1
|
Lu ZJ, Xia T, Zhang C, He Q, Zhong H, Fu SC, Yuan XF, Liu XQ, Liu YX, Chen W, Yi L, Yu HZ. Characterization of an RR-2 cuticle protein DcCP8 and its potential application based on SPc nanoparticle-wrapped dsRNA in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:6262-6275. [PMID: 39092895 DOI: 10.1002/ps.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The insect cuticle consists of chitin fibers and a protein matrix, which plays an important role in protecting the body from invasion of various pathogens and prevents water loss. Periodic synthesis and degradation of the cuticle is required for the growth and development of insects. Key genes involved in cuticle formation have long been considered a potential target for pest control. RESULTS In this study, a member of the RR-2 subfamily of cuticular protein 8 (DcCP8) was identified from the Diaphorina citri genome database. Immunofluorescence analysis suggested that DcCP8 was mainly located in the Diaphorina citri exocuticle and can be induced to up-regulate 12 h following 20-hydroxyecdysone (20E) treatment. Silencing of DcCP8 by RNA interference (RNAi) significantly disrupted the metamorphosis to the adult stage, and improved the permeability of the cuticle. Transmission electron microscopy (TEM) analysis revealed that the synthesis of the exocuticle was impressed after silencing of DcCP8. Furthermore, the recombinant DcCP8 protein exhibited chitin-binding properties in vitro, down-regulation of DcCP8 significantly inhibited expression levels of chitin metabolism-related genes. Additionally, a sprayable RNAi method targeting DcCP8 based on star polycation (SPc) nanoparticles-wrapped double-stranded RNA (dsRNA) significantly increased Diaphorina citri mortality. Transcriptome sequencing further confirmed that genes associated with the endocytic pathway and immune response were up-regulated in Diaphorina citri after SPc treatment. CONCLUSIONS The current study indicated that DcCP8 is critical for the formation of Diaphorina citri exocuticles, and lays a foundation for Diaphorina citri control based on large-scale dsRNA nanoparticles. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Can Zhang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Qing He
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Hong Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shang-Cheng Fu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Fang Yuan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Qiang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Wei Chen
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, China
| |
Collapse
|
2
|
da Silva R, Viana VE, Avila LA, Zotti MJ, Smagghe G, Junior AM, Camargo ER, Fajardo AR. Advances on polymeric nanocarriers for sustainable agriculture: Enhancing dsRNA/siRNA delivery to combat agricultural pests. Int J Biol Macromol 2024; 282:137000. [PMID: 39476891 DOI: 10.1016/j.ijbiomac.2024.137000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
The application of exogenous RNA for gene-silencing strategies has gained significant traction in agriculture, offering a highly efficient and eco-friendly alternative to conventional plant protection methods. This success has been driven by advances in biotechnology, from the design of long double-stranded RNA (dsRNA) and small interfering RNA (siRNA) molecules to the development of nanocarrier systems that address the challenge of RNA delivery into plant cells. In particular, polymer-based nanocarriers have emerged as a promising solution for enhancing the stability and delivery efficiency of RNA molecules. This review provides a comprehensive overview of the current state of research on the use of polymeric nanocarriers in RNA interference (RNAi) systems for crop protection. It examines key technological developments that have enabled the effective delivery of dsRNA/siRNA to target organisms, with a focus on the unique advantages polymers offer as carriers. Recent studies highlight significant progress in the preparation, characterization, and application of polymeric nanocarriers for RNA encapsulation and delivery. The review also explores the environmental and health challenges posed by these technologies, emphasizing the need for sustainable approaches in their development. Specifically, the production of nanocarriers must adhere to the principles of green chemistry, prioritizing chemical modification routes that reduce harmful residues, such as toxic solvents. Finally, this paper discusses both the current challenges and future prospects of using polymer-based nanocarriers in sustainable agriculture, offering critical insights into their potential to transform crop protection through RNAi technologies.
Collapse
Affiliation(s)
- Renata da Silva
- Laboratory of Technology and Development of Composites and Polymer Materials (LaCoPol), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Vívian E Viana
- Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Luis A Avila
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Moisés J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium; Institute of Entomology, Guizhou University, Guiyang, China; Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Aldo Merotto Junior
- Graduate Group in Plant Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Edinalvo R Camargo
- Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymer Materials (LaCoPol), Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Quilez-Molina AI, Niño Sanchez J, Merino D. The role of polymers in enabling RNAi-based technology for sustainable pest management. Nat Commun 2024; 15:9158. [PMID: 39443470 PMCID: PMC11499660 DOI: 10.1038/s41467-024-53468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The growing global food demand, coupled with the limitations of traditional pest control methods, has driven the search for innovative and sustainable solutions in agricultural pest management. In this review, we highlight polymeric nanocarriers for their potential to deliver double-stranded RNA (dsRNA) and control pests through the gene-silencing mechanism of RNA interference (RNAi). Polymer-dsRNA systems have shown promise in protecting dsRNA, facilitating cellular uptake, and ensuring precise release. Despite these advances, challenges such as scalability, cost-efficiency, regulatory approval, and public acceptance persist, necessitating further research to overcome these obstacles and fully unlock the potential of RNAi in sustainable agriculture.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, Valladolid, Spain
- Study, Preservation, and Recovery of Archaeological, Historical and Environmental Heritage (AHMAT), Condensed Matter Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Valladolid, Spain
| | - Jonatan Niño Sanchez
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia, Spain
- iuFOR, Sustainable Forest Management Research Institute, University of Valladolid, Palencia, Spain
| | - Danila Merino
- Sustainable Biocomposite Materials, POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Wei ZH, Zhao P, Ning XY, Xie YQ, Li Z, Liu XX. Nanomaterial-Encapsulated dsRNA-Targeting Chitin Pathway─A Potential Efficient and Eco-Friendly Strategy against Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20905-20917. [PMID: 39258562 DOI: 10.1021/acs.jafc.4c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.
Collapse
Affiliation(s)
- Zi-Han Wei
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin-Yuan Ning
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Qing Xie
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
6
|
Cheng X, Zhou Q, Xiao J, Qin X, Zhang Y, Li X, Zheng W, Zhang H. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. J Nanobiotechnology 2024; 22:544. [PMID: 39237945 PMCID: PMC11378424 DOI: 10.1186/s12951-024-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.
Collapse
Affiliation(s)
- Xiaoqin Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiedan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Wang S, Li H, Shi R, Fu Y. Symbiont-mediated antisense RNA delivery controls Nosema ceranae infections in Apis mellifera. J Invertebr Pathol 2024; 207:108185. [PMID: 39242021 DOI: 10.1016/j.jip.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Nosema ceranae is a main parasite for honeybees (Apis mellifera) which causes colony collapse in spring. Effective management of N. ceranae infections in bees is imperative for beekeepers. RNA interference (RNAi) has been proven a promising method to control bee pathogens, including IAPV, Varroa destructor, and Nosema. Most studies in this field focused on oral inoculation of double-stranded RNA (dsRNA). We developed an easier method with long-term RNAi effects by engineering the bee symbiont, Bacillus subtilis, to deliver single-stranded antisense RNA (asRNA) in the bee guts, targeting N. ceranae genes. We interfered with the expression of a spore wall protein (SWP12) and a polar tube protein (PTP3) of N. ceranae, resulting in a 60.5% increase in bee lifespan and a 72.7% decrease in Nosema spore load. Our research introduced a novel approach to bee parasite control: B. subtilis-mediated asRNA delivery. Our strategy simplifies the procedure of RNAi, presenting a more efficient mechanism with both prophylactic and therapeutic effects on N. ceranae-infected bees.
Collapse
Affiliation(s)
- Sihan Wang
- Hangzhou Foreign Language School, Hangzhou, Zhejiang, China
| | - Haoyang Li
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Ruyi Shi
- Hangzhou Sipu Edu & Tech Co., Ltd., Hangzhou, Zhejiang, China
| | - Yuqi Fu
- Hangzhou Sipu Edu & Tech Co., Ltd., Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Ouyang H, Sun G, Li K, Wang R, Lv X, Zhang Z, Zhao R, Wang Y, Shu H, Jiang H, Zhang S, Wu J, Zhang Q, Chen X, Liu T, Ye W, Wang Y, Wang Y. Profiling of Phakopsora pachyrhizi transcriptome revealed co-expressed virulence effectors as prospective RNA interference targets for soybean rust management. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39225562 DOI: 10.1111/jipb.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.
Collapse
Affiliation(s)
- Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Lv
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory (ZBBL), Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
9
|
Opdensteinen P, Charudattan R, Hong JC, Rosskopf EN, Steinmetz NF. Biochemical and nanotechnological approaches to combat phytoparasitic nematodes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2444-2460. [PMID: 38831638 PMCID: PMC11332226 DOI: 10.1111/pbi.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Jason C. Hong
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Erin N. Rosskopf
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, University of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Wasule DL, Shingote PR, Saxena S. Exploitation of functionalized green nanomaterials for plant disease management. DISCOVER NANO 2024; 19:118. [PMID: 39023655 PMCID: PMC11258113 DOI: 10.1186/s11671-024-04063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world's population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
Collapse
Affiliation(s)
- Dhiraj L Wasule
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| | - Prashant R Shingote
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India.
| | - Shreshtha Saxena
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| |
Collapse
|
11
|
Chen S, He Y, Huang X, Shen Y, Zou Q, Yang G, Fu L, Liu Q, Luo D. Photosensitive and dual-targeted chromium nanoparticle delivering small interfering RNA YTHDF1 for molecular-targeted immunotherapy in liver cancer. J Nanobiotechnology 2024; 22:348. [PMID: 38898486 PMCID: PMC11188166 DOI: 10.1186/s12951-024-02612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.
Collapse
Affiliation(s)
- Shang Chen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, People's Republic of China
| | - Yan He
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xin Huang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yao Shen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
| | - Qingshuang Zou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People's Republic of China
| | - Gun Yang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, People's Republic of China.
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, People's Republic of China.
| |
Collapse
|
12
|
Omokungbe B, Centurión A, Stiehler S, Morr A, Vilcinskas A, Steinbrink A, Hardes K. Gene silencing in the aedine cell lines C6/36 and U4.4 using long double-stranded RNA. Parasit Vectors 2024; 17:255. [PMID: 38863029 PMCID: PMC11167938 DOI: 10.1186/s13071-024-06340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND RNA interference (RNAi) is a target-specific gene silencing method that can be used to determine gene functions and investigate host-pathogen interactions, as well as facilitating the development of ecofriendly pesticides. Commercially available transfection reagents (TRs) can improve the efficacy of RNAi. However, we currently lack a product and protocol for the transfection of insect cell lines with long double-stranded RNA (dsRNA). METHODS We used agarose gel electrophoresis to determine the capacity of eight TRs to form complexes with long dsRNA. A CellTiter-Glo assay was then used to assess the cytotoxicity of the resulting lipoplexes. We also measured the cellular uptake of dsRNA by fluorescence microscopy using the fluorophore Cy3 as a label. Finally, we analyzed the TRs based on their transfection efficacy and compared the RNAi responses of Aedes albopictus C6/36 and U4.4 cells by knocking down an mCherry reporter Semliki Forest virus in both cell lines. RESULTS The TRs from Biontex (K4, Metafectene Pro, and Metafectene SI+) showed the best complexing capacity and the lowest dsRNA:TR ratio needed for complete complex formation. Only HiPerFect was unable to complex the dsRNA completely, even at a ratio of 1:9. Most of the complexes containing mCherry-dsRNA were nontoxic at 2 ng/µL, but Lipofectamine 2000 was toxic at 1 ng/µL in U4.4 cells and at 2 ng/µL in C6/36 cells. The transfection of U4.4 cells with mCherry-dsRNA/TR complexes achieved significant knockdown of the virus reporter. Comparison of the RNAi response in C6/36 and U4.4 cells suggested that C6/36 cells lack the antiviral RNAi response because there was no significant knockdown of the virus reporter in any of the treatments. CONCLUSIONS C6/36 cells have an impaired RNAi response as previously reported. This investigation provides valuable information for future RNAi experiments by showing how to mitigate the adverse effects attributed to TRs. This will facilitate the judicious selection of TRs and transfection conditions conducive to RNAi research in mosquitoes.
Collapse
Affiliation(s)
- Bodunrin Omokungbe
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Alejandra Centurión
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Antonia Morr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany.
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
13
|
Xie J, Zhang J, Yang J, Wu S, Teng X, Han H, Xu Y, Qian X, Zhu W, Yang Y. Microfluidic-Based dsRNA Delivery Nanoplatform for Efficient Spodoptera exigua Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12508-12515. [PMID: 38788129 DOI: 10.1021/acs.jafc.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Nanotechnology-based RNA interference (RNAi) offers a promising approach to pest control. However, current methods for producing RNAi nanopesticides are mainly implemented in a batch-to-batch manner, lacking consistent quality control. Herein, we present a microfluidic-based nanoplatform for RNA nanopesticide preparation using lipid nanoparticles (LNPs) as nanocarriers, taking advantage of the enhanced mass transfer and continuous processing capabilities of microfluidic technology. The dsRNA@LNPs were rapidly formed within seconds, which showed uniform size distribution, improved leaf wettability, and excellent dispersion properties. The delivery efficiency of dsRNA@LNPs was evaluated by targeting the chitin synthetase B (CHSB) gene ofSpodoptera exigua. The dsRNA@LNPs can effectively resist nuclease-rich midgut fluid degradation. Importantly, dsCHSB@LNPs exhibited increased mortality rates, significant reduction of larvae growth, and enhanced gene suppression efficiency. Therefore, a continuous nanoplatform for RNAi nanopesticide preparation is demonstrated by utilizing microfluidic technology, representing a new route to produce RNAi nanopesticides with enhanced quality control and might accelerate their practical applications.
Collapse
Affiliation(s)
- Jinshan Xie
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxin Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyi Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shuqin Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanming Teng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyu Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Tang B, Hu S, Luo Y, Shi D, Liu X, Zhong F, Jiang X, Hu G, Li C, Duan H, Wu Y. Impact of Three Thiazolidinone Compounds with Piperine Skeletons on Trehalase Activity and Development of Spodoptera frugiperda Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8423-8433. [PMID: 38565327 DOI: 10.1021/acs.jafc.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yujia Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiangyu Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Fan Zhong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyi Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
| |
Collapse
|
15
|
Li X, Xiao J, Cheng X, Zhang H, Zheng W. Nanomaterial-encapsulated dsRNA of ecdysone-induced early gene E75, a potential RNAi-based SIT strategy for pest control against Bactrocera dorsalis. Int J Biol Macromol 2024; 263:130607. [PMID: 38447848 DOI: 10.1016/j.ijbiomac.2024.130607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Bactrocera dorsalis is a notorious pest widely distributed across most Asian countries. With the rapid development of pesticide resistance, new pest control methods are urgently needed. RNAi-based sterile insect technique (SIT) is a species-specific pest management strategy for B. dorsalis control. It is of great significance to identify more target genes from B. dorsalis, and improve the RNAi efficiency. In this study, microinjection-based RNAi results showed that six 20E response genes were necessary for male fertility of B. dorsalis, of which E75 was identified as the key target according to the lowest egg-laying number and hatching rate after E75 knockdown. Three nanoparticles chitosan (CS), chitosan‑sodium tripolyphosphate (CS-TPP), and star polycation (SPc) were used to encapsulate dsE75 expressed by HT115 strain. Properties analysis of nanoparticle-dsRNA complexes showed that both CS-TPP-dsRNA and SPc-dsRNA exhibited better properties (smaller size and polydispersity index) than CS-dsRNA. Moreover, oral administration of CS-TPP-dsE75 and SPc-dsE75 by males resulted in more abnormal testis and significantly lower fertility than feeding naked dsE75. Semi-field trials further confirmed that the number of hatched larvae was dramatically reduced in these two groups. Our study not only provides more valuable targets for RNAi-based SIT, but also promotes the application of environment-friendly management against B. dorsalis in the field.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiedan Xiao
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Ortolá B, Urbaneja A, Eiras M, Pérez-Hedo M, Daròs JA. RNAi-mediated silencing of Mediterranean fruit fly (Ceratitis capitata) endogenous genes using orally-supplied double-stranded RNAs produced in Escherichia coli. PEST MANAGEMENT SCIENCE 2024; 80:1087-1098. [PMID: 37851867 DOI: 10.1002/ps.7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The Mediterranean fruit fly (medfly), Ceratitis capitata Wiedemann, is a major pest affecting fruit and vegetable production worldwide, whose control is mainly based on insecticides. Double-stranded RNA (dsRNA) able to down-regulate endogenous genes, thus affecting essential vital functions via RNA interference (RNAi) in pests and pathogens, is envisioned as a more specific and environmentally-friendly alternative to traditional insecticides. However, this strategy has not been explored in medfly yet. RESULTS Here, we screened seven candidate target genes by injecting in adult medflies gene-specific dsRNA hairpins transcribed in vitro. Several genes were significantly down-regulated, resulting in increased insect mortality compared to flies treated with a control dsRNA targeting the green fluorescent protein (GFP) complementary DNA (cDNA). Three of the dsRNAs, homologous to the beta subunit of adenosine triphosphate (ATP) synthase (ATPsynbeta), a vacuolar ATPase (V-ATPase), and the ribosomal protein S13 (RPS13), were able to halve the probability of survival in only 48 h after injection. We then produced new versions of these three dsRNAs and that of the GFP control as circular molecules in Escherichia coli using a two-self-splicing-intron-based expression system and tested them as orally-delivered insecticidal compounds against medfly adults. We observed a significant down-regulation of V-ATPase and RPS13 messenger RNAs (mRNAs) (approximately 30% and 90%, respectively) compared with the control medflies after 3 days of treatment. No significant mortality was recorded in medflies, but egg laying and hatching reduction was achieved by silencing V-ATPase and RPS13. CONCLUSION In sum, we report the potential of dsRNA molecules as oral insecticide in medfly. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - Marcelo Eiras
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
- Laboratório de Fitovirologia e Fisiopatologia, Instituto Biológico, Sao Paulo, Brazil
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia, Spain
| |
Collapse
|
17
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
18
|
Gohari G, Jiang M, Manganaris GA, Zhou J, Fotopoulos V. Next generation chemical priming: with a little help from our nanocarrier friends. TRENDS IN PLANT SCIENCE 2024; 29:150-166. [PMID: 38233253 DOI: 10.1016/j.tplants.2023.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Plants are exposed to multiple threats linked to climate change which can cause critical yield losses. Therefore, designing novel crop management tools is crucial. Chemical priming has recently emerged as an effective technology for improving tolerance to stress factors. Several compounds such as phytohormones, reactive species, and synthetic chimeras have been identified as promising priming agents. Following remarkable developments in nanotechnology, several unique nanocarriers (NCs) have been engineered that can act as smart delivery systems. These provide an eco-friendly, next-generation method for chemical priming, leading to increased efficiency and reduced overall chemical usage. We review novel engineered NCs (NENCs) as vehicles for chemical agents in advanced priming strategies, and address challenges and opportunities to be met towards achieving sustainable agriculture.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus; Department of Horticulture, Faculty of Horticulture, University of Maragheh, Maragheh, Iran
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China
| | - George A Manganaris
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, PR China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, PR China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus.
| |
Collapse
|
19
|
Zhou H, Wan F, Jian Y, Guo F, Zhang M, Shi S, Yang L, Li S, Liu Y, Ding W. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis. Int J Biol Macromol 2023; 253:127021. [PMID: 37741481 DOI: 10.1016/j.ijbiomac.2023.127021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Chitosan, as a promising gene nanocarrier for enhancing RNA interference (RNAi) efficiency, displays tremendous application prospects in addressing dsRNA delivery concerns. However, the molecular mechanism of chitosan/dsRNA polyplex nanoparticles (PNs) for advancing dsRNA delivery efficiency remains largely unknown. Here, chitosan/dsRNA PNs were prepared by an electrostatic attraction method. The results showed that the chitosan/dsRNA PNs significantly advance stability, and cellular uptake efficiency of dsRNA, and RNAi efficiency. RNA-Seq and qPCR assays further revealed that chitosan/dsRNA PNs upregulated the key clathrin heavy chain (CHC) gene for activating clathrin-dependent endocytosis (CDE) pathway. Additionally, inhibition of CDE hindered the robust RNAi responses of chitosan/dsRNA PNs using an inhibitor (chlorpromazine) and an RNAi-of-RNAi strategy. Ultimately, microscale thermophoresis assay confirmed that chitosan/dsRNA PNs directly bound to CHC protein, which was a core component in CDE, to advance RNAi efficiency. To our knowledge, our findings firstly illuminate the molecular mechanism how chitosan nanoparticles-based RNAi deliver dsRNA for enhancing RNAi efficiency. Above mechanism will advance the extensive utilization of nanocarrier-based RNAi in pest management and gene delivery.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Yufan Jian
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Miao Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shiyao Shi
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Liang Yang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shili Li
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Ying Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Abenaim L, Conti B. Chitosan as a Control Tool for Insect Pest Management: A Review. INSECTS 2023; 14:949. [PMID: 38132623 PMCID: PMC10744275 DOI: 10.3390/insects14120949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Chitosan, a polysaccharide derived from the deacetylation of chitin, is a versatile and eco-friendly biopolymer with several applications. Chitosan is recognized for its biodegradability, biocompatibility, and non-toxicity, beyond its antimicrobial, antioxidant, and antitumoral activities. Thanks to its properties, chitosan is used in many fields including medicine, pharmacy, cosmetics, textile, nutrition, and agriculture. This review focuses on chitosan's role as a tool in insect pest control, particularly for agriculture, foodstuff, and public health pests. Different formulations, including plain chitosan, chitosan coating, chitosan with nematodes, chitosan's modifications, and chitosan nanoparticles, are explored. Biological assays using these formulations highlighted the use of chitosan-essential oil nanoparticles as an effective tool for pest control, due to their enhanced mobility and essential oils' prolonged release over time. Chitosan's derivatives with alkyl, benzyl, and acyl groups showed good activity against insect pests due to improved solubility and enhanced activity compared to plain chitosan. Thus, the purpose of this review is to provide the reader with updated information concerning the use and potential applications of chitosan formulations as pest control tools.
Collapse
Affiliation(s)
- Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | | |
Collapse
|
21
|
Miguel-Rojas C, Pérez-de-Luque A. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerg Top Life Sci 2023; 7:229-238. [PMID: 37921102 PMCID: PMC10754331 DOI: 10.1042/etls20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
22
|
Bonina V, Arpaia S. The use of RNA interference for the management of arthropod pests in livestock farms. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:631-646. [PMID: 37401856 DOI: 10.1111/mve.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
Pest management in farm animals is an important action to contain economic damage to livestock production and prevent transmission of severe diseases to the stock. The use of chemical insecticides is still the most common approach followed by farmers; however, avoiding possible toxic effects on animals is a fundamental task for pest control measures compatible with animal well-being. Moreover, legal constraints and insurgence of resistance by target species to the available insecticidal compounds are increasingly complicating farmers' operations. Alternatives to chemical pesticides have been explored with some promising results in the area of biological control or the use of natural products as sprays. The application of RNA interference techniques has enabled the production of new means of pest control in agriculture, and it is opening a promising avenue for controlling arthropod pests of livestock. Transcript depletion of specific target genes of the recipient organisms is based on the action of double-strand RNAs (dsRNA) capable of impairing the production of fundamental proteins. Their mode of action, based on the specific recognition of short genomic sequences, is expected to be highly selective towards non-target organisms potentially exposed; in addition, there are physical and chemical barriers to dsRNA uptake by mammalian cells that render these products practically innocuous for higher animals. Summarising existing literature on gene silencing for main taxa of arthropod pests of livestock (Acarina, Diptera, Blattoidea), this review explores the perspectives of practical applications of dsRNA-based pesticides against the main pests of farm animals. Knowledge gaps are summarised to stimulate additional research in this area.
Collapse
Affiliation(s)
- Valeria Bonina
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TERIN-BBC Research Centre Trisaia, Rotondella, Matera, Italy
| |
Collapse
|
23
|
Zhu Y, Kong L, Wang X, Xu J, Qian X, Yang Y, Xu Z, Zhu KY. Rolling circle transcription: A new system to produce RNA microspheres for improving RNAi efficiency in an agriculturally important lepidopteran pest (Mythimna separate). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105680. [PMID: 38072537 DOI: 10.1016/j.pestbp.2023.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
We applied a new RNA interference (RNAi) system using rolling circle transcription (RCT) technology to generate RNA microspheres (RMS) for targeting two key chitin synthetic pathway genes [chitin synthase A (CHSA), chitin synthase B (CHSB)] in the larvae of the oriental armyworm (Mythimna separate), a RNAi-unsusceptible agriculturally important lepidopteran pest. Feeding the third-instar larvae with the RMS-CHSA- or RMS-CHSB-treated corn leaf discs suppressed the expression of CHSA by 81.7% or CHSB by 88.1%, respectively, at 72 h. The silencing of CHSA consequently affected the larval development, including the reduced body weight (54.0%) and length (41.3%), as evaluated on the 7th day, and caused significant larval mortalities (51.1%) as evaluated on the 14th day. Similar results were obtained with the larvae fed RMS-CHSB. We also compared RNAi efficiencies among different strategies: 1) two multi-target RMS [i.e., RMS-(CHSA + CHSB), RMS-CHSA + RMS-CHSB], and 2) multi-target RMS and single-target RMS (i.e., either RMS-CHSA or RMS-CHSB) and found no significant differences in RNAi efficiency. By using Cy3-labeled RMS, we confirmed that RMS can be rapidly internalized into Sf9 cells (<6 h). The rapid cellular uptake of RMS accompanied with significant RNAi efficiency through larval feeding suggests that the RCT-based RNAi system can be readily applied to study the gene functions and further developed as bio-pesticides for insect pest management. Additionally, our new RNAi system takes the advantage of the microRNA (miRNA)-mediated RNAi pathway using miRNA duplexes generated in vivo from the RMS by the target insect. The system can be used for RNAi in a wide range of insect species, including lepidopteran insects which often exhibit extremely low RNAi efficiency using other RNAi approaches.
Collapse
Affiliation(s)
- Yutong Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinqian Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazheng Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| |
Collapse
|
24
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
25
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
26
|
Ding J, Cui C, Wang G, Wei G, Bai L, Li Y, Sun P, Dong L, Liu Z, Yun J, Li F, Li K, He L, Wang S. Engineered Gut Symbiotic Bacterium-Mediated RNAi for Effective Control of Anopheles Mosquito Larvae. Microbiol Spectr 2023; 11:e0166623. [PMID: 37458601 PMCID: PMC10433860 DOI: 10.1128/spectrum.01666-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/25/2023] [Indexed: 08/19/2023] Open
Abstract
Anopheles mosquitoes are the primary vectors for the transmission of malaria parasites, which poses a devastating burden on global public health and welfare. The recent invasion of Anopheles stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. To address this issue, we developed a new approach for mosquito larvae control using gut microbiota-mediated RNA interference (RNAi). We engineered a mosquito symbiotic gut bacterium, Serratia fonticola, by deleting its RNase III gene to produce double-stranded RNAs (dsRNAs) in the mosquito larval gut. We found that the engineered S. fonticola strains can stably colonize mosquito larval guts and produce dsRNAs dsMet or dsEcR to activate RNAi and effectively suppress the expression of methoprene-tolerant gene Met and ecdysone receptor gene EcR, which encode receptors for juvenile hormone and ecdysone pathways in mosquitoes, respectively. Importantly, the engineered S. fonticola strains markedly inhibit the development of A. stephensi larvae and leads to a high mortality, providing an effective dsRNA delivery system for silencing genes in insects and a novel RNAi-mediated pest control strategy. Collectively, our symbiont-mediated RNAi (smRNAi) approach offers an innovative and sustainable method for controlling mosquito larvae and provides a promising strategy for combating malaria. IMPORTANCE Mosquitoes are vectors for various diseases, imposing a significant threat to public health globally. The recent invasion of A. stephensi in Africa has made malaria eradication more challenging due to its outdoor biting behavior and widespread resistance to insecticides. RNA interference (RNAi) is a promising approach that uses dsRNA to silence specific genes in pests. This study presents the use of a gut symbiotic bacterium, Serratia fonticola, as an efficient delivery system of dsRNA for RNAi-mediated pest control. The knockout of RNase III, a dsRNA-specific endonuclease gene, in S. fonticola using CRISPR-Cas9 led to efficient dsRNA production. Engineered strains of S. fonticola can colonize the mosquito larval gut and effectively suppress the expression of two critical genes, Met and EcR, which inhibit mosquito development and cause high mortality in mosquito larvae. This study highlights the potential of exploring the mosquito microbiota as a source of dsRNA for RNAi-based pest control.
Collapse
Affiliation(s)
- Jinjin Ding
- School of Life Science, East China Normal University, Shanghai, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ge Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Bai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yifei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Peilu Sun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zicheng Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Yun
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Zhang C, Ding Y, Zhou M, Tang Y, Chen R, Chen Y, Wen Y, Wang S. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Parasit Vectors 2023; 16:259. [PMID: 37533099 PMCID: PMC10394979 DOI: 10.1186/s13071-023-05865-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.
Collapse
Affiliation(s)
- Chen Zhang
- Hangzhou Normal University, Hangzhou, China
| | | | - Min Zhou
- Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Normal University, Hangzhou, China
| | - Rufei Chen
- Hangzhou Normal University, Hangzhou, China
| | | | - Yating Wen
- Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
28
|
Qiao H, Zhao J, Wang X, Xiao L, Zhu-Salzman K, Lei J, Xu D, Xu G, Tan Y, Hao D. An oral dsRNA delivery system based on chitosan induces G protein-coupled receptor kinase 2 gene silencing for Apolygus lucorum control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105481. [PMID: 37532313 DOI: 10.1016/j.pestbp.2023.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
RNA interference (RNAi) is recognized as a new and environmentally friendly pest control strategy due to its high specificity. However, the RNAi efficiency is relatively low in many sucking insect pests, such as Apolygus lucorum. Therefore, there is an urgent need to develop new and effective ways of dsRNA delivery. Bacterially expressed or T7 synthesized dsRNA targeting a G Protein-Coupled Receptor Kinase 2 gene was mixed with chitosan in a 1:2 ratio by mass. The size of the chitosan/dsRNA nanoparticles was 69 ± 12 nm, and the TEM and AFM images showed typical spherical or ellipsoidal structures. The chitosan nanoparticles protected the dsRNA from nuclease activity, and pH and temperature-dependent degradation, and the fluorescently-tagged nanoparticles were found to be stable on the surface of green bean plants (48 h) (Phaseolus vulgaris) and were absorbed by midgut epithelial cells and transported to hemolymph. Once fed to the A. lucorum nymph, chitosan/dsRNA could effectively inhibit the expression of the G protein-coupled receptor kinase 2 gene (70%), and led to significantly increase mortality (50%), reduced weight (26.54%) and a prolonged developmental period (8.04%). The feeding-based and chitosan-mediated dsRNA delivery method could be a new strategy for A. lucorum management, providing an effective tool for gene silencing of piercing-sucking insects.
Collapse
Affiliation(s)
- Heng Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Dejun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
29
|
Vogel E, Santos D, Huygens C, Peeters P, Van den Brande S, Wynant N, Vanden Broeck J. The Study of Cell-Penetrating Peptides to Deliver dsRNA and siRNA by Feeding in the Desert Locust, Schistocerca gregaria. INSECTS 2023; 14:597. [PMID: 37504603 PMCID: PMC10380834 DOI: 10.3390/insects14070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
RNA(i) interference is a gene silencing mechanism triggered by double-stranded (ds)RNA, which promises to contribute to species-specific insect pest control strategies. The first step toward the application of RNAi as an insecticide is to enable efficient gene silencing upon dsRNA oral delivery. The desert locust, Schistocerca gregaria is a devastating agricultural pest. While this species is responsive to dsRNA delivered by intra-hemocoelic injection, it is refractory to orally delivered dsRNA. In this study, we evaluated the capacity of five cell-penetrating peptides (CPPs) to bind long dsRNA and protect it from the locust midgut environment. We then selected the CPP EB1 for further in vivo studies. EB1:dsRNA complexes failed to induce RNAi by feeding. Interestingly, we observed that intra-hemocoelic injection of small-interfering (si)RNAs does not result in a silencing response, but that this response can be obtained by injecting EB1:siRNA complexes. EB1 also protected siRNAs from midgut degradation activity. However, EB1:siRNA complexes failed as well in triggering RNAi when fed. Our findings highlight the complexity of the dsRNA/siRNA-triggered RNAi in this species and emphasize the multifactorial nature of the RNAi response in insects. Our study also stresses the importance of in vivo studies when it comes to dsRNA/siRNA delivery systems.
Collapse
Affiliation(s)
- Elise Vogel
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Cissy Huygens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Paulien Peeters
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Li H, Mo J, Wang X, Pan B, Xu S, Li S, Zheng X, Lu W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Int J Mol Sci 2023; 24:ijms24119497. [PMID: 37298448 DOI: 10.3390/ijms24119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.
Collapse
Affiliation(s)
- Hailin Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junlan Mo
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Biqiong Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shu Xu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shuangrong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Yadav M, Dahiya N, Sehrawat N. Mosquito gene targeted RNAi studies for vector control. Funct Integr Genomics 2023; 23:180. [PMID: 37227504 PMCID: PMC10211311 DOI: 10.1007/s10142-023-01072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
32
|
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int J Mol Sci 2023; 24:ijms24119161. [PMID: 37298113 DOI: 10.3390/ijms24119161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Collapse
Affiliation(s)
- Shelja Sandal
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Gulshan Bansal
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Suneet Pandher
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Gurmeet Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Pankaj Rathore
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| |
Collapse
|
33
|
Müller R, Bálint M, Hardes K, Hollert H, Klimpel S, Knorr E, Kochmann J, Lee KZ, Mehring M, Pauls SU, Smets G, Steinbrink A, Vilcinskas A. RNA interference to combat the Asian tiger mosquito in Europe: A pathway from design of an innovative vector control tool to its application. Biotechnol Adv 2023; 66:108167. [PMID: 37164239 DOI: 10.1016/j.biotechadv.2023.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/06/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The Asian tiger mosquito Aedes albopictus is currently spreading across Europe, facilitated by climate change and global transportation. It is a vector of arboviruses causing human diseases such as chikungunya, dengue hemorrhagic fever and Zika fever. For the majority of these diseases, no vaccines or therapeutics are available. Options for the control of Ae. albopictus are limited by European regulations introduced to protect biodiversity by restricting or phasing out the use of pesticides, genetically modified organisms (GMOs) or products of genome editing. Alternative solutions are thus urgently needed to avoid a future scenario in which Europe faces a choice between prioritizing human health or biodiversity when it comes to Aedes-vectored pathogens. To ensure regulatory compliance and public acceptance, these solutions should preferably not be based on chemicals or GMOs and must be cost-efficient and specific. The present review aims to synthesize available evidence on RNAi-based mosquito vector control and its potential for application in the European Union. The recent literature has identified some potential target sites in Ae. albopictus and formulations for delivery. However, we found little information concerning non-target effects on the environment or human health, on social aspects, regulatory frameworks, or on management perspectives. We propose optimal designs for RNAi-based vector control tools against Ae. albopictus (target product profiles), discuss their efficacy and reflect on potential risks to environmental health and the importance of societal aspects. The roadmap from design to application will provide readers with a comprehensive perspective on the application of emerging RNAi-based vector control tools for the suppression of Ae. albopictus populations with special focus on Europe.
Collapse
Affiliation(s)
- Ruth Müller
- Unit Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 9, 60590 Frankfurt am Main, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kornelia Hardes
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Germany
| | - Henner Hollert
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Media-related Toxicity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; Evolutionary Ecology and Environmental Toxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Integrative Parasitology and Zoophysiology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Eileen Knorr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Judith Kochmann
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Marion Mehring
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany; ISOE - Institute for Social-Ecological Research, Hamburger Allee 45, 60486 Frankfurt am Main, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Greet Smets
- Perseus BV, Kortrijksesteenweg 127 B1, B-9830 Sint-Martens-Latem, Belgium
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
34
|
Khalil SMS, Alahmed AM, Munawar K. RNAi-mediated mortality of Culex quinquefasciatus using two delivery methods of potential field application. Acta Trop 2023; 243:106938. [PMID: 37146864 DOI: 10.1016/j.actatropica.2023.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
With increasing reports of resistance to traditional insecticides, there is a need for innovative ways for mosquito control. RNAi is a sequence-specific molecular biology technique for gene silencing through degradation of mRNA and prevention of protein translation. Some genes are essential for insect life and their silencing can lead to insect morbidity and/or mortality. Searching for lethal genes in Culex quinquefasciatus, we found dynamin, ROP, HMGR and JHAMT to be lethal targets for RNAi in initial screening through larval soaking in dsRNA solution. Two delivery methods, chitosan nanoparticles and genetically modified yeast cells, were used in this study and proved effective in inducing high larval mortality and low adult emergence. Adult emergence after chitosan nanoparticles/dsRNA treatment was 12.67% ± 1.76 (HMGR), 17.33% ± 1.76 (dynamin), 18.67% ± 0.67 (ROP), and 35.33% ± 0.67 (JHAMT). Genetically modified yeast increased mortalities as adult emergence was 8.33% ± 1.67 (HMGR), 13.33% ± 3.33 (dynamin), and 10% ± 2.89 (JHAMT and ROP). Chitosan nanoparticles retained 75% of its biological activity whereas yeast cells retained >95% of their activities after 7 days of incubation in water. In conclusion, our results showed that these four genes are good targets for C. quinquefasciatus control using RNAi packaged in either chitosan nanoparticles or genetically modified yeast cells.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia; Agricultural Genetic Engineering Research Institute, Agricultural Research Center, 9 Gamaa Street, Giza, 12619, Egypt.
| | - Azzam M Alahmed
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kashif Munawar
- Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Timani K, Bastarache P, Morin PJ. Leveraging RNA Interference to Impact Insecticide Resistance in the Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2023; 14:418. [PMID: 37233046 PMCID: PMC10231074 DOI: 10.3390/insects14050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata Say, is a potato pest that can cause important economic losses to the potato industry worldwide. Diverse strategies have been deployed to target this insect such as biological control, crop rotation, and a variety of insecticides. Regarding the latter, this pest has demonstrated impressive abilities to develop resistance against the compounds used to regulate its spread. Substantial work has been conducted to better characterize the molecular signatures underlying this resistance, with the overarching objective of leveraging this information for the development of novel approaches, including RNAi-based techniques, to limit the damage associated with this insect. This review first describes the various strategies utilized to control L. decemlineata and highlights different examples of reported cases of resistances against insecticides for this insect. The molecular leads identified as potential players modulating insecticide resistance as well as the growing interest towards the use of RNAi aimed at these leads as part of novel means to control the impact of L. decemlineata are described subsequently. Finally, select advantages and limitations of RNAi are addressed to better assess the potential of this technology in the broader context of insecticide resistance for pest management.
Collapse
Affiliation(s)
| | | | - Pier Jr Morin
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine-Maillet Avenue, Moncton, NB E1A 3E9, Canada; (K.T.); (P.B.)
| |
Collapse
|
36
|
An S, Liu W, Fu J, Zhang Z, Zhang R. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 2023; 16:120. [PMID: 37005671 PMCID: PMC10068161 DOI: 10.1186/s13071-023-05733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arboviruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase genes have been widely recognized as attractive targets for the development of effective and environmentally safe insect management measures. METHODS Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observations, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut. RESULTS Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identified. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuticle and midgut wall of pupa. CONCLUSIONS Findings of the present study will aid in determining the biological functions of AaChts and also contribute to using AaChts as potential target for mosquito management.
Collapse
Affiliation(s)
- Sha An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Zhong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| | - Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| |
Collapse
|
37
|
Lyu Z, Xiong M, Mao J, Li W, Jiang G, Zhang W. A dsRNA delivery system based on the rosin-modified polyethylene glycol and chitosan induces gene silencing and mortality in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2023; 79:1518-1527. [PMID: 36519402 DOI: 10.1002/ps.7322] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology has been considered as a promising pest control strategy due to its species selectivity. One of the popular RNAs is exogenous double strand RNA (dsRNA). However, dsRNA is easily degraded by nucleases and is difficult to pass through the insect body walls, and these factors restrict the application of RNAi technology in pest management. Here, the brown planthopper (BPH, Nilaparvata lugens), a major hemipteran pest of rice in Asia countries was used as a model insect, and a dsRNA topical delivery system was constructed. RESULTS The carrier part of the delivery system was composed of rosin-modified polyethylene glycol and chitosan, termed ROPE@C. When the N/P ratio was greater than 1:1.25, the dsRNA/ROPE@C complex encouraged full binding of the dsRNA. The gel electrophoresis results showed that ROPE@C improved the stability of dsRNA in the presence of nucleases in gut and lumen contents for at least 6 h and in the temperature range from 4 °C to 37 °C. The dsNlCHSA/ROPE@C/alkyl polyglycoside (APG) nano-formulation directly penetrated the body walls reaching hemocoel within 6 h, and consequently, the relative expression of chitin synthetase A (CHSA) in BPH was reduced by 54.3% and the mortality rate was 65.8%. CONCLUSION We developed an appropriate delivery method for dsRNA application in BPH, which is helpful for a large-scale application of RNAi pesticides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihao Lyu
- School of Agriculture, State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
| | - Mingxin Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Jie Mao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gangbiao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wenqing Zhang
- School of Agriculture, State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Liu XZ, Guo H, Long GJ, Ma YF, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Liu LW, He M, He P. Functional characterization of five developmental signaling network genes in the white-backed planthopper: Potential application for pest management. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942746 DOI: 10.1002/ps.7464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| |
Collapse
|
39
|
Guo H, Long GJ, Liu XZ, Ma YF, Zhang MQ, Gong LL, Dewer Y, Hull JJ, Wang MM, Wang Q, He M, He P. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. Int J Biol Macromol 2023; 230:123123. [PMID: 36603718 DOI: 10.1016/j.ijbiomac.2022.123123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.
Collapse
Affiliation(s)
- Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Mei-Mei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Qin Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
40
|
Manna S, Roy S, Dolai A, Ravula AR, Perumal V, Das A. Current and future prospects of “all-organic” nanoinsecticides for agricultural insect pest management. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Graphical Abstract
Collapse
|
41
|
Geng K, Zhang Y, Zhao X, Zhang W, Guo X, He L, Liu K, Yang H, Hong H, Peng J, Peng R. Fluorescent Nanoparticle-RNAi-Mediated Silencing of Sterol Carrier Protein-2 Gene Expression Suppresses the Growth, Development, and Reproduction of Helicoverpa armigera. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020245. [PMID: 36677998 PMCID: PMC9866532 DOI: 10.3390/nano13020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 05/23/2023]
Abstract
Helicoverpa armigera is a polyphagous destructive lepidopteran pest with strong Bacillus thuringiensis (Bt) resistance. Cholesterol, a vital component for insect growth, can only be obtained from food, and its transfer and metabolism are regulated by sterol carrier protein-2 (SCP-2). This study examined whether H. armigera SCP-2 (HaSCP-2) gene expression, involved in cholesterol absorption, can be silenced by nanocarrier fluorescent nanoparticle-RNA interference (FNP-RNAi) by larval feeding and whether the silencing affected H. armigera development. Fluorescence microscopy showed that nanoparticle-siRNA was distributed in Ha cells and the larval midgut. FNP-HaSCP-2 siRNA suppressed HaSCP-2 expression by 52.5% in H.armigera Ha cells. FNP can effectively help deliver siRNA into cells, protect siRNA, and is not affected by serum. FNP-siRNA in vivo biological assays showed that HaSCP-2 transcript levels were inhibited by 70.19%, 68.16%, and 67.66% in 3rd, 4th, and 5th instar larvae, leading to a decrease in the cholesterol level in the larval and prepupal fatbodies. The pupation rate and adult emergence were reduced to 26.0% and 56.52%, respectively. This study demonstrated that FNP could deliver siRNA to cells and improve siRNA knockdown efficiency. HaSCP-2 knockdown by FNP-siRNA in vivo hindered H. armigera growth and development. FNP could enhance RNAi efficiency to achieve pest control by SCP-2-targeted FNP-RNAi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rong Peng
- Correspondence: ; Tel.: +86-27-67867221
| |
Collapse
|
42
|
Pei Y, Hao H, Zuo Y, Xue Y, Aioub AAA, Hu Z. Functional validation of CYP304A1 associated with haedoxan A detoxification in Aedes albopictus by RNAi and transgenic drosophila. PEST MANAGEMENT SCIENCE 2023; 79:447-453. [PMID: 36175391 DOI: 10.1002/ps.7213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases play important roles in the detoxification metabolism of endogenous and exogenous compounds. Haedoxan A (HA) from Phryma leptostachya L. is a highly efficient natural pesticide used to control houseflies and mosquitos. CYP4C21 and CYP304A1 were previously demonstrated to be transcriptionally increased in Aedes albopictus in response to HA exposure, but their involvement in HA metabolism is unknown. RESULTS Our data showed that CYP304A1 expression levels in A. albopictus were highest in third-instar larvae, and the expression level of CYP4C21 decreased significantly with the growth of instars, with the lowest occurring in the pupal stage. Compared with the control, the silencing of CYP304A1 and CYP4C21 genes by chitosan nanoparticle-mediated RNA interference could deplete 58.2% and 54.0% of the expression of corresponding genes, respectively. The bioassay data showed that knocking down the expression of CYP304A1 increased the mortality of A. albopictus when exposed to HA at LC30 and LC50 doses, but did not significantly increase mortality after silencing CYP4C21. Our data demonstrated that CYP304A1, but not CYP4C21, may be involved in HA detoxification. Moreover, the resistance ratio of CYP304A1 overexpressing flies was approximately 2-fold higher than that of the control line. The metabolized product of HA by CYP304A1 needs to be further confirmed by in vitro expression. CONCLUSION This finding showed that inducibility was not always linked to detoxifying capabilities, and enhanced our understanding of the molecular basis of HA metabolic detoxification in A. albopictus. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Huanhuan Hao
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuxin Xue
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
- Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Yangling, China
| |
Collapse
|
43
|
Kolge H, Kadam K, Ghormade V. Chitosan nanocarriers mediated dsRNA delivery in gene silencing for Helicoverpa armigera biocontrol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105292. [PMID: 36549819 DOI: 10.1016/j.pestbp.2022.105292] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Specific gene silencing by RNA interference (RNAi) involving exogenous double stranded RNA (dsRNA) delivery has potential in Helicoverpa armigera control, a resistant insect pest. Here, ionotropically synthesized cationic chitosan nanoparticles (CNPs, 95 nm size, +36 mV charge) showed efficient dsRNA loading (95 %) and effective protection from insect gut nucleases and pH degradation. The CNPs were tagged with fluorescence and found to be stable on leaf surface (24 h) and were internalized by columnar insect gut cells. A single dose of CNPs:dsRNA complex (containing 0.1 μg dsRNA) ingested by H. armigera larvae via artificial/leaf feed effectively silenced lipase and chitinase target genes (2-2.7 fold downregulation) and suppressed their respective enzyme activities (2-5.3 fold). RNAi caused reduced pupation (5-fold) and impaired moth emergence. RNAi effects correlated significantly with 100% insect mortality (PCA 0.97-0.99). Furthermore, specific dsRNA did not affect non-target insects Spodoptera litura and Drosophila melanogaster. Developed CNPs:dsRNA complexes towards RNAi targets can serve as a safe, targeted insecticide for sustainable crop protection.
Collapse
Affiliation(s)
- Henry Kolge
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Kartiki Kadam
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
44
|
Vasquez DDN, Pinheiro DH, Teixeira LA, Moreira-Pinto CE, Macedo LLP, Salles-Filho ALO, Silva MCM, Lourenço-Tessutti IT, Morgante CV, Silva LP, Grossi-de-Sa MF. Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weevil. Front Mol Biosci 2023; 10:1073721. [PMID: 36950526 PMCID: PMC10025338 DOI: 10.3389/fmolb.2023.1073721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.
Collapse
Affiliation(s)
- Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
| | | | - Lays A. Teixeira
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- Embrapa Café, Brasília, Brazil
| | | | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Alvaro L. O. Salles-Filho
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Federal University of Paraná, Curitiba, Brazil
| | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- Embrapa SemiArid, Petrolina, Brazil
| | | | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- *Correspondence: Maria F. Grossi-de-Sa,
| |
Collapse
|
45
|
Xie X, Shang F, Ding BY, Yang L, Wang JJ. Assessment of a zinc finger protein gene (MPZC3H10) as potential RNAi target for green peach aphid Myzus persicae control. PEST MANAGEMENT SCIENCE 2022; 78:4956-4962. [PMID: 36181420 DOI: 10.1002/ps.7118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential application in pest control, and selection of the specific target gene is one of the key steps in RNAi. As an important effector, the zinc finger protein (ZFP) gene has high similarity among aphid species, and may have potential use in an RNAi-based pest control strategy. This study assessed the control efficiency of an RNAi target, MPZC3H10, a CCCH-type ZFP gene, against green peach aphid. RESULTS ZC3H10 amino acid sequence similarity is more than 97.71% among the five tested aphid species: Myzus persicae, Aphis citricidus, Acyrthosiphon pisum, Diuraphis noxia and Rhopalosiphum maidis. However, no homologous sequence was found in the transcriptome of their ladybeetle predator, Propylaea japonica. Spatial expression patterns revealed that MPZC3H10 showed high expression in the muscle and fat body of M. persicae. The RNAi bioassay revealed that silencing of MPZC3H10 resulted in high mortality (53.33%) in M. persicae. By contrast, there were no observed negative effects on the growth and development of P. japonica when fed on aphids treated with double-stranded RNA (dsRNA) or injected with a "high dose" of dsRNA. CONCLUSION Targeting MPZC3H10 showed promising efficiency for green peach aphid control via artificially designed dsRNA, and was safe for the predatory ladybeetle. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiucheng Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Niu L, Yan H, Sun Y, Zhang D, Ma W, Lin Y. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105183. [PMID: 36127045 DOI: 10.1016/j.pestbp.2022.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, gene knockdown technology using double-stranded RNA (dsRNA) has been widely used as an environment-friendly pest control strategy, but its instability and limited cellular uptake have limited its overall effect. Studies have shown that the efficiency of single dsRNA can be improved by using various nanomaterials. However, the effect of stacked-dsRNA wrapped by nanomaterial on pests remains unclear. In the present study, both CYP15C1 and C-factor genes were cloned from the midgut of C. suppressalis, and the transcript of C-factor is most highly expressed in heads. Feeding a dsCYP15C1 or dsC-factor - nanomaterial mixture can downregulate the gene expression and significantly increase larval mortality. More importantly, feeding the stacked-dsRNA wrapped by nanomaterial can significantly increase the mortality of C. suppressalis, compared with feeding dsCYP15C1 or dsC-factor - nanomaterial mixture alone. These results showed that CYP15C1 and C-factor could be potential targets for an effective management of C. suppressalis, and we developed a nanoparticle-facilitated stacked-dsRNA strategy in the control of C. suppresallis. Our research provides a theoretical basis for gene function analysis and field pest control, and will promote the application of RNAi technology in the stacked style of pest control.
Collapse
Affiliation(s)
- Lin Niu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haixia Yan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Yajie Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| |
Collapse
|
47
|
Chang YW, Wang YC, Yan YQ, Xie HF, Yuan DR, Du YZ. RNA Interference of Chitin Synthase 2 Gene in Liriomyza trifolii through Immersion in Double-Stranded RNA. INSECTS 2022; 13:832. [PMID: 36135533 PMCID: PMC9504599 DOI: 10.3390/insects13090832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Liriomyza trifolii is an important invasive pest that infects horticultural vegetables, displaying a strong competitive advantage and showing great potential for inflicting harm. Chitin synthase is one of the key enzymes in insect chitin metabolism and plays an important role in insect growth and development. In this study, a chitin synthase (CHS) transcript of L. trifolii was cloned, and the results showed that LtCHS belongs to the CHS2 family. The expression analysis indicated the presence of the highest abundance of LtCHS2 in the pupae at different developmental stages but showed no significant difference among different tissues in the adult. Furthermore, a dsRNA immersion method was developed for RNA interference (RNAi) in L. trifolii using LtCHS2 transcript. RNAi can significantly reduce the expression of LtCHS2 in pupae, and the emergence rate of the pupae was significantly lower than that of the control. The results provide a theoretical basis for exploring the role of chitin synthase gene in L. trifolii and proposing new pest control strategies.
Collapse
Affiliation(s)
- Ya-Wen Chang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Cheng Wang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Qing Yan
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing, Nanjing 210000, China
| | - Deng-Rong Yuan
- Plant Protection and Quarantine Station of Nanjing, Nanjing 210000, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
48
|
Lu Q, Cui H, Li W, Liu T, Chen Q, Yang Q. Synthetic Nanoscale RNAi Constructs as Pesticides for the Control of Locust Migratoria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10762-10770. [PMID: 36000580 DOI: 10.1021/acs.jafc.2c04195] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The low efficiency of RNA interference (RNAi) in insects via the oral administration of double-stranded RNA (dsRNA) is a considerable obstacle preventing its application in insect pest control. The instability of dsRNA and insufficient dsRNA uptake are known to limit the RNAi efficiency. To overcome these limitations, the block copolymer poly(ethylene glycol)-polylysine(thiol) [PEG-PLys(SH)] was designed in this study to form well-defined, core-shell nanoparticles to protect dsRNA from premature degradation and to facilitate its movement through various physiological barriers. The developed material had excellent structural stability and dsRNA-protecting capacity, thereby enabling the prolonged survival of dsRNA in the digestive tract for endocytosis into the midgut cells of the migratory locust, Locusta migratoria. After encapsulation of a dsLmCHS2 payload (a midgut gene), a 60% down-regulation of LmCHS2, accompanied with observations of amorphous and discontinuous linings of the peritrophic matrix and abnormal phenotypes, was observed. In addition, the elaborated nanoscale dsRNA condensates appeared to readily extravasate through the narrow fenestrations in the linings of midgut epithelial cells into the hemolymph and be distributed throughout the body. After encapsulation of a dsLmCHS1 payload (a cuticle gene), a distinctive lethal phenotype with molting failure was observed as a result of a 50% down-regulation in LmCHS1. The persistent leaf adherence of these dsRNA constructs was also capable of resisting continuous rinsing. Therefore, these dsRNA constructs represent a robust type of RNAi pesticide, which has potential as a versatile pesticide against a variety of molecular targets for the control of destructive insects and insects resistant to conventional pesticides.
Collapse
Affiliation(s)
- Qiong Lu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyan Cui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wenda Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qixian Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
49
|
Yang W, Wang B, Lei G, Chen G, Liu D. Advances in nanocarriers to improve the stability of dsRNA in the environment. Front Bioeng Biotechnol 2022; 10:974646. [PMID: 36051593 PMCID: PMC9424858 DOI: 10.3389/fbioe.2022.974646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
RNAi technology, known as a revolutionary technology in the history of pesticides, has been identified as a very promising novel approach for crop protection, which is of great significance for achieving the sustainable agricultural development of the United Nations Food and Agriculture Organization. Although many studies have shown that RNA biopesticides have strong application prospects, its stability seriously restricts the commercial use. As the core component of RNAi, double-stranded RNA (dsRNA) is unstable in its natural form. Therefore, how to ensure the stability of dsRNA is one of the most significant challenges in realizing the commercial use of RNA biopesticides. Nanomaterials such as cationic polymers and lipofectamine can improve the stability of dsRNA in the environment, which has been proved. This paper reviews the recent research progress of nanomaterials that can be used to improve the environmental stability of dsRNA, and discusses the advantages and limitations of different nanomaterials combined with dsRNA, which provides reference for the selection of dsRNA nanoformulations.
Collapse
Affiliation(s)
| | | | | | | | - Dehai Liu
- *Correspondence: Dehai Liu, ; Guocan Chen,
| |
Collapse
|
50
|
Guo Q, Gao Y, Xing C, Niu Y, Ding L, Dai X. Culex quinquefasciatus alpha-glucosidase serves as a putative receptor of the Cry48Aa toxin from Lysinibacillus sphaericus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103799. [PMID: 35662624 DOI: 10.1016/j.ibmb.2022.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The Cry48Aa/Cry49Aa toxin of Lysinibacillus sphaericus shows specific toxicity towards larvae of Culex spp. Individual Cry48Aa and Cry49Aa subunits interact with distinct target sites in the larval midgut and overcome the resistance of Culex to the Bin toxin. However, the toxin-binding proteins have not yet been identified. The present study aimed to identify Cry48Aa-binding proteins in Culex quinquefasciatus. Pulldown assays using C. quinquefasciatus midgut brush-border membrane fractions (BBMFs) identified a class of proteins, including aminopeptidases (APNs), protease m1 zinc metalloproteases, alkaline phosphatases (ALPs), and maltases, that could be potentially involved in the mode of action of this toxin. RNA interference analysis showed that silenced larvae treated with dsRNA of the alpha-glucosidase (named Glu71) gene were more tolerant of the Cry48Aa/Cry49Aa toxin, which induced less than 20% mortality. The amino acid sequence of Glu71 exhibited 42% identity with Cqm1/Cpm1, which acted as a Bin toxin receptor. Toxin binding assays showed that Cry48Aa had a high specific binding capacity for the Glu71 protein, whereas Cry49Aa exhibited no specific binding. Overall, our results showed that Glu71 is a Cry48-binding protein involved in Cry48Aa/Cry49Aa toxicity.
Collapse
Affiliation(s)
- Qingyun Guo
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China.
| | - Yuan Gao
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Chong Xing
- School of Information Engineering, Gannan Medical University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Yingchao Niu
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Lu Ding
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| | - Xiaohua Dai
- College of Life Sciences, Gannan Normal University, Ganzhou City of Jiangxi Province, 341000, PR China
| |
Collapse
|