1
|
Brown PL, Palacorolla H, Cobb-Lewis DE, Jhou TC, McMahon P, Bell D, Elmer GI, Shepard PD. Substantia Nigra Dopamine Neuronal Responses to Habenular Stimulation and Foot Shock Are Altered by Lesions of the Rostromedial Tegmental Nucleus. Neuroscience 2024; 547:56-73. [PMID: 38636897 PMCID: PMC11144098 DOI: 10.1016/j.neuroscience.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area generally respond to aversive stimuli or the absence of expected rewards with transient inhibition of firing rates, which can be recapitulated with activation of the lateral habenula (LHb) and eliminated by lesioning the intermediating rostromedial tegmental nucleus (RMTg). However, a minority of DA neurons respond to aversive stimuli, such as foot shock, with a transient increase in firing rate, an outcome that rarely occurs with LHb stimulation. The degree to which individual neurons respond to these two stimulation modalities with the same response phenotype and the role of the RMTg is not known. Here, we record responses from single SN DA neurons to alternating activation of the LHb and foot shock in male rats. Lesions of the RMTg resulted in a shift away from inhibition to no response during both foot shock and LHb stimulation. Furthermore, lesions unmasked an excitatory response during LHb stimulation. The response correspondence within the same neuron between the two activation sources was no different from chance in sham controls, suggesting that external inputs rather than intrinsic DA neuronal properties are more important to response outcome. These findings contribute to a literature that shows a complex neurocircuitry underlies the regulation of DA activity and, by extension, behaviors related to learning, anhedonia, and cognition.
Collapse
Affiliation(s)
- P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA.
| | - Heather Palacorolla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Dana E Cobb-Lewis
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Thomas C Jhou
- Department of Neurobiology, University of Maryland School of Medicine, 620 West Lexington St., Baltimore, MD 21201, USA
| | - Pat McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Dana Bell
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Ave., Catonsville, MD 21228, USA
| |
Collapse
|
2
|
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J Funct Morphol Kinesiol 2024; 9:14. [PMID: 38249091 PMCID: PMC10801627 DOI: 10.3390/jfmk9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The habenular complex is a diencephalic structure divided into the medial and lateral divisions that lie within the epithalamus of most vertebrates. This brain structure, whose activities are mainly regulated via inputs/outputs from and to the stria medullaris and the fasciculus retroflexus, plays a significant role in the modulation of anti-reward behaviors in both the rodent and human brain. Such anti-reward circuits are regulated by dopaminergic and serotonergic projections with several other subcortical and cortical regions; therefore, it is plausible that impairment to this key subcortical structure or its connections contributes to the pathogenesis of affective disorders. Current literature reveals the existence of structural changes in the habenula complex in individuals afflicted by such disorders; however, there is a need for more comprehensive investigations to elucidate the underlying neuroanatomical connections that underpin disease development. In this review article, we aim to provide a comprehensive view of the neuroanatomical differences between the rodent and human habenular complex, the main circuitries, and provide an update on the emerging roles of this understudied subcortical structure in the control of affective behaviors, with special emphasis to morbid conditions of the affective sphere.
Collapse
Affiliation(s)
- Jordan Allan Piper
- School of Health Sciences, College of Health and Medicine, University of Tasmania (Sydney), Sydney, NSW 2040, Australia;
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical & Biotechnological Sciences, Anatomy, Histology & Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandro Castorina
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| |
Collapse
|
3
|
Pereira AR, Alemi M, Cerqueira-Nunes M, Monteiro C, Galhardo V, Cardoso-Cruz H. Dynamics of Lateral Habenula-Ventral Tegmental Area Microcircuit on Pain-Related Cognitive Dysfunctions. Neurol Int 2023; 15:1303-1319. [PMID: 37987455 PMCID: PMC10660716 DOI: 10.3390/neurolint15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic pain is a health problem that affects the ability to work and perform other activities, and it generally worsens over time. Understanding the complex pain interaction with brain circuits could help predict which patients are at risk of developing central dysfunctions. Increasing evidence from preclinical and clinical studies suggests that aberrant activity of the lateral habenula (LHb) is associated with depressive symptoms characterized by excessive negative focus, leading to high-level cognitive dysfunctions. The primary output region of the LHb is the ventral tegmental area (VTA), through a bidirectional connection. Recently, there has been growing interest in the complex interactions between the LHb and VTA, particularly regarding their crucial roles in behavior regulation and their potential involvement in the pathological impact of chronic pain on cognitive functions. In this review, we briefly discuss the structural and functional roles of the LHb-VTA microcircuit and their impact on cognition and mood disorders in order to support future studies addressing brain plasticity during chronic pain conditions.
Collapse
Affiliation(s)
- Ana Raquel Pereira
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mobina Alemi
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Cerqueira-Nunes
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde—Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.R.P.); (M.A.); (M.C.-N.); (C.M.); (V.G.)
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina—Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Jang HB, Ahn D, Chang S, Kim HK, Lee BH, Kim SC, Steffensen SC, Bills KB, Lee H, Kim HY. Activation of a hypothalamus-habenula circuit by mechanical stimulation inhibits cocaine addiction-like behaviors. Biol Res 2023; 56:25. [PMID: 37194106 DOI: 10.1186/s40659-023-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Mechanoreceptor activation modulates GABA neuron firing and dopamine (DA) release in the mesolimbic DA system, an area implicated in reward and substance abuse. The lateral habenula (LHb), the lateral hypothalamus (LH), and the mesolimbic DA system are not only reciprocally connected, but also involved in drug reward. We explored the effects of mechanical stimulation (MS) on cocaine addiction-like behaviors and the role of the LH-LHb circuit in the MS effects. MS was performed over ulnar nerve and the effects were evaluated by using drug seeking behaviors, optogenetics, chemogenetics, electrophysiology and immunohistochemistry. RESULTS Mechanical stimulation attenuated locomotor activity in a nerve-dependent manner and 50-kHz ultrasonic vocalizations (USVs) and DA release in nucleus accumbens (NAc) following cocaine injection. The MS effects were ablated by electrolytic lesion or optogenetic inhibition of LHb. Optogenetic activation of LHb suppressed cocaine-enhanced 50 kHz USVs and locomotion. MS reversed cocaine suppression of neuronal activity of LHb. MS also inhibited cocaine-primed reinstatement of drug-seeking behavior, which was blocked by chemogenetic inhibition of an LH-LHb circuit. CONCLUSION These findings suggest that peripheral mechanical stimulation activates LH-LHb pathways to attenuate cocaine-induced psychomotor responses and seeking behaviors.
Collapse
Affiliation(s)
- Han Byeol Jang
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - DanBi Ahn
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Sang Chan Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, South Korea
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Kyle B Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
5
|
Gu HW, Zhang GF, Liu PM, Pan WT, Tao YX, Zhou ZQ, Yang JJ. Contribution of activating lateral hypothalamus-lateral habenula circuit to nerve trauma-induced neuropathic pain in mice. Neurobiol Dis 2023; 182:106155. [PMID: 37182721 DOI: 10.1016/j.nbd.2023.106155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023] Open
Abstract
Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be the targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, United States
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.
| |
Collapse
|
6
|
Alemi M, Pereira AR, Cerqueira-Nunes M, Monteiro C, Galhardo V, Cardoso-Cruz H. Role of Glutamatergic Projections from Lateral Habenula to Ventral Tegmental Area in Inflammatory Pain-Related Spatial Working Memory Deficits. Biomedicines 2023; 11:biomedicines11030820. [PMID: 36979799 PMCID: PMC10045719 DOI: 10.3390/biomedicines11030820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
The lateral habenula (LHb) and the ventral tegmental area (VTA), which form interconnected circuits, have important roles in the crucial control of sensory and cognitive motifs. Signaling in the LHb-VTA pathway can be exacerbated during pain conditions by a hyperactivity of LHb glutamatergic neurons to inhibit local VTA DAergic cells. However, it is still unclear whether and how this circuit is endogenously engaged in pain-related cognitive dysfunctions. To answer this question, we modulated this pathway by expressing halorhodopsin in LHb neurons of adult male rats, and then selectively inhibited the axonal projections from these neurons to the VTA during a working memory (WM) task. Behavioral performance was assessed after the onset of an inflammatory pain model. We evaluated the impact of the inflammatory pain in the VTA synapses by performing immunohistochemical characterization of specific markers for GABAergic (GAD65/67) and dopaminergic neurons (dopamine transporter (DAT), dopamine D2 receptor (D2r) and tyrosine hydroxylase (TH)). Our results revealed that inhibition of LHb terminals in the VTA during the WM delay-period elicits a partial recovery of the performance of pain animals (in higher complexity challenges); this performance was not accompanied by a reduction of nociceptive responses. Finally, we found evidence that the pain-affected animals exhibit VTA structural changes, namely with an upregulation of GAD65/67, and a downregulation of DAT and D2r. These results demonstrate a role of LHb neurons and highlight their responsibility in the stability of the local VTA network, which regulates signaling in frontal areas necessary to support WM processes.
Collapse
Affiliation(s)
- Mobina Alemi
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Ana Raquel Pereira
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Cerqueira-Nunes
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde-Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Faculdade de Medicina, Departamento de Biomedicina-Unidade de Biologia Experimental, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Zhang WW, Chen T, Li SY, Wang XY, Liu WB, Wang YQ, Mi WL, Mao-Ying QL, Wang YQ, Chu YX. Tachykinin receptor 3 in the lateral habenula alleviates pain and anxiety comorbidity in mice. Front Immunol 2023; 14:1049739. [PMID: 36756128 PMCID: PMC9900122 DOI: 10.3389/fimmu.2023.1049739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
The coexistence of chronic pain and anxiety is a common clinical phenomenon. Here, the role of tachykinin receptor 3 (NK3R) in the lateral habenula (LHb) in trigeminal neuralgia and in pain-associated anxiety was systematically investigated. First, electrophysiological recording showed that bilateral LHb neurons are hyperactive in a mouse model of trigeminal neuralgia made by partial transection of the infraorbital nerve (pT-ION). Chemicogenetic activation of bilateral LHb glutamatergic neurons in naive mice induced orofacial allodynia and anxiety-like behaviors, and pharmacological activation of NK3R in the LHb attenuated allodynia and anxiety-like behaviors induced by pT-ION. Electrophysiological recording showed that pharmacological activation of NK3R suppressed the abnormal excitation of LHb neurons. In parallel, pharmacological inhibition of NK3R induced orofacial allodynia and anxiety-like behavior in naive mice. The electrophysiological recording showed that pharmacological inhibition of NK3R activates LHb neurons. Neurokinin B (NKB) is an endogenous high-affinity ligand of NK3R, which binds NK3R and activates it to perform physiological functions, and further neuron projection tracing showed that the front section of the periaqueductal gray (fPAG) projects NKB-positive nerve fibers to the LHb. Optogenetics combined with electrophysiology recordings characterize the functional connections in this fPAG NKB → LHb pathway. In addition, electrophysiological recording showed that NKB-positive neurons in the fPAG were more active than NKB-negative neurons in pT-ION mice. Finally, inhibition of NKB release from the fPAG reversed the analgesic and anxiolytic effects of LHb Tacr3 overexpression in pT-ION mice, indicating that fPAG NKB → LHb regulates orofacial allodynia and pain-induced anxious behaviors. These findings for NK3R suggest the cellular mechanism behind pT-ION in the LHb and suggest that the fPAG NKB → LHb circuit is involved in pain and anxiety comorbidity. This previously unrecognized pathway might provide a potential approach for relieving the pain and anxiety associated with trigeminal neuralgia by targeting NK3R.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shi-Yi Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xin-Yue Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Bo Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yu-Quan Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,*Correspondence: Yu-Xia Chu, ; Yan-Qing Wang,
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Fudan University, Shanghai, China,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China,*Correspondence: Yu-Xia Chu, ; Yan-Qing Wang,
| |
Collapse
|
8
|
Lee SM, Jang HB, Fan Y, Lee BH, Kim SC, Bills KB, Steffensen SC, Kim HY. Nociceptive Stimuli Activate the Hypothalamus-Habenula Circuit to Inhibit the Mesolimbic Reward System and Cocaine-Seeking Behaviors. J Neurosci 2022; 42:9180-9192. [PMID: 36280259 PMCID: PMC9761669 DOI: 10.1523/jneurosci.0577-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023] Open
Abstract
Nociceptive signals interact with various regions of the brain, including those involved in physical sensation, reward, cognition, and emotion. Emerging evidence points to a role of nociception in the modulation of the mesolimbic reward system. The mechanism by which nociception affects dopamine (DA) signaling and reward is unclear. The lateral hypothalamus (LH) and the lateral habenula (LHb) receive somatosensory inputs and are structurally connected with the mesolimbic DA system. Here, we show that the LH-LHb pathway is necessary for nociceptive modulation of this system using male Sprague Dawley rats. Our extracellular single-unit recordings and head-mounted microendoscopic calcium imaging revealed that nociceptive stimulation by tail pinch excited LHb and LH neurons, which was inhibited by chemical lesion of the LH. Tail pinch increased activity of GABA neurons in ventral tegmental area, decreased the extracellular DA level in the nucleus accumbens ventrolateral shell in intact rats, and reduced cocaine-increased DA concentration, which was blocked by disruption of the LH. Furthermore, tail pinch attenuated cocaine-induced locomotor activity, 22 and 50 kHz ultrasonic vocalizations, and reinstatement of cocaine-seeking behavior, which was inhibited by chemogenetic silencing of the LH-LHb pathway. Our findings suggest that nociceptive stimulation recruits the LH-LHb pathway to inhibit mesolimbic DA system and drug reinstatement.SIGNIFICANCE STATEMENT The LHb and the LH have been implicated in processing nociceptive signals and modulating DA release in the mesolimbic DA system. Here, we show that the LH-LHb pathway is critical for nociception-induced modulation of mesolimbic DA release and cocaine reinstatement. Nociceptive stimulation alleviates extracellular DA release in the mesolimbic DA system, cocaine-induced psychomotor activities, and reinstatement of cocaine-seeking behaviors through the LH-LHb pathway. These findings provide novel evidence for sensory modulation of the mesolimbic DA system and drug addiction.
Collapse
Affiliation(s)
- Soo Min Lee
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Han Byeol Jang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu 42158, South Korea
| | - Sang Chan Kim
- Medical Research Center, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, South Korea
| | - Kyle B Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, Utah 84606
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, Utah 84602
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
9
|
Dai D, Li W, Chen A, Gao XF, Xiong L. Lateral Habenula and Its Potential Roles in Pain and Related Behaviors. ACS Chem Neurosci 2022; 13:1108-1118. [PMID: 35412792 DOI: 10.1021/acschemneuro.2c00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lateral habenula (LHb) is a tiny structure that acts as a hub, relaying signals from the limbic forebrain structures and basal ganglia to the brainstem modulatory area. Facilitated by updated knowledge and more precise manipulation of circuits, the progress in figuring out the neural circuits and functions of the LHb has increased dramatically over the past decade. Importantly, LHb is found to play an integrative role and has profound effects on a variety of behaviors associated with pain, including depression-like and anxiety-like behaviors, antireward or aversion, aggression, defensive behavior, and substance use disorder. Thus, LHb is a potential target for improving pain management and related disorders. In this review, we focused on the functions, related circuits, and neurotransmissions of the LHb in pain processing and related behaviors. A comprehensive understanding of the relationship between the LHb and pain will help to find new pain treatments.
Collapse
Affiliation(s)
- Danqing Dai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Wanrong Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Aiwen Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Xiao-Fei Gao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1481, Xinshi North Road, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No. 1279, Sanmen Road, Shanghai 200434, China
| |
Collapse
|
10
|
Doan TH, Sato Y, Matsumoto M, Koganezawa T. Lateral Habenula Regulates Cardiovascular Autonomic Responses via the Serotonergic System in Rats. Front Neurosci 2021; 15:655617. [PMID: 33854416 PMCID: PMC8039147 DOI: 10.3389/fnins.2021.655617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The lateral habenula (LHb) plays essential roles in behavioral responses to stressful events. Stress is tightly linked to autonomic responses such as cardiovascular responses, yet how the LHb regulates these responses is not well understood. To address this issue, we electrically stimulated the LHb in rats, measured its effects on heart rate (HR) and mean arterial pressure (MAP), and investigated the neural circuits that mediate these LHb-induced cardiovascular responses via the autonomic nervous system. We observed that stimulation of the LHb induced bradycardia and pressor responses, whereas stimulation of the adjacent areas changed neither the HR nor the MAP. Bilateral vagotomy and administration of a muscarinic receptor antagonist suppressed the LHb stimulation effect on the HR but not on the MAP, whereas administration of a β-adrenoceptor antagonist partly attenuated the effect on the MAP but not on the HR. Thus, the LHb-induced cardiovascular responses of the HR and the MAP were likely caused by activations of the cardiac parasympathetic nerves and the cardiovascular sympathetic nerves, respectively. Furthermore, administration of a non-selective 5-HT receptor antagonist significantly attenuated the LHb stimulation effects on both the MAP and the HR. A 5-HT2 receptor antagonist also attenuated the LHb stimulation effects. A low dose of a 5-HT1A receptor antagonist enhanced the LHb stimulation effects, but a high dose of the drug attenuated them. 5-HT1B and 5-HT1D receptor antagonists as well as a 5-HT7 receptor antagonist did not affect the LHb stimulation effects. Taken together, our findings suggest that the LHb regulates autonomic cardiovascular responses at least partly through the serotonergic system, particularly via the 5-HT1A and 5-HT2 receptors.
Collapse
Affiliation(s)
- Tri Huu Doan
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Center for Advanced Training in Clinical Simulation, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yuma Sato
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tadachika Koganezawa
- Department of Physiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Ko HG. The lateral habenula is critically involved in histamine-induced itch sensation. Mol Brain 2020; 13:117. [PMID: 32854744 PMCID: PMC7457247 DOI: 10.1186/s13041-020-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/02/2022] Open
Abstract
Lateral habenula (LHb) is a brain region acting as a hub mediating aversive response against noxious, stressful stimuli. Growing evidences indicated that LHb modulates aminergic activities to induce avoidance behavior against nociceptive stimuli. Given overlapped neural circuitry transmitting pain and itch information, it is likely that LHb have a role in processing itch information. Here, we examined whether LHb is involved in itchy response induced by histamine. We found that histamine injection enhances Fos (+) cells in posterior portion within parvocellular and central subnuclei of the medial division (LHbM) of the LHb. Moreover, chemogenetic suppression of LHbM reduced scratching behavior induced by histamine injection. These results suggest that LHb is required for processing itch information to induce histaminergic itchy response.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, 41940, South Korea.
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
12
|
Dopaminergic Signaling in the Nucleus Accumbens Modulates Stress-Coping Strategies during Inescapable Stress. J Neurosci 2020; 40:7241-7254. [PMID: 32847967 DOI: 10.1523/jneurosci.0444-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 01/11/2023] Open
Abstract
Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder (PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evading aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuronal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc, a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the modulation of stress-coping behaviors in animals under tail suspension stress.SIGNIFICANCE STATEMENT The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopaminergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST.
Collapse
|
13
|
Ramaswamy M, Cheng RK, Jesuthasan S. Identification of GABAergic neurons innervating the zebrafish lateral habenula. Eur J Neurosci 2020; 52:3918-3928. [PMID: 32464693 PMCID: PMC7689879 DOI: 10.1111/ejn.14843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/01/2022]
Abstract
Habenula neurons are constantly active. The level of activity affects mood and behaviour, with increased activity in the lateral habenula reflecting exposure to punishment and a switch to passive coping and depression. Here, we identify GABAergic neurons that could reduce activity in the lateral habenula of larval zebrafish. GAD65/67 immunohistochemistry and imaging of gad1b:DsRed transgenic fish suggest the presence of GABAergic terminals in the neuropil and between cell bodies in the lateral habenula. Retrograde tracing with the lipophilic dye DiD suggests that the former derives from the thalamus, while the latter originates from a group of cells in the posterior hypothalamus that are located between the posterior tuberal nucleus and hypothalamic lobes. Two‐photon calcium imaging indicates that blue light causes excitation of thalamic GABAergic neurons and terminals in the neuropil, while a subpopulation of lateral habenula neurons show reduced intracellular calcium levels. Whole‐cell electrophysiological recording indicates that blue light reduces membrane potential of lateral habenula neurons. These observations suggest that GABAergic input from the thalamus may mediate inhibition in the zebrafish lateral habenula. Mechanisms governing release of GABA from the neurons in the posterior hypothalamus, which are likely to be in the tuberomammillary nucleus, remain to be defined.
Collapse
Affiliation(s)
- Mahathi Ramaswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
14
|
Bertone-Cueto NI, Makarova J, Mosqueira A, García-Violini D, Sánchez-Peña R, Herreras O, Belluscio M, Piriz J. Volume-Conducted Origin of the Field Potential at the Lateral Habenula. Front Syst Neurosci 2020; 13:78. [PMID: 31998083 PMCID: PMC6961596 DOI: 10.3389/fnsys.2019.00078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/30/2023] Open
Abstract
Field potentials (FPs) are easily reached signals that provide information about the brain's processing. However, FP should be interpreted cautiously since their biophysical bases are complex. The lateral habenula (LHb) is a brain structure involved in the encoding of aversive motivational values. Previous work indicates that the activity of the LHb is relevant for hippocampal-dependent learning. Moreover, it has been proposed that the interaction of the LHb with the hippocampal network is evidenced by the synchronization of LHb and hippocampal FPs during theta rhythm. However, the origin of the habenular FP has not been analyzed. Hence, its validity as a measurement of LHb activity has not been proven. In this work, we used electrophysiological recordings in anesthetized rats and feed-forward modeling to investigate biophysical basis of the FP recorded in the LHb. Our results indicate that the FP in the LHb during theta rhythm is a volume-conducted signal from the hippocampus. This result highlight that FPs must be thoroughly analyzed before its biological interpretation and argues against the use of the habenular FP signal as a readout of the activity of the LHb.
Collapse
Affiliation(s)
- Nicolas Iván Bertone-Cueto
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | - Alejo Mosqueira
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | | | | - Mariano Belluscio
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Joaquin Piriz
- Grupo de Neurociencia de Sistemas, Instituto de Fisiología y Biofísica “Houssay” (IFIBIO “Houssay”), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Chang S, Ryu Y, Fan Y, Bang SK, Kim NJ, Lee JG, Kim JM, Lee BH, Yang CH, Kim HY. Involvement of the Cuneate Nucleus in the Acupuncture Inhibition of Drug-Seeking Behaviors. Front Neurosci 2019; 13:928. [PMID: 31555084 PMCID: PMC6727429 DOI: 10.3389/fnins.2019.00928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Our previous studies have shown that acupuncture suppresses addictive behaviors induced by drugs of abuse, including cocaine, morphine and ethanol, by modulating GABA neurons in the ventral tegmental area (VTA) and dopamine (DA) release in the nucleus accumbens (NAc). The mechanisms by which the peripheral signals generated by acupoint stimulation are transmitted to brain reward systems are largely unexplored. The present study aims to investigate the role of spinal dorsal column (DC) somatosensory pathways in the acupuncture inhibition of drug addictive behaviors. Thus, we tested whether acupuncture at Shenmen (HT7) points reduces drug-seeking behaviors in rats self-administering morphine or ethanol and whether such effects are inhibited by the disruption of the cuneate nucleus (CN). The stimulation of HT7 suppressed morphine and ethanol self-administration, which were completely abolished by surgical lesioning of the CN. In in vivo extracellular recordings, single-unit activity of the CN was evoked during acupuncture stimulation. The results suggest that acupuncture suppresses morphine- and ethanol-seeking behaviors through the modulation of the CN, second-order neurons of the DC somatosensory pathway.
Collapse
Affiliation(s)
- Suchan Chang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Fan
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Se Kyun Bang
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Korean Convergence Medicine, University of Science and Technology, Daejeon, South Korea
| | - Nam Jun Kim
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jin Mook Kim
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Bong Hyo Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Hee Young Kim
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| |
Collapse
|
16
|
Zuo W, Wu L, Mei Q, Zuo Q, Zhou Z, Fu R, Li W, Wu W, Matthew L, Ye JH. Adaptation in 5-HT 2 receptors-CaMKII signaling in lateral habenula underlies increased nociceptive-sensitivity in ethanol-withdrawn rats. Neuropharmacology 2019; 158:107747. [PMID: 31445991 DOI: 10.1016/j.neuropharm.2019.107747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023]
Abstract
Alcoholics often experience hyperalgesia, especially during abstinence, yet the underlying cellular and molecular bases are unclear. Recent evidence suggests that 5-HT type 2 receptors (5-HT2Rs) at glutamatergic synapses on lateral habenula (LHb) neurons may play a critical role. We, therefore, measured paw withdrawal responses to thermal and mechanical stimuli, and alcohol intake in a rat model of intermittent drinking paradigm, as well as spontaneous glutamatergic transmission (sEPSCs), and firing of LHb neurons in brain slices. Here, we report that nociceptive sensitivity was higher in rats at 24 h withdrawal from chronic alcohol consumption than that of alcohol-naive counterparts. The basal frequency of sEPSCs and firings was higher in slices of withdrawn rats than that of Naïve rats, and 5-HT2R antagonists attenuated the enhancement. Also, an acute ethanol-induced increase of sEPSCs and firings was smaller in withdrawal than in Naïve rats; it was attenuated by 5-HT2R antagonists but mimicked by 5-HT2R agonists. Importantly, intra-LHb infusion of 5-HT2R agonists increased nociceptive sensitivity in Naïve rats, while antagonists or 5-HT reuptake blocker decreased nociceptive sensitivity and alcohol intake in withdrawn rats. Additionally, KN-62, a CaMKII inhibitor, attenuated the enhancement of EPSCs and firing induced by acute alcohol and by 5-HT2R agonist. Furthermore, intra-LHb KN-62 reduced nociceptive sensitivity and alcohol intake. Quantitative real-time PCR assay detected mRNA of 5-HT2A and 2C in the LHb. Thus adaptation in 5-HT2R-CaMKII signaling pathway contributes to the hyper-glutamatergic state, the hyperactivity of LHb neurons as well as the higher nociceptive sensitivity in rats withdrawn from chronic alcohol consumption.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qikang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Zhongyang Zhou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wenting Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Leberer Matthew
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
17
|
Congiu M, Trusel M, Pistis M, Mameli M, Lecca S. Opposite responses to aversive stimuli in lateral habenula neurons. Eur J Neurosci 2019; 50:2921-2930. [DOI: 10.1111/ejn.14400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Mauro Congiu
- Department of Fundamental Neuroscience University of Lausanne Lausanne Switzerland
- Department of Biomedical Science University of Cagliari Cagliari Italy
- Section of Cagliari Neuroscience Institute National Research Council of Italy (CNR) Monserrato Italy
| | - Massimo Trusel
- Department of Fundamental Neuroscience University of Lausanne Lausanne Switzerland
| | - Marco Pistis
- Department of Biomedical Science University of Cagliari Cagliari Italy
- Section of Cagliari Neuroscience Institute National Research Council of Italy (CNR) Monserrato Italy
| | - Manuel Mameli
- Department of Fundamental Neuroscience University of Lausanne Lausanne Switzerland
- Institut national de la Santé et de la Recherche Médicale UMR‐S 839 Paris France
| | - Salvatore Lecca
- Department of Fundamental Neuroscience University of Lausanne Lausanne Switzerland
| |
Collapse
|
18
|
Fakhoury M. The dorsal diencephalic conduction system in reward processing: Spotlight on the anatomy and functions of the habenular complex. Behav Brain Res 2018; 348:115-126. [PMID: 29684476 DOI: 10.1016/j.bbr.2018.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
The dorsal diencephalic conduction system (DDC) is a highly conserved pathway in vertebrates that provides a route for the neural information to flow from forebrain to midbrain structures. It contains the bilaterally paired habenular nuclei along with two fiber tracts, the stria medullaris and the fasciculus retroflexus. The habenula is the principal player in mediating the dialogue between forebrain and midbrain regions, and functional abnormalities in this structure have often been attributed to pathologies like mood disorders and substance use disorder. Following Matsumoto and Hikosaka seminal work on the lateral habenula as a source of negative reward signals, the last decade has witnessed a great surge of interest in the role of the DDC in reward-related processes. However, despite significant progress in research, much work remains to unfold the behavioral functions of this intriguing, yet complex, pathway. This review describes the current state of knowledge on the DDC with respect to its anatomy, connectivity, and functions in reward and aversion processes.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3C3J7, Canada.
| |
Collapse
|
19
|
Liu WH, Valton V, Wang LZ, Zhu YH, Roiser JP. Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder. Soc Cogn Affect Neurosci 2017; 12:1520-1533. [PMID: 28575424 PMCID: PMC5629818 DOI: 10.1093/scan/nsx074] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/28/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
The lateral habenula plays a central role in reward and punishment processing and has been suggested to drive the cardinal symptom of anhedonia in depression. This hypothesis is largely based on observations of habenula hypermetabolism in animal models of depression, but the activity of habenula and its relationship with clinical symptoms in patients with depression remains unclear. High-resolution functional magnetic resonance imaging (fMRI) and computational modelling were used to investigate the activity of the habenula during a probabilistic reinforcement learning task with rewarding and punishing outcomes in 21 unmedicated patients with major depression and 17 healthy participants. High-resolution anatomical scans were also acquired to assess group differences in habenula volume. Healthy individuals displayed the expected activation in the left habenula during receipt of punishment and this pattern was confirmed in the computational analysis of prediction error processing. In depressed patients, there was a trend towards attenuated left habenula activation to punishment, while greater left habenula activation was associated with more severe depressive symptoms and anhedonia. We also identified greater habenula volume in patients with depression, which was associated with anhedonic symptoms. Habenula dysfunction may contribute to abnormal response to punishment in patients with depression, and symptoms such as anhedonia.
Collapse
Affiliation(s)
- Wen-Hua Liu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
- School of Health Management, Guangzhou Medical University, Guangzhou, China
| | - Vincent Valton
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Ling-Zhi Wang
- Department of Rehabilitation, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Hua Zhu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jonathan P. Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
20
|
Spinal pathways involved in somatosensory inhibition of the psychomotor actions of cocaine. Sci Rep 2017; 7:5359. [PMID: 28706288 PMCID: PMC5509652 DOI: 10.1038/s41598-017-05681-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
Previous studies have demonstrated that somatosensory stimuli influence dopamine transmission in the mesolimbic reward system and can reduce drug-induced motor behaviors, craving and dependence. Until now, the central links between somatosensory and brain reward systems are not known. Here, we show that the dorsal column (DC) somatosensory pathway contains projections that convey an inhibitory input from the periphery to mesolimbic reward circuits. Stimulation of the ulnar nerve under HT7 acupoint suppressed psychomotor response to cocaine, which was abolished by disruption of the DC pathway, but not the spinothalamic tract (STT). Low-threshold or wide-dynamic range neurons in the cuneate nucleus (CN) were excited by peripheral stimulation. Lesions of dorsal column or lateral habenula (LHb) prevented the inhibitory effects of peripheral stimulation on cocaine-induced neuronal activation in the nucleus accumbens (NAc). LHb neurons projecting to the ventral tegmental area (VTA)/rostromedial tegmental nucleus (RMTg) regions were activated by peripheral stimulation and LHb lesions reversed the inhibitory effects on cocaine locomotion produced by peripheral stimulation. These findings suggest that there exists a pathway in spinal cord that ascends from periphery to mesolimbic reward circuits (spino-mesolimbic pathway) and the activation of somatosensory input transmitted via the DC pathway can inhibit the psychomotor response to cocaine.
Collapse
|
21
|
Brown PL, Palacorolla H, Brady D, Riegger K, Elmer GI, Shepard PD. Habenula-Induced Inhibition of Midbrain Dopamine Neurons Is Diminished by Lesions of the Rostromedial Tegmental Nucleus. J Neurosci 2017; 37:217-225. [PMID: 28053043 PMCID: PMC5214632 DOI: 10.1523/jneurosci.1353-16.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023] Open
Abstract
Neurons in the lateral habenula (LHb) are transiently activated by aversive events and have been implicated in associative learning. Functional changes associated with tonic and phasic activation of the LHb are often attributed to a corresponding inhibition of midbrain dopamine (DA) neurons. Activation of GABAergic neurons in the rostromedial tegmental nucleus (RMTg), a region that receives dense projections from the LHb and projects strongly to midbrain monoaminergic nuclei, is believed to underlie the transient inhibition of DA neurons attributed to activation of the LHb. To test this premise, the effects of axon-sparing lesions of the RMTg were assessed on LHb-induced inhibition of midbrain DA cell firing in anesthetized rats. Quinolinic acid lesions decreased the number of NeuN-positive neurons in the RMTg significantly while largely sparing cells in neighboring regions. Lesions of the RMTg reduced both the number of DA neurons inhibited by, and the duration of inhibition resulting from, LHb stimulation. Although the firing rate was not altered, the regularity of DA cell firing was increased in RMTg-lesioned rats. Locomotor activity in an open field was also elevated. These results are the first to show that RMTg neurons contribute directly to LHb-induced inhibition of DA cell activity and support the widely held proposition that GABAergic neurons in the mesopontine tegmentum are an important component of a pathway that enables midbrain DA neurons to encode the negative valence associated with failed expectations and aversive stimuli. SIGNIFICANCE STATEMENT Phasic changes in the activity of midbrain dopamine cells motivate and guide future behavior. Activation of the lateral habenula by aversive events inhibits dopamine neurons transiently, providing a neurobiological representation of learning models that incorporate negative reward prediction errors. Anatomical evidence suggests that this inhibition occurs via the rostromedial tegmental nucleus, but this hypothesis has yet to be tested directly. Here, we show that axon-sparing lesions of the rostromedial tegmentum attenuate habenula-induced inhibition of dopamine neurons significantly. These data support a substantial role for the rostromedial tegmentum in habenula-induced feedforward inhibition of dopamine neurons.
Collapse
Affiliation(s)
- P Leon Brown
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| | - Heather Palacorolla
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| | - Dana Brady
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| | - Katelyn Riegger
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| | - Greg I Elmer
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| | - Paul D Shepard
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland, Baltimore, Maryland 21204
| |
Collapse
|
22
|
Khalilzadeh E, Saiah GV. The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats. Res Pharm Sci 2017. [PMID: 28626482 PMCID: PMC5465833 DOI: 10.4103/1735-5362.207205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to assess the effect of intra-habenular injection of morphine on acute trigeminal pain in rats. Also here, we examined the involvement of raphe nucleus opioid and 5HT3 receptors on the antinociceptive activity of intra habenular morphine to explore the possibility of existence of descending antinociceptive relay between the habenula and raphe nucleus. The numbers of eye wiping response elicited by applying a drop (40 μL) of NaCl (5 M) solution on the corneal surface were taken as an index of acute trigeminal nociception. Intra habenular microinjection of morphine at a dose of 2 μg was without effect, whereas at doses of 5 and 8 μg significantly produced antinociception. Microinjection of naltrexone (4 μg) and ondansetron (1 μg) into the dorsal raphe nucleus prior to intra-habenular saline did not produce any significant effect on corneal pain perception. Pretreatment of the raphe nucleus with ondansetron but not naltrexone prevented intra habenular morphine (8 μg) induced antinociception. Also, intra habenular injection of lidocaine (2%, 0.5 μL reduced corneal pain response. Moreover, intra-habenular microinjection of L-glutamic acid (1 and 2 μg/site) did not produce any analgesic activity in this model of pain. In conclusion, the present results suggest that the activation of the habenular μ opioid receptor by microinjection of morphine or inhibition of habenular neurons by microinjection of lidocaine produced an analgesic effect in the acute trigeminal model of pain in rats. The analgesic effect of intra habenular morphine was blocked by intra-dorsal raphe injection of serotonin 5-HT3 antagonist.
Collapse
Affiliation(s)
- Emad Khalilzadeh
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| | - Gholamreza Vafaei Saiah
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| |
Collapse
|
23
|
Holmes FE, Kerr N, Chen YJ, Vanderplank P, McArdle CA, Wynick D. Targeted disruption of the orphan receptor Gpr151 does not alter pain-related behaviour despite a strong induction in dorsal root ganglion expression in a model of neuropathic pain. Mol Cell Neurosci 2016; 78:35-40. [PMID: 27913310 PMCID: PMC5235321 DOI: 10.1016/j.mcn.2016.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/03/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Gpr151 is an orphan GPCR whose function is unknown. The restricted pattern of neuronal expression in the habenula, dorsal horn of the spinal cord and dorsal root ganglion plus homology with the galanin family of receptors imply a role in nociception. RESULTS Real-time quantitative RT-PCR demonstrated a 49.9±2.9 fold highly significant (P<0.001) increase in Gpr151 mRNA expression in the dorsal root ganglion 7days after the spared nerve injury model of neuropathic pain. Measures of acute, inflammatory and neuropathic pain behaviours were not significantly different using separate groups of Gpr151 loss-of-function mutant mice and wild-type controls. Galanin at concentrations between 100nM and 10μM did not induce calcium signalling responses in ND7/23 cells transfected with Gpr151. CONCLUSIONS Our results indicate that despite the very large upregulation in the DRG after a nerve injury model of neuropathic pain, the Gpr151 orphan receptor does not appear to be involved in the modulation of pain-related behaviours. Further, galanin is unlikely to be an endogenous ligand for Gpr151.
Collapse
Affiliation(s)
- Fiona E Holmes
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; School of Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Niall Kerr
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; School of Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ying-Ju Chen
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; School of Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Penny Vanderplank
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; School of Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Craig A McArdle
- School of Clinical Sciences, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - David Wynick
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK; School of Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
24
|
Shelton K, Bogyo K, Schick T, Ettenberg A. Pharmacological modulation of lateral habenular dopamine D2 receptors alters the anxiogenic response to cocaine in a runway model of drug self-administration. Behav Brain Res 2016; 310:42-50. [PMID: 27155504 DOI: 10.1016/j.bbr.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/01/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
Abstract
Cocaine has long been known to produce an initial "high" followed by an aversive/anxiogenic "crash". While much is known about the neurobiology of cocaine's positive/rewarding effects, the mechanisms that give rise to the drug's negative/anxiogenic actions remain unclear. Recent research has implicated the lateral habenula (LHb) in the encoding of aversive events including the anxiogenic response to cocaine. Of particular interest in this regard are the reciprocal connections between the LHb and the ventral tegmental area (VTA). VTA-DA neurons innervate different subsets of LHb cells that in turn feedback upon and modulate VTA neuronal activity. Here we examined the impact of D2 receptor activation and inhibition on the anxiogenic response to cocaine using a runway model of self-administration that is sensitive to the dual and opposing effects of the drug. Male rats ran a straight alley for IV cocaine (1.0mg/kg) following bilateral intra-LHb infusions of the D2 receptor antagonist, cis-flupenthixol (0, 7.5 or 15μg/side) or the D2 agonist, sumanirole (0, 5 or 10μg/side). Vehicle-pretreated controls developed approach-avoidance conflict behaviors about goal-box entry reflective of the dual positive and negative effects of cocaine. These behaviors were significantly diminished during LHb-D2 receptor antagonism and increased by the LHb D2 receptor agonist. These results demonstrate that activity at the D2 receptor in the lateral habenula serves to modulate the anxiogenic response to cocaine.
Collapse
Affiliation(s)
- Kerisa Shelton
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Kelsie Bogyo
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Tinisha Schick
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106-9660, United States.
| |
Collapse
|
25
|
Kawai T, Yamada H, Sato N, Takada M, Matsumoto M. Roles of the Lateral Habenula and Anterior Cingulate Cortex in Negative Outcome Monitoring and Behavioral Adjustment in Nonhuman Primates. Neuron 2015; 88:792-804. [PMID: 26481035 DOI: 10.1016/j.neuron.2015.09.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
Animals monitor the outcome of their choice and adjust subsequent choice behavior using the outcome information. Together with the anterior cingulate cortex (ACC), the lateral habenula (LHb) has recently attracted attention for its crucial role in monitoring negative outcome. To investigate their contributions to subsequent behavioral adjustment, we recorded single-unit activity from the LHb and ACC in monkeys performing a reversal learning task. The monkey was required to shift a previous choice to the alternative if the choice had been repeatedly unrewarded in past trials. We found that ACC neurons stored outcome information from several past trials, whereas LHb neurons detected the ongoing negative outcome with shorter latencies. ACC neurons, but not LHb neurons, signaled a behavioral shift in the next trial. Our findings suggest that, although both the LHb and the ACC represent signals associated with negative outcome, these structures contribute to subsequent behavioral adjustment in different ways.
Collapse
Affiliation(s)
- Takashi Kawai
- Systems Neuroscience Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Department of Psychological Science, Kwansei Gakuin University, Nishinomiya, Hyogo 662-8501, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; The Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hiroshi Yamada
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Nobuya Sato
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya, Hyogo 662-8501, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Masayuki Matsumoto
- Systems Neuroscience Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
26
|
|
27
|
Chen F, Chen S, Liu S, Zhang C, Peng G. Effects of lorazepam and WAY-200070 in larval zebrafish light/dark choice test. Neuropharmacology 2015; 95:226-33. [PMID: 25842247 DOI: 10.1016/j.neuropharm.2015.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/28/2015] [Accepted: 03/23/2015] [Indexed: 01/17/2023]
Abstract
Zebrafish larvae spend more time in brightly illuminated area when placed in a light/dark testing environment. Here we report that the anxiolytic drugs lorazepam and diazepam increased the time larval fish spent in the dark compartment in the light/dark test. Lorazepam did not affect the visual induced optokinetic response of larval fish. Gene expression levels of c-fos and crh were significantly increased in the hypothalamus of fish larvae underwent light/dark choice behavior, whilst lorazepam treatment alleviated the increased c-fos and crh expressions. Furthermore, we found estrogen receptor β gene expression level was increased in fish larvae underwent light/dark choice. We next examined effects of estrogen receptor modulators (estradiol, BPA, PHTPP, and WAY-200070) in the light/dark test. We identified WAY-200070, a highly selective ERβ agonist significantly altered the light/dark choice behavior of zebrafish larvae. Further investigation showed WAY-200070 treatment caused a reduction of crh expression level in the hypothalamus, suggesting activation of ERβ signaling attenuate the stress response. Interestingly, WAY-200070 treatment caused marked increase of c-fos expression in the habenula of fish larvae underwent behavior test. These results suggest WAY-200070 activation of ERβ mediated signaling may regulate anxiety related behavior in zebrafish through modulation of neuronal activity in habenula.
Collapse
Affiliation(s)
- Fengjiao Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sijie Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shanshan Liu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Cuizhen Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Vadovičová K, Gasparotti R. Reward and adversity processing circuits, their competition and interactions with dopamine and serotonin signaling. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.aekzpz.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We propose that dorsal anterior cingulate cortex (dACC), anterior insula (AI) and adjacent caudolateral orbitofrontal cortex (clOFC), project to lateral habenula (LHb) and D2 loop of ventral striatum (VS), forming a functional adversity processing circuit, directed towards inhibitory avoidance and self-control. This circuit learns what is bad or harmful to us, evaluates and predicts risks - to stop us from selecting and going/moving for the bad or suboptimal choices that decrease our well-being and survival chances.
Proposed role of dACC is to generate a WARNING signal when things are going (or might end) bad or wrong to prevent negative consequences: pain, harm, loss or failure. The AI signals about bad, low, noxious and aversive qualities, which might make us sick or cause discomfort.
These cortical adversity processing regions activate directly and indirectly (via D2 loop of VS) the LHb, which then inhibits dopamine and serotonin release (and is reciprocally inhibited by VTA/SNc, DRN) to avoid choosing and doing things leading to harm or loss, but also to make us feel worse, even down when overstimulated. We propose that dopamine attenuates output of the adversity processing circuit, thus decreasing inhibitory avoidance and self-control, while serotonin attenuates dACC, AI, clOFC, D1 loop of VS, LHb, amygdala and pain pathway.
Thus, by reciprocal inhibition, by causing dopamine and serotonin suppression - and by being suppressed by them, the adversity processing circuit competes with reward processing circuit for control of choice behaviour and affective states. We propose stimulating effect of dopamine and calming inhibitory effect of serotonin on the active avoidance circuit involving amygdala, linked to threat processing, anger, fear, self-defense and violence. We describe causes and roles of dopamine and serotonin signaling in health and in mental dysfunctions. We add new idea on ventral ACC role in signaling that we are doing well and inducing serotonin, when we gain/reach safety, comfort, valuable resources (social or biological rewards), affection and achieve goals.
Collapse
|
29
|
Abstract
Located centrally along the dorsal diencephalic system, the habenula is divided into two structures: the medial and the lateral portions. It serves as an important relay between the forebrain and several hindbrain sites. In the last few years, a huge attention has been devoted to this structure, especially the lateral habenula (LHb), which seems to play an important role in emotion, motivation, and reward. Recent studies using techniques such as electrophysiology and neuroimaging have shown that the LHb is involved in motivational control of behavior. Its dysfunction is often associated with depression, schizophrenia, and mood disorder. This review focuses on providing a neuroanatomical and behavioral overview of some of the research previously done on the LHb. First, we describe the anatomical structure of the habenula and we explain how it is involved in reward and motivation. Then, we will discuss how this structure is linked to the limbic system, to finally provide a comparison between several studies that have used electrolytic lesions.
Collapse
|
30
|
Overton PG, Vautrelle N, Redgrave P. Sensory regulation of dopaminergic cell activity: Phenomenology, circuitry and function. Neuroscience 2014; 282:1-12. [PMID: 24462607 DOI: 10.1016/j.neuroscience.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
Abstract
Dopaminergic neurons in a range of species are responsive to sensory stimuli. In the anesthetized preparation, responses to non-noxious and noxious sensory stimuli are usually tonic in nature, although long-duration changes in activity have been reported in the awake preparation as well. However, in the awake preparation, short-latency, phasic changes in activity are most common. These phasic responses can occur to unconditioned aversive and non-aversive stimuli, as well as to the stimuli which predict them. In both the anesthetized and awake preparations, not all dopaminergic neurons are responsive to sensory stimuli, however responsive neurons tend to respond to more than a single stimulus modality. Evidence suggests that short-latency sensory information is provided to dopaminergic neurons by relatively primitive subcortical structures - including the midbrain superior colliculus for vision and the mesopontine parabrachial nucleus for pain and possibly gustation. Although short-latency visual information is provided to dopaminergic neurons by the relatively primitive colliculus, dopaminergic neurons can discriminate between complex visual stimuli, an apparent paradox which can be resolved by the recently discovered route of information flow through to dopaminergic neurons from the cerebral cortex, via a relay in the colliculus. Given that projections from the cortex to the colliculus are extensive, such a relay potentially allows the activity of dopaminergic neurons to report the results of complex stimulus processing from widespread areas of the cortex. Furthermore, dopaminergic neurons could acquire their ability to reflect stimulus value by virtue of reward-related modification of sensory processing in the cortex. At the forebrain level, sensory-related changes in the tonic activity of dopaminergic neurons may regulate the impact of the cortex on forebrain structures such as the nucleus accumbens. In contrast, the short latency of the phasic responses to sensory stimuli in dopaminergic neurons, coupled with the activation of these neurons by non-rewarding stimuli, suggests that phasic responses of dopaminergic neurons may provide a signal to the forebrain which indicates that a salient event has occurred (and possibly an estimate of how salient that event is). A stimulus-related salience signal could be used by downstream systems to reinforce behavioral choices.
Collapse
Affiliation(s)
- P G Overton
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - N Vautrelle
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - P Redgrave
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
31
|
Yang LM, Yu L, Jin HJ, Zhao H. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Res Bull 2013; 100:22-8. [PMID: 24157953 DOI: 10.1016/j.brainresbull.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
Substance P (SP) levels are closely related with the pathogenesis of depression. Recent work has focused on antidepressive effect of substance P receptor antagonist (SPA), however, its action site and mechanism remain largely unresolved. Our previous results showed that the lateral habenula (LHb) plays a key role in the pathogenesis of depression. The current study investigated the effects of SPA microinjected into LHb on the behavioral responses of two rat models that exhibit depression-like behavior. To produce adult rats that exhibit depression-like behavior, rats were either exposed to chronic mild stress (CMS), or chronically administered clomipramine (CLI), a tricyclic antidepressant, during the neonatal state of life. The forced-swimming test (FST) was used to evaluate behavioral responses. Furthermore, we measured serotonin (5-HT) levels in dorsal raphe nucleus (DRN) using microdialysis. The FST showed a decreased immobility time and an increased climbing time after SPA injection into the LHb of depression-like behavior rats. In addition, 5-HT levels in DRN increased after SPA was microinjected into LHb of the rats that exhibited depression-like behavior. This study demonstrates that LHb mediates antidepressive effect of SPA by increasing 5-HT levels in the DRN, suggesting that the LHb may be a potential target of antidepressant.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Lei Yu
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hui-Juan Jin
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
32
|
Electrical stimulation of lateral habenula during learning: frequency-dependent effects on acquisition but not retrieval of a two-way active avoidance response. PLoS One 2013; 8:e65684. [PMID: 23840355 PMCID: PMC3695985 DOI: 10.1371/journal.pone.0065684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/26/2013] [Indexed: 12/29/2022] Open
Abstract
The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation.
Collapse
|
33
|
Lesions of the fasciculus retroflexus alter footshock-induced cFos expression in the mesopontine rostromedial tegmental area of rats. PLoS One 2013; 8:e60678. [PMID: 23593280 PMCID: PMC3625179 DOI: 10.1371/journal.pone.0060678] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues. It has been hypothesized that habenular input to midbrain dopamine neurons is conveyed via a feedforward inhibitory pathway involving the GABAergic mesopontine rostromedial tegmental area. Here, we show that exposing rats to low-intensity footshock (four, 0.5 mA shocks over 20 min) induces cFos expression in the rostromedial tegmental area and that this effect is prevented by lesions of the fasciculus retroflexus, the principal output pathway of the habenula. cFos expression is also observed in the medial portion of the lateral habenula, an area that receives dense DA innervation via the fr and the paraventricular nucleus of the thalamus, a stress sensitive area that also receives dopaminergic input. High-intensity footshock (120, 0.8 mA shocks over 40 min) also elevates cFos expression in the rostromedial tegmental area, medial and lateral aspects of the lateral habenula and the paraventricular thalamus. In contrast to low-intensity footshock, increases in cFos expression within the rostromedial tegmental area are not altered by fr lesions suggesting a role for non-habenular inputs during exposure to highly aversive stimuli. These data confirm the involvement of the lateral habenula in modulating the activity of rostromedial tegmental area neurons in response to mild aversive stimuli and suggest that dopamine input may contribute to footshock- induced activation of cFos expression in the lateral habenula.
Collapse
|
34
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 2012; 6:132. [PMID: 23049495 PMCID: PMC3442182 DOI: 10.3389/fnins.2012.00132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/25/2012] [Indexed: 11/13/2022] Open
Abstract
Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Shen X, Ruan X, Zhao H. Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons. PLoS One 2012; 7:e34323. [PMID: 22485164 PMCID: PMC3317773 DOI: 10.1371/journal.pone.0034323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 02/28/2012] [Indexed: 11/18/2022] Open
Abstract
Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 µA, 0.5 Hz) or tetanic stimulation (80 µA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ∼90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms.
Collapse
Affiliation(s)
| | | | - Hua Zhao
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
36
|
Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, Borsook D. Mapping pain activation and connectivity of the human habenula. J Neurophysiol 2012; 107:2633-48. [PMID: 22323632 DOI: 10.1152/jn.00012.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The habenula, located in the posterior thalamus, is implicated in a wide array of functions. Animal anatomical studies have indicated that the structure receives inputs from a number of brain regions (e.g., frontal areas, hypothalamic, basal ganglia) and sends efferent connections predominantly to the brain stem (e.g., periaqueductal gray, raphe, interpeduncular nucleus). The role of the habenula in pain and its anatomical connectivity are well-documented in animals but not in humans. In this study, for the first time, we show how high-field magnetic resonance imaging can be used to detect habenula activation to noxious heat. Functional maps revealed significant, localized, and bilateral habenula responses. During pain processing, functional connectivity analysis demonstrated significant functional correlations between the habenula and the periaqueductal gray and putamen. Probabilistic tractography was used to assess connectivity of afferent (e.g., putamen) and efferent (e.g., periaqueductal gray) pathways previously reported in animals. We believe that this study is the first report of habenula activation by experimental pain in humans. Since the habenula connects forebrain structures with brain stem structures, we suggest that the findings have important implications for understanding sensory and emotional processing in the brain during both acute and chronic pain.
Collapse
Affiliation(s)
- L Shelton
- P.a.i.n. Group, Children's Hospital Boston, Waltham, MA 02453, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Shelton L, Becerra L, Borsook D. Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 2012; 96:208-19. [PMID: 22270045 PMCID: PMC3465722 DOI: 10.1016/j.pneurobio.2012.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/01/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
The habenula is a small bilateral structure in the posterior-medial aspect of the dorsal thalamus that has been implicated in a remarkably wide range of behaviors including olfaction, ingestion, mating, endocrine and reward function, pain and analgesia. Afferent connections from forebrain structures send inputs to the lateral and medial habenula where efferents are mainly projected to brainstem regions that include well-known pain modulatory regions such as the periaqueductal gray and raphe nuclei. A convergence of preclinical data implicates the region in multiple behaviors that may be considered part of the pain experience including a putative role in pain modulation, affective, and motivational processes. The habenula seems to play a role as an evaluator, acting as a major point of convergence where external stimuli is received, evaluated, and redirected for motivation of appropriate behavioral response. Here, we review the role of the habenula in pain and analgesia, consider its potential role in chronic pain, and review more recent clinical and functional imaging data of the habenula from animals and humans. Even through the habenula is a small brain structure, advances in structural and functional imaging in humans should allow for further advancement of our understanding of its role in pain and analgesia.
Collapse
Affiliation(s)
- L. Shelton
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
| | - L. Becerra
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| | - D. Borsook
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| |
Collapse
|
38
|
Lavezzi HN, Parsley KP, Zahm DS. Mesopontine rostromedial tegmental nucleus neurons projecting to the dorsal raphe and pedunculopontine tegmental nucleus: psychostimulant-elicited Fos expression and collateralization. Brain Struct Funct 2011; 217:719-34. [PMID: 22179106 PMCID: PMC3382375 DOI: 10.1007/s00429-011-0368-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/01/2011] [Indexed: 12/31/2022]
Abstract
The mesopontine rostromedial tegmental nucleus (RMTg) is a GABAergic structure in the ventral midbrain and rostral pons that, when activated, inhibits dopaminergic neurons in the ventral tegmental area and substantia nigra compacta. Additional strong outputs from the RMTg to the pedunculopontine tegmental nucleus pars dissipata, dorsal raphe nucleus, and the pontomedullary gigantocellular reticular formation were identified by anterograde tracing. RMTg neurons projecting to the ventral tegmental area express the immediate early gene Fos upon psychostimulant administration. The present study was undertaken to determine if neurons in the RMTg that project to the additional structures listed above also express Fos upon psychostimulant administration and, if so, whether single neurons in the RMTg project to more than one of these structures. We found that about 50% of RMTg neurons exhibiting retrograde labeling after injections of retrograde tracer in the dorsal raphe or pars dissipata of the pedunculopontine tegmental nucleus express Fos after acute methamphetamine exposure. Also, we observed that a significant number of RMTg neurons project both to the ventral tegmental area and one of these structures. In contrast, methamphetamine-elicited Fos expression was not observed in RMTg neurons labeled with retrograde tracer following injections into the pontomedullary reticular formation. The findings suggest that the RMTg is an integrative modulator of multiple rostrally projecting structures.
Collapse
Affiliation(s)
- Heather N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
39
|
Lavezzi HN, Zahm DS. The mesopontine rostromedial tegmental nucleus: an integrative modulator of the reward system. BASAL GANGLIA 2011; 1:191-200. [PMID: 22163100 PMCID: PMC3233474 DOI: 10.1016/j.baga.2011.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mesopontine rostromedial tegmental nucleus (RMTg) is a newly discovered brain structure thought to profoundly influence reward-related pathways. The RMTg is prominently GABAergic, receives dense projections from the lateral habenula and projects strongly to the midbrain ventral tegmental area and substantia nigra compacta. It receives additional afferent connections from widespread brain structures and sends additional strong efferent connections to a number of non-dopaminergic brainstem structures and, to a lesser extent, the forebrain. Projection neurons of the RMTg have been shown to express Fos in response to aversive stimuli and/or reward omission and psychostimulant drug administration. This review will first recount how the RMTg was discovered and then describe in greater detail what is known about its neuroanatomical relationships, including afferent and efferent connections, neurotransmitters, and receptors. Finally, we will focus on what has been reported about its function.
Collapse
Affiliation(s)
| | - Daniel S. Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd., Saint Louis, Missouri 63104
| |
Collapse
|
40
|
Matsumoto M, Hikosaka O. Electrical stimulation of the primate lateral habenula suppresses saccadic eye movement through a learning mechanism. PLoS One 2011; 6:e26701. [PMID: 22039537 PMCID: PMC3200355 DOI: 10.1371/journal.pone.0026701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 10/02/2011] [Indexed: 01/05/2023] Open
Abstract
The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
41
|
Reinforcement learning, conditioning, and the brain: Successes and challenges. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2009; 9:343-64. [PMID: 19897789 DOI: 10.3758/cabn.9.4.343] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of reinforcement learning has greatly influenced the neuroscientific study of conditioning. This article provides an introduction to reinforcement learning followed by an examination of the successes and challenges using reinforcement learning to understand the neural bases of conditioning. Successes reviewed include (1) the mapping of positive and negative prediction errors to the firing of dopamine neurons and neurons in the lateral habenula, respectively; (2) the mapping of model-based and model-free reinforcement learning to associative and sensorimotor cortico-basal ganglia-thalamo-cortical circuits, respectively; and (3) the mapping of actor and critic to the dorsal and ventral striatum, respectively. Challenges reviewed consist of several behavioral and neural findings that are at odds with standard reinforcement-learning models, including, among others, evidence for hyperbolic discounting and adaptive coding. The article suggests ways of reconciling reinforcement-learning models with many of the challenging findings, and highlights the need for further theoretical developments where necessary. Additional information related to this study may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.
Collapse
|
42
|
Kowski A, Veh R, Weiss T. Dopaminergic activation excites rat lateral habenular neurons in vivo. Neuroscience 2009; 161:1154-65. [DOI: 10.1016/j.neuroscience.2009.04.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|
43
|
Bianco IH, Wilson SW. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2009; 364:1005-20. [PMID: 19064356 PMCID: PMC2666075 DOI: 10.1098/rstb.2008.0213] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dorsal diencephalon, or epithalamus, contains the bilaterally paired habenular nuclei and the pineal complex. The habenulae form part of the dorsal diencephalic conduction (DDC) system, a highly conserved pathway found in all vertebrates. In this review, we shall describe the neuroanatomy of the DDC, consider its physiology and behavioural involvement, and discuss examples of neural asymmetries within both habenular circuitry and the pineal complex. We will discuss studies in zebrafish, which have examined the organization and development of this circuit, uncovered how asymmetry is represented at the level of individual neurons and determined how such left–right differences arise during development.
Collapse
Affiliation(s)
- Isaac H Bianco
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | |
Collapse
|
44
|
Targeting the caudal intralaminar nuclei for functional neurosurgery of movement disorders. Brain Res Bull 2009; 78:109-12. [DOI: 10.1016/j.brainresbull.2008.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
|
46
|
Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007; 447:1111-5. [PMID: 17522629 DOI: 10.1038/nature05860] [Citation(s) in RCA: 912] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/18/2007] [Indexed: 11/08/2022]
Abstract
Midbrain dopamine neurons are key components of the brain's reward system, which is thought to guide reward-seeking behaviours. Although recent studies have shown how dopamine neurons respond to rewards and sensory stimuli predicting reward, it is unclear which parts of the brain provide dopamine neurons with signals necessary for these actions. Here we show that the primate lateral habenula, part of the structure called the epithalamus, is a major candidate for a source of negative reward-related signals in dopamine neurons. We recorded the activity of habenula neurons and dopamine neurons while rhesus monkeys were performing a visually guided saccade task with positionally biased reward outcomes. Many habenula neurons were excited by a no-reward-predicting target and inhibited by a reward-predicting target. In contrast, dopamine neurons were excited and inhibited by reward-predicting and no-reward-predicting targets, respectively. Each time the rewarded and unrewarded positions were reversed, both habenula and dopamine neurons reversed their responses as the bias in saccade latency reversed. In unrewarded trials, the excitation of habenula neurons started earlier than the inhibition of dopamine neurons. Furthermore, weak electrical stimulation of the lateral habenula elicited strong inhibitions in dopamine neurons. These results suggest that the inhibitory input from the lateral habenula plays an important role in determining the reward-related activity of dopamine neurons.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-4435, USA
| | | |
Collapse
|
47
|
Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. PROGRESS IN BRAIN RESEARCH 2007; 160:189-208. [PMID: 17499115 DOI: 10.1016/s0079-6123(06)60011-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At least 70% of the afferents to substantia nigra dopaminergic neurons are GABAergic. The vast majority of these arise from the neostriatum, the external globus pallidus and the substantia nigra pars reticulata. Nigral dopaminergic neurons express both GABA(A) and GABA(B) receptors, and are inhibited by local application of GABA(A) or GABA(B) agonists in vivo and in vitro. However, in vivo, synaptic responses elicited by stimulation of neostriatal or pallidal afferents, or antidromic activation of nigral pars reticulata GABAergic projection neurons are mediated predominantly or exclusively by GABA(A) receptors. The clearest and most consistent role for the nigral GABA(B) receptor in vivo is as an inhibitory autoreceptor that presynaptically modulates GABA(A) synaptic responses that originate from all three principal GABAergic inputs. The firing pattern of dopaminergic neurons is also effectively modulated by GABAergic inputs in vivo. Local blockade of nigral GABA(A) receptors causes dopaminergic neurons to shift to a burst firing pattern regardless of the original firing pattern. This is accompanied by a modest increase in spontaneous firing rate. The GABAergic inputs from the axon collaterals of the pars reticulata projection neurons seem to be a particularly important source of a GABA(A) tone to the dopaminergic neurons, inhibition of which leads to burst firing. The globus pallidus exerts powerful control over the pars reticulata input, and through the latter, disynaptically over the dopaminergic neurons. Inhibition of pallidal output leads to a slight decrease in firing of the dopaminergic neurons due to disinhibition of the pars reticulata neurons whereas increased firing of pallidal neurons leads to burst firing in dopaminergic neurons that is associated with a modest increase in spontaneous firing rate and a significant increase in extracellular levels of dopamine in the neostriatum. The pallidal disynaptic disinhibitory control of the dopaminergic neurons dominates the monosynaptic inhibitory influence because of a differential sensitivity to GABA of the two nigral neuron types. Nigral GABAergic neurons are more sensitive to GABA(A)-mediated inhibition than dopaminergic neurons, in part due to a more hyperpolarized GABA(A) reversal potential. The more depolarized GABA(A) reversal potential in the dopaminergic neurons is due to the absence of KCC2, the chloride transporter responsible for setting up a hyperpolarizing Cl(-) gradient in most mature CNS neurons. The data reviewed in this chapter have made it increasingly clear that in addition to the effects that nigral GABAergic output neurons have on their target nuclei outside of the basal ganglia, local interactions between GABAergic projection neurons and dopaminergic neurons are crucially important to the functioning of the nigral dopaminergic neurons.
Collapse
Affiliation(s)
- James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | |
Collapse
|
48
|
Heldt SA, Ressler KJ. Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Res 2006; 1073-1074:229-39. [PMID: 16442084 PMCID: PMC2561201 DOI: 10.1016/j.brainres.2005.12.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
The habenula complex modulates the activity of dopamine and serotonin systems in the brain. An important question remains whether there is a link between habenula dysfunction and monoamine-related disorders, such as schizophrenia. In this study, we describe an interaction between habenula lesions and stress that produces long-lasting effects on behavior. Mice received control lesions or bilateral electrolytic lesions of the habenula and were tested for fear-potentiated startle and freezing measures of conditioned fear. They were also tested for prepulse inhibition (PPI) and locomotor activity in the presence or absence of a dopaminergic agonist (apomorphine) or an atypical antipsychotic with mixed dopamine/serotonin antagonist properties (clozapine). There were no detectable effects of habenula lesions on fear conditioning and no effects on PPI in the absence of stress. However, following conditioned fear stress, habenula-lesioned animals showed decreased PPI which normalized with clozapine. Lesioned animals also showed diminished activity at baseline, with hyperlocomotion following apomorphine. These data support the hypothesis that the habenula may be normally involved in stress-dependent regulation of monoamine systems.
Collapse
Affiliation(s)
- Scott A Heldt
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes Research Center, Emory University, 954 Gatewood Dr., Atlanta, GA 30329, USA.
| | | |
Collapse
|
49
|
Kirouac GJ, Li S, Mabrouk G. GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus. J Comp Neurol 2004; 469:170-84. [PMID: 14694532 DOI: 10.1002/cne.11005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have shown that neurons in the ventral tegmental area (VTA) and substantia nigra (SN) project to the ventrolateral periaqueductal gray (PAGvl) and dorsal raphe nucleus (DR). Research has also shown that stimulation of neurons in the VTA/SN elicits cardiovascular depressor responses that are mediated by a projection to the PAGvl/DR. Anatomic and physiological experiments were done in the present study to determine the neurochemical identity of the VTA/SN projection to the PAGvl/DR. Experiments were done to characterize the origin and chemical nature of this projection by combining cholera toxin B tracing with immunofluorescence for the 67K isoform of glutamic acid decarboxylase (GAD) and tyrosine hydroxylase. The PAGvl/DR region was found to receive a substantial input from neurons in the VTA, SN, and deep mesencephalic nucleus. The DR was preferentially innervated by neurons in the VTA, whereas the PAGvl was preferentially innervated by neurons in the SN. A proportion of neurons in the VTA and the reticular portion of the SN found to project to the PAGvl/DR were GAD positive. In addition, experiments were done in urethane-anesthetized rats to determine whether injections of a gamma-aminobutyric acid (GABA) antagonist in the region of the PAGvl/DR attenuated the cardiovascular depressor responses produced by glutamate stimulation of the VTA/SN. Injections of the GABA-blocking agent picrotoxin (2.5 nmol, 500 nl) into the PAGvl/DR eliminated the cardiovascular responses from stimulation of the VTA/SN (0.01 M, 50 nl). The results of the present investigation provide evidence for a GABAergic projection from the VTA/SN to the PAGvl/DR. This projection may be an important regulator of the PAGvl/DR, an area of the midbrain involved in the production of behavioral and physiological responses to pain and stress.
Collapse
Affiliation(s)
- Gilbert J Kirouac
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
| | | | | |
Collapse
|
50
|
Michl T, Jocic M, Schuligoi R, Holzer P. Role of tachykinin receptors in the central processing of afferent input from the acid-threatened rat stomach. REGULATORY PEPTIDES 2001; 102:119-26. [PMID: 11730984 DOI: 10.1016/s0167-0115(01)00309-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noxious challenge of the rat gastric mucosa by hydrochloric acid (HCl) is signalled via vagal afferent neurons to several brain nuclei in which tachykinins and tachykinin receptors are present. Therefore, we tested whether tachykinin receptor antagonists would modify the central transmission of input from the acid-threatened stomach. Neuronal excitation was visualized by in situ hybridization autoradiography (ISH) of c-fos messenger ribonucleic acid (mRNA) 45 min after intragastric (IG) administration of HCl (0.5 M; 10 ml/kg). This stimulus has previously been shown to cause neurons in the nucleus tractus solitarii (NTS), lateral parabrachial nucleus (LPB), paraventricular (Pa) nuclei, supraoptic (SO) nucleus, central amygdala (CeA), area postrema (AP), subfornical organ (SFO) and habenula (Hb) to express c-fos mRNA. Intraperitoneal (IP) pretreatment with the NK1 receptor antagonist GR-205,171 (3 mg/kg) attenuated the acid-induced transcription of c-fos mRNA in NTS and augmented it in SFO. The NK2 receptor antagonist SR-144,190 (0.1 mg/kg, IP) had no effect. Subcutaneous administration of the NK3 receptor antagonist SB-222,200 (20 mg/kg) reduced the c-fos mRNA response in AP and SFO and enhanced it in Hb. These data show that the transmission of input from the acid-threatened stomach in distinct brain nuclei involves tachykinins acting at NK1 and NK3 receptors, but not NK2 receptors.
Collapse
Affiliation(s)
- T Michl
- Department of Experimental and Clinical Pharmacology, University of Graz, Universitätsplatz 4, A-8010, Graz, Austria
| | | | | | | |
Collapse
|