosis of Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT MOLECULAR BIOLOGY 2019; 28:355-371. [PMID: 30485565 DOI: 10.1111/imb.12557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vrille (Vri), a basic leucine zipper transcription factor, plays important roles in insect circadian clock regulation, tracheal development, proliferation, flight and metamorphosis. Here, Helicoverpa armigera was used as a model to investigate the role of Vri in larval moulting and metamorphosis. Sequence analysis results revealed that H. armigera Vri (HaVri) shares a high amino acid identity with other Lepidoptera Vri homologues. Spatial-temporal expression pattern data showed that HaVri expression was highly abundant in larval moulting and metamorphosis stages and was mainly expressed in the midgut and Malpighian tubule during metamorphosis. HaVri knockdown by RNA interference in the fourth-instar larvae prevented larval moulting, and HaVri knockdown in the fifth-instar larvae suppressed midgut remodelling and delayed or blocked metamorphosis. Further studies confirmed that 20-hydroxyecdysone (20E) activated HaVri expression via its heterodimer receptors, ecdysone receptor (EcRB1) and ultraspiracle protein (USP1), whereas methoprene [juvenile hormone analogue (JHA)] promoted HaVri expression via its intracellular receptor methoprene-tolerant (Met1). However, 20E and JHA can counteract each other in the activation of HaVri expression. Together, the present results suggested that HaVri was involved in larval moulting and metamorphosis and was regulated by 20E and JHA in H. armigera.
Collapse
Affiliation(s)
- X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - S Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z J Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Y Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
23
|
Gupta AK, Scully ED, Palmer NA, Geib SM, Sarath G, Hein GL, Tatineni S. Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion. J Gen Virol 2019; 100:889-910. [PMID: 31017568 DOI: 10.1099/jgv.0.001256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus-vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus-vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission.
Collapse
Affiliation(s)
- Adarsh K Gupta
- 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Erin D Scully
- 2Center for Grain and Animal Health Research, Stored Product Insect and Entomology Research Unit, United States Department of Agriculture-Agricultural Research Services (USDA-ARS), Manhattan, KS 66502, USA
| | - Nathan A Palmer
- 3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| | - Scott M Geib
- 4Daniel K. Inouye US Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA
| | - Gautam Sarath
- 3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA.,5Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Gary L Hein
- 6Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Satyanarayana Tatineni
- 1Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,3Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
| |
Collapse
|
24
|
Guo SY, Wu WM, Li SY, Liu Y, Ruan ZF, Ye MQ, Xiao Y, Zhong YJ, Cao Y, Li K, Tian L. 20-Hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction. INSECT MOLECULAR BIOLOGY 2018; 27:724-738. [PMID: 29888823 DOI: 10.1111/imb.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During insect larval-pupal metamorphosis, the obsolete larval organs and tissues undergo histolysis and programmed cell death to recycle cellular materials. It has been demonstrated that some cathepsins are essential for histolysis in larval tissues, but the process of tissue destruction is not well documented. Fat body, the homologous organ to mammalian liver and adipose tissue, goes through a distinct destruction process during larval-pupal transition. Herein, we found that most of the Bombyx proteases - including Bombyx cathepsin B (BmCatB) (BmCatLL-2), Bombyx cathepsin D (BmCatD), Bombyx cathepsin L like-1 (BmCatLL-1) and -2(BmCatLL-2), Bombyx fibroinase (BmBcp), Bombyx matrix metalloprotease (BmMmp), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs 1 (BmAdamTS-1), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs like (BmAdamTS L) and Bombyx cysteine protease inhibitor (Bmbcpi)- were expressed highly in fat body during feeding and metamorphosis, with a peak occurring during the nonfeeding moulting or prepupal stage, as well as being responsive to 20-hydroxyecdysone (20E). The aforementioned protease genes expression was upregulated by injection of 20E into the feeding larvae, while blocking 20E signalling transduction led to downregulation. Western blotting and immunofluorescent staining of BmCatB and BmBcp confirmed the coincident variation of their messenger RNA (mRNA) and protein level during the development and after the treatments. Moreover, BmCatB, BmBcp, BmMmp and BmAdamTS-1 RNA interference all led to blockage of larval fat body destruction. Taken together, we conclude that 20E regulates larval fat body destruction by upregulating related protease gene expression and protein levels during larval-pupal transition.
Collapse
Affiliation(s)
- S-Y Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - W-M Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Liu
- Shanghai Generay Biotech Co. Ltd, Shanghai, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Z F Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M-Q Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y Xiao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y-J Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - K Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Liu HW, Wang LL, Tang X, Dong ZM, Guo PC, Zhao DC, Xia QY, Zhao P. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process. J Proteomics 2018; 173:115-125. [DOI: 10.1016/j.jprot.2017.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023]
|
26
|
Sun YX, Tang L, Wang P, Abbas MN, Tian JW, Zhu BJ, Liu CL. Cathepsin L-like protease can regulate the process of metamorphosis and fat body dissociation in Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:114-123. [PMID: 28958702 DOI: 10.1016/j.dci.2017.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Cathepsins are a group of protease, located in lysosome and play a vital role in physiological process. Here, we reported cathepsin L-like protease (Ap-cathL), which contained an open reading frame of 1155 bp and encoding 385 amino acid residues protein. The I29 inhibitor domain and peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) putative conserved domains were detected in Ap-cathL. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ap-cathL highly expressed in the fat body and midgut. The high expression during the molting stage, pupal stage and following 20E (20-hydroxyecdysone) treatment indicated that it maybe involved in the process of molting and metamorphosis. In addition, depletion of Ap-cathL influenced the expression of apoptosis pathway related genes. The protease inhibitor and RNA interference experiments showed that Ap-cathL was involved in the fat body dissociation of A. pernyi. These results suggest that Ap-cathL may involve in the process of metamorphosis and fat body dissociation of A. pernyi.
Collapse
Affiliation(s)
- Yu-Xuan Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lin Tang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Pei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | | | - Ji-Wu Tian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Bao-Jian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Chao-Liang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
27
|
Li YB, Yang T, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Regulates the Conjugation of Autophagy-Related Proteins 12 and 5 in a Concentration and Time-Dependent Manner to Promote Insect Midgut Programmed Cell Death. Front Endocrinol (Lausanne) 2018; 9:28. [PMID: 29467720 PMCID: PMC5808327 DOI: 10.3389/fendo.2018.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12-ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12-ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12-ATG5 in a concentration and time-dependent manner. The ATG12-ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12-ATG5 conjugate level decreased at the time of pupation. At low concentrations (2-5 µM) over a short time course (1-48 h), 20E promoted the conjugation of ATG12-ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12-ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12-ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD.
Collapse
Affiliation(s)
- Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
- *Correspondence: Xiao-Fan Zhao,
| |
Collapse
|
28
|
Zhuo XR, Chen L, Wang GJ, Liu XS, Wang YF, Liu K, Yu XQ, Wang JL. 20-Hydroxyecdysone promotes release of GBP-binding protein from oenocytoids to suppress hemocytic encapsulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:53-64. [PMID: 29175381 DOI: 10.1016/j.ibmb.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Growth-blocking peptide (GBP) is an insect cytokine that stimulates plasmatocyte adhesion, thereby playing a critical role in encapsulation reaction. It has been previously demonstrated that GBP-binding protein (GBPB) is released upon oenocytoid lysis in response to GBP and is responsible for subsequent clearance of GBP from hemolymph. However, current knowledge about GBPB is limited and the mechanism by which insects increase GBPB levels to inactivate GBP remains largely unexplored. Here, we have identified one GBP precursor (HaGBP precursor) gene and two GBPB (namely HaGBPB1 and HaGBPB2) genes from the cotton bollworm, Helicoverpa armigera. The HaGBP precursor was found to be predominantly expressed in fat body, whereas HaGBPB1 and HaGBPB2 were mainly expressed in hemocytes. Immunological analyses indicated that both HaGBPB1 and HaGBPB2 are released from hemocytes into the plasma during the wandering stage. Additionally, 20-hydroxyecdysone (20E) treatment or bead challenge could promote the release of HaGBPB1 and HaGBPB2 at least partly from oenocytoids into the plasma. Furthermore, we demonstrate that the N-terminus of HaGBPB1 is responsible for binding to HaGBP and suppresses HaGBP-induced plasmatocyte spreading and encapsulation. Overall, this study helps to enrich our understanding of the molecular mechanism underlying 20E mediated regulation of plasmatocyte adhesion and encapsulation via GBP-GBPB interaction.
Collapse
Affiliation(s)
- Xiao-Rong Zhuo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Lei Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qiang Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
29
|
Sun YX, Zhu BJ, Tang L, Sun Y, Chen C, Nadeem Abbas M, Wang L, Qian C, Wei GQ, Liu CL. Cathepsin O is involved in the innate immune response and metamorphosis of Antheraea pernyi. J Invertebr Pathol 2017; 150:6-14. [DOI: 10.1016/j.jip.2017.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/11/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023]
|
30
|
Wang P, Zhuo XR, Tang L, Liu XS, Wang YF, Wang GX, Yu XQ, Wang JL. C-type lectin interacting with β-integrin enhances hemocytic encapsulation in the cotton bollworm, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:29-40. [PMID: 28572000 DOI: 10.1016/j.ibmb.2017.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
The encapsulation reaction in invertebrates is analogous to granuloma formation in vertebrates, and this reaction is severely compromised when ecdysone signaling is blocked. However, the molecular mechanism underlying the encapsulation reaction and its regulation by ecdysone remains obscure. In our previous study, we found that the C-type lectin HaCTL3, from the cotton bollworm Helicoverpa armigera, is involved in anti-bacterial immune response, acting as a pattern recognition receptor (PRR). In the current study, we demonstrate that HaCTL3 is involved in defense against parasites and directly binds to the surface of nematodes. Our in vitro and in vivo studies indicate that HaCTL3 enhances hemocytic encapsulation and melanization, whereas H. armigera β-integrin (Haβ-integrin), located on the surface of hemocytes, participates in encapsulation. Additionally, co-immunoprecipitation experiments reveal HaCTL3 interacts with Haβ-integrin, and knockdown of Haβ-integrin leads to reduced encapsulation of HaCTL3-coated beads. These results indicate that Haβ-integrin serves as a hemocytic receptor of HaCTL3 during the encapsulation reaction. Furthermore, we demonstrate that 20-hydroxyecdysone (20E) treatment dramatically induces the expression of HaCTL3, and knockdown of the 20E receptor (EcR)/ultraspiracle (USP), abrogates this response. Overall, this study provides the first evidence of the presence of a hemocytic receptor (Haβ-integrin), that interacts with the PRR HaCTL3 to facilitate encapsulation reaction in insects and demonstrates the regulation of this process by the steroid hormone ecdysone.
Collapse
Affiliation(s)
- Pan Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Rong Zhuo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Lin Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qiang Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
31
|
Han P, Han J, Fan J, Zhang M, Ma E, Li S, Fan R, Zhang J. 20-Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:128-139. [PMID: 28254619 DOI: 10.1016/j.dci.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/26/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
20-hydroxyecdysone (20E) has been implicated in regulating the immune response in insects. Conflicting conclusions on 20E regulating immunity have been reported in model holometabolous species. However, in hemimetabolous insects, the role of 20E as an immune-suppressor or activator and the mechanism remains unclear. The migratory locust Locusta migratoria is a representative member of hemimetabolous insects. Here, digital gene expression (DGE) profiles of Locusta migratoria treated with 20E were analyzed. Pattern recognition receptors [peptidoglycan recognition protein (PGRP-SA), PGRP-LE, and gram-negative binding protein (GNBP3)] and antimicrobial peptides (defensin, diptericin, and i-type lysozyme) were significantly induced by 20E in fat body. These immune-related genes significantly increased their mRNA levels during the high-20E stage. Antibacterial activities in plasma were enhanced after 20E injection and during the high-20E developmental stage. Conversely, when 20E signal was suppressed by RNAi of EcR (ecdysone receptor), the expression levels of these genes and antibacterial activities failed to be increased by 20E injection and during the high-20E developmental stage, and the mortality increased after being infected by entomogenous fungus. The knockdown of PGRP-SA inhibited the expression level of defensin, diptericin and i-type lysozyme in fat body and reduced antibacterial activities in plasma. 20E injection could not significantly induce the expression of antimicrobial peptides after RNAi of PGRP-SA. These results demonstrated that 20E enhanced the immune response by activating PGRP-SA in L. migratoria.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiao Han
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Jiqiao Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Min Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Enbo Ma
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renjun Fan
- Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| | - Jianzhen Zhang
- Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, 030006, China.
| |
Collapse
|
32
|
Song Y, Villeneuve DL, Toyota K, Iguchi T, Tollefsen KE. Ecdysone Receptor Agonism Leading to Lethal Molting Disruption in Arthropods: Review and Adverse Outcome Pathway Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4142-4157. [PMID: 28355071 PMCID: PMC6135102 DOI: 10.1021/acs.est.7b00480] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| | | | - Kenji Toyota
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV). P.O. Box 5003, N-1432 Ås, Norway
- Corresponding Author: Knut Erik Tollefsen, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00, , You Song, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway. Tlf.: 02348, Fax: (+47) 22 18 52 00,
| |
Collapse
|
33
|
Wang XY, Bai SF, Li X, An SH, Yin XM, Li XC. Differential responses of Helicoverpa armigera C-type immunlectin genes to the endoparasitoid Campoletis chlorideae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21379. [PMID: 28206701 DOI: 10.1002/arch.21379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The C-type lectins mediate nonself recognition in insects. The previous studies focused on host immunlectin response to bacterial infection; however, the molecular basis of immunlectin reactions to endoparasitoids has not been elucidated. The present study investigated the effect of parasitization by Campoletis chlorideae on hemagglutination activity (HA; defined as the ability of lectin to agglutinate erythrocytes or other cells), and transcriptional expression of C-type immunlectin genes in the larval host, Helicoverpa armigera. Parasitization induced four- to eightfold higher HA in the parasitized larvae, compared to nonparasitized larvae at days 2 and 6 postparasitization (PP), however inhibited HA at other days PP. Eight C-type lectins were differentially expressed in different host developmental stages, from feeding to wandering stage. The mRNA levels of HaCTL1, HaCTL3, HaCTL4, and HaCTL5 were upregulated and HaCTL2 and HaCTL7 were downregulated. Tissue analysis showed that HaCTLs were mainly expressed in fat body or hemocytes, while HaCTL5 was highly expressed in testes. The effects of parasitization on the lectin expression patterns differed. Lectins except HaCTL6 or HaCTL5 were significantly down- or upregulated in parasitized larvae at day 4 or 6 PP compared with that of nonparasitized larvae. We infer from our results that C-type immunlectins are involved in host-parasitoid interactions, and parasitization alter host immunlectin levels both in inhibiting and promoting host immune defenses to endoparasitoids. These immunlectin genes indicated an altered physiological status of the host insect, depending on developmental stage, tissue, and parasitization.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Su-Fen Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin-Ming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Chun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
34
|
Yang C, Lin XW, Xu WH. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:21-30. [PMID: 28153644 DOI: 10.1016/j.ibmb.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Wang P, Zhuo XR, Tang L, Liu XS, Wang YF, Wang GX, Yu XQ, Wang JL. WITHDRAWN: C-type lectin interacting with β-integrin enhances hemocytic encapsulation in the cotton bollworm, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017:S0965-1748(17)30024-3. [PMID: 28232041 DOI: 10.1016/j.ibmb.2017.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error. The article was subsequently accepted and published and can be viewed here: https://doi.org/10.1016/j.ibmb.2017.05.005 The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pan Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Rong Zhuo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Lin Tang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao-Qiang Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; School of Biological Sciences, University of Missouri-Kansas City, MO 64110, USA
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
36
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
37
|
The expression analysis of cysteine proteinase-like protein in wild-type and nm2 mutant silkworm (Lepidoptera: Bombyx mori). Gene 2016; 586:170-5. [PMID: 27080953 DOI: 10.1016/j.gene.2016.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 11/21/2022]
Abstract
The mutant of non-molting in the 2nd instar (nm2) is a recently discovered mutant of Bombyx mori. The mutant cannot molt and exuviate and died successively in premolting of 2nd instar. In this study, two dimensional gel electrophoresis (2-DE) was performed to screen the differential expression of epidermis proteins in pre-molting larvae of 2nd instar between the wild-type and nm2 mutant. Interestingly, a cysteine proteinase-like (BmCP-like) protein in nm2 was significantly higher than that of the wild-type. The transcription profiles of BmCP-like gene were investigated by quantitative real-time PCR (qRT-PCR), and the result revealed that BmCP-like mRNA was remarkably higher in nm2 than that of the wild-type. The transcription level of BmCP-like was high in the epidermis while low in the midgut and hemocytes, and fluctuate with development, while the highest in the newly molted larvae of 3rd and lowest in the pre-molting of the 1st and 2nd instar. The body of injected BmCP-like RNAi of 2nd larvae formed a dark spots around the injection place. These results suggested the BmCP-like gene play a key role in the degradation of the cuticle and epidermis layer during molting of 1st and 2nd instar silkworm. Furthermore, the ORF of BmCP-like gene in nm2 was the same to the wild-type. These studies give us a hint that BmCP-like gene maybe not the major gene responsible for nm2, but BmCP-like gene might participate in the immune systems of silkworm, and the upregulation of BmCP-like transcription in the nm2 mutant might be induced by the disadvantages that limit the growth and development of silkworm in order to survive.
Collapse
|
38
|
G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Sci Rep 2016; 6:29205. [PMID: 27412951 PMCID: PMC4944123 DOI: 10.1038/srep29205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism.
Collapse
|
39
|
Legrand E, Forget-Leray J, Duflot A, Olivier S, Thomé JP, Danger JM, Boulangé-Lecomte C. Transcriptome analysis of the copepod Eurytemora affinis upon exposure to endocrine disruptor pesticides: Focus on reproduction and development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:64-75. [PMID: 27111276 DOI: 10.1016/j.aquatox.2016.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/19/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Copepods-which include freshwater and marine species-represent the most abundant group of aquatic invertebrates. Among them, the calanoid copepod Eurytemora affinis is widely represented in the northern hemisphere estuaries and has become a species of interest in ecotoxicology. Like other non-target organisms, E. affinis may be exposed to a wide range of chemicals such as endocrine disruptors (EDs). This study investigated the gene expression variation in E. affinis after exposure to ED pesticides-chosen as model EDs-in order to (i) improve the knowledge on their effects in crustaceans, and (ii) highlight relevant transcripts for further development of potential biomarkers of ED exposure/effect. The study focused on the reproduction function in response to ED. Copepods were exposed to sublethal concentrations of pyriproxyfen (PXF) and chlordecone (CLD) separately. After 48h, males and females (400 individuals each) were sorted for RNA extraction. Their transcriptome was pyrosequenced using the Illumina(®) technology. Contigs were blasted and functionally annotated using Blast2GO(®). The differential expression analysis between ED- and acetone-exposed organisms was performed according to sexes and contaminants. Half of the 19,721 contigs provided by pyrosequencing were annotated, mostly (80%) from arthropod sequences. Overall, 2,566 different genes were differentially expressed after ED exposures in comparison with controls. As many genes were differentially expressed after PXF exposure as after CLD exposure. In contrast, more genes were differentially expressed in males than in females after both exposures. Ninety-seven genes overlapped in all conditions. Finally, 31 transcripts involved in reproduction, growth and development, and changed in both chemical exposures were selected as potential candidates for future development of biomarkers.
Collapse
Affiliation(s)
- Eléna Legrand
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Joëlle Forget-Leray
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Aurélie Duflot
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Stéphanie Olivier
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Jean-Pierre Thomé
- University of Liège, Laboratory of Animal Ecology and Ecotoxicology (LEAE), Centre for Analytical Research and Technology (CART), 4000 SART-Tilman, Belgium.
| | - Jean-Michel Danger
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| | - Céline Boulangé-Lecomte
- Normandy University, ULH, UMR-I 02 INERIS, Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO)-SFR SCALE 4116, F-76600 Le Havre, France.
| |
Collapse
|
40
|
Amiri A, Bandani AR, Alizadeh H. MOLECULAR IDENTIFICATION OF CYSTEINE AND TRYPSIN PROTEASE, EFFECT OF DIFFERENT HOSTS ON PROTEASE EXPRESSION, AND RNAI MEDIATED SILENCING OF CYSTEINE PROTEASE GENE IN THE SUNN PEST. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:189-209. [PMID: 26609789 DOI: 10.1002/arch.21311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting.
Collapse
Affiliation(s)
- Azam Amiri
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Bandani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
41
|
Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Sci Rep 2015; 5:13965. [PMID: 26355841 PMCID: PMC4564816 DOI: 10.1038/srep13965] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
The acquisition of physiological strategies to tolerate novel thermal conditions allows organisms to exploit new environments. As a result, thermal tolerance is a key determinant of the global distribution of biodiversity, yet the constraints on its evolution are not well understood. Here we investigate parallel evolution of cold tolerance in New Zealand stick insects, an endemic radiation containing three montane-occurring species. Using a phylogeny constructed from 274 orthologous genes, we show that stick insects have independently colonized montane environments at least twice. We compare supercooling point and survival of internal ice formation among ten species from eight genera, and identify both freeze tolerance and freeze avoidance in separate montane lineages. Freeze tolerance is also verified in both lowland and montane populations of a single, geographically widespread, species. Transcriptome sequencing following cold shock identifies a set of structural cuticular genes that are both differentially regulated and under positive sequence selection in each species. However, while cuticular proteins in general are associated with cold shock across the phylogeny, the specific genes at play differ among species. Thus, while processes related to cuticular structure are consistently associated with adaptation for cold, this may not be the consequence of shared ancestral genetic constraints.
Collapse
|
42
|
Saikhedkar N, Summanwar A, Joshi R, Giri A. Cathepsins of lepidopteran insects: Aspects and prospects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:51-59. [PMID: 26210259 DOI: 10.1016/j.ibmb.2015.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/20/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Molecular understanding of lepidopteran physiology has revealed that proteases consist of one of the central regulatory/reacting system for insect growth and survival. Among the various proteases, cathepsins are the most crucial cellular proteases, which play vital roles during insect development. In the present review, we have discussed various aspects of the lepidopteran insect cathepsins, emphasizing their roles in processes like development, growth, metamorphosis, apoptosis and immunity. Cathepsins are categorized into different types on the basis of their sequence diversification, leading to variation in structure and catalytic function. Cathepsins exhibit tissue and stage specific expression pattern which is fine-tuned by a delicate balance of expression, compartmentalization, zymogen activation, inhibition by protein inhibitors and degradation. The indispensability of cathepsins as cellular proteases in the above mentioned processes proposes them as novel targets for designing effective and specific insect controlling strategies.
Collapse
Affiliation(s)
- Nidhi Saikhedkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India
| | - Aarohi Summanwar
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Rakesh Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MS, India.
| | - Ashok Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, MS, India.
| |
Collapse
|
43
|
Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells. Int J Biochem Cell Biol 2015; 64:126-35. [DOI: 10.1016/j.biocel.2015.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/11/2015] [Accepted: 03/26/2015] [Indexed: 11/21/2022]
|
44
|
Riesgo A, Maldonado M, López-Legentil S, Giribet G. A Proposal for the Evolution of Cathepsin and Silicatein in Sponges. J Mol Evol 2015; 80:278-91. [DOI: 10.1007/s00239-015-9682-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023]
|
45
|
Wang JL, Chen L, Tang L, Zhao HB, Liu XS, Wang YF. 20-hydroxyecdysone transcriptionally regulates humoral immunity in the fat body of Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2014; 23:842-856. [PMID: 25224836 DOI: 10.1111/imb.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
20-hydroxyecdysone (20E) increases its titre level during the wandering stage and influences innate immunity in many holometabolous insects. However, the function of 20E as an immune-activator or -suppressor needs to be determined. Here, the transcriptome of the peptidoglycan-challenged fat body of the cotton bollworm, Helicoverpa armigera, was analysed using Illumina sequencing technology. Overall, 32 073 unigenes were assembled with a mean length of 643 nucleotides. Gene expression dynamics in the fat body during the wandering stage and of peptidoglycan-challenged individuals were investigated by the digital gene expression system. Pattern recognition receptors [such as peptidoglycan recognition protein B (PGRP B), PGRP S2 precursor, C-type lectin 5, hemolin and β-1,3-glucan recognition protein 2a] and antimicrobial peptides (namely attacin, gloverin, gloverin precursor, gloverin-like, cecropin 2, cecropin D, cecropin D-like and i-type lysozyme) significantly increased their mRNA levels during the wandering stage. 20E treatment significantly induced the expression of these genes. Antibacterial activities were also enhanced during the wandering stage and after 20E injections. Bacillus subtilis peptidoglycan induced the expression of PGRP D, PGRP B, PGRP S2 precursor, gloverin, gloverin precursor, gloverin-like, cecropin 2, cecropin D and lebocin-like genes. These results demonstrate that 20E acts by enhancing humoral immunity in H. armigera.
Collapse
Affiliation(s)
- J-L Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
46
|
Sapountzis P, Duport G, Balmand S, Gaget K, Jaubert-Possamai S, Febvay G, Charles H, Rahbé Y, Colella S, Calevro F. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: molting or gut phenotypes specifically induced by injection or feeding treatments. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:20-32. [PMID: 24859468 DOI: 10.1016/j.ibmb.2014.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | - Gabrielle Duport
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | - Séverine Balmand
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | - Karen Gaget
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | | | - Gérard Febvay
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | - Hubert Charles
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France; Inria Rhône-Alpes, Bamboo, F-38330 Monbonnot Saint-Martin, France.
| | - Yvan Rahbé
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France; Inria Rhône-Alpes, Bamboo, F-38330 Monbonnot Saint-Martin, France.
| | - Stefano Colella
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| | - Federica Calevro
- UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, 20 Avenue Einstein, F-69621 Villeurbanne, France.
| |
Collapse
|
47
|
Hou Y, Li J, Li Y, Dong Z, Xia Q, Yuan YA. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites. Protein Sci 2014; 23:735-46. [PMID: 24639361 PMCID: PMC4093950 DOI: 10.1002/pro.2457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Jianwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Y Adam Yuan
- Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China,National University of Singapore (Suzhou) Research InstituteJiangsu, 215123, China,*Correspondence to: Y. Adam Yuan, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. E-mail:
| |
Collapse
|
48
|
Chen H, Yin Y, Feng E, Xie X, Wang Z. Structure and expression of a cysteine proteinase gene from Spodoptera litura and its response to biocontrol fungus Nomuraea rileyi. INSECT MOLECULAR BIOLOGY 2014; 23:255-268. [PMID: 24467606 DOI: 10.1111/imb.12078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cysteine proteinases (Cyps) play vital roles in many biological processes, including physiological and pathological reactions. In the present study, we cloned a full cDNA of SlCyp, encoding a 344-amino-acid protein from Spodoptera litura. The putative amino acid sequence shared >75% identity with Cyps from other insects. A phylogenetic analysis revealed that SlCyp is closely related to other known lepidopteran Cyps. Real-time PCR and Western blotting analyses showed that SlCyp is induced by Nomuraea rileyi infection in all the tissues tested. The strongest SlCyp mRNA and protein expression was found in haemocytes, followed by the fat bodies, of unchallenged and N. rileyi-challenged S. litura. A time-course analysis showed that SlCyp mRNA and protein expression levels were upregulated in the haemocytes and fat bodies by N. rileyi infection. Upon N. rileyi infection, the proteolytic activities of SlCyp were also significantly higher in the haemolymph than in normal or phosphate-buffered-saline-challenged controls. These results suggest that SlCyp plays an important role in the innate immunity of S. litura in response to N. rileyi. SlCyp mRNA and protein expression and activities were also elevated during sixth-instar moulting and metamorphosis. Knocking down SlCyp transcripts with double-stranded RNA interference caused prepupal, pupal, and adult phenotypic changes, and SlCyp-silenced mutant larvae displayed a significantly lower survival rate after N. rileyi infection. These facts suggest that SlCyp plays a significant role in resisting N. rileyi infection and an essential role in larval development. Our data should facilitate the development of techniques for S. litura control.
Collapse
Affiliation(s)
- H Chen
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing, China; Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, CAS, Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Ge ZY, Wan PJ, Li GQ, Xia YG, Han ZJ. Characterization of cysteine protease-like genes in the striped rice stem borer, Chilo suppressalis. Genome 2014; 57:79-88. [DOI: 10.1139/gen-2013-0188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The striped rice stem borer, Chilo suppressalis (Walker), is a major pest for rice production in China and the rest of Southeast Asia. Chemical control is the main means to alleviate losses due to this pest, which causes serious environmental pollution. An effective and environmentally friendly approach is needed for the management of the striped rice stem borer. Cysteine proteases in insects could be useful targets for pest management either through engineering plant protease inhibitors, targeting insect digestive cysteine proteases, or through RNA interference-based silencing of cysteine proteases, disrupting developmental regulation of insects. In this study, eight cysteine protease-like genes were identified and partially characterized. The genes CCO2 and CCL4 were exclusively expressed in the larval gut, and their expression was affected by the state of nutrition in the insect. The expression of CCL2, CCL3, and CCO1 was significantly affected by the type of host plant, suggesting a role in host plant – insect interactions. Our initial characterization of the striped rice stem borer cysteine protease-like genes provides a foundation for further research on this important group of genes in this major insect pest of rice.
Collapse
Affiliation(s)
- Zhao-Yu Ge
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang Street, Nanjing 210095, China
- Chongqing Jiulongpo District Agriculture, Forestry and Water Resources Bureau, No. 47 Shipingqiao Heng Street, Jiulongpo, Chongqing, China
| | - Pin-Jun Wan
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang Street, Nanjing 210095, China
| | - Guo-Qing Li
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang Street, Nanjing 210095, China
| | - Yong-gui Xia
- Chongqing Jiulongpo District Agriculture, Forestry and Water Resources Bureau, No. 47 Shipingqiao Heng Street, Jiulongpo, Chongqing, China
| | - Zhao-Jun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang Street, Nanjing 210095, China
| |
Collapse
|
50
|
Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics 2013; 14:815. [PMID: 24261877 PMCID: PMC4046741 DOI: 10.1186/1471-2164-14-815] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs. RESULTS We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. CONCLUSIONS This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.
Collapse
Affiliation(s)
- Astrid Bryon
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| | | | | | | | | |
Collapse
|