1
|
Bhosle A, Jackson MI, Walsh AM, Franzosa EA, Badri DV, Huttenhower C. Response of the gut microbiome and metabolome to dietary fiber in healthy dogs. mSystems 2024:e0045224. [PMID: 39714168 DOI: 10.1128/msystems.00452-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024] Open
Abstract
Dietary fiber confers multiple health benefits originating from the expansion of beneficial gut microbial activity. However, very few studies have established the metabolic consequences of interactions among specific fibers, microbiome composition, and function in either human or representative animal models. In a study design reflective of realistic population dietary variation, fecal metagenomic and metabolomic profiles were analyzed from healthy dogs fed 12 test foods containing different fiber sources and quantities (5-13% as-fed basis). Taxa and functions were identified whose abundances were associated either with overall fiber intake or with specific fiber compositions. Fourteen microbial species were significantly enriched in response to ≥1 specific fiber source; enrichment of fiber-derived metabolites was more pronounced in response to these fiber sources. Positively associated fecal metabolites, including short-chain fatty acids, acylglycerols, fiber bound sugars, and polyphenols, co-occurred with microbes enriched in specific food groups. Critically, the specific metabolite pools responsive to differential fiber intake were dependent on differences both in individual microbial community membership and in overall ecological configuration. This helps to explain, for the first time, differences in microbiome-diet associations observed in companion animal epidemiology. Thus, our study corroborates findings in human cohorts and reinforces the role of personalized microbiomes even in seemingly phenotypically homogeneous subjects. IMPORTANCE Consumption of dietary fiber changes the composition of the gut microbiome and, to a larger extent, the associated metabolites. Production of health-relevant metabolites such as short-chain fatty acids from fiber depends both on the consumption of a specific fiber and on the enrichment of beneficial metabolite-producing species in response to it. Even in a seemingly homogeneous population, the benefit received from fiber consumption is personalized and emphasizes specific fiber-microbe-host interactions. These observations are relevant for both population-wide and personalized nutrition applications.
Collapse
Affiliation(s)
- Amrisha Bhosle
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Aaron M Walsh
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Eric A Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Deschamps C, Humbert D, Chalancon S, Achard C, Apper E, Denis S, Blanquet-Diot S. Large intestinal nutritional and physicochemical parameters from different dog sizes reshape canine microbiota structure and functions in vitro. Bioengineered 2024; 15:2325713. [PMID: 38471972 PMCID: PMC10936688 DOI: 10.1080/21655979.2024.2325713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Different dog sizes are associated with variations in large intestinal physiology including gut microbiota, which plays a key role in animal health. This study aims to evaluate, using the CANIM-ARCOL (Canine Mucosal Artificial Colon), the relative importance of gut microbes versus physicochemical and nutritional parameters of the canine colonic environment in shaping microbiota structure and functions. CANIM-ARCOL was set up to reproduce nutrient availability, bile acid profiles, colonic pH, and transit time from small, medium, or large dogs according to in vivo data, while bioreactors were all inoculated with a fecal sample collected from medium size dogs (n = 2). Applying different dog size parameters resulted in a positive association between size and gas or SCFA production, as well as distinct microbiota profiles as revealed by 16S Metabarcoding. Comparisons with in vivo data from canine stools and previous in vitro results obtained when CANIM-ARCOL was inoculated with fecal samples from three dog sizes revealed that environmental colonic parameters were sufficient to drive microbiota functions. However, size-related fecal microbes were necessary to accurately reproduce in vitro the colonic ecosystem of small, medium, and large dogs. For the first time, this study provides mechanistic insights on which parameters from colonic ecosystem mainly drive canine microbiota in relation to dog size. The CANIM-ARCOL can be used as a relevant in vitro platform to unravel interactions between food or pharma compounds and canine colonic microbiota, under different dog size conditions. The potential of the model will be extended soon to diseased situations (e.g. chronic enteropathies or obesity).
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | | | - Sandrine Chalancon
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Caroline Achard
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Emmanuelle Apper
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| |
Collapse
|
3
|
Gallina NLF, Irizarry Tardi N, Li X, Cai A, Horn MJ, Applegate BM, Reddivari L, Bhunia AK. Assessment of Biofilm Formation and Anti-Inflammatory Response of a Probiotic Blend in a Cultured Canine Cell Model. Microorganisms 2024; 12:2284. [PMID: 39597673 PMCID: PMC11596120 DOI: 10.3390/microorganisms12112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Gut dysbiosis and an inflamed bowel are growing concerns in mammals, including dogs. Probiotic supplements have been used to restore the natural microbial community and improve gastrointestinal health. Biofilm formation, antimicrobial activities, and immunological responses of probiotics are crucial to improving gut health. Thus, we tested a commercial probiotic blend (LabMAX-3), a canine kibble additive comprising Lactobacillus acidophilus, Lacticaseibacillus casei, and Enterococcus faecium for their ability to inactivate common enteric pathogens; their ability to form biofilms; epithelial cell adhesion; and their anti-inflammatory response in the Madin-Darby Canine Kidney (MDCK) cell line. Probiotic LabMAX-3 blend or individual isolates showed a strong inhibitory effect against Salmonella enterica, Listeria monocytogenes, enterotoxigenic Escherichia coli, and Campylobacter jejuni. LabMAX-3 formed biofilms comparable to Staphylococcus aureus. LabMAX-3 adhesion to the MDCK cell line (with or without lipopolysaccharide (LPS) pretreatment) showed comparable adhesion and biofilm formation (p < 0.05) to L. casei ATCC 334 used as a control. LabMAX-3 had no cytotoxic effects on the MDCK cell line during 1 h exposure. The interleukin-10 (IL-10) and tumor necrosis factor alpha (TNFα) ratio of LabMAX-3, compared to the L. casei control, showed a significant increase (p < 0.05), indicating a more pronounced anti-inflammatory response. The data show that LabMAX-3, a canine kibble supplement, can improve gastrointestinal health.
Collapse
Affiliation(s)
- Nicholas L. F. Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Alvin Cai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
| | - Mandy J. Horn
- CH2 Animal Solutions, 21 Bear Creek Estates Dr., Ottumwa, IA 52501, USA;
| | - Bruce M. Applegate
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lavanya Reddivari
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (N.L.F.G.); (N.I.T.); (X.L.); (A.C.)
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; (B.M.A.); (L.R.)
- Purdue University Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
5
|
Hanifeh M, Huhtinen M, Sclivagnotis YS, Lyhs U, Grönthal T, Spillmann T. Adhesion of Bacteroides vulgatus and Fusobacterium varium to the Colonic Mucosa of Healthy Beagles. Vet Sci 2024; 11:319. [PMID: 39058003 PMCID: PMC11281516 DOI: 10.3390/vetsci11070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The relative abundances of Bacteroidetes and Fusobacteria phyla have been reported to be decreased in dogs with chronic enteropathies. In colitis, obligate anaerobes (e.g., Bacteroides and Fusobacterium) are likely to vanish in response to the heightened oxidative stress in the colon's inflammatory environment. The ability to adhere to the colonic mucosa is viewed as an essential step for obligate anaerobic bacteria to colonize and subsequently interact with the host's epithelium and immune system. The reintroduction of a balanced community of obligate anaerobic bacteria using probiotics can restore the microbial function in the intestine. We found no studies on dogs regarding the adhesion properties of Bacteriodes vulgatus and Fusobacterium varium on paraffin-embedded canine colonic mucosa. Thus, the objective of this study is to investigate the adhesion capacities of these two bacterial species to paraffin-embedded colonic mucosa from healthy dogs. Additionally, we investigated their hydrophobicity properties to determine whether differences in adhesion capability can be explained by this factor. The results of our study showed that B. vulgatus adhered significantly lower than F. varium to the canine colonic mucosa (p = 0.002); however, B. vulgatus showed higher hydrophobicity (46.1%) than F. varium (12.6%). In conclusion, both bacteria have potential as probiotics, but further studies will be required to determine the efficacy and safety of the strains to be used, which strains to use, and the reasons other than hydrophobicity for attachment.
Collapse
Affiliation(s)
- Mohsen Hanifeh
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014 Helsinki, Finland; (T.G.); (T.S.)
| | - Mirja Huhtinen
- Orion Corporation, Orion Pharma, R&D, Orionintie 1A, 02200 Espoo, Finland; (M.H.); (Y.S.S.); (U.L.)
| | - Yannes S. Sclivagnotis
- Orion Corporation, Orion Pharma, R&D, Orionintie 1A, 02200 Espoo, Finland; (M.H.); (Y.S.S.); (U.L.)
| | - Ulrike Lyhs
- Orion Corporation, Orion Pharma, R&D, Orionintie 1A, 02200 Espoo, Finland; (M.H.); (Y.S.S.); (U.L.)
| | - Thomas Grönthal
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014 Helsinki, Finland; (T.G.); (T.S.)
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Viikintie 49, 00014 Helsinki, Finland; (T.G.); (T.S.)
| |
Collapse
|
6
|
Phimister FD, Anderson RC, Thomas DG, Farquhar MJ, Maclean P, Jauregui R, Young W, Butowski CF, Bermingham EN. Using meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study. Microbiologyopen 2024; 13:e1404. [PMID: 38515236 PMCID: PMC10958101 DOI: 10.1002/mbo3.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.
Collapse
Affiliation(s)
- Francis D. Phimister
- AgResearch LtdManawatu‐WhanganuiNew Zealand
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | - David G. Thomas
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | | | | | | | | | | |
Collapse
|
7
|
Deschamps C, Apper E, Brun M, Durif C, Denis S, Humbert D, Blanquet-Diot S. Development of a new antibiotic-induced dysbiosis model of the canine colonic microbiota. Int J Antimicrob Agents 2024; 63:107102. [PMID: 38325721 DOI: 10.1016/j.ijantimicag.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
As in humans, antibiotics are widely used in dogs to treat gastrointestinal infections, contributing to the global burden of antimicrobial resistance on both human and animal health. Close contact between pets and their owners can lead to horizontal transfer of gut microbes, including transmission of antibiotic resistance. Nevertheless, until now, the impact of antibiotics on the canine gut microbiota has been poorly described. The aim of this study was to adapt the canine mucosal artificial colon (CANIM-ARCOL) model, reproducing the main nutritional, physicochemical and microbial parameters found in the large intestine of the dog to simulate an antibiotic-induced perturbation. Following initial investigation of five antibiotic cocktails at in-field doses, a 5-day regimen of metronidazole/enrofloxacin (ME) was selected for further model development. Two CANIM-ARCOL bioreactors were inoculated with a faecal sample (n=2 donors) and run in parallel for 26 days under control or antibiotic conditions. ME reduced microbial diversity and induced major shifts in bacterial populations, leading to a state of dysbiosis characterized by an increase in the relative abundance of Streptococcaceae, Lactobacillaceae and Enterobacteriaceae, and a decrease in the relative abundance of Bacteroidaceae, Fusobacteriota and Clostridiaceae. Overall, mucus-associated microbiota were less impacted by antibiotics than luminal microbes. Microbial alterations were associated with drastic decreases in gas production and short-chain fatty acid concentrations. Finally, the model was well validated through in-vitro-in-vivo comparisons in a study in dogs. The CANIM-ARCOL model provides a relevant platform as an alternative to in-vivo assays for an in-depth understanding of antibiotic-microbiota interactions and further testing of restoration strategies at individual level.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France; Lallemand Animal Nutrition, Blagnac Cedex, France
| | | | - Morgane Brun
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Claude Durif
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | | | | |
Collapse
|
8
|
Guilherme-Fernandes J, Aires T, Fonseca AJM, Yergaliyev T, Camarinha-Silva A, Lima SAC, Maia MRG, Cabrita ARJ. Squid meal and shrimp hydrolysate as novel protein sources for dog food. Front Vet Sci 2024; 11:1360939. [PMID: 38450029 PMCID: PMC10915000 DOI: 10.3389/fvets.2024.1360939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The world's growing pet population is raising sustainability and environmental concerns for the petfood industry. Protein-rich marine by-products might contribute to mitigating negative environmental effects, decreasing waste, and improving economic efficiency. The present study evaluated two marine by-products, squid meal and shrimp hydrolysate, as novel protein sources for dog feeding. Along with the analysis of chemical composition and antioxidant activity, palatability was evaluated by comparing a commercial diet (basal diet) and diets with the inclusion of 150 g kg-1 of squid meal or shrimp hydrolysate using 12 Beagle dogs (2.2 ± 0.03 years). Two in vivo digestibility trials were conducted with six dogs, three experimental periods (10 days each) and three dietary inclusion levels (50, 100 and 150 g kg-1) of squid meal or shrimp hydrolysate in place of the basal diet to evaluate effects of inclusion level on apparent total tract digestibility (ATTD), metabolizable energy content, fecal characteristics, metabolites, and microbiota. Both protein sources presented higher protein and methionine contents than ingredients traditionally used in dog food formulation. Shrimp hydrolysate showed higher antioxidant activity than squid meal. First approach and taste were not affected by the inclusion of protein sources, but animals showed a preference for the basal diet. Effects on nutrient intake reflected the chemical composition of diets, and fecal output and characteristics were not affected by the increasing inclusion levels of both protein sources. The higher ATTD of dry matter, most nutrients and energy of diets with the inclusion of both by-products when compared to the basal diet, suggests their potential to be included in highly digestible diets for dogs. Although not affected by the inclusion level of protein sources, when compared to the basal diet, the inclusion of squid meal decreased butyrate concentration and shrimp hydrolysate increased all volatile fatty acids, except butyrate. Fecal microbiota was not affected by squid meal inclusion, whereas inclusion levels of shrimp hydrolysate significantly affected abundances of Oscillosperaceae (UCG-005), Firmicutes and Lactobacillus. Overall, results suggest that squid meal and shrimp hydrolysate constitute novel and promising protein sources for dog food, but further research is needed to fully evaluate their functional value.
Collapse
Affiliation(s)
- Joana Guilherme-Fernandes
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Tiago Aires
- SORGAL, Sociedade de Óleos e Rações S.A., Lugar da Pardala, S. João de Ovar, Portugal
| | - António J. M. Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Timur Yergaliyev
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Amélia Camarinha-Silva
- HoLMiR – Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Sofia A. C. Lima
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Margarida R. G. Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Ana R. J. Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Tate DE, Tanprasertsuk J, Jones RB, Maughan H, Chakrabarti A, Khafipour E, Norton SA, Shmalberg J, Honaker RW. A Randomized Controlled Trial to Evaluate the Impact of a Novel Probiotic and Nutraceutical Supplement on Pruritic Dermatitis and the Gut Microbiota in Privately Owned Dogs. Animals (Basel) 2024; 14:453. [PMID: 38338095 PMCID: PMC10854619 DOI: 10.3390/ani14030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Pruritic dermatitis (PD) is a common presentation of canine allergic skin diseases, with diversity in severity and treatment response due to complex etiopathogenesis. Evidence suggests the gut microbiota (GM) may contribute to the development of canine allergies. A 10-week double-blind randomized controlled trial evaluated a novel probiotic and nutraceutical blend (PNB) on clinical signs of skin allergy, health measures, and the GM of privately owned self-reported pruritic dogs. A total of 105 dogs were enrolled, with 62 included in pruritus and health analysis and 50 in microbiome analysis. The PNB supported greater improvement of owner-assessed clinical signs of PD at week 2 than the placebo (PBO). More dogs that received the PNB shifted to normal pruritus (digital PVAS10-N: <2) by week 4, compared to week 7 for the PBO. While a placebo effect was identified, clinical differences were supported by changes in the GM. The PNB enriched three probiotic bacteria and reduced abundances of species associated with negative effects. The PBO group demonstrated increased abundances of pathogenic species and reduced abundances of several beneficial species. This trial supports the potential of the PNB as a supplemental intervention in the treatment of PD; however, further investigation is warranted, with stricter diagnostic criteria, disease biomarkers and direct veterinary examination.
Collapse
Affiliation(s)
- Devon E. Tate
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | - Roshonda B. Jones
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| | | | | | - Ehsan Khafipour
- Cargill Inc., Wayzata, MN 55391, USA; (A.C.); (E.K.); (S.A.N.)
| | | | - Justin Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ryan W. Honaker
- NomNomNow Inc., Nashville, TN 37207, USA; (D.E.T.); (J.T.); (R.B.J.)
| |
Collapse
|
10
|
Deschamps C, Denis S, Humbert D, Priymenko N, Chalancon S, De Bodt J, Van de Wiele T, Ipharraguerre I, Alvarez-Acero I, Achard C, Apper E, Blanquet-Diot S. Canine Mucosal Artificial Colon: development of a new colonic in vitro model adapted to dog sizes. Appl Microbiol Biotechnol 2024; 108:166. [PMID: 38261090 PMCID: PMC10806056 DOI: 10.1007/s00253-023-12987-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.
Collapse
Affiliation(s)
- Charlotte Deschamps
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- Lallemand Animal Nutrition, Blagnac, France
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31000, Toulouse, France
| | - Sandrine Chalancon
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Jana De Bodt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Inma Alvarez-Acero
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council, ICTAN-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole. J Anim Sci 2024; 102:skae297. [PMID: 39344678 PMCID: PMC11568346 DOI: 10.1093/jas/skae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Wilson SM, Kang Y, Marshall K, Swanson KS. Effects of dietary fiber and biotic supplementation on apparent total tract macronutrient digestibility and the fecal characteristics, metabolites, and microbiota of healthy adult dogs. J Anim Sci 2024; 102:skae138. [PMID: 38783711 PMCID: PMC11161905 DOI: 10.1093/jas/skae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Dietary fibers and biotics have been shown to support gastrointestinal health in dogs, but are usually tested individually. There is value in testing fiber-biotic combinations that are commonly used commercially. Therefore, this study was conducted to determine the apparent total tract macronutrient digestibility (ATTD) of diets supplemented with fibers or biotics and to evaluate their effects on the fecal characteristics, metabolites, microbiota, and immunoglobulin A (IgA) concentrations of dogs. Twelve healthy adult female beagle dogs (age = 6.2 ± 1.6 yr; body weight = 9.5 ± 1.1 kg) were used in a replicated 3 × 3 Latin square design to test three treatments: 1) control diet based on rice, chicken meal, tapioca starch, and cellulose + a placebo treat (CT); 2) diet based on rice, chicken meal, garbanzo beans, and cellulose + a placebo treat (GB); 3) diet based on rice, chicken meal, garbanzo beans, and a functional fiber/prebiotic blend + a probiotic-containing treat (GBPP). In each 28-d period, a 22-d diet adaptation was followed by a 5-d fecal collection phase. Fasted blood samples were collected on day 28. Data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. ATTD of dry matter (DM), organic matter, and energy were lower (P < 0.001) and DM fecal output was higher (P < 0.01) in dogs fed GBPP than CT or GB, whereas ATTD of crude protein was higher (P < 0.001) in dogs fed CT and GBPP than GB. ATTD of fat was higher (P < 0.001) and wet fecal output was lower (P < 0.01) in dogs fed CT than GB or GBPP. Fecal DM% was higher (P < 0.001) in dogs fed CT than GBPP or GB, and higher in dogs fed GBPP than GB. Fecal short-chain fatty acid concentrations were higher (P < 0.001) in dogs fed GB than CT or GBPP, and higher in dogs fed GB than GBPP. Fecal IgA concentrations were higher (P < 0.01) in dogs fed GB than CT. Fecal microbiota populations were affected by diet, with alpha diversity being higher (P < 0.01) in dogs fed GB than CT, and beta diversity shifting following dietary fiber and biotic supplementation. The relative abundance of 24 bacterial genera was altered in dogs fed GB or GBPP than CT. Serum triglyceride concentrations were lower in dogs fed GB than GBPP or CT. Our results demonstrate that legume-based dietary fibers, with or without prebiotics and probiotics, reduce ATTD, increase stool output, beneficially shift fecal metabolites and microbiota, and reduce blood lipids in adult dogs.
Collapse
Affiliation(s)
- Sofia M Wilson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifei Kang
- The Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
He W, Connolly ED, Wu G. Characteristics of the Digestive Tract of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:15-38. [PMID: 38625523 DOI: 10.1007/978-3-031-54192-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As for other mammals, the digestive system of dogs (facultative carnivores) and cats (obligate carnivores) includes the mouth, teeth, tongue, pharynx, esophagus, stomach, small intestine, large intestine, and accessory digestive organs (salivary glands, pancreas, liver, and gallbladder). These carnivores have a relatively shorter digestive tract but longer canine teeth, a tighter digitation of molars, and a greater stomach volume than omnivorous mammals such as humans and pigs. Both dogs and cats have no detectable or a very low activity of salivary α-amylase but dogs, unlike cats, possess a relatively high activity of pancreatic α-amylase. Thus, cats select low-starch foods but dogs can consume high-starch diets. In contrast to many mammals, the vitamin B12 (cobalamin)-binding intrinsic factor for the digestion and absorption of vitamin B12 is produced in: (a) dogs primarily by pancreatic ductal cells and to a lesser extent the gastric mucosa; and (b) cats exclusively by the pancreatic tissue. Amino acids (glutamate, glutamine, and aspartate) are the main metabolic fuels in enterocytes of the foregut. The primary function of the small intestine is to digest and absorb dietary nutrients, and its secondary function is to regulate the entry of dietary nutrients into the blood circulation, separate the external from the internal milieu, and perform immune surveillance. The major function of the large intestine is to ferment undigested food (particularly fiber and protein) and to absorb water, short-chain fatty acids (serving as major metabolic fuels for epithelial cells of the large intestine), as well as vitamins. The fermentation products, water, sloughed cells, digestive secretions, and microbes form feces and then pass into the rectum for excretion via the anal canal. The microflora influences colonic absorption and cell metabolism, as well as feces quality. The digestive tract is essential for the health, survival, growth, and development of dogs and cats.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Erin D Connolly
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Menard J, Bagheri S, Menon S, Yu YT, Goodman LB. Noninvasive sampling of the small intestinal chyme for microbiome, metabolome and antimicrobial resistance genes in dogs, a proof of concept. Anim Microbiome 2023; 5:64. [PMID: 38104116 PMCID: PMC10725013 DOI: 10.1186/s42523-023-00286-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome and metabolome vary greatly throughout the different segments of the gastrointestinal tract, however current knowledge of gastrointestinal microbiome and metabolome in health and disease is limited to fecal samples due to ease of sampling. The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule allows specific sampling of the small intestine in humans. We aimed to determine whether administration of SIMBA™ capsules to healthy beagle dogs could reliably and safely sample the small intestinal microbiome and metabolome when compared to their fecal microbiome and metabolome. RESULTS Eleven beagle dogs were used for the study. Median transit time of capsules was 29.93 h (range: 23.83-77.88). Alpha diversity, as measured by the Simpson diversity, was significantly different (P = 0.048). Shannon diversity was not different (P = 0.114). Beta diversity results showed a significant difference between capsule and fecal samples regarding Bray-Curtis, weighted and unweighted unifrac (P = 0.002) and ANOSIM distance metric s (R = 0.59, P = 0.002). In addition to observing a statistically significant difference in the microbial composition of capsules and feces, distinct variation in the metabolite profiles was seen between the sample types. Heat map analysis showed 16 compounds that were significantly different between the 2 sampling modes (adj-P value ranged between 0.004 and 0.036) with 10 metabolites more abundant in the capsule than in the feces and 6 metabolites more abundant in the feces compared to the capsules. CONCLUSIONS The engineered Small Intestinal MicroBiome Aspiration (SIMBA™) capsule was easy and safe to administer to dogs. Microbiome and metabolome analysis from the capsule samples were significantly different than that of the fecal samples and were like previously published small intestinal microbiome and metabolome composition.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Sahar Bagheri
- International Microbiome Center, Snyder Institute for Chronic Diseases, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Y Tina Yu
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Baker Institute for Animal Health and Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
16
|
Thomsen M, Künstner A, Wohlers I, Olbrich M, Lenfers T, Osumi T, Shimazaki Y, Nishifuji K, Ibrahim SM, Watson A, Busch H, Hirose M. A comprehensive analysis of gut and skin microbiota in canine atopic dermatitis in Shiba Inu dogs. MICROBIOME 2023; 11:232. [PMID: 37864204 PMCID: PMC10590023 DOI: 10.1186/s40168-023-01671-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/14/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Like its human counterpart, canine atopic dermatitis (cAD) is a chronic relapsing condition; thus, most cAD-affected dogs will require lifelong treatment to maintain an acceptable quality of life. A potential intervention is modulation of the composition of gut microbiota, and in fact, probiotic treatment has been proposed and tried in human atopic dermatitis (AD) patients. Since dogs are currently receiving intensive medical care, this will be the same option for dogs, while evidence of gut dysbiosis in cAD is still missing, although skin microbial profiling in cAD has been conducted in several studies. Therefore, we conducted a comprehensive analysis of both gut and skin microbiota in cAD in one specific cAD-predisposed breed, Shiba Inu. Additionally, we evaluated the impact of commonly used medical management on cAD (Janus kinase; JAK inhibitor, oclacitinib) on the gut and skin microbiota. Furthermore, we genotyped the Shiba Inu dogs according to the mitochondrial DNA haplogroup and assessed its association with the composition of the gut microbiota. RESULTS Staphylococcus was the most predominant bacterial genus observed in the skin; Escherichia/Shigella and Clostridium sensu stricto were highly abundant in the gut of cAD-affected dogs. In the gut microbiota, Fusobacteria and Megamonas were highly abundant in healthy dogs but significantly reduced in cAD-affected dogs. The abundance of these bacterial taxa was positively correlated with the effect of the treatment and state of the disease. Oclacitinib treatment on cAD-affected dogs shifted the composition of microbiota towards that in healthy dogs, and the latter brought it much closer to healthy microbiota, particularly in the gut. Additionally, even within the same dog breed, the mtDNA haplogroup varied, and there was an association between the mtDNA haplogroup and microbial composition in the gut and skin. CONCLUSIONS Dysbiosis of both the skin and the gut was observed in cAD in Shiba Inu dogs. Our findings provide a basis for the potential treatment of cAD by manipulating the gut microbiota as well as the skin microbiota. Video Abstract.
Collapse
Affiliation(s)
- Mirja Thomsen
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Inken Wohlers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Biomolecular Data Science in Pneumology, Research Center Borstel, Parkallee 1-40, 23845, Borstel, Germany
| | - Michael Olbrich
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center for Biotechnology, Khalifa University, Abu Dhabi, UAE
| | - Tim Lenfers
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Takafumi Osumi
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yotaro Shimazaki
- Animal Medical Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Koji Nishifuji
- Division of Animal Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- College of Medical and Health Sciences, Khalifa University of Science and Technology, Shakhbout Bin Sultan Street, Abu Dhabi, UAE
| | - Adrian Watson
- Royal Canin SAS, 650 avenue de la Petite Camargue, 30470, Aimargues, France
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Institute of Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
17
|
Yang Q, Wu Z. Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms. Microorganisms 2023; 11:2452. [PMID: 37894110 PMCID: PMC10609632 DOI: 10.3390/microorganisms11102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Pets (mostly domestic dogs and cats) play an important role in the daily lives of humans and their health has attracted growing attention from pet owners. The intestinal microbiota, a complex microbial community with barrier-protective, nutritional, metabolic, and immunological functions, is integral to host health. Dysbiosis has been related to a variety of diseases in humans and animals. Probiotics have been used in functional foods and dietary supplements to modulate intestinal microbiota and promote host health, which has been introduced in pet dogs and cats in recent years. Various canine- and feline-derived probiotic strains have been isolated and characterized. The administration of probiotics has shown positive effects on the gut health and can alleviate some intestinal diseases and disorders in dogs and cats, although the underlying mechanisms are largely unresolved. In this review, we summarize the current knowledge on the benefits of probiotics and discuss their possible mechanisms in dogs and cats in order to provide new insights for the further development and application of probiotics in pets.
Collapse
Affiliation(s)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
18
|
Noli C, Varina A, Barbieri C, Pirola A, Olivero D. Analysis of Intestinal Microbiota and Metabolic Pathways before and after a 2-Month-Long Hydrolyzed Fish and Rice Starch Hypoallergenic Diet Trial in Pruritic Dogs. Vet Sci 2023; 10:478. [PMID: 37505882 PMCID: PMC10384699 DOI: 10.3390/vetsci10070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Intestinal microbiota alterations were described in allergic individuals and may improve with diets. Farmina Ultra Hypo (FUH), a hydrolyzed fish/rice starch hypoallergenic diet, is able to improve clinical signs in allergic dogs. Study objectives were to determine microbiota differences in allergic dogs before and after feeding with FUH for eight weeks. Forty skin allergic dogs were evaluated clinically before and after the diet. Unresponsive dogs were classified as canine atopic dermatitis (CAD); responsive dogs relapsing after challenge with previous foods were classified as being food reactive (AFR), and those not relapsing as doubtful (D). Sequencing of feces collected pre- and post-diet was performed, with comparisons between and within groups, pre- and post-diet, and correlations to possible altered metabolic pathways were sought. Microbiota in all dogs was dominated by Bacteroidota, Fusobacteriota, Firmicutes and Proteobacteria, albeit with large interindividual variations and with some prevalence changes after the diet. In general, bacteria producing short-chain fatty acids were increased in all samples. CAD dogs showed pre-and post-diet microbiota patterns different from the other two groups. Bacteria taxa were enriched post-diet only in the AFR group. Changes in metabolic pathways were observed mainly in the CAD group. FUH may be able to improve intestinal microbiota and thus clinical signs of skin allergy.
Collapse
Affiliation(s)
- Chiara Noli
- Servizi Dermatologici Veterinari, Strada Bedale della Ressia 2, 12016 Peveragno, Italy
| | - Antonella Varina
- Ambulatorio Veterinario Varina-Ghidella-Scarfone, Via Fréjus 54, 10139 Torino, Italy
| | | | | | - Daniela Olivero
- Laboratorio Analisi Veterinarie BiEsseA Scilvet, Via Amedeo d'Aosta 7, 20129 Milano, Italy
| |
Collapse
|
19
|
Palmqvist H, Ringmark S, Höglund K, Pelve E, Lundh T, Dicksved J. Effects of rye inclusion in dog food on fecal microbiota and short-chain fatty acids. BMC Vet Res 2023; 19:70. [PMID: 37161401 PMCID: PMC10170736 DOI: 10.1186/s12917-023-03623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Rye intake has been associated with beneficial effects on health in human interventions, possibly due to dietary fiber in rye. In dogs, few studies have explored the effects on health of dietary fiber in general, and rye fiber in particular. The aim of this study was to investigate how inclusion of rye, compared with wheat, influenced fecal microbiota composition, short chain fatty acids (SCFA) and apparent total tract digestibility (ATTD) in dogs. Six male Beagle dogs (mean age 4.6 years, SEM 0.95 years; mean body weight 14.6 kg, SEM 0.32 kg) were fed three experimental diets, each for 21 days, including an adaptation period of six days and with 2-2.5 months between diet periods. The diets were similar regarding energy and protein, but had different carbohydrate sources (refined wheat (W), whole grain rye (R), or an equal mixture of both (RW)) comprising 50% of total weight on a dry matter (DM) basis. The diets were baked and titanium dioxide was added for ATTD determination. Fecal samples were collected before and in the end of each experimental period. Fecal microbiota was analyzed by sequencing 16S rRNA gene amplicons and fecal SCFA by high-performance liquid chromatography. Crude protein, crude fat, neutral detergent fiber, and gross energy (GE) in food and feces were analyzed and ATTD of each was determined. Univariate and multivariate statistical methods were applied in data evaluation. RESULTS Faecal microbiota composition, differed depending on diet (P = 0.002), with samples collected after consumption of the R diet differing from baseline. This was primarily because of a shift in proportion of Prevotella, which increased significantly after consumption of the R diet (P < 0.001). No significant differences were found for SCFA, but there was a tendency (P < 0.06) for higher molar proportions of acetic acid following consumption of the R diet. The ATTD of crude protein, crude fat, neutral detergent fiber, and GE was lower after consumption of the R diet compared with the other diets (P < 0.05). CONCLUSIONS Consumption of the R diet, but not RW or W diets, was associated with specific shifts in microbial community composition and function, but also with lower ATTD.
Collapse
Affiliation(s)
- Hanna Palmqvist
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Ringmark
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Pelve
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
20
|
Awosile B, Crasto C, Rahman MK, Daniel I, Boggan S, Steuer A, Fritzler J. Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA. Microorganisms 2023; 11:1137. [PMID: 37317111 DOI: 10.3390/microorganisms11051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
The ecology of infectious diseases involves wildlife, yet the wildlife interface is often neglected and understudied. Pathogens related to infectious diseases are often maintained within wildlife populations and can spread to livestock and humans. In this study, we explored the fecal microbiome of coyotes and wild hogs in the Texas panhandle using polymerase chain reactions and 16S sequencing methods. The fecal microbiota of coyotes was dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. At the genus taxonomic level, Odoribacter, Allobaculum, Coprobacillus, and Alloprevotella were the dominant genera of the core fecal microbiota of coyotes. While for wild hogs, the fecal microbiota was dominated by bacterial members of the phyla Bacteroidetes, Spirochaetes, Firmicutes, and Proteobacteria. Five genera, Treponema, Prevotella, Alloprevotella, Vampirovibrio, and Sphaerochaeta, constitute the most abundant genera of the core microbiota of wild hogs in this study. Functional profile of the microbiota of coyotes and wild hogs identified 13 and 17 human-related diseases that were statistically associated with the fecal microbiota, respectively (p < 0.05). Our study is a unique investigation of the microbiota using free-living wildlife in the Texas Panhandle and contributes to awareness of the role played by gastrointestinal microbiota of wild canids and hogs in infectious disease reservoir and transmission risk. This report will contribute to the lacking information on coyote and wild hog microbial communities by providing insights into their composition and ecology which may likely be different from those of captive species or domesticated animals. This study will contribute to baseline knowledge for future studies on wildlife gut microbiomes.
Collapse
Affiliation(s)
- Babafela Awosile
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Md Kaisar Rahman
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ian Daniel
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - SaraBeth Boggan
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Ashley Steuer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Jason Fritzler
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
21
|
Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023; 13:metabo13020228. [PMID: 36837847 PMCID: PMC9962843 DOI: 10.3390/metabo13020228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the increasing awareness of raising pets following scientific methods, people are becoming increasingly more interested in the nutrition and health of pets, especially their intestinal health, which has become a research hotspot. Both Saccharomyces boulardii and Pediococcus acidilactici are probiotics with strong probiotic properties that can maintain the balance of intestinal flora. However, the role of Saccharomyces boulardii and Pediococcus acidilactici in felines has not been comprehensively studied to date. The aim of this study is to investigate the effect of multistrain probiotics consisting of Saccharomyces boulardii and Pediococcus acidilactici on the gut health of felines by modulating gut microbes and the production of metabolite SCFAs. The results show that the multistrain probiotic did not alter the intestinal microbial diversity and structure of short-haired domestic cats, promoted the colonization of beneficial bacteria, increased the levels of microbiota-derived SCFAs and fecal antioxidants, and reduced the levels of fecal inflammatory markers. In conclusion, the use of a multistrain probiotic in healthy, short-haired domestic cats can promote gut health by modulating gut microbes, improving microbiota-derived SCFA production, reducing inflammatory conditions, and improving antioxidant status. These results provide new insights for further exploration of the role of probiotics in the gut microbiome of cats.
Collapse
|
22
|
Scarsella E, Jha A, Sandri M, Stefanon B. Network-based gut microbiome analysis in dogs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Elisa Scarsella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Aashish Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Misa Sandri
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
23
|
The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs. Metabolites 2022; 12:metabo12121176. [PMID: 36557214 PMCID: PMC9782517 DOI: 10.3390/metabo12121176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Canine inflammatory bowel diseases (IBD) are of increasing interest in veterinary medicine. They refer to complex and debilitating conditions of dogs' gastrointestinal tract. Although little evidence for causal inferences is currently available, it is believed that IBD pathophysiology entails intricate interactions between environmental factors, the intestinal immune system, and the microbial communities that colonize the gut. To better understand the mechanisms underlying these disorders, leveraging factors associated with the development of these diseases is imperative. Of these factors, emerging evidence supports the role of dietary patterns as key players influencing the composition and function of gut microbes, with subsequent effects on health and disease. In this review, we particularly focus on addressing IBD in dogs and discuss how specific nutrients may elicit or relieve gut inflammation. Gaining mechanistic insights into such interplay and the underpinning mechanisms is key to inferring dietary recommendations, and setting up new and promising therapeutics.
Collapse
|
24
|
Zhang P, Li B, Mu J, Liu D, Zhang G, Mao X, Huang K, Waldron KJ, Chen X. The therapeutic and preventive effects of a canine-origin VB 12 -producing Lactobacillus on DSS-induced colitis in mice. J Anim Physiol Anim Nutr (Berl) 2022; 106:1368-1382. [PMID: 36045638 DOI: 10.1111/jpn.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Vitamin B12 (VB12 ) plays vital roles as a cofactor in reactions related to biosynthesis and metabolic regulation. Animals with diarrhoea from intestinal inflammation are susceptible to VB12 deficiency due to dysfunctional absorption. No current medications for canine intestinal inflammation can simultaneously act as VB12 supplements. Here we have tested a strain of VB12 -producing Lactobacillus, to investigate its safety in healthy dogs and test for hypothesized therapeutic and preventive effects on murine colitis. Results from enzyme-linked immunosorbent assay, histopathological analysis, and quantitative polymerase chain reaction showed normal physical conditions of healthy dogs given Lactobacillus, and blood biochemical indices showed no significant differences in markers, indicating safety of Lactobacillus to healthy dogs. The microbiota in animals receiving VB12 -producing Lactobacillus probiotic exhibited decreased abundance of Escherichia coli and concomitant increase in Lactobacillus. The probiotic supplement also resulted in downregulation of proinflammatory cytokines in murine colon tissues, reduced myeloperoxidase activity and malondialdehyde level, and significantly increased serum VB12 level and decreased homocysteine in therapeutic and preventive experiments. Moreover, Lactobacillus supplement decreased colonic inflammation and injury, improved gut microbiota, and ameliorated VB12 deficiency as an adjunctive therapy. We conclude this product is potentially beneficial for efficient therapy and prevention of VB12 deficiency form intestinal inflammation in canine clinical practice.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Benrui Li
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jiaxin Mu
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Dandan Liu
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Guoying Zhang
- Department of Clinical Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xinru Mao
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Kehe Huang
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Kevin J Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Xingxiang Chen
- Institute of Animal Nutritional Health, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Garrigues Q, Apper E, Chastant S, Mila H. Gut microbiota development in the growing dog: A dynamic process influenced by maternal, environmental and host factors. Front Vet Sci 2022; 9:964649. [PMID: 36118341 PMCID: PMC9478664 DOI: 10.3389/fvets.2022.964649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms of the gastrointestinal tract play a crucial role in the health, metabolism and development of their host by modulating vital functions such as digestion, production of key metabolites or stimulation of the immune system. This review aims to provide an overview on the current knowledge of factors shaping the gut microbiota of young dogs. The composition of the gut microbiota is modulated by many intrinsic (i.e., age, physiology, pathology) and extrinsic factors (i.e., nutrition, environment, medication) which can cause both beneficial and harmful effects depending on the nature of the changes. The composition of the gut microbiota is quickly evolving during the early development of the dog, and some crucial bacteria, mostly anaerobic, progressively colonize the gut before the puppy reaches adulthood. Those bacterial communities are of paramount importance for the host health, with disturbance in their composition potentially leading to altered metabolic states such as acute diarrhea or inflammatory bowel disease. While many studies focused on the microbiota of young children, there is still a lack of knowledge concerning the development of gut microbiota in puppies. Understanding this early evolution is becoming a key aspect to improve dogs' short and long-term health and wellbeing.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
- *Correspondence: Quentin Garrigues
| | | | | | - Hanna Mila
- NeoCare, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
26
|
Deschamps C, Humbert D, Zentek J, Denis S, Priymenko N, Apper E, Blanquet-Diot S. From Chihuahua to Saint-Bernard: how did digestion and microbiota evolve with dog sizes. Int J Biol Sci 2022; 18:5086-5102. [PMID: 35982892 PMCID: PMC9379419 DOI: 10.7150/ijbs.72770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/17/2022] [Indexed: 11/05/2022] Open
Abstract
Health and well-being of dogs are of paramount importance to their owners. Digestion plays a key role in dog health, involving physicochemical, mechanical and microbial actors. However, decades of breeding selection led to various dog sizes associated with different digestive physiology and disease sensitivity. Developing new products requires the consideration of all the multi-faceted aspects of canine digestion, the evaluation of food digestibility, drug release and absorption in the gut. This review paper provides an exhaustive literature survey on canine digestive physiology, focusing on size effect on anatomy and digestive parameters, with graphical representation of data classified as "small", "medium" and "large" dogs. Despite the huge variability between protocols and animals, interesting size effects on gastrointestinal physiology were highlighted, mainly related to the colonic compartment. Colonic measurements, transit time permeability, fibre degradation, faecal short-chain fatty acid concentration and faecal water content increase while faecal bile acid concentration decreases with body size. A negative correlation between body weight and Proteobacteria relative abundance was observed suggesting an effect of dog body size on faecal microbiota. This paper gathers helpful in vivo data for academics and industrials and supports the development of new food and pharma products to move towards canine personalized nutrition and health.
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France.,Lallemand Animal Nutrition, Blagnac, France
| | | | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Strasse 49, Berlin, Germany
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, France
| | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | |
Collapse
|
27
|
Phenotypic correlates of the working dog microbiome. NPJ Biofilms Microbiomes 2022; 8:66. [PMID: 35995802 PMCID: PMC9395329 DOI: 10.1038/s41522-022-00329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Dogs have a key role in law enforcement and military work, and research with the goal of improving working dog performance is ongoing. While there have been intriguing studies from lab animal models showing a potential connection between the gut microbiome and behavior or mental health there is a dearth of studies investigating the microbiome-behavior relationship in working dogs. The overall objective of this study was to characterize the microbiota of working dogs and to determine if the composition of the microbiota is associated with behavioral and performance outcomes. Freshly passed stools from each working canine (Total n = 134) were collected and subject to shotgun metagenomic sequencing using Illumina technology. Behavior, performance, and demographic metadata were collected. Descriptive statistics and prediction models of behavioral/phenotypic outcomes using gradient boosting classification based on Xgboost were used to study associations between the microbiome and outcomes. Regarding machine learning methodology, only microbiome features were used for training and predictors were estimated in cross-validation. Microbiome markers were statistically associated with motivation, aggression, cowardice/hesitation, sociability, obedience to one trainer vs many, and body condition score (BCS). When prediction models were developed based on machine learning, moderate predictive power was observed for motivation, sociability, and gastrointestinal issues. Findings from this study suggest potential gut microbiome markers of performance and could potentially advance care for working canines.
Collapse
|
28
|
Kara K, Güçlü BK, Baytok E. The effect of age and processing on the in vitro fermentation of fibrous feedstuffs by labrador retriever dogs. Vet Res Commun 2022; 46:1131-1146. [PMID: 35974262 DOI: 10.1007/s11259-022-09987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
Dietary fibre substances in dog foods are composed of cell wall polysaccharides, non-cellulose polysaccharides, and structural non-polysaccharides. The purpose of this study was to determine the effects of dog age and heat-steam pressure (extruding process) on the in vitro fermentation of fibrous feedstuffs (sugar beet pulp, tomato pomace, wheat bran, corn bran, and rice bran) to be included in dog foods. The fibrous feedstuffs were incubated with a fermentation medium mixture and faeces inoculum, which were collected from two 6 month old (puppy), two 2 year old (adult), and two 8 year old (geriatric) dogs. The in vitro cumulative gas production (at 6, 12, 18, 24, 36, and 48 h), true-organic matter disappearance (T-OMd) (at 6, 12, 24, and 48 h), and molarities of short chain fatty acids (SCFA) (acetic, propionic, and butyric acids; AA, PA, and BA) in fermentation fluid (at 24 h) of fibrous feedstuffs were determined. The extruding process increased the in vitro cumulative gas production of rice bran (at 12, 18, 24, and 48 h) and wheat bran (at 6, 12, 24, and 36 h) (P < 0.05). In addition, in vitro cumulative gas production values of tomato pomace (at 12, 18, 24, 36, and 48 h) were reduced by the extruding process (P < 0.05). The extruding process increased the in vitro T-OMd values of sugar beet pulp (at 6, 12, and 24 h), wheat and rice bran (at 6 and 12 h), and the molarities of AA, BA, and total SCFA of the in vitro fermentation fluid of sugar beet pulp and wheat bran (P < 0.05). The in vitro cumulative gas production values of tomato pomace from faecal inoculums of the puppy and adult dogs were higher than that of the geriatric dog (P < 0.05). The in vitro T-OMd of sugar beet pulp (at 48 h) and extruded corn bran (at 6 h) with faecal inoculums of adult dog was higher than those of inoculum from puppy faeces (P < 0.05). The molarity of AA of tomato pomace with adult dog's faecal inoculum was higher than those from puppy and geriatric dog (P < 0.05). The molarities of AA, BA, and total SCFA with corn bran from faeces inoculums of the puppy and adult dog was higher than that of the geriatric dog (P < 0.05). The molarities of AA and total SCFA of the in vitro fermentation fluid of extruded rice bran with faecal inoculums from the geriatric dogs was higher than those with faecal inoculums from the puppy and adult dogs (P < 0.05). As a result, the extruding process positively affected the in vitro fermentation values of sugar beet pulp, wheat bran, and rice bran. Furthermore, the organic acid molarities of the in vitro fermentation fluid of extruded rice bran from the geriatric dog was higher than those from the puppy and adult dogs. Sugar beet pulp, tomato pomace, wheat bran, and corn bran can be used as a source of fibre in food for puppy, adult, and geriatric large dogs.
Collapse
Affiliation(s)
- Kanber Kara
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Berrin Kocaoğlu Güçlü
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Erol Baytok
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Canine Fecal Microbiota Transplantation: Current Application and Possible Mechanisms. Vet Sci 2022; 9:vetsci9080396. [PMID: 36006314 PMCID: PMC9413255 DOI: 10.3390/vetsci9080396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for a variety of diseases, and is characterized as the transfer of fecal microorganisms from a healthy donor into the intestinal tract of a diseased recipient. In human clinics, FMT has been used for treating diseases for decades, with promising results. In recent years, veterinary specialists adapted FMT in canine patients; however, compared to humans, canine FMT is more inclined towards research purposes than practical applications in most cases, due to safety concerns. Therefore, in order to facilitate the application of fecal transplant therapy in dogs, in this paper, we review recent applications of FMT in canine clinical treatments, as well as possible mechanisms that are involved in the process of the therapeutic effect of FMT. More research is needed to explore more effective and safer approaches for conducting FMT in dogs.
Collapse
|
30
|
Menard J, Goggs R, Mitchell P, Yang Y, Robbins S, Franklin-Guild RJ, Thachil AJ, Altier C, Anderson R, Putzel GG, McQueary H, Goodman LB. Effect of antimicrobial administration on fecal microbiota of critically ill dogs: dynamics of antimicrobial resistance over time. Anim Microbiome 2022; 4:36. [PMID: 35659110 PMCID: PMC9167539 DOI: 10.1186/s42523-022-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multidrug resistance in companion animals poses significant risks to animal and human health. Prolonged antimicrobial drug (AMD) treatment in animals is a potential source of selection pressure for antimicrobial resistance (AMR) including in the gastrointestinal microbiota. We performed a prospective study of dogs treated for septic peritonitis, pyometra, or bacterial pneumonia and collected repeated fecal samples over 60 days. Bacterial cultures and direct molecular analyses of fecal samples were performed including targeted resistance gene profiling. Results Resistant Escherichia coli increased after 1 week of treatment (D1:21.4% vs. D7:67.9% P < 0.001) and returned to baseline proportions by D60 (D7:67.9% vs D60:42.9%, P = 0.04). Dogs with septic peritonitis were hospitalized significantly longer than those with pneumonia or pyometra. Based on genetic analysis, Simpson’s diversity index significantly decreased after 1 week of treatment (D1 to D7, P = 0.008), followed by a gradual increase to day 60 (D1 and D60, P = 0.4). Detection of CTX-M was associated with phenotypic resistance to third-generation cephalosporins in E. coli (OR 12.1, 3.3–68.0, P < 0.001). Lincosamide and macrolide-resistance genes were more frequently recovered on days 14 and 28 compared to day 1 (P = 0.002 and P = 0.004 respectively). Conclusion AMR was associated with prescribed drugs but also developed against AMDs not administered during the study. Companion animals may be reservoirs of zoonotic multidrug resistant pathogens, suggesting that veterinary AMD stewardship and surveillance efforts should be prioritized. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00178-9.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Patrick Mitchell
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yufan Yang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sarah Robbins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca J Franklin-Guild
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anil J Thachil
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Renee Anderson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory G Putzel
- Microbiome Core Lab and Jill Roberts IBD Institute, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Holly McQueary
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
32
|
Bezhentseva A, St. Germaine LL, Hoffmann DE. Efficacy of laparotomy sponges to reduce bacterial contamination using an in vitro gastrointestinal surgery model. PLoS One 2022; 17:e0267293. [PMID: 35486617 PMCID: PMC9053784 DOI: 10.1371/journal.pone.0267293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Use of laparotomy sponges to protect abdominal viscera during gastrointestinal surgery is described in nonspecific terms by various sources, but no definitive guidelines have been established in veterinary literature. The objective of this study was to compare the in vitro efficacy of various layer-densities of laparotomy sponges at reducing bacterial contamination from multiple contaminant volumes during multiple exposure times. A standardized Escherichia coli inoculum water solution was applied over sterile laparotomy sponges overlying blood agar plates. Four laparotomy sponge layer-densities, 4 volumes of E. coli inoculum water solution, and 4 exposure times were evaluated. All blood agar plates were incubated for 48 hours followed by surface area measurements of colonization of each blood agar plate at 24 and 48 hours. The procedure was repeated thrice. Bacterial colonization occurred on 100% (192/192) of inoculated blood agar plates. There was a statistically significant decrease in colonized area with increasing layer-density of laparotomy sponges (P<0.0001). Comparison between the layer-density of sponges were statistically significant in resulting infected area (P<0.01), except comparison between 6- and 8-layers (P = 0.9490). Colonized area was not significantly altered by time of exposure. Results suggested that increasing the layer-density of laparotomy sponges has significant effect on reducing strikethrough bacterial colonization in an in vitro model. The results of this study can be used when performing gastrointestinal surgery to help guide laparotomy sponge use to reduce peritoneal bacterial contamination.
Collapse
Affiliation(s)
- Alla Bezhentseva
- Surgery Department, Veterinary Specialists & Emergency Services, Rochester, NY, United States of America
- * E-mail:
| | - Lindsay L. St. Germaine
- Surgery Department, Veterinary Specialists & Emergency Services, Rochester, NY, United States of America
| | - Daniel E. Hoffmann
- Surgery Department, Veterinary Specialists & Emergency Services, Rochester, NY, United States of America
| |
Collapse
|
33
|
Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiol Spectr 2022; 10:e0083722. [PMID: 35467389 PMCID: PMC9241680 DOI: 10.1128/spectrum.00837-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Overweight and obesity are growing health problems in domestic cats, increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease, and decreasing longevity. The signature of obesity in the feline gut microbiota has not been studied at the whole-genome metagenomic level. We performed whole-genome shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and eight normal cats housed in the same research environment. We obtained 271 Gbp of sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 million annotated microbial genes. In the obese cat microbiome, we discovered a significant reduction in microbial diversity (P < 0.01) and Firmicutes abundance (P = 0.005), as well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) validation revealed significant increases of Bifidobacterium sp., Olsenella provencensis, Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota among 400 enriched species, whereas 1,525 bacterial species have decreased abundance in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized Erysipelotrichaceae bacterium are highly abundant (>0.05%) in the normal gut with over 400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are significantly overrepresented in the obese compared with the normal cat microbiome. In conclusion, we discovered dramatically decreased microbial diversity in obese cat gut microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat microbiome composition, abundance, and functional capacities provide new insights into feline obesity. IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for treating feline obesity are lacking. Physical exercise and calorie restrictions are commonly used for weight loss but with limited efficacy. Through comprehensive analyses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the obese gut microbiome, including four bacterial species significantly enriched and two species depleted in the obese cats. The key bacterial community and functional capacity alterations discovered from this study will inform new weight management strategies for obese cats, such as evaluations of specific diet formulas that alter the microbiome composition, and the development of prebiotics and probiotics that promote the increase of beneficial species and the depletion of obesity-associated species. Interestingly, these bacteria identified in our study were also reported to affect the weight loss success in human patients, suggesting translational potential in human obesity.
Collapse
|
34
|
Yu YY, Liang L, Xiao HB. Comparative study on fecal flora and blood biochemical indexes in normal and diarrhea British Shorthair cats. Arch Microbiol 2022; 204:257. [PMID: 35416536 DOI: 10.1007/s00203-022-02805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
In recent years, 16S ribosomal DNA (16S rDNA) sequencing has been widely developed. In the present study, we investigated the changes of fecal flora analyzed by sequencing of 16S rDNA and the alteration of blood biochemical indexes in cats during diarrhea. Seven normal fecal samples and seven fecal samples of British Shorthair cats with bacterial diarrhea about 6 months old were collected. The 16S rDNA V3 region of the bacteria was amplified for high-throughput sequencing. Finally, species analysis at various levels was performed. At the same time, samples of blood were taken to examine the changes of biochemical indexes in cats with diarrhea. The abundance and diversity of microflora in the healthy group were greater than those in the diarrhea group. The normal floras in the feces of healthy cats were Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria. The content of Proteobacteria and Firmicutes varied greatly in diarrheal cats. In addition, the number of white blood cells, lymphocytes, neutrophils, and globulin were increased in cats with diarrhea, whereas albumin level was decreased in diarrheal cats. In conclusion, the present study suggests 16SrDNA technology showed that the intestinal Proteus was abundant, and the content of Firmicutes was scarce in cats with diarrhea. Escherichia-Shigella was the main pathogens in this sample. Rapid blood biochemical tests may help clinicians to assess the severity and prognosis of cats with diarrhea.
Collapse
Affiliation(s)
- Yuan-Yuan Yu
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, 410128, China
| | - Lin Liang
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, 410128, China
| | - Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, 410128, China.
| |
Collapse
|
35
|
Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation. Microb Genom 2022; 8. [PMID: 35298370 PMCID: PMC9176287 DOI: 10.1099/mgen.0.000802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human gut microbiome has been extensively studied, yet the canine gut microbiome is still largely unknown. The availability of high-quality genomes is essential in the fields of veterinary medicine and nutrition to unravel the biological role of key microbial members in the canine gut environment. Our aim was to evaluate nanopore long-read metagenomics and Hi-C (high-throughput chromosome conformation capture) proximity ligation to provide high-quality metagenome-assembled genomes (HQ MAGs) of the canine gut environment. By combining nanopore long-read metagenomics and Hi-C proximity ligation, we retrieved 27 HQ MAGs and 7 medium-quality MAGs of a faecal sample of a healthy dog. Canine MAGs (CanMAGs) improved genome contiguity of representatives from the animal and human MAG catalogues – short-read MAGs from public datasets – for the species they represented: they were more contiguous with complete ribosomal operons and at least 18 canonical tRNAs. Both canine-specific bacterial species and gut generalists inhabit the dog’s gastrointestinal environment. Most of them belonged to Firmicutes, followed by Bacteroidota and Proteobacteria. We also assembled one Actinobacteriota and one Fusobacteriota MAG. CanMAGs harboured antimicrobial-resistance genes (ARGs) and prophages and were linked to plasmids. ARGs conferring resistance to tetracycline were most predominant within CanMAGs, followed by lincosamide and macrolide ones. At the functional level, carbohydrate transport and metabolism was the most variable within the CanMAGs, and mobilome function was abundant in some MAGs. Specifically, we assigned the mobilome functions and the associated mobile genetic elements to the bacterial host. The CanMAGs harboured 50 bacteriophages, providing novel bacterial-host information for eight viral clusters, and Hi-C proximity ligation data linked the six potential plasmids to their bacterial host. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAG discovery and assignment of extra-chromosomal elements to their bacterial host. This will provide essential information for studying the canine gut microbiome in veterinary medicine and animal nutrition.
Collapse
Affiliation(s)
- Anna Cuscó
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Daniel Pérez
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Fàbregas
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Lee D, Goh TW, Kang MG, Choi HJ, Yeo SY, Yang J, Huh CS, Kim YY, Kim Y. Perspectives and Advances in Probiotics and the Gut Microbiome in
Companion Animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:197-217. [PMID: 35530406 PMCID: PMC9039956 DOI: 10.5187/jast.2022.e8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
As the number of households that raise dogs and cats is increasing, there is
growing interest in animal health. The gut plays an important role in animal
health. In particular, the microbiome in the gut is known to affect both the
absorption and metabolism of nutrients and the protective functions of the host.
Using probiotics on pets has beneficial effects, such as modulating the immune
system, helping to reduce stress, protecting against pathogenic bacteria and
developing growth performance. The goals of this review are to summarize the
relationship between probiotics/the gut microbiome and animal health, to feature
technology used for identifying the diversity of microbiota composition of
canine and feline microbiota, and to discuss recent reports on probiotics in
canines and felines and the safety issues associated with probiotics and the gut
microbiome in companion animals.
Collapse
Affiliation(s)
- Daniel Lee
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Tae Wook Goh
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Min Geun Kang
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - So Young Yeo
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | | | - Chul Sung Huh
- Research Institute of Eco-Friendly
Livestock Science, Institute of Green-Bio Science and Technology, Seoul
National University, Pyeongchang 25354, Korea
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
- Corresponding author: Younghoon Kim, Department of
Agricultural Biotechnology and Research Institute of Agriculture and Life
Science, Seoul National University, Seoul 08826, Korea. Tel: +82-2-880-4808,
E-mail:
| |
Collapse
|
37
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
38
|
Machado GS, Correa APF, Pires PGDS, Marconatto L, Brandelli A, Kessler ADM, Trevizan L. Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs. Animals (Basel) 2021; 11:ani11123553. [PMID: 34944328 PMCID: PMC8697962 DOI: 10.3390/ani11123553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The production of meat for human consumption produces extra ingredients used in animal nutrition. Feathers, for example, account for about 7% of the chicken’s body weight. When discarded, it presents a potential risk of environmental contamination. Feathers are minimally digested in mammals and are a very rich source of protein. Improved digestibility can be done by thermal processing or by microorganisms. Bacillus subtilis was shown to have great feather-degrading activity In vitro and we produced an amount of microbial hydrolysate to test in dogs. We did some evaluations on the ingredient to measure the effects of the microorganism on feathers. In dogs, a test of total tract digestibility, microbial resistance to the gastrointestinal tract, and fecal characteristics were performed. Bacillus subtilis was less efficient to digest feathers when a higher concentration of feathers was added to the culture. The amino acid profile in feathers has probably changed due to fermentation. Dogs ate the diets quickly, with no refusals. Nutrient and energy total tract digestibility were lower when compared to thermally processed feathers, but Bacillus subtilis was found viable in the feces of dogs that ingested fermented feathers, signaling that Bacillus subtilis is resistant to digestion and may bring some probiotic effect. Abstract Feathers are naturally made up of non-digestible proteins. Under thermal processing, total tract digestibility can be partially improved. Furthermore, Bacillus subtilis (Bs) has shown a hydrolytic effect In vitro. Then, a Bs FTC01 was selected to hydrolyze enough feathers to produce a meal, and then test the quality and inclusion in the dog’s diet to measure the apparent total tract digestibility coefficient (ATTDC) in vivo and the microorganism’s ability to survive in the gastrointestinal tract. A basal diet was added with 9.09% hydrolyzed Bs feather meal (HFMBs) or 9.09% thermally hydrolyzed feather meal (HFMT). Nine adult dogs were randomized into two 10-day blocks and fed different diets. Microbial counts were performed on feather meal, diets and feces. The Bs was less effective in digesting the feathers, which reduced the ATTDC of dry matter, crude protein, energy and increased the production of fecal DM, but the fecal score was maintained (p > 0.05). The digestible energy of HFMT and HFMBs was 18,590 J/kg and 9196 J/kg, respectively. Bacillus subtilis showed limitation to digest feather in large scale, but the resistance of Bs to digestion was observed since it grown on feces culture.
Collapse
Affiliation(s)
- Geruza Silveira Machado
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil; (G.S.M.); (P.G.d.S.P.); (A.d.M.K.)
| | - Ana Paula Folmer Correa
- Programa de Pós-Graduação em Recursos Naturais, Universidade Federal de Roraima, Boa Vista 69304-000, RR, Brazil;
| | - Paula Gabriela da Silva Pires
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil; (G.S.M.); (P.G.d.S.P.); (A.d.M.K.)
| | - Letícia Marconatto
- Instituto do Petróleo e dos Recursos Naturais, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90160-091, RS, Brazil;
| | - Adriano Brandelli
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | - Alexandre de Mello Kessler
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil; (G.S.M.); (P.G.d.S.P.); (A.d.M.K.)
| | - Luciano Trevizan
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil; (G.S.M.); (P.G.d.S.P.); (A.d.M.K.)
- Correspondence: ; Tel.: +55-51-3308-6590
| |
Collapse
|
39
|
Influence of Probiotic Supplementation on Health Status of the Dogs: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most commonly, pet dogs suffer from gastrointestinal (GI) diseases due to careless eating behaviors, such as eating food other than dog food; excess or insufficient nutrient intake of food leading to malnutrition, which could be harmful to dogs; a lack of digestive enzymes; food intolerance or allergies; infections; and/or breed-related hypersensitivities. Probiotics are live microorganisms that deliver health benefits to the host when administrated in an adequate amount. The possible mechanism behind probiotics’ beneficial effects could be their positive regulation of the host’s intestinal microbiota. Probiotics are reported to have therapeutic properties against canine GI and other diseases. The most suitable dosages and applications of probiotics have not been evaluated extensively. The present review summarizes current knowledge regarding the benefits of probiotics and the changes in canine microbiota during probiotic interventions. This literature review provides clinical evidence for probiotics’ beneficial effects in preventing or treating canine ill-health conditions. Based on current knowledge, subsequent researchers could develop or improve probiotics-based canine pharmacological products.
Collapse
|
40
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Pereira AM, Maia MRG, Pinna C, Biagi G, Matos E, Segundo MA, Fonseca AJM, Cabrita ARJ. Effects of Zinc Source and Enzyme Addition on the Fecal Microbiota of Dogs. Front Microbiol 2021; 12:688392. [PMID: 34721312 PMCID: PMC8549731 DOI: 10.3389/fmicb.2021.688392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Supplemental zinc from organic sources has been suggested to be more bioavailable than inorganic ones for dog foods. However, the bioavailability of zinc might be affected by dietary constituents such as phytates. The present study aimed to evaluate the effects of two zinc sources (zinc sulfate and zinc proteinate) and the addition of a multi-enzymatic complex from the solid-state fermentation of Aspergillus niger on end-products of fecal fermentation and fecal microbiota of adult Beagles fed a high-phytate diet. The experimental design consisted of three 4 × 4 Latin Squares with a 2 × 2 factorial arrangement of treatments (n = 12 Beagles), with four periods and four diets: zinc sulfate without (IZ) or with (IZ +) enzyme addition, and zinc proteinate without (OZ) or with (OZ +) enzyme addition. Enzyme addition significantly affected Faith’s phylogenetic diversity index, whereas zinc source did not affect either beta or alpha diversity measures. Linear discriminant analysis effect size detected nine taxa as markers for organic zinc, 18 for inorganic source, and none for enzyme addition. However, with the use of a negative binomial generalized linear model, further effects were observed. Organic zinc was associated with a significantly higher abundance of Firmicutes and lower Proteobacteria and Bacteroidetes, although at a genus level, the response varied. The DNA abundance of Clostridium cluster I, Clostridium cluster XIV, Campylobacter spp., Ruminococcaceae, Turicibacter, and Blautia was significantly higher in dogs fed IZ and IZ + diets. Higher abundance of genus Lactobacillus was observed in dogs fed enzyme-supplemented diets. End-products of fecal fermentation were not affected by zinc source or enzymes. An increase in some taxa of the phyla Actinobacteria and Firmicutes was observed in feces of dogs fed organic zinc with enzyme addition but not with inorganic zinc. This study fills a gap in knowledge regarding the effect of zinc source and enzyme addition on the fecal microbiota of dogs. An association of zinc bioavailability and bacteria abundance is suggested, but the implications for the host (dog) are not clear. Further studies are required to unveil the effects of the interaction between zinc sources and enzyme addition on the fecal microbial community.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida R G Maia
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlo Pinna
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano dell'Emilia, Italy
| | - Giacomo Biagi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Ozzano dell'Emilia, Italy
| | | | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - António J M Fonseca
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana R J Cabrita
- LAQV, REQUIMTE, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
42
|
García-Belenguer S, Grasa L, Valero O, Palacio J, Luño I, Rosado B. Gut Microbiota in Canine Idiopathic Epilepsy: Effects of Disease and Treatment. Animals (Basel) 2021; 11:ani11113121. [PMID: 34827852 PMCID: PMC8614570 DOI: 10.3390/ani11113121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is evidence that supports the existence of a gut-brain axis system through which bi-directional communication occurs between gut bacteria and the brain. Epilepsy is one of the most common neurological disorders in humans and dogs. The role of microbiota in epilepsy remains unknown but it has been suggested that it is a possible influence of gut bacteria in controlling seizures. The aim of this study was to investigate the changes in gut microbiota from dogs with idiopathic epilepsy and the possible effect of antiepileptic drugs on the modulation of the composition of this microbiota. In comparison with control dogs, drug-naive epileptic individuals showed a significantly reduced abundance of GABA and SCFAs-producing bacteria, as well as bacteria associated with reduced risk for brain disease. Moreover, the use of phenobarbital or imepitoin monotherapy during one month in epileptic dogs did not modify the gut microbiota composition. These results open up the possibility of studying probiotic interventions in epilepsy. Considering the phylogenetic and metabolic similarities in intestinal microbiome between humans and dogs, this study contributes to the understanding of epilepsy both in human and veterinary medicine. Abstract Epilepsy is one of the most common neurological disorders in humans and dogs. The structure and composition of gut microbiome associated to this disorder has not yet been analyzed in depth but there is evidence that suggests a possible influence of gut bacteria in controlling seizures. The aim of this study was to investigate the changes in gut microbiota associated to canine idiopathic epilepsy (IE) and the possible influence of antiepileptic drugs (AEDs) on the modulation of this microbiota. Faecal microbiota composition was analyzed using sequencing of bacterial 16S rRNA gene in a group of healthy controls (n = 12) and a group of epileptic dogs both before (n = 10) and after a 30-day single treatment with phenobarbital or imepitoin (n = 9). Epileptic dogs showed significantly reduced abundance of GABA (Pseudomonadales, Pseudomonadaceae, Pseudomonas and Pseudomona_graminis) and SCFAs-producing bacteria (Peptococcaceae, Ruminococcaceae and Anaerotruncus) as well as bacteria associated with reduced risk for brain disease (Prevotellaceae) than control dogs. The administration of AEDs during 30 days did not modify the gut microbiota composition. These results are expected to contribute to the understanding of canine idiopathic epilepsy and open up the possibility of studying new therapeutic approaches for this disorder, including probiotic intervention to restore gut microbiota in epileptic individuals.
Collapse
Affiliation(s)
- Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
- Correspondence:
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2, Universidad de Zaragoza—CITA, 50009 Zaragoza, Spain
| | - Olga Valero
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Isabel Luño
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain; (O.V.); (J.P.); (I.L.); (B.R.)
| |
Collapse
|
43
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
44
|
Jergens AE, Parvinroo S, Kopper J, Wannemuehler MJ. Rules of Engagement: Epithelial-Microbe Interactions and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:669913. [PMID: 34513862 PMCID: PMC8432614 DOI: 10.3389/fmed.2021.669913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shadi Parvinroo
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
45
|
Wetzels SU, Strachan CR, Conrady B, Wagner M, Burgener IA, Virányi Z, Selberherr E. Wolves, dogs and humans in regular contact can mutually impact each other's skin microbiota. Sci Rep 2021; 11:17106. [PMID: 34429455 PMCID: PMC8385068 DOI: 10.1038/s41598-021-96160-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
In contrast to humans and dogs, the skin microbiota of wolves is yet to be described. Here, we investigated the skin microbiota of dogs and wolves kept in outdoor packs at the Wolf Science Center (WSC) via 16S rRNA gene amplicon sequencing. Skin swab samples were also collected from human care takers and their pet dogs. When comparing the three canine groups, representing different degrees of human contact to the care takers and each other, the pet dogs showed the highest level of diversity. Additionally, while human skin was dominated by a few abundant phylotypes, the skin microbiota of the care takers who had particularly close contact with the WSC animals was more similar to the microbiota of dogs and wolves compared to the humans who had less contact with these animals. Our results suggest that domestication may have an impact on the diversity of the skin microbiota, and that the canine skin microbiota can be shared with humans, depending on the level of interaction.
Collapse
Affiliation(s)
- Stefanie Urimare Wetzels
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cameron R Strachan
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
- Complexity Science Hub Vienna, Josefstädter Straße 39, 1080, Vienna, Austria
| | - Martin Wagner
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan Anton Burgener
- Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zsófia Virányi
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, and Wolf Science Center, Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Evelyne Selberherr
- Institute for Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Martínez-López LM, Perez-Gonzalez A, Washington EA, Woodward AP, Roth-Schulze AJ, Dandrieux JRS, Johnstone T, Prakash N, Jex A, Mansfield C. Hierarchical modelling of immunoglobulin coated bacteria in dogs with chronic enteropathy shows reduction in coating with disease remission but marked inter-individual and treatment-response variability. PLoS One 2021; 16:e0255012. [PMID: 34411114 PMCID: PMC8376084 DOI: 10.1371/journal.pone.0255012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic enteropathies are a common problem in dogs, but many aspects of the pathogenesis remain unknown, making the therapeutic approach challenging in some cases. Environmental factors are intimately related to the development and perpetuation of gastrointestinal disease and the gut microbiome has been identified as a contributing factor. Previous studies have identified dysbiosis and reduced bacterial diversity in the gastrointestinal microbiota of dogs with chronic enteropathies. In this case-controlled study, we use flow cytometry and 16S rRNA sequencing to characterise bacteria highly coated with IgA or IgG in faecal samples from dogs with chronic enteropathy and evaluated their correlation with disease and resolution of the clinical signs. IgA and IgG-coated faecal bacterial counts were significantly higher during active disease compared to healthy dogs and decreased with the resolution of the clinical signs. Characterisation of taxa-specific coating of the intestinal microbiota with IgA and IgG showed marked variation between dogs and disease states, and different patterns of immunoglobulin enrichment were observed in dogs with chronic enteropathy, particularly for Erysipelotrichaceae, Clostridicaceae, Enterobacteriaceae, Prevotellaceae and Bacteroidaceae, families. Although, members of these bacterial groups have been associated with strong immunogenic properties and could potentially constitute important biomarkers of disease, their significance and role need to be further investigated.
Collapse
Affiliation(s)
- Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Alexis Perez-Gonzalez
- Melbourne Cytometry Platform, Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | | | - Andrew P. Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Julien R. S. Dandrieux
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Thurid Johnstone
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Nathalee Prakash
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron Jex
- Veterinary Biosciences, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
47
|
Ciaravolo S, Martínez-López LM, Allcock RJN, Woodward AP, Mansfield C. Longitudinal Survey of Fecal Microbiota in Healthy Dogs Administered a Commercial Probiotic. Front Vet Sci 2021; 8:664318. [PMID: 34235200 PMCID: PMC8255976 DOI: 10.3389/fvets.2021.664318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this longitudinal microbiome study was to investigate the effects of a commercially available veterinary synbiotic product (Blackmore's® Paw DigestiCare 60™) on the fecal microbiome of healthy dogs using 16S rRNA gene microbial profiling. Fifteen healthy, privately-owned dogs participated in a 2-week trial administration of the product. Fecal samples were collected at different time points, including baseline (prior to treatment), during administration and after discontinuation of product. Large intra- and inter-individual variation was observed throughout the study, but microbiome composition at higher phylogenetic levels, alpha and beta diversity were not significantly altered after 2 weeks of probiotic administration, suggesting an absence of probiotic impact on microbial diversity. Administration of the synbiotic preparation did, however, result in transient increases in probiotic species from Enterococacceae and Streptococacceae families as well as an increase in Fusobacteria; with the fecal microbiota partially reverting to its baseline state 3-weeks after cessation of probiotic administration.
Collapse
Affiliation(s)
- Susan Ciaravolo
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia.,Peninsula Vet, Emergency and Referral Hospital, Mornington, VIC, Australia
| | - Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| | - Richard J N Allcock
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Andrew P Woodward
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
48
|
Martínez-López LM, Pepper A, Pilla R, Woodward AP, Suchodolski JS, Mansfield C. Effect of sequentially fed high protein, hydrolyzed protein, and high fiber diets on the fecal microbiota of healthy dogs: a cross-over study. Anim Microbiome 2021; 3:42. [PMID: 34116725 PMCID: PMC8194187 DOI: 10.1186/s42523-021-00101-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
Background Dietary content and environmental factors can shape the gut microbiota, and consequently, the way the gut microbiota metabolizes fats, carbohydrates, and proteins, affecting overall health of the host. We evaluated the impact of 3 diets (all meat [raw], high-insoluble fiber dry extruded diet and hydrolyzed protein dry extruded diet) on the gut microbiota of healthy dogs in a cross-over sequential study. Results We showed that diet can have an effect on the gut microbiome in dogs, which was influenced by the order of feeding. High-protein (all meat) diets were characterized by an increase in bacteria belonging to the Fusobacteria and Bacteroidetes phyla, whereas a high-insoluble fiber commercial diet correlated with increases in Firmicutes and Actinobacteria phyla. However, the individual dog’s baseline microbiota had the most impact on the magnitude and nature of the changes in response to dietary intervention. Conclusion Our results suggest that the dog fecal microbiota is driven by protein and fiber composition to different degrees in individual animals, and targeted modification of these patterns could be useful in the modulation of the gut microbiota in different diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00101-8.
Collapse
Affiliation(s)
- Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Amy Pepper
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia.,Veterinary Specialists of Sydney, Miranda, NSW, 2228, Australia
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Andrew P Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia.
| |
Collapse
|
49
|
Traughber ZT, He F, Hoke JM, Davenport GM, Rodriguez-Zas SL, Southey BR, de Godoy MRC. Ancient grains as novel dietary carbohydrate sources in canine diets. J Anim Sci 2021; 99:skab080. [PMID: 33765135 PMCID: PMC8174469 DOI: 10.1093/jas/skab080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient grains are becoming an increasingly abundant carbohydrate source in the pet food market as a result of their popularity and novelty in the human market. Thus, it is imperative to evaluate the characteristics of these ingredients in vivo. Ten adult intact female beagles were used in a replicated 5 × 5 Latin square design. Five dietary treatments were evaluated containing either: rice (CON), amaranth (AM), white proso millet (WPM), quinoa (QU), or oat groats (OG). All diets were formulated to include 40% of the test grain and to be isonitrogenous, isocaloric, and nutritionally complete and balanced for adult dogs at maintenance. The objectives were 1) to evaluate the effects of the novel carbohydrate sources on total apparent total tract digestibility (ATTD), fecal microbiota, and fermentative end-product concentrations and 2) to evaluate the effects of novel carbohydrate sources on the postprandial glycemic and insulinemic responses in healthy adult dogs. All diets were well accepted by the dogs and fecal scores remained within the ideal range for all treatments. In terms of ATTD, all diets were well digested by the dogs; WPM had the highest digestibility of dry and organic matter in contrast with dogs fed the other treatments (P < 0.05). Additionally, ATTD of total dietary fiber was highest for WPM (72.6%) in contrast with QU (63.5%) and CON (50.8%) but did not differ from AM (65.7%) and OG (66.6%). Dogs fed AM or OG had greater (P < 0.05) fecal concentrations of total short-chain fatty acids, as well as propionate and butyrate concentrations, than CON. Ancient grain inclusion appears to beneficially shift fecal microbial populations, with increases in relative abundances of butyrogenic bacteria (i.e., members of the Lachnospiraceae family) observed for OG and reductions in Fusobacteriaceae for both AM and OG when compared with CON. Postprandial glycemic and insulinemic responses did not differ among treatments. Together, these data suggest that ancient grains can be included up to 40% of the diet while eliciting beneficial effects on the overall host health without detrimentally affecting nutrient digestibility.
Collapse
Affiliation(s)
- Zachary T Traughber
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jolene M Hoke
- Archer Daniels Midland Company, Decatur, IL 62526, USA
| | | | | | - Bruce R Southey
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
50
|
Zhang L, Guo T, Zhan N, Sun T, Shan A. Effects of the antimicrobial peptide WK3 on diarrhea, growth performance and intestinal health of weaned piglets challenged with enterotoxigenic Escherichia coli K88. Food Nutr Res 2021; 65:3448. [PMID: 34262420 PMCID: PMC8254467 DOI: 10.29219/fnr.v65.3448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Antibiotics are very effective for treating diarrhea in weaned pigs, but the global prohibition of antibiotics makes it urgent to find an alternative to antibiotics. OBJECTIVE An experiment was conducted to determine the antimicrobial activity of a linear trpzip-like β-hairpin antimicrobial peptide WK3 in vivo and to assess its effects on growth performance and intestinal health. DESIGN Thirty-two piglets were weaned at 21 days and housed in individual metabolic cages, which were randomly divided into four groups and were maintained on a corn-soybean meal-based basal diet. Group 1 included a blank group. Groups 2, 3, and 4 were orally infected by feeding with Enterotoxigenic Escherichia coli (ETEC) K88, which was followed by saline treatment (group 2), enrofloxacin injection at a dose of 2.5 mg/kg (group 3), and WK3 injection at a dose of 2 mg/kg (group 4). The experiment lasted for 6 days, and feed and water were provided ad libitum. RESULTS Both WK3 and enrofloxacin effectively attenuated diarrhea and improved growth performance of piglets. Compared with the control group, WK3 significantly improved the villus height in the ileum (P < 0.05) but did not affect the villus height in the duodenum or jejunum. Additionally, we did not observe any obvious difference in crypt depth or villus height/crypt depth among the duodenum, jejunum and ileum (P > 0.05). WK3 also reduced the numbers of Enterococcus spp (P < 0.01) in the cecal contents, and the number of Enterobacterium spp tended to decrease (0.05 < P < 0.1). Moreover, the jejunal mucosa of the WK3 group exhibited lower interleukin-1α (IL-1a; P < 0.01), toll-like receptors-4 (TLR-4; P < 0.05), and myeloid differentiation primary response 88 (MyD88; P < 0.01) messenger ribonucleic acid (mRNA) expression levels. The jejunum of the WK3 group also exhibited an increased antioxidant capacity, reduced concentration of malondialdehyde (MDA; P < 0.05), and enhanced superoxide dismutase (SOD) activity (P < 0.05). CONCLUSIONS WK3 has the potential to replace antibiotics as a new generation feed additive.
Collapse
Affiliation(s)
| | | | - Na Zhan
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, People’s Republic of China
| | - Taotao Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, People’s Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, People’s Republic of China
| |
Collapse
|