1
|
Pecchillo Cimmino T, Panico I, Scarano S, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase. Antioxidants (Basel) 2024; 13:220. [PMID: 38397818 PMCID: PMC10886330 DOI: 10.3390/antiox13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Simona Scarano
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| |
Collapse
|
2
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Kim JH, Chae MR, Wijerathne TD, Cooray AD, Kim CY, Lee SW, Lee KP. In vitro assessment of Prunus japonica seed extract on human spermatozoa hypermotility and intracellular alkalization. Andrologia 2022; 54:e14471. [PMID: 35590125 DOI: 10.1111/and.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Prunus japonica var. nakaii is used in traditional Korean medicine to treat various conditions; however, it has not been investigated for treating male infertility. In this study, we investigated the in vitro effects of the ethanolic extract of P. japonica seeds on human sperm motility and identified its mechanism of action. Eleven male volunteers were selected, and the effects of the extract on human spermatozoa were assessed through a computer-assisted semen analysis. The P. japonica seed extract increased the percentage of total and progressive motility of spermatozoa. To understand the mechanism of action, we monitored intracellular alkalization using flow cytometry and obtained electrophysiological recordings of human voltage-gated proton channels hHv1 that were overexpressed in HEK-293 cells. The extract shifted the activation curves in a concentration-dependent manner. Two major constituents of the extract, linoleic acid and oleic acid, exhibited proton channel activity. Our in vitro experiments suggested that P. japonica seed extract could be potentially used to rescue sperm motility in idiopathic infertility patients via pharmacological modulation of the proton channels during capacitation. Therefore, our results indicate the therapeutic potential of P. japonica seed extract for treating male infertility.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Mee Ree Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tharaka Darshana Wijerathne
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Akila Dushyantha Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Chul Young Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
4
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
5
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
6
|
Bare DJ, Cherny VV, DeCoursey TE, Abukhdeir AM, Morgan D. Expression and function of voltage gated proton channels (Hv1) in MDA-MB-231 cells. PLoS One 2020; 15:e0227522. [PMID: 32374759 PMCID: PMC7202653 DOI: 10.1371/journal.pone.0227522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Expression of the voltage gated proton channel (Hv1) as identified by immunocytochemistry has been reported previously in breast cancer tissue. Increased expression of HV1 was correlated with poor prognosis and decreased overall and disease-free survival but the mechanism of its involvement in the disease is unknown. Here we present electrophysiological recordings of HV1 channel activity, confirming its presence and function in the plasma membrane of a breast cancer cell line, MDA-MB-231. With western blotting we identify significant levels of HV1 expression in 3 out of 8 "triple negative" breast cancer cell lines (estrogen, progesterone, and HER2 receptor expression negative). We examine the function of HV1 in breast cancer using MDA-MB-231 cells as a model by suppressing the expression of HV1 using shRNA (knock-down; KD) and by eliminating HV1 using CRISPR/Cas9 gene editing (knock-out; KO). Surprisingly, these two approaches produced incongruous effects. Knock-down of HV1 using shRNA resulted in slower cell migration in a scratch assay and a significant reduction in H2O2 release. In contrast, HV1 Knock-out cells did not show reduced migration or H2O2 release. HV1 KO but not KD cells showed an increased glycolytic rate accompanied by an increase in p-AKT (phospho-AKT, Ser473) activity. The expression of CD171/LCAM-1, an adhesion molecule and prognostic indicator for breast cancer, was reduced in HV1 KO cells. When we compared MDA-MB-231 xenograft growth rates in immunocompromised mice, tumors from HV1 KO cells grew less than WT in mass, with lower staining for the Ki-67 marker for cell proliferation rate. Therefore, deletion of HV1 expression in MDA-MB-231 cells limits tumor growth rate. The limited growth thus appears to be independent of oxidant production by NADPH oxidase molecules and to be mediated by cell adhesion molecules. Although HV1 KO and KD affect certain cellular mechanisms differently, both implicate HV1-mediated pathways for control of tumor growth in the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Dan J. Bare
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Vladimir V. Cherny
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Thomas E. DeCoursey
- Department of Physiology & Biophysics, Rush University, Chicago, IL, United States of America
| | - Abde M. Abukhdeir
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, MO, United States of America
| |
Collapse
|
7
|
DeCoursey TE. Voltage and pH sensing by the voltage-gated proton channel, H V1. J R Soc Interface 2018; 15:20180108. [PMID: 29643227 PMCID: PMC5938591 DOI: 10.1098/rsif.2018.0108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University, 1750 West Harrison, Chicago, IL 60612, USA
| |
Collapse
|
8
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
9
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
10
|
Sakata S, Miyawaki N, McCormack TJ, Arima H, Kawanabe A, Özkucur N, Kurokawa T, Jinno Y, Fujiwara Y, Okamura Y. Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2972-2983. [PMID: 27637155 DOI: 10.1016/j.bbamem.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1.
Collapse
Affiliation(s)
- Souhei Sakata
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Academic Initiative, Osaka University, Suita, Osaka 565-0871, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Nana Miyawaki
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thomas J McCormack
- Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Hiroki Arima
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nurdan Özkucur
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy, Medical Theoretical Center, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Tatsuki Kurokawa
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Yuka Jinno
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Fujiwara
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Kawanabe A, Okamura Y. Effects of unsaturated fatty acids on the kinetics of voltage-gated proton channels heterologously expressed in cultured cells. J Physiol 2016; 594:595-610. [PMID: 26563684 DOI: 10.1113/jp271274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/28/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Arachidonic acid (AA) greatly enhances the activity of the voltage-gated proton (Hv) channel, although its mechanism of action and physiological function remain unclear. In the present study, we analysed the effects of AA on proton currents through Hv channels heterologously expressed in HEK293T cells. The dramatic increase in proton current amplitude elicited by AA was accompanied by accelerated activation kinetics and a leftward shift in the voltage-dependence of activation. Mutagenesis studies suggest the two aforementioned effects of AA reflect two distinct structural mechanisms. Application of phospholipase A2 , which liberates AA from phospholipids in the membrane, also enhances Hv channel activity, supporting the idea that AA modulates Hv channel activity within physiological contexts. Unsaturated fatty acids are key components of the biological membranes of all cells, and precursors of mediators for cell signalling. Arachidonic acid (AA) is an unsaturated fatty acid known to modulate the activities of various ion channels, including the voltage-gated proton (Hv) channel, which supports the rapid production of reactive oxygen species (ROS) in phagocytes through regulation of pH and membrane potential. However, the molecular mechanisms and physiological functions of the effects of AA on Hv channels remain unclear. In the present study, we report an electrophysiological analysis of the effects of AA on the mouse Hv channel (mHv1) heterologously expressed in HEK293T cells. Application of AA to excised inside-out patch membranes rapidly induced a robust increase in the amplitude of the proton current through mHv1. The current increase was accompanied by accelerated activation kinetics and a small leftward shift of the current-voltage relationship. In monomeric channels lacking the coiled-coil region of the channel protein, the shift in the current-voltage relationship was diminished but activation and deactivation remained accelerated. Studies with several AA derivatives showed that double bonds and hydrophilic head groups are essential for the effect of AA, although charge was not important. The application of phospholipase A2 (PLA2), which generates AA from cell membrane phospholipids, stimulated mHv1 activity to a similar extent as direct application of ∼ 20 μM AA, suggesting that endogenous AA may regulate Hv channel activity.
Collapse
Affiliation(s)
- Akira Kawanabe
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yasushi Okamura
- Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
12
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|
13
|
Fujiwara Y, Okamura Y. Temperature-sensitive gating of voltage-gated proton channels. CURRENT TOPICS IN MEMBRANES 2014; 74:259-92. [PMID: 25366240 DOI: 10.1016/b978-0-12-800181-3.00010-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The voltage-gated proton channel (Hv) mediates robust proton transport down the proton electrochemical gradient. Hv is mainly expressed in immune cells, including neutrophils and macrophages, the physiological functions of which are temperature sensitive. In those cells, Hv plays key roles in the regulation of reactive oxygen species production and pH homeostasis. Proton transport through Hv is regulated by both the membrane potential and the pH difference across the cell membrane. Earlier studies showed that the properties of Hv, including proton conductance and gating, are highly temperature dependent. Hv consists of a voltage sensor domain involved in both voltage sensing and proton permeation and a C-terminal coiled coil region. Although the channel's activities are innate to the protomers, normally two protomers assemble as a dimer via interaction between C-terminal coiled coils. We recently discovered that the coiled-coil region of Hv dissociates at around room temperature, and that subtle changes in the coiled-coil region affect temperature-sensitive gating. In this chapter, we describe the physiological functions and molecular mechanisms of Hv, focusing mainly on the structure and thermosensitive properties of Hv.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Sakai H, Li G, Hino Y, Moriura Y, Kawawaki J, Sawada M, Kuno M. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia. J Physiol 2013; 591:5851-66. [PMID: 24081153 DOI: 10.1113/jphysiol.2013.263558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated proton channels (H(+) channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H(+) channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H(+) channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H(+) channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H(+) channel conductance were probably due to the decreases in H(+) channels available at the plasma membrane. The decreases in the H(+) channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H(+) channels, pHi increases by these H(+)-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H(+) channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H(+) channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis.
Collapse
Affiliation(s)
- Hiromu Sakai
- M. Kuno: Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
H(v) channels (voltage-gated proton channels) are expressed in blood cells, microglia and some types of epithelial cells. In neutrophils H(v) channels regulate the production of reactive oxygen species through regulation of membrane potential and intracellular pH. H(v) channels have also been suggested to play a role in sperm physiology in the human. However, the functions of the Hv channel at the whole-body level are not fully understood. In the present paper we show that Hvcn1 (voltage-gated hydrogen channel 1)-knockout mice show splenomegaly, autoantibodies and nephritis, that are reminiscent of human autoimmune diseases phenotypes. The number of activated T-cells was larger in Hvcn1-deficient mice than in the wild-type mice. Upon viral infection this was remarkably enhanced in Hvcn1-deficient mice. The production of superoxide anion in T-cells upon stimulation with PMA was significantly attenuated in the Hvcn1-deficient mice. These results suggest that H(v) channels regulate T-cell homoeostasis in vivo.
Collapse
|
16
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Smith SM, DeCoursey TE. Consequences of dimerization of the voltage-gated proton channel. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:335-60. [PMID: 23663974 PMCID: PMC3963466 DOI: 10.1016/b978-0-12-386931-9.00012-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The human voltage-gated proton channel, hHV1, appears to exist mainly as a dimer. Teleologically, this is puzzling because each protomer retains the main properties that characterize this protein: proton conduction that is regulated by conformational (channel opening and closing) changes that occur in response to both voltage and pH. The HV1 dimer is mainly linked by C-terminal coiled-coil interactions. Several types of mutations produce monomeric constructs that open approximately five times faster than the wild-type dimeric channel but with weaker voltage dependence. Intriguingly, the quintessential function of the HV1 dimer, opening to allow H(+) conduction, occurs cooperatively. Both protomers undergo a conformational change, but both must undergo this transition before either can conduct. The teleological purpose of dimerization may be to steepen the voltage dependence of channel opening, at least in phagocytes. In other cells, the purpose is not understood. Finally, several single-celled species have HV that are likely monomeric.
Collapse
Affiliation(s)
- Susan M.E. Smith
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta GA 30322 USA
| | - Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago IL 60612 USA
| |
Collapse
|
18
|
Overlapped Metabolic and Therapeutic Links between Alzheimer and Diabetes. Mol Neurobiol 2012; 47:399-424. [DOI: 10.1007/s12035-012-8352-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
|
19
|
Abstract
Voltage-gated proton channels, HV1, have vaulted from the realm of the esoteric into the forefront of a central question facing ion channel biophysicists, namely, the mechanism by which voltage-dependent gating occurs. This transformation is the result of several factors. Identification of the gene in 2006 revealed that proton channels are homologues of the voltage-sensing domain of most other voltage-gated ion channels. Unique, or at least eccentric, properties of proton channels include dimeric architecture with dual conduction pathways, perfect proton selectivity, a single-channel conductance approximately 10(3) times smaller than most ion channels, voltage-dependent gating that is strongly modulated by the pH gradient, ΔpH, and potent inhibition by Zn(2+) (in many species) but an absence of other potent inhibitors. The recent identification of HV1 in three unicellular marine plankton species has dramatically expanded the phylogenetic family tree. Interest in proton channels in their own right has increased as important physiological roles have been identified in many cells. Proton channels trigger the bioluminescent flash of dinoflagellates, facilitate calcification by coccolithophores, regulate pH-dependent processes in eggs and sperm during fertilization, secrete acid to control the pH of airway fluids, facilitate histamine secretion by basophils, and play a signaling role in facilitating B-cell receptor mediated responses in B-lymphocytes. The most elaborate and best-established functions occur in phagocytes, where proton channels optimize the activity of NADPH oxidase, an important producer of reactive oxygen species. Proton efflux mediated by HV1 balances the charge translocated across the membrane by electrons through NADPH oxidase, minimizes changes in cytoplasmic and phagosomal pH, limits osmotic swelling of the phagosome, and provides substrate H(+) for the production of H2O2 and HOCl, reactive oxygen species crucial to killing pathogens.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
20
|
|
21
|
Askarova S, Yang X, Sheng W, Sun GY, Lee JCM. Role of Aβ-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A₂ activation in astrocytes and cerebral endothelial cells. Neuroscience 2011; 199:375-85. [PMID: 21978883 DOI: 10.1016/j.neuroscience.2011.09.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 12/22/2022]
Abstract
Blood-brain barrier (BBB) dysfunctions have been implicated in the progression of Alzheimer's disease. Cerebral endothelial cells (CECs) and astrocytes are the main cell components of the BBB. Although amyloid-β oligomers (Aβ₄₂) have been reported to mediate oxidative damage to the CECs and astrocytes and trigger the downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, the cell surface binding site for Aβ₄₂ and exact sequence of these events have yet to be elucidated. In this study, the receptor for advanced glycation endproducts (RAGE) was postulated to function as a signal transducing cell surface receptor for Aβ₄₂ to induce reactive oxygen species (ROS) generation from NADPH oxidase and trigger downstream pathways for the phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A₂ (cPLA₂). We found that Aβ₄₂ competed with the anti-RAGE antibody (Ab(RAGE)) to bind to RAGE on the surfaces of CECs and primary astrocytes. In addition, Ab(RAGE) abrogate Aβ₄₂-induced ROS production and the colocalization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase in both cell types. Ab(RAGE) as well as NADPH oxidase inhibitor and ROS scavenger suppressed Aβ₄₂-induced ERK1/2 and cPLA₂ phosphorylation in CECs. At the same time, only Ab(RAGE), but neither NADPH oxidase inhibitor nor ROS scavenger, inhibited the ERK1/2 pathway and cPLA₂ phosphorylation in primary astrocytes. Therefore, this study demonstrates that NADPH oxidase complex assembly and ROS production are not required for Aβ₄₂ binding to RAGE at astrocytic surface leading to sequential phosphorylation of ERK1/2 and cPLA₂, and suggests the presence of two different RAGE-dependent downstream pathways in the CECs and astrocytes.
Collapse
Affiliation(s)
- S Askarova
- Department of Biological Engineering, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
22
|
Musset B, Smith SME, Rajan S, Cherny VV, Morgan D, DeCoursey TE. Oligomerization of the voltage-gated proton channel. Channels (Austin) 2010; 4:260-5. [PMID: 20676047 DOI: 10.4161/chan.4.4.12789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The voltage-gated proton channel exists as a dimer, although each protomer has a separate conduction pathway, and when forced to exist as a monomer, most major functions are retained. However, the proton channel protomers appear to interact during gating. Proton channel dimerization is thought to result mainly from coiled-coil interaction of the intracellular C-termini. Several types of evidence are discussed that suggest that the dimer conformation may not be static, but is dynamic and can sample different orientations. Zn(2+) appears to link the protomers in an orientation from which the channel(s) cannot open. A tandem WT-WT dimer exhibits signs of cooperative gating, indicating that despite the abnormal linkage, the correct orientation for opening can occur. We propose that C-terminal interaction functions mainly to tether the protomers together. Comparison of the properties of monomeric and dimeric proton channels speaks against the hypothesis that enhanced gating reflects monomer-dimer interconversion.
Collapse
Affiliation(s)
- Boris Musset
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
23
|
DeCoursey TE. Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes. Physiology (Bethesda) 2010; 25:27-40. [PMID: 20134026 PMCID: PMC3023998 DOI: 10.1152/physiol.00039.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
24
|
Chen KC, Liu WH, Chang LS. Suppression of ERK signaling evokes autocrine Fas-mediated death in arachidonic acid-treated human chronic myeloid leukemia K562 cells. J Cell Physiol 2010; 222:625-34. [PMID: 19927299 DOI: 10.1002/jcp.21979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arachidonic acid (AA)-induced apoptotic death of K562 cells (human chronic myeloid leukemic cells) was characteristic of reactive oxygen species (ROS) generation and mitochondrial depolarization. N-Acetylcysteine pretreatment rescued viability of AA-treated cells and abolished mitochondrial depolarization. In contrast to no significant changes in phospho-JNK and phospho-ERK levels, AA evoked notable activation of p38 MAPK. Unlike that of JNK and p38 MAPK, ERK suppression further reduced the viability of AA-treated cells. Increases in Fas/FasL protein expression, caspase-8 activation, the production of tBid and the loss of mitochondrial membrane potential were noted with K562 cells that were treated with a combination of U0126 and AA. Down-regulation of FADD attenuated U0126-evoked degradation of procaspase-8 and Bid. Abolition of p38 MAPK activation abrogated U0126-elicited Fas/FasL up-regulation in AA-treated cells. U0126 pretreatment suppressed c-Fos phosphorylation but increased p38 MAPK-mediated c-Jun phosphorylation. Knock-down of c-Fos and c-Jun protein expression by siRNA suggested that c-Fos counteracted the effect of c-Jun on Fas/FasL up-regulation. Taken together, our data indicate that AA induces the ROS/mitochondria-dependent death pathway and blocks the ERK pathway which enhances the cytotoxicity of AA through additionally evoking an autocrine Fas-mediated apoptotic mechanism in K562 cells.
Collapse
Affiliation(s)
- Ku-Chung Chen
- Institute of Biomedical Sciences, Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
25
|
Liu WH, Chang LS. Arachidonic acid induces Fas and FasL upregulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-Fos pathway and activation of p38 MAPK/ATF-2 pathway. Toxicol Lett 2009; 191:140-8. [DOI: 10.1016/j.toxlet.2009.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 12/19/2022]
|
26
|
Ambrozova G, Pekarova M, Lojek A. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. Eur J Nutr 2009; 49:133-9. [PMID: 19784538 DOI: 10.1007/s00394-009-0057-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 09/17/2009] [Indexed: 12/27/2022]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFAs) can affect various functions of the immune system including inflammatory responses. An oxidative burst of phagocytes accompanied by reactive oxygen species (ROS) and reactive nitrogen species (RNS) formation is one of the phagocyte functions that could be modulated by PUFAs. AIM OF THE STUDY To investigate the effects of omega-3 (alpha-linolenic, docosahexaenoic, eicosapentaenoic) and omega-6 (arachidonic, linoleic) PUFAs on lipopolysaccharide (LPS)-stimulated ROS and RNS production by the murine macrophage cell line RAW 264.7. METHODS Murine peritoneal macrophages RAW 264.7 were stimulated with LPS (0.1 microg/ml) and treated with 0.1-100 microM omega-3 or omega-6 PUFAs for either 8 (ROS production) or 20 h (RNS production). The cytotoxicity of PUFAs was evaluated by an ATP (adenosine triphosphate) test after both 8 and 20 h of treatment with PUFAs. Changes in ROS production by LPS-treated macrophages subsequently activated with phorbol myristate acetate (PMA) or opsonized zymosan particles (OZP) were determined by luminol-enhanced chemiluminescence, whilst the production of RNS was determined as the concentration of nitrites in cell supernatants (Griess reaction). Changes in inducible nitric oxide synthase (iNOS) expression were evaluated by Western blot analysis. The antioxidant properties of PUFAs were tested by TRAP (total peroxyl radical-trapping antioxidant parameter) assay. RESULTS All PUFAs in 100 microM concentration except eicosapentaenoic acid decreased ROS production. The effect was most significant when docosahexaenoic acid was used. Arachidonic acid decreased PMA-activated ROS production even in 1 and 10 microM concentrations. On the other hand, 10 and 100 microM eicosapentaenoic acid potentiated ROS production. As concerns RNS production, all the fatty acids that were tested in a concentration of 100 microM decreased iNOS expression and nitrite accumulation. Fatty acids had no significant effect on the viability and proliferation of RAW 264.7 cells. The TRAP assay confirmed that none of the tested PUFAs exerted any significant antioxidant properties. CONCLUSION High concentrations of PUFAs of both omega-3 and omega-6 groups can inhibit ROS and RNS formation by stimulated macrophages. The expression of iNOS can also be inhibited. This effect, together with the absence of antioxidant activity and cytotoxic properties, indicates that PUFAs can participate in the regulation of enzymes responsible for reactive species production.
Collapse
Affiliation(s)
- Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
27
|
Chen KC, Chang LS. Arachidonic acid-induced apoptosis of human neuroblastoma SK-N-SH cells is mediated through mitochondrial alteration elicited by ROS and Ca2+-evoked activation of p38α MAPK and JNK1. Toxicology 2009; 262:199-206. [DOI: 10.1016/j.tox.2009.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/31/2022]
|
28
|
Maher PA, Schubert DR. Metabolic links between diabetes and Alzheimer's disease. Expert Rev Neurother 2009; 9:617-30. [PMID: 19402773 DOI: 10.1586/ern.09.18] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a cluster of risk factors for Type 2 diabetes and vascular disease that include high blood glucose, obesity, high blood pressure, increased blood triacylglycerols and insulin resistance. All of these factors, both individually and collectively, increase the risk of Alzheimer's disease (AD) and vascular dementia. Alterations in insulin signaling, glucose and fatty acid metabolism, as well as the accumulation of oxidatively modified and glycated proteins, are associated with both diabetes and the dementias. Data from animal and cell culture models have shown that there is a synergistic interaction between most of these stresses in both AD and diabetes, and with the elevated beta-amyloid peptide levels that are also linked to AD. Some of these parameters can be modified by diet and others may require novel drugs. However, because of the multiplicity of physiological pathways involved, conventional drug therapies directed against a single target are not going to be effective in treating AD or the complications of diabetes. It is therefore likely that the only successful therapy will involve the use of drugs with multiple targets in concert with changes in diet and lifestyle.
Collapse
Affiliation(s)
- Pamela A Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037-1099, USA.
| | | |
Collapse
|
29
|
Liu WH, Cheng YC, Chang LS. ROS-mediated p38alpha MAPK activation and ERK inactivation responsible for upregulation of Fas and FasL and autocrine Fas-mediated cell death in Taiwan cobra phospholipase A(2)-treated U937 cells. J Cell Physiol 2009; 219:642-51. [PMID: 19180563 DOI: 10.1002/jcp.21713] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of the present study is to explore the signaling pathway associated with Naja naja atra phospholipase A(2) (PLA(2))-induced apoptotic death of human leukemia U937 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, and cytochrome c release were observed in PLA(2)-treated cells. PLA(2) treatment increased Fas and FasL protein expression, and upregulated transcription of Fas and FasL mRNA. Upon exposure to PLA(2), ROS generation, p38 MAPK activation, and ERK inactivation were found in U937 cells. Abolition of PLA(2)-induced ROS generation abrogated p38 MAPK activation and upregulation of Fas and FasL expression, but restored ERK activation and viability of PLA(2)-treated cells. Block of p38 MAPK by SB202190 abolished PLA(2)-induced Fas/FasL upregulation and ERK inactivation, but not ROS generation. Activated ERK suppressed p38 MAPK activation and Fas/FasL protein expression. Selective inactivation or overexpression of p38alpha MAPK proved that upregulation of Fas/FasL and ERK inactivation were related to p38alpha MAPK activation. Deprivation of catalytic activity with PLA(2) blocked completely PLA(2)-induced Fas/FasL upregulation. Downregulation of FADD abolished PLA(2)-induced procaspase-8 degradation and rescued viability of PLA(2)-treated cells. Taken together, our results indicate that Fas/FasL upregulation in PLA(2)-treated U937 cells is elicited by ROS-mediated p38alpha MAPK activation and ERK inactivation, and suggest that autocrine Fas/FasL apoptotic mechanism is involved in PLA(2)-induced cell death. J. Cell. Physiol. 219: 642-651, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
30
|
Tang F, Chen Z, Ciszewski C, Setty M, Solus J, Tretiakova M, Ebert E, Han J, Lin A, Guandalini S, Groh V, Spies T, Green P, Jabri B. Cytosolic PLA2 is required for CTL-mediated immunopathology of celiac disease via NKG2D and IL-15. ACTA ACUST UNITED AC 2009; 206:707-19. [PMID: 19237603 PMCID: PMC2699120 DOI: 10.1084/jem.20071887] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
IL-15 and NKG2D promote autoimmunity and celiac disease by arming cytotoxic T lymphocytes (CTLs) to cause tissue destruction. However, the downstream signaling events underlying these functional properties remain unclear. Here, we identify cytosolic phospholipase A2 (cPLA2) as a central molecule in NKG2D-mediated cytolysis in CTLs. Furthermore, we report that NKG2D induces, upon recognition of MIC+ target cells, the release of arachidonic acid (AA) by CTLs to promote tissue inflammation in association with target killing. Interestingly, IL-15, which licenses NKG2D-mediated lymphokine killer activity in CTLs, cooperates with NKG2D to induce cPLA2 activation and AA release. Finally, cPLA2 activation in intraepithelial CTLs of celiac patients provides an in vivo pathophysiological dimension to cPLA2 activation in CTLs. These results reveal an unrecognized link between NKG2D and tissue inflammation, which may underlie the emerging role of NKG2D in various immunopathological conditions and define new therapeutic targets.
Collapse
Affiliation(s)
- Fangming Tang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de la Puerta R, Marquez-Martin A, Fernandez-Arche A, Ruiz-Gutierrez V. Influence of dietary fat on oxidative stress and inflammation in murine macrophages. Nutrition 2009; 25:548-54. [PMID: 19195840 DOI: 10.1016/j.nut.2008.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/30/2008] [Accepted: 10/08/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Many studies have shown that the nature of the lipid consumed in the diet significantly affects the development of inflammatory diseases. In this study, we compared the effect of diets supplemented with 15% by weight of fish oil (FO), refined olive oil (ROO), and pomace olive oil (POO) with that of a low-fat diet, 2% by weight of corn oil, considered as the basal diet (BD), on the ability to modify reactive oxidative species and proinflammatory mediator generation by stimulated murine macrophages. METHODS Mice were fed the different oil-enriched diets for 8 wk. Peritoneal macrophages were isolated from these mice and subsequently stimulated. Reactive oxygen species and proinflammatory mediators were measured in the corresponding supernatants. Data were statistically treated by one-way analysis of variance and Tukey's multiple comparison post hoc test. RESULTS The ROO and POO significantly reduced the hydrogen peroxide production compared with BD, whereas FO stimulated its production. Moreover, the generation of nitric oxide was significantly prevented in all the experimental oil-enriched dietary groups. The ROO and FO groups showed significantly reduced cytokine (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6) and prostaglandin E(2) production. CONCLUSION These results confirm the prevention action on proinflammatory mediator generation exerted by FO and demonstrate the protective antioxidant properties not only of olive oil but also of POO. The consumption of these olive oils may help to prevent cellular oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rocío de la Puerta
- Pharmacology Department, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | | | | |
Collapse
|
32
|
Musset B, Cherny VV, Morgan D, DeCoursey TE. The intimate and mysterious relationship between proton channels and NADPH oxidase. FEBS Lett 2009; 583:7-12. [PMID: 19084015 PMCID: PMC2630394 DOI: 10.1016/j.febslet.2008.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Voltage gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Although these molecules are distinct entities, with no proven physical interaction, their presence and activity in many cells appears to be coordinated. We describe these interactions and discuss several types of mechanisms that might explain them.
Collapse
Affiliation(s)
- Boris Musset
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK(-/-)) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-alpha secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK(-/-) and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-kappaB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-alpha release and signal transduction BMDMs.
Collapse
|
34
|
Abstract
This review is an attempt to identify and place in context some of the many questions about voltage-gated proton channels that remain unsolved. As the gene was identified only 2 years ago, the situation is very different than in fields where the gene has been known for decades. For the proton channel, most of the obvious and less obvious structure-function questions are still wide open. Remarkably, the proton channel protein strongly resembles the voltage-sensing domain of many voltage-gated ion channels, and thus offers a novel approach to study gating mechanisms. Another surprise is that the proton channel appears to function as a dimer, with two separate conduction pathways. A number of significant biological questions remain in dispute, unanswered, or in some cases, not yet asked. This latter deficit is ascribable to the intrinsic difficulty in evaluating the importance of one component in a complex system, and in addition, to the lack, until recently, of a means of performing an unambiguous lesion experiment, that is, of selectively eliminating the molecule in question. We still lack a potent, selective pharmacological inhibitor, but the identification of the gene has allowed the development of powerful new tools including proton channel antibodies, siRNA and knockout mice.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
35
|
De Simoni A, Allen NJ, Attwell D. Charge compensation for NADPH oxidase activity in microglia in rat brain slices does not involve a proton current. Eur J Neurosci 2008; 28:1146-56. [PMID: 18783372 PMCID: PMC2628425 DOI: 10.1111/j.1460-9568.2008.06417.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 07/04/2008] [Accepted: 07/20/2008] [Indexed: 11/28/2022]
Abstract
The membrane properties of isolated cultured microglia have been extensively studied but it is important to understand their properties in situ, where they protect the brain against infection, but also contribute to neurodegenerative diseases. Microglia and macrophages attack bacteria by generating reactive oxygen species, a process which involves NADPH oxidase pumping electrons out across the cell membrane. The resulting inward current evokes a depolarization, which would inhibit the activity of the NADPH oxidase if there were no charge-compensating current which moves positive charge out across the membrane. The mechanism of this charge compensation is controversial. In neutrophils and in cultured microglia a depolarization-activated H(+) conductance has been proposed to provide charge compensation, and also to remove protons generated intracellularly by the NADPH oxidase. Alternatively, a depolarization-activated K(+) conductance has been proposed to mediate charge compensation. Here we show that in microglia, either in the resting state or when activated by the bacterial coat component lipopolysaccharide, both in acute and in cultured hippocampal slices, no significant H(+) current is detectable. This implies that the membrane properties of microglia in their normal cellular environment differ from those of cultured microglia (similarly, microglia generated a current in response to ATP but, unlike in culture, not to glutamate or GABA). Furthermore, the K(+) current (Kv1.3) that is activated by lipopolysaccharide is inactivated by depolarization, making it unsuitable for mediating charge compensation on a long time scale at positive voltages. Instead, charge compensation may be mediated by a previously undescribed non-selective cation current.
Collapse
Affiliation(s)
- Anna De Simoni
- Department of Physiology, University College London, London, UK
| | | | | |
Collapse
|
36
|
Abstract
The history of research on voltage-gated proton channels is recounted, from their proposed existence in dinoflagellates by Hastings in 1972 and their demonstration in snail neurons by Thomas and Meech in 1982 to the discovery in 2006 (after a decade of controversy) of genes that unequivocally code for proton channels. Voltage-gated proton channels are perfectly selective for protons, conduct deuterons half as well, and the conductance is strongly temperature dependent. These properties are consistent with a conduction mechanism involving hydrogen-bonded-chain transfer, in which the selectivity filter is a titratable amino acid residue. Channel opening is regulated stringently by pH such that only outward current is normally activated. Main functions of proton channels include acid extrusion from cells and charge compensation for the electrogenic activity of the phagocyte NADPH oxidase. Genetic approaches hold the promise of rapid progress in the near future.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison, Chicago, Illinois 60612, USA.
| |
Collapse
|
37
|
A pH-stabilizing role of voltage-gated proton channels in IgE-mediated activation of human basophils. Proc Natl Acad Sci U S A 2008; 105:11020-5. [PMID: 18664579 DOI: 10.1073/pnas.0800886105] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eosinophils and other phagocytes use NADPH oxidase to kill bacteria. Proton channels in human eosinophils and neutrophils are thought to sustain NADPH oxidase activity, and their opening is greatly enhanced by a variety of NADPH oxidase activators, including phorbol myristate acetate (PMA). In nonphagocytic cells that lack NADPH oxidase, no clear effect of PMA on proton channels has been reported. The basophil is a granulocyte that is developmentally closely related to the eosinophil but nevertheless does not express NADPH oxidase. Thus, one might expect that stimulating basophils with PMA would not affect proton currents. However, stimulation of human basophils in perforated-patch configuration with PMA, N-formyl-methionyl-leucyl-phenylalanine, or anti-IgE greatly enhanced proton currents, the latter suggesting involvement of proton channels during activation of basophils by allergens through their highly expressed IgE receptor (Fc epsilonRI). The anti-IgE-stimulated response occurred in a fraction of cells that varied among donors and was less profound than that to PMA. PKC inhibition reversed the activation of proton channels, and the proton channel response to anti-IgE or PMA persisted in Ca(2+)-free solutions. Zn(2+) at concentrations that inhibit proton current inhibited histamine release elicited by PMA or anti-IgE. Studied with confocal microscopy by using SNARF-AM and the shifted excitation and emission ratioing of fluorescence approach, anti-IgE produced acidification that was exacerbated in the presence of 100 microM Zn(2+). Evidently, proton channels are active in basophils during IgE-mediated responses and prevent excessive acidification, which may account for their role in histamine release.
Collapse
|
38
|
Role of Nox2 in elimination of microorganisms. Semin Immunopathol 2008; 30:237-53. [PMID: 18574584 DOI: 10.1007/s00281-008-0126-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
Abstract
NADPH oxidase of the phagocytic cells (Nox2) transfers electrons from cytosolic NADPH to molecular oxygen in the extracellular or intraphagosomal space. The produced superoxide anion (O*2) provides the source for formation of all toxic oxygen derivatives, but continuous O*2 generation depends on adequate charge compensation. The vital role of Nox2 in efficient elimination of microorganisms is clearly indicated by human pathology as insufficient activity of the enzyme results in severe, recurrent bacterial infections, the typical symptoms of chronic granulomatous disease. The goals of this contribution are to provide critical review of the Nox2-dependent cellular processes that potentially contribute to bacterial killing and degradation and to indicate possible targets of pharmacological interventions.
Collapse
|
39
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
40
|
Cheng YM, Kelly T, Church J. Potential contribution of a voltage-activated proton conductance to acid extrusion from rat hippocampal neurons. Neuroscience 2007; 151:1084-98. [PMID: 18201832 DOI: 10.1016/j.neuroscience.2007.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/23/2007] [Accepted: 12/07/2007] [Indexed: 11/27/2022]
Abstract
We examined the potential contribution of a voltage-gated proton conductance (gH+) to acid extrusion from cultured postnatal rat hippocampal neurons. In neurons loaded with Ca2+- and/or pH-sensitive fluorophores, transient exposures to 25-139.5 mM external K+ (K+o) or 20 microM veratridine in the presence of 2 mM Ca2+o (extracellular pH (pHo) constant at 7.35) caused reversible increases and decreases in intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi), respectively. In contrast, under external Ca2+-free conditions, the same stimuli failed to affect [Ca2+]i but caused an increase in pHi, the magnitude of which was related to the [K+]o applied and the change in membrane potential. Consistent with the properties of gH+s in other cell types, the magnitude of the rise in pHi observed in the absence of external Ca2+ was not affected by the removal of external Na+ but was sensitive to external Zn2+ and temperature and was dependent on the measured transmembrane pH gradient (DeltapHmemb). Increasing DeltapH(memb) by pretreatment with carbonylcyanide-p-trifluoromethoxyphenylhydrazone augmented both the high-[K+]o-evoked rise in pHi and the Zn2+-sensitive component of the rise in pHi, suggestive of increased acid extrusion via a gH+. The inhibitory effect of Zn2+ at a given DeltapHmemb was further enhanced by increasing pHo from 7.35-7.8, consistent with a pHo-dependent inhibition of the putative gH+ by Zn2+. Under conditions designed to isolate H+ currents, a voltage-dependent outward current was recorded from whole-cell patch-clamped neurons. Although the outward current appeared to show some selectivity for protons, it was not sensitive to Zn2+ or temperature and the H+-selective component could not be separated from a larger conductance of unknown selectivity. Nonetheless, taken together, the results suggest that a Zn2+-sensitive proton conductive pathway is present in rat hippocampal neurons and contributes to H+ efflux under depolarizing conditions.
Collapse
Affiliation(s)
- Y M Cheng
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
41
|
Rossary A, Arab K, Steghens JP. Polyunsaturated fatty acids modulate NOX 4 anion superoxide production in human fibroblasts. Biochem J 2007; 406:77-83. [PMID: 17472580 PMCID: PMC1948982 DOI: 10.1042/bj20061009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The strong ROS (reactive oxygen species) production, part of an antioxidant response of human fibroblasts triggered by DHA (docosahexaenoic acid; C(22:6,n-3), served as a model for deciphering the relative contribution of NOX (NADPH oxidase) to ROS production, as the role of this enzymatic system remains controversial. Using hydroxyethidium fluorescence for fibroblast ROS production, RT (reverse transcriptase)-PCR for NOX 4 mRNA quantification and mRNA silencing, we show that ROS production evolves in parallel with the catalytic activity of NOX and is suppressed by siNOX 4 (small interference oligonucleotide RNA directed against NOX 4) silencing. Apocynin and plumbagin, specific inhibitors of NOX, prevent ROS production in this cellular model and confirm the role of NOX 4 for this production. Furthermore, we show that, in cell lysates, NOX 4 activity can be modulated by PUFAs (polyunsaturated fatty acids) at the micromolar level in the presence of calcium: NOX 4 activity is increased by arachidonic acid (C20:4,n-6) (approximately 175% of the control), and conjugated linoleic acid (C18:2 [9Z,11E]) is a potent inhibitor (50% of the control). Unexpectedly, intracellular superoxide dismutase does not participate in the modulation of this ROS production and the opposite effects of some PUFAs, described in our experiments, could suggest another way of regulating NOX activity.
Collapse
Affiliation(s)
- Adrien Rossary
- *UF 21455, Stress Oxydant et Vitamines, Fédération de Biochimie, Hôpital E. Herriot, 5, Place d'Arsonval, F-69437 Lyon, France
- †EA 3090, Claude Bernard University Lyon 1, Lyon, France
| | - Khelifa Arab
- ‡Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jean-Paul Steghens
- *UF 21455, Stress Oxydant et Vitamines, Fédération de Biochimie, Hôpital E. Herriot, 5, Place d'Arsonval, F-69437 Lyon, France
- †EA 3090, Claude Bernard University Lyon 1, Lyon, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16. [PMID: 17561938 DOI: 10.1111/j.1471-4159.2007.04670.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
43
|
Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH, DeCoursey TE. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 2006; 579:327-44. [PMID: 17185330 PMCID: PMC2075394 DOI: 10.1113/jphysiol.2006.124248] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612 USA
| | | | | | | | | | | |
Collapse
|
44
|
Petheo GL, Girardin NC, Goossens N, Molnár GZ, Demaurex N. Role of nucleotides and phosphoinositides in the stability of electron and proton currents associated with the phagocytic NADPH oxidase. Biochem J 2006; 400:431-8. [PMID: 16842239 PMCID: PMC1698601 DOI: 10.1042/bj20060578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/07/2006] [Accepted: 07/14/2006] [Indexed: 11/17/2022]
Abstract
The phagocytic NADPH oxidase (phox) moves electrons across cell membranes to kill microbes. The activity of this lethal enzyme is tightly regulated, but the mechanisms that control phox inactivation are poorly understood for lack of appropriate assays. The phox generates measurable electron currents, I(e), that are associated with inward proton currents, I(H). To study the inactivation of the phox and of its associated proton channel, we determined which soluble factors can stabilize I(e) (induced by the addition of NADPH) and I(H) (initiated by small depolarizing voltage steps) in inside-out patches from PMA-activated human eosinophils. I(e) decayed rapidly in the absence of nucleotides (tau approximately 6 min) and was maximally stabilized by the combined addition of 5 mM ATP and 50 microM of the non-hydrolysable GTP analogue GTP[S] (guanosine 5'-[gamma-thio]triphosphate) (tau approximately 57 min), but not by either ATP or GTP[S] alone. I(H) also decayed rapidly and was stabilized by the ATP/GTP[S] mixture, but maximal stabilization of I(H) required further addition of 25 muM PI(3,4)P2 (phosphoinositide 3,4-bisphosphate) to the cytosolic side of the patch. PI(3,4)P2 had no effect on I(e) and its stabilizing effect on I(H) could not be mimicked by other phosphoinositides. Reducing the ATP concentration below millimolar levels decreased I(H) stability, an effect that was not prevented by phosphatase inhibitors but by the non-hydrolysable ATP analogue ATP[S] (adenosine 5'-[gamma-thio]triphosphate). Our data indicate that the assembled phox complex is very stable in eosinophil membranes if both ATP and GTP[S] are present, but inactivates within minutes if one of the nucleotides is removed. Stabilization of the phox-associated proton channel in a highly voltage-sensitive conformation does not appear to involve phosphorylation but ATP binding, and requires not only ATP and GTP[S] but also PI(3,4)P2, a protein known to anchor the cytosolic phox subunit p47(phox) to the plasma membrane.
Collapse
Key Words
- cytochrome
- eosinophil
- nadph oxidase
- patch-clamp
- proton channel
- phosphoinositide
- atp[s], adenosine 5′-[γ-thio]triphosphate
- cgd, chronic granulomatous disease
- dpi, diphenyleneiodonium
- gap, gtpase-activating protein
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- hv1/vsop, voltage-gated hydrogen channel 1/voltage sensor domain-only protein
- pi(3,4)p2, phosphoinositide 3,4-bisphosphate
- pip, phosphoinositide phosphate
- px domain, phox homology domain
Collapse
Affiliation(s)
- Gábor L Petheo
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
45
|
Demaurex N, Petheö GL. Electron and proton transport by NADPH oxidases. Philos Trans R Soc Lond B Biol Sci 2006; 360:2315-25. [PMID: 16321802 PMCID: PMC1569595 DOI: 10.1098/rstb.2005.1769] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The NADPH oxidase is the main weapon of phagocytic white blood cells that are the first line of defence of our body against invading pathogens, and patients lacking a functional oxidase suffer from severe and recurrent infections. The oxidase is a multisubunit enzyme complex that transports electrons from cytoplasmic NADPH to molecular oxygen in order to generate superoxide free radicals. Electron transport across the plasma membrane is electrogenic and is associated with the flux of protons through voltage-activated proton channels. Both proton and electron currents can be recorded with the patch-clamp technique, but whether the oxidase is a proton channel or a proton channel modulator remains controversial. Recently, we have used the inside-out configuration of the patch-clamp technique to record proton and electron currents in excised patches. This approach allows us to measure the oxidase activity under very controlled conditions, and has provided new information about the enzymatic activity of the oxidase and its coupling to proton channels. In this chapter I will discuss how the unique characteristics of the electron and proton currents associated with the redox activity of the NADPH oxidase have extended our knowledge about the thermodynamics and the physiological regulation of this remarkable enzyme.
Collapse
Affiliation(s)
- Nicolas Demaurex
- University of Geneva Department of Cell Physiology and Metabolism 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
46
|
Li N, Zhang G, Yi FX, Zou AP, Li PL. Activation of NAD(P)H oxidase by outward movements of H+ ions in renal medullary thick ascending limb of Henle. Am J Physiol Renal Physiol 2005; 289:F1048-56. [PMID: 15972387 DOI: 10.1152/ajprenal.00416.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was designed to test the hypothesis that the production of superoxide (O2−·) by NAD(P)H oxidase is coupled to tubular metabolic activity through ionic activation mediated by H+ movement across cell membrane. Using dual fluorescent microscopic imaging analysis, intracellular O2−· levels and pH (pHi) in renal medullary thick ascending limb of Henle (TALH) cells were simultaneously measured. It was found that intracellular O2−· levels in these cells were increased in parallel to the elevation of pHi by outflow of H+ induced via NH4Cl loading followed by rapid removal. This increase in intracellular O2−· levels was substantially blocked by an inhibitor of Na+/H+ exchanger, methylisobutyl-amiloride (MIA; 100 μM), a chemical SOD mimetic, Tiron (1 mM) or an inhibitor of NAD(P)H oxidase, diphenylene iodonium (DPI; 100 μM). In additional groups of TALHs, a proton ionophore, carbonylcyanide m-chlorophenylhydrazone (10 μM) was used to produce H+ conductance, leading to H+ flux across cell membrane depending on extracellular pH. The efflux of H+ increased both pHi and intracellular O2−· levels, but the influx of H+ did not increase intracellular O2−· levels. The H+ efflux-induced increase in intracellular O2−· levels was completely blocked by DPI and another NAD(P)H oxidase inhibitor, apocynin (100 μM). In in invo experiments, renal medullary infusion of MIA (100 μM) was found to significantly decrease the concentrations of H2O2 in the renal medullary interstitium. These results suggest that it is the outward movements of H+ ions that activates NAD(P)H oxidase to produce O2−· in TALH cells. This H+ outflow-associated activation of NAD(P)H oxidase importantly contributes to tissue levels of reactive oxygen species in the renal medulla.
Collapse
Affiliation(s)
- Ningjun Li
- Dept. of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
47
|
Morgan D, Cherny VV, Murphy R, Katz BZ, DeCoursey TE. The pH dependence of NADPH oxidase in human eosinophils. J Physiol 2005; 569:419-31. [PMID: 16195320 PMCID: PMC1464255 DOI: 10.1113/jphysiol.2005.094748] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
NADPH oxidase generates reactive oxygen species that are essential to innate immunity against microbes. Like most enzymes, it is sensitive to pH, although the relative importance of pH(o) and pH(i) has not been clearly distinguished. We have taken advantage of the electrogenic nature of NADPH oxidase to determine its pH dependence in patch-clamped individual human eosinophils using the electron current to indicate enzyme activity. Electron current stimulated by PMA (phorbol myristate acetate) was recorded in both perforated-patch configuration, using an NH4+ gradient to control pH(i), and in excised, inside-out patches of membrane. No electron current was detected in cells or excised patches from eosinophils from a patient with chronic granulomatous disease. When the pH was varied symmetrically (pH(o) = pH(i)) in cells in perforated-patch configuration, NADPH oxidase-generated electron current was maximal at pH 7.5, decreasing drastically at higher or lower values. Varying pH(o) and pH(i) independently revealed that this pH dependence was entirely due to effects of pH(i) and that the oxidase is insensitive to pH(o). Surprisingly, the electron current in inside-out patches of membrane was only weakly sensitive to pH(i), indicating that the enzyme turnover rate per se is not strongly pH dependent. The most likely interpretation is that assembly or deactivation of the NADPH oxidase complex has one or more pH-sensitive steps, and that pH-dependent changes in electron current in intact cells mainly reflect different numbers of active complexes at different pH.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
48
|
Bankers-Fulbright JL, Kephart GM, Bartemes KR, Kita H, O'Grady SM. Platelet-activating factor stimulates cytoplasmic alkalinization and granule acidification in human eosinophils. J Cell Sci 2004; 117:5749-57. [PMID: 15507482 DOI: 10.1242/jcs.01498] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of platelet-activating factor (PAF) and IL-5 on intracellular pH were investigated in human eosinophils. Purified peripheral blood eosinophils were loaded with the ratiometric fluorescent pH indicator BCECF-AM ester. Stimulation of eosinophils with PAF produced time-dependent alkalinization of the cytoplasm from an initial pH of 7.1±0.04 to 7.5±0.05. A similar alkalinization response was produced by the calcium ionophore, ionomycin and by the calcium ATPase inhibitor, thapsigargin. These compounds as well as PAF produce significant increases in cytoplasmic calcium ([Ca2+]i). In contrast, IL-5 and the protein kinase C (PKC) activator phorbol myristate acetate (PMA) did not produce cytoplasmic alkalinization and had no effect on [Ca2+]i in eosinophils. PAF-stimulated alkalinization was not inhibited under conditions that blocked plasma membrane Na+-H+ exchange, proton channel or plasma membrane H+-ATPase activities. Measurements of intragranule pH with a cell permeant pH indicator (LysoSensor Yellow/Blue DND-160), which partitions into intracellular acidic compartments, revealed that PAF-stimulated cytosolic alkalinization correlated with intragranule acidification. These results suggest that the increase in [Ca2+]i after PAF stimulation activates a H+-ATPase present in the granule membranes, leading to enhanced granule acidification and cytoplasmic alkalinization. We propose that granule acidification is an important step in solubilization of major basic protein crystals, which are stored within the granule core, in preparation for degranulation and release of these proteins.
Collapse
|
49
|
Petheö GL, Maturana A, Spät A, Demaurex N. Interactions between electron and proton currents in excised patches from human eosinophils. ACTA ACUST UNITED AC 2004; 122:713-26. [PMID: 14638931 PMCID: PMC2229590 DOI: 10.1085/jgp.200308891] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NADPH–oxidase is a plasma membrane enzyme complex that enables phagocytes to generate superoxide in order to kill invading pathogens, a critical step in the host defense against infections. The oxidase transfers electrons from cytosolic NADPH to extracellular oxygen, a process that requires concomitant H+ extrusion through depolarization-activated H+ channels. Whether H+ fluxes are mediated by the oxidase itself is controversial, but there is a general agreement that the oxidase and H+ channel are intimately connected. Oxidase activation evokes profound changes in whole-cell H+ current (IH), causing an approximately −40-mV shift in the activation threshold that leads to the appearance of inward IH. To further explore the relationship between the oxidase and proton channel, we performed voltage-clamp experiments on inside-out patches from both resting and phorbol-12-myristate-13-acetate (PMA)-activated human eosinophils. Proton currents from resting cells displayed slow voltage-dependent activation, long-term stability, and were blocked by micromolar internal [Zn2+]. IH from PMA-treated cells activated faster and at lower voltages, enabling sustained H+ influx, but ran down within minutes, regaining the current properties of nonactivated cells. Bath application of NADPH to patches excised from PMA-treated cells evoked electron currents (Ie), which also ran down within minutes and were blocked by diphenylene iodonium (DPI). Run-down of both IH and Ie was delayed, and sometimes prevented, by cytosolic ATP and GTP-γ-S. A good correlation was observed between the amplitude of Ie and both inward and outward IH when a stable driving force for e− was imposed. Combined application of NADPH and DPI reduced the inward IH amplitude, even in the absence of concomitant oxidase activity. The strict correlation between Ie and IH amplitudes and the sensitivity of IH to oxidase-specific agents suggest that the proton channel is either part of the oxidase complex or linked by a membrane-limited mediator.
Collapse
Affiliation(s)
- Gabor L Petheö
- Department of Physiology, University of Geneva Medical Center, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
50
|
Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY, Pope S, Nobles M, Segal AW. The large-conductance Ca2+-activated K+ channel is essential for innate immunity. Nature 2004; 427:853-8. [PMID: 14985765 PMCID: PMC2099462 DOI: 10.1038/nature02356] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 01/20/2004] [Indexed: 12/21/2022]
Abstract
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.
Collapse
Affiliation(s)
- Jatinder Ahluwalia
- Department of Medicine University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|