1
|
Brandmair K, Dising D, Finkelmeier D, Schepky A, Kuehnl J, Ebmeyer J, Burger-Kentischer A. A novel three-dimensional Nrf2 reporter epidermis model for skin sensitization assessment. Toxicology 2024; 503:153743. [PMID: 38341018 DOI: 10.1016/j.tox.2024.153743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Skin sensitization assessment has progressed from the use of animal models towards the application of New Approach Methodologies (NAMs). Several skin sensitization NAMs are accepted for regulatory use, but a majority relies on submerged in vitro cell cultures that limit their applicability domain, posing challenges for testing hydrophobic chemicals and mixtures. A newly developed three-dimensional (3D) Nrf2 reporter epidermis model for skin sensitization assessment is reported. This NAM may help to overcome these limitations. The NAM combines the in vivo-like biology and exposure conditions of 3D epidermis models with the reliability, convenience, and cost-effectiveness of secreted reporter gene technology. The Keap1-Nrf2-ARE pathway was chosen as the reporter gene read-out, as it is induced by most skin sensitizers and already adopted in OECD Test guideline 442D. Immortalized human primary keratinocytes (Ker-CT) were stably transfected with the pIGB-Nrf2-SEAP vector to construct a Nrf2 reporter cell line. Ker-CT Nrf2 reporter cells showed negligible basal expression of the Secreted Embryonic Alkaline Phosphatase (SEAP) reporter, which was induced 13.5-fold by exposure to the skin sensitizer cinnamic aldehyde (CA). Co-exposure to CA and the Nrf2 inhibitor glucocorticoid clobetasol propionate significantly suppressed the CA-induced SEAP expression, confirming dependance of the SEAP expression on Nrf2 activation. Using air-liquid interface and animal constituent free culture conditions, the Ker-CT Nrf2 reporter cells differentiated to stratified 3D epidermis models with an in vivo-like skin architecture and functional skin barrier. Evaluation of a Ker-CT Nrf2 reporter cell-based 2D assay by testing 10 conventional reference chemicals showed a predictive accuracy for skin sensitization potential of 80% and 70% compared to LLNA and human data in two independent laboratories and a high intra- and interlaboratory reproducibility. Moreover, the 3D epidermis models predicted 3 sensitizing and 2 non-sensitizing reference chemicals correctly in a first proof-of-concept study. Further investigations foresee the testing of additional chemicals, including hydrophobic compounds and mixtures to confirm the potential of the 3D epidermis models to broaden the applicability domain for NAM-based skin sensitization assessment.
Collapse
Affiliation(s)
- K Brandmair
- Beiersdorf AG, Beiersdorfstraße 1-9, Hamburg 20245, Germany
| | - D Dising
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Cell and Tissue Technologies, Nobelstraße 12, Stuttgart 70569, Germany
| | - D Finkelmeier
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Cell and Tissue Technologies, Nobelstraße 12, Stuttgart 70569, Germany
| | - A Schepky
- Beiersdorf AG, Beiersdorfstraße 1-9, Hamburg 20245, Germany
| | - J Kuehnl
- Beiersdorf AG, Beiersdorfstraße 1-9, Hamburg 20245, Germany
| | - J Ebmeyer
- Beiersdorf AG, Beiersdorfstraße 1-9, Hamburg 20245, Germany.
| | - A Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Cell and Tissue Technologies, Nobelstraße 12, Stuttgart 70569, Germany.
| |
Collapse
|
2
|
Williams FM. New approaches build upon historical studies in dermal toxicology. Toxicol Res (Camb) 2023; 12:1007-1013. [PMID: 38145096 PMCID: PMC10734571 DOI: 10.1093/toxres/tfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/26/2023] Open
Abstract
These are my personal reflections on the history of approaches to understanding dermal toxicology brought together for the Paton Prize Award. This is not a comprehensive account of all publications from in vivo studies in humans to development of in vitro and in silico approaches but highlghts important progress. I will consider what is needed now to influence approaches to understanding dermal exposure with the current development and use of NAMs (new approach methodologies).
Collapse
Affiliation(s)
- Faith M Williams
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle NE24HH, United Kingdom
| |
Collapse
|
3
|
Li Z, Hui J, Yang P, Mao H. Microfluidic Organ-on-a-Chip System for Disease Modeling and Drug Development. BIOSENSORS 2022; 12:bios12060370. [PMID: 35735518 PMCID: PMC9220862 DOI: 10.3390/bios12060370] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
An organ-on-a-chip is a device that combines micro-manufacturing and tissue engineering to replicate the critical physiological environment and functions of the human organs. Therefore, it can be used to predict drug responses and environmental effects on organs. Microfluidic technology can control micro-scale reagents with high precision. Hence, microfluidics have been widely applied in organ-on-chip systems to mimic specific organ or multiple organs in vivo. These models integrated with various sensors show great potential in simulating the human environment. In this review, we mainly introduce the typical structures and recent research achievements of several organ-on-a-chip platforms. We also discuss innovations in models applied to the fields of pharmacokinetics/pharmacodynamics, nano-medicine, continuous dynamic monitoring in disease modeling, and their further applications in other fields.
Collapse
Affiliation(s)
- Zening Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
| | - Panhui Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (J.H.); (P.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
4
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
5
|
Caipa Garcia AL, Arlt VM, Phillips DH. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 2022; 37:143-154. [PMID: 34147034 PMCID: PMC9071088 DOI: 10.1093/mutage/geab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.
Collapse
Affiliation(s)
- Angela L Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| |
Collapse
|
6
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
7
|
Rapalli VK, Mahmood A, Waghule T, Gorantla S, Kumar Dubey S, Alexander A, Singhvi G. Revisiting techniques to evaluate drug permeation through skin. Expert Opin Drug Deliv 2021; 18:1829-1842. [PMID: 34826250 DOI: 10.1080/17425247.2021.2010702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Investigating the transportation of a drug molecule through various layers of skin and determining the amount of drug retention in skin layers is of prime importance in transdermal and topical drug delivery. The information regarding drug permeation and retention in skin layers aids in optimizing a formulation and provides insight into the therapeutic efficacy of a formulation. AREAS COVERED This perspective covers various methods that have been explored to estimate drug/therapeutics in skin layers using in vitro, ex vivo, and in vivo conditions. In vitro methods such as diffusion techniques, ex vivo methods such as isolated perfused skin models and in vivo techniques including dermato-pharmacokinetics employing tape stripping, and microdialysis are discussed. Application of all techniques at various stages of formulation development where various local and systemic effects need to be considered. EXPERT OPINION The void in the existing methodologies necessitates improvement in the field of dermatologic research. Standardization of protocols, experimental setups, regulatory guidelines, and further research provides information to select an alternative for human skin to perform skin permeation experiments to increase the reliability of data generated through the available techniques. There is a need to utilize multiple techniques for appropriate dermato-pharmacokinetics evaluation and formulation's efficacy.
Collapse
Affiliation(s)
- Vamshi Krishna Rapalli
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Arisha Mahmood
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Srividya Gorantla
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| |
Collapse
|
8
|
Downs TR, Arlt VM, Barnett BC, Posgai R, Pfuhler S. Effect of 2-acetylaminofluorene and its genotoxic metabolites on DNA adduct formation and DNA damage in 3D reconstructed human skin tissue models. Mutagenesis 2021; 36:63-74. [PMID: 31816077 PMCID: PMC8081378 DOI: 10.1093/mutage/gez044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
In vitro genotoxicity assays utilising human skin models are becoming important tools for the safety assessment of chemicals whose primary exposure is via the dermal route. In order to explore metabolic competency and inducibility of CYP450 activating enzymes, 3D reconstructed human skin tissues were topically treated with 2-acetylaminofluorene (2-AAF) and its genotoxic metabolites, N-hydroxy-2-acetylaminofluorene (N-OH-2-AAF) and N-hydroxy-2-aminofluorene (N-OH-2-AF), which primarily cause DNA damage by forming DNA adducts. 2-AAF did not increase DNA damage measured in the reconstructed skin micronucleus (RSMN) assay when administered in multiple applications at 24 h intervals but was detected in the skin comet assay in the presence of the DNA polymerase inhibitor aphidicolin (APC). Similarly, no increase was found with N-OH-2-AAF in the RSMN assay after multiple treatments whereas a single 3 h exposure to N-OH-2-AAF caused a large dose-related increase in the skin comet assay. A significant increase in the RSMN assay was only obtained with the highly reactive N-OH-2-AF metabolite after multiple treatments over 72 h, whereas N-OH-2-AF caused a strong increase after a single 3 h exposure in the skin comet assay. In support of these results, DNA adduct formation, measured by the 32P-postlabelling assay, was examined. Adduct levels after 2-AAF treatment for 3 h were minimal but increased >10-fold after multiple exposures over 48 h, suggesting that enzyme(s) that metabolise 2-AAF are induced in the skin models. As expected, a single 3 h exposure to N-OH-2-AAF and N-OH-2-AF resulted in adduct levels that were at least 10-fold greater than those after multiple exposures to 2-AAF despite ~100-fold lower tested concentrations. Our results demonstrate that DNA damage caused by 2-AAF metabolites is more efficiently detected in the skin comet assay than the RSMN assay and after multiple exposures and enzyme induction, 2-AAF-induced DNA damage can be detected in the APC-modified comet assay.
Collapse
Affiliation(s)
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | | | | | - Stefan Pfuhler
- Procter & Gamble, Mason, OH, USA
- To whom correspondence should be addressed. Tel: +1 513 622 1163; E-mail:
| |
Collapse
|
9
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
10
|
Said Z, Murdoch C, Hansen J, Siim Madsen L, Colley HE. Corticosteroid delivery using oral mucosa equivalents for the treatment of inflammatory mucosal diseases. Eur J Oral Sci 2021; 129:e12761. [PMID: 33645844 PMCID: PMC8048628 DOI: 10.1111/eos.12761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Oral lichen planus (OLP) is an immune‐mediated disease of the oral mucosa with idiopathic aetiology. It is frequently treated with topical corticosteroids (applied as gels, mouthwashes, or sprays); however, the mucosal exposure times of topical corticosteroids are short because of removal by the constant flow of saliva and mechanical forces. In this study we used cell monolayers, as well as oral mucosal equivalents (OMEs) containing activated T‐cells, to examine corticosteroid potency and delivery of clobetasol‐17‐propionate from a novel electrospun mucoadhesive patch. The OMEs displayed tight junctions, desmosomes, hemidesmosomes, and an efficient permeability barrier. Following application of corticosteroids to cells cultured as monolayers, the degree of cytotoxicity measured correlated to the level of potency recognized for each corticosteroid; by contrast, OMEs were largely unaffected by corticosteroid treatment. Permeation of clobetasol‐17‐propionate into and through the OMEs was time‐ and dose‐dependent, regardless of whether this corticosteroid was delivered in liquid form or from a mucoadhesive patch, and both liquid‐ and patch‐delivered clobetasol‐17‐propionate significantly reduced the secretion of interleukin‐2 by activated T‐cells. This study confirms that OMEs are more suitable models than cell monolayers for evaluating toxicity and drug delivery. After topical exposure, clobetasol‐17‐propionate accumulated in OMEs at a higher level than betamethasone‐17‐valerate and hydrocortisone‐17‐valerate, and exerted its immunosuppressive actions following application via the patch delivery system, highlighting the efficacy of this mode of drug delivery to treat OLP.
Collapse
Affiliation(s)
- Zulfahmi Said
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK.,Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | | | | | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Franzosa JA, Bonzo JA, Jack J, Baker NC, Kothiya P, Witek RP, Hurban P, Siferd S, Hester S, Shah I, Ferguson SS, Houck KA, Wambaugh JF. High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. NPJ Syst Biol Appl 2021; 7:7. [PMID: 33504769 PMCID: PMC7840683 DOI: 10.1038/s41540-020-00166-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023] Open
Abstract
The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.
Collapse
Affiliation(s)
- Jill A Franzosa
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | - Jessica A Bonzo
- Cell Biology, Biosciences Division, Thermo Fisher Scientific, Frederick, MD, 21703, USA
| | - John Jack
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | | | - Parth Kothiya
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | - Rafal P Witek
- Cell Biology, Biosciences Division, Thermo Fisher Scientific, Frederick, MD, 21703, USA
| | | | | | - Susan Hester
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | - Stephen S Ferguson
- Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, NC, 27709, USA
| | - Keith A Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
12
|
Mizumachi H, LeBaron MJ, Settivari RS, Miyazawa M, Marty MS, Sakaguchi H. Characterization of dermal sensitization potential for industrial or agricultural chemicals with EpiSensA. J Appl Toxicol 2020; 41:915-927. [PMID: 33124094 DOI: 10.1002/jat.4076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/11/2022]
Abstract
The regulatory community is transitioning to the use of nonanimal methods for dermal sensitization assessments; however, some in vitro assays have limitations in their domain of applicability depending on the properties of chemicals being tested. This study explored the utility of epidermal sensitization assay (EpiSensA) to evaluate the sensitization potential of complex and/or "difficult to test" chemicals. Assay performance was evaluated by testing a set of 20 test chemicals including 10 methacrylate esters, 5 silicone-based compounds, 3 crop protection formulations, and 2 surfactant mixtures; each had prior in vivo data plus some in silico and in vitro data. Using the weight of evidence (WoE) assessments by REACH Lead Registrants, 14 of these chemicals were sensitizers and, six were nonsensitizers based on in vivo studies (local lymph node assay [LLNA] and/or guinea pig studies). The EpiSensA correctly predicted 16/20 materials with three test materials as false positive and one silane as false negative. This silane, classified as weak sensitizer via LLNA, also gave a "false negative" result in the KeratinoSens™ assay. Overall, consistent with prior evaluations, the EpiSensA demonstrated an accuracy level of 80% relative to available in vivo WoE assessments. In addition, potency classification based on the concentration showing positive marker gene expression of EpiSensA was performed. The EpiSensA correctly predicted the potency for all seven sensitizing methacrylates classified as weak potency via LLNA (EC3 ≥ 10%). In summary, EpiSensA could identify dermal sensitization potential of these test substances and mixtures, and continues to show promise as an in vitro alternative method for dermal sensitization.
Collapse
Affiliation(s)
| | - Matthew J LeBaron
- Toxicology & Environmental Research & Consulting, Dow Chemical Company, Midland, Michigan, USA
| | | | | | - Mary Sue Marty
- Toxicology & Environmental Research & Consulting, Dow Chemical Company, Midland, Michigan, USA
| | | |
Collapse
|
13
|
Jeon HM, Kim K, Choi KC, Sung GY. Side-effect test of sorafenib using 3-D skin equivalent based on microfluidic skin-on-a-chip. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Eilstein J, Grégoire S, Fabre A, Arbey E, Géniès C, Duplan H, Rothe H, Ellison C, Cubberley R, Schepky A, Lange D, Klaric M, Hewitt NJ, Jacques‐Jamin C. Use of human liver and EpiSkin™ S9 subcellular fractions as a screening assays to compare the in vitro hepatic and dermal metabolism of 47 cosmetics‐relevant chemicals. J Appl Toxicol 2020; 40:416-433. [DOI: 10.1002/jat.3914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022]
|
15
|
Moussallieh F, Moss E, Elbayed K, Lereaux G, Tourneix F, Lepoittevin J. Modifications induced by chemical skin allergens on the metabolome of reconstructed human epidermis: A pilot high‐resolution magic angle spinning nuclear magnetic resonance study. Contact Dermatitis 2019; 82:137-146. [DOI: 10.1111/cod.13415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Eric Moss
- Institute of ChemistryCNRS UMR 7177 and University of Strasbourg Strasbourg France
| | - Karim Elbayed
- Laboratoire des Sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)CNRS UMR 7357 and University of Strasbourg Strasbourg France
| | | | | | | |
Collapse
|
16
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Schutte RJ, Zhang X, An N, Ostrov DA, Vukmanović S. Molecular docking predictions of fragrance binding to human leukocyte antigen molecules. Contact Dermatitis 2019; 81:174-183. [PMID: 30957232 DOI: 10.1111/cod.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Over 4000 small chemicals have been identified as allergens capable of inducing skin sensitization. Many sensitizers are hypothesized to act as haptens producing novel antigens, which can be presented to T cells by human leukocyte antigens (HLAs). Recent studies suggest that some chemical allergens use hapten-independent mechanisms. OBJECTIVE To determine whether molecular docking can identify HLA molecules that bind skin-sensitizing chemical allergens. METHODS Structural models of HLA molecules were used as the basis for molecular docking of 22 chemical allergens. Allergens predicted to bind HLA-B*57:01 were tested for their ability to stimulate T cells by the use of proliferation and interferon-gamma enzyme-linked immunospot assays. RESULTS Chemical allergens that did not satisfy the criteria for hapten activity in vitro were predicted to bind more strongly to common HLA isoforms than those with known hapten activity. HLA-B*57:01, which is an HLA allele required for drug hypersensitivity reactions, was predicted to bind several allergens, including benzyl benzoate, benzyl cinnamate, and benzyl salicylate. In in vitro T cell stimulation assays, benzyl salicylate and benzyl cinnamate were found to stimulate T cell responses from HLA-B*57:01 carriers. CONCLUSIONS These data suggest that small-molecule skin sensitizers have the potential to interact with HLA, and show that T cell-based in vitro assays may be used to evaluate the immunogenicity of skin-sensitizing chemicals.
Collapse
Affiliation(s)
- Ryan J Schutte
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Nan An
- Division of Cosmetics, Office of Cosmetics and Colors, CFSAN, FDA, College Park, Maryland
| | - David A Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Stanislav Vukmanović
- Division of Cosmetics, Office of Cosmetics and Colors, CFSAN, FDA, College Park, Maryland
| |
Collapse
|
18
|
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today 2019; 24:1899-1910. [PMID: 31176740 DOI: 10.1016/j.drudis.2019.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.
Collapse
Affiliation(s)
- Siamaque Kazem
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Charlotte Linssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Riebeling C, Luch A, Tralau T. Skin toxicology and 3Rs-Current challenges for public health protection. Exp Dermatol 2019; 27:526-536. [PMID: 29575089 DOI: 10.1111/exd.13536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 01/20/2023]
Abstract
Driven by the fast paced development of complex test systems in vitro, mass spectrometry and omics, we finally have the tools to unravel the molecular events that underlie toxicological adversity. Yet, timely regulatory adaptation of these new tools continues to pose major challenges even for organs readily accessible such as skin. The reasons for this encompass a need for conservatism as well as the need of tests to serve an existing regulatory framework rather than to produce scientific knowledge. It is important to be aware of this in order to align regulatory skin toxicity with the 3R principles more readily. While most chemical safety testing is still based on animal data, regulatory frameworks have seen a strong push towards non-animal approaches. The endpoints corrosion, irritation, sensitisation, absorption and phototoxicity, for example, can now be covered in vitro with the corresponding test guidelines (TGs) being made available by the OECD. However, in vitro approaches tend to be more reductionist. Hence, a combination of several tests is usually preferable to achieve satisfying predictivity. Moreover, the test systems and their combined use need to be standardised and are therefore subject not only to validation but also to the ongoing development of so-called integrated approaches to testing and assessment (IATAs). Concomitantly, skin models are being refined to deliver the complexity required for increased applicability and predictivity. Given the importance of regulatory applicability for 3R-derived approaches to have a long-lasting impact, this review examines the state of regulatory implementation and perspectives, respectively.
Collapse
Affiliation(s)
- Christian Riebeling
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
20
|
Yilmaz Y, Williams G, Walles M, Manevski N, Krähenbühl S, Camenisch G. Comparison of Rat and Human Pulmonary Metabolism Using Precision-cut Lung Slices (PCLS). Drug Metab Lett 2019; 13:53-63. [PMID: 30345935 DOI: 10.2174/1872312812666181022114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although the liver is the primary organ of drug metabolism, the lungs also contain drug-metabolizing enzymes and may, therefore, contribute to the elimination of drugs. In this investigation, the Precision-cut Lung Slice (PCLS) technique was standardized with the aims of characterizing and comparing rat and human pulmonary drug metabolizing activity. METHOD Due to the limited availability of human lung tissue, standardization of the PCLS method was performed with rat lung tissue. Pulmonary enzymatic activity was found to vary significantly with rat age and rat strain. The Dynamic Organ Culture (DOC) system was superior to well-plates for tissue incubations, while oxygen supply appeared to have a limited impact within the 4h incubation period used here. RESULTS The metabolism of a range of phase I and phase II probe substrates was assessed in rat and human lung preparations. Cytochrome P450 (CYP) activity was relatively low in both species, whereas phase II activity appeared to be more significant. CONCLUSION PCLS is a promising tool for the investigation of pulmonary drug metabolism. The data indicates that pulmonary CYP activity is relatively low and that there are significant differences in enzyme activity between rat and human lung.
Collapse
Affiliation(s)
- Yildiz Yilmaz
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gareth Williams
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Walles
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nenad Manevski
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephan Krähenbühl
- Clinical Pharmacology and Toxicology, University Hospital, Basel, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
21
|
A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin. Toxicol Lett 2018; 292:63-72. [DOI: 10.1016/j.toxlet.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/02/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
|
22
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
23
|
Lee S, Greenstein T, Shi L, Maguire T, Schloss R, Yarmush M. Tri-culture system for pro-hapten sensitizer identification and potency classification. TECHNOLOGY 2018; 6:67-74. [PMID: 30519598 PMCID: PMC6276108 DOI: 10.1142/s233954781850005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory disease that impacts 15-20% of the general population and accurate screening methods for chemical risk assessment are needed. However, most approaches poorly predict pre- and pro-hapten sensitizers, which require abiotic or metabolic conversion prior to inducing sensitization. We developed a tri-culture system comprised of MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts to mimic the cellular and metabolic environments of skin sensitization. A panel of non-sensitizers and sensitizers was tested and the secretome was evaluated. A support vector machine (SVM) was used to identify the most predictive sensitization signature and classification trees identified statistical thresholds to predict sensitizer potency. The SVM computed 91% tri-culture prediction accuracy using the top 3 ranking biomarkers (IL-8, MIP-1β, and GM-CSF) and improved the detection of pre- and pro-haptens. This in vitro assay combined with in silico data analysis presents a promising approach and offers the possibility of multi-metric analysis for enhanced ACD sensitizer screening.
Collapse
Affiliation(s)
- Serom Lee
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Talia Greenstein
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Tim Maguire
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
- Center for Engineering in Medicine and the Department of Surgery, Massachusetts General Hospital and the Shriners Burns Hospital, Boston, MA 02114, USA
| |
Collapse
|
24
|
Winters BR, Pleil JD, Boyer JC, Nylander-French LA, Wallace MAG, Madden MC. Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines. APPLIED IN VITRO TOXICOLOGY 2018; 4:129-138. [PMID: 31037250 PMCID: PMC5994904 DOI: 10.1089/aivt.2017.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Due to the ∼86,000 chemicals registered under the Toxic Substances Control Act and increasing ethical concerns regarding animal testing, it is not economically or technically feasible to screen every registered chemical for toxicity using animal-based toxicity assays. To address this challenge, regulatory agencies are investigating high-throughput screening in vitro methods to increase speed of toxicity testing, while reducing the overall cost. One approach for rapid toxicity testing currently being investigated is monitoring of volatile emissions produced by cell lines in culture. Such a metabolomics approach would measure gaseous emissions from a cell line and determine if such gaseous metabolites are altered upon exposure to a xenobiotic. Herein, we describe the history and rationale of monitoring endogenously produced volatiles for identification of pathologic conditions, as well as emerging applications in toxicity testing for such an approach.
Collapse
Affiliation(s)
- Brett R. Winters
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina
| | - Joachim D. Pleil
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jayne C. Boyer
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - M. Ariel Geer Wallace
- Exposure Methods and Measurements Division, NERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Michael C. Madden
- Environmental Public Health Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
25
|
DeGroot DE, Swank A, Thomas RS, Strynar M, Lee MY, Carmichael PL, Simmons SO. mRNA transfection retrofits cell-based assays with xenobiotic metabolism. J Pharmacol Toxicol Methods 2018; 92:77-94. [PMID: 29555536 DOI: 10.1016/j.vascn.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 01/21/2023]
Abstract
The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.
Collapse
Affiliation(s)
| | - Adam Swank
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, USA
| | | | - Mark Strynar
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, USA
| | - Mi-Young Lee
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | | |
Collapse
|
26
|
Artificial Pigmented Human Skin Created by Muse Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:255-271. [PMID: 30484234 DOI: 10.1007/978-4-431-56847-6_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin composes physiological and chemical barrier and renews skin component cells throughout the human life. Melanocytes locate in the basal layer of the epidermis and produce melanin to protect the skin from ultraviolet. Melanin plays key roles in determining human skin and hair color. Melanocyte dysfunction observed in albinism and vitiligo not only causes cosmetic problems but also increases risk of skin cancer. As rejuvenate therapy, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have been reported to generate melanocytes. Other than ES and iPS cells, human skin tissues maintain pluripotent stem cells, named multilineage-differentiating stress-enduring (Muse) cells. We employ Muse cells isolated from human fibroblasts and adipose tissue to differentiate into melanocytes (Muse-MC). Muse-MC express melanocyte-related molecules, such as tyrosinase and DCT, and show tyrosinase activity. We also succeeded to differentiate Muse cells into fibroblasts and keratinocytes and created three-dimensional (3D) reconstituted skin with Muse cell-derived melanocytes, fibroblasts, and keratinocytes. The 3D reconstituted skin of Muse cell-derived cells coordinately showed epidermis layers and Muse-MC localized in the basal layer of the epidermis. Thus Muse cells in the human skin can be a source of rejuvenation medicine for the skin reconstruction.
Collapse
|
27
|
Madden J, Webb S, Enoch S, Colley H, Murdoch C, Shipley R, Sharma P, Yang C, Cronin M. In silico prediction of skin metabolism and its implication in toxicity assessment. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Lephart ED, Andrus MB. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications. Exp Biol Med (Maywood) 2017; 242:1482-1489. [PMID: 28750552 DOI: 10.1177/1535370217723628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment biological activities on the measured parameters that expand the current knowledge of structure/function relationships. The butyrate and isobutyrate modifications displayed gene expression values significantly above resveratrol and suggest that oral application of these and potentially other resveratrol analogs may yield similar results to improve stability and biological activity to benefit/address various disorders/diseases.
Collapse
Affiliation(s)
- Edwin D Lephart
- 1 Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT 84602, USA.,2 The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Merritt B Andrus
- 3 Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
29
|
Biotransformation of 2,4-toluenediamine in human skin and reconstructed tissues. Arch Toxicol 2017; 91:3307-3316. [PMID: 28337504 DOI: 10.1007/s00204-017-1954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Reconstructed human epidermis (RHE) is used for risk assessment of chemicals and cosmetics and RHE as well as reconstructed human full-thickness skin (RHS) become important for e.g., the pre-clinical development of drugs. Yet, the knowledge regarding their biotransformation capacity is still limited, although the metabolic activity is highly relevant for skin sensitization, genotoxicity, and the efficacy of topical dermatics. The biotransformation of the aromatic amine 2,4-toluenediamine (2,4-TDA) has been compared in two commercially available RHS to normal human skin ex vivo, and in primary epidermal keratinocytes and dermal fibroblasts as well as in vitro generated epidermal Langerhans cells and dermal dendritic cells. The mono N-acetylated derivative N-(3-amino-4-methyl-phenyl)acetamide (M1) was the only metabolite detectable in substantial amounts indicating the predominance of N-acetylation. RHS exceeded human skin ex vivo in N-acetyltransferase activity and in cell cultures metabolite formation ranked as follows: keratinocytes > fibroblasts ~ Langerhans cells ~ dendritic cells. In conclusion, our results underline the principal suitability of RHS as an adequate test matrix for the investigation of N-acetylation of xenobiotics which is most relevant for risk assessment associated with cutaneous exposure to aromatic amines.
Collapse
|
30
|
Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR, Langie SAS. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017; 32:397-408. [DOI: 10.1093/mutage/gex002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 1, 31009 Pamplona, Spain,
| | - Bertrand Pourrut
- ISA Lille – LGCgE, University of Lille Nord de France, 48 boulevard Vauban, 59046 Lille, France,
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, Oslo, Norway and
| | - Andrew R. Collins
- Department of Nutrition, University of Oslo, PB 1046 Blindern, Oslo, Norway
| | - Sabine A. S. Langie
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| |
Collapse
|
31
|
Merches K, Haarmann-Stemmann T, Weighardt H, Krutmann J, Esser C. AHR in the skin: From the mediator of chloracne to a therapeutic panacea? CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Sasabe T, Maeda S, Kishida K, Yamano M, Miwa Y, Sugiyama T. The Metabolism of Methazolamide in Immortalized Human Keratinocytes, HaCaT Cells. Drug Metab Lett 2017; 10:295-305. [PMID: 28137210 PMCID: PMC5403967 DOI: 10.2174/1872312811666170127160931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Drug therapy is occasionally accompanied by an idiosyncratic severe toxicity, which occurs very rarely, but can lead to patient mortality. Methazolamide, an anti-glaucomatous agent, could cause severe skin eruptions called Stevens-Johnson syndrome/toxic epidermal necrolyis (SJS/TEN). Its precise etiology is still uncertain. In this study, the metabolism of methazolamide was investigated in immortalized human keratinocytes to reveal the possible mechanism which causes SJS/TEN. METHODS The metabolism of methazolamide was studied using immortalized human keratinocytes, HaCaT cells. HPLC was used to isolate a metabolite from the culture medium. Mass spectrometry (LCMS/ MS) was employed for its characterization. Three typical chemical inducers were assessed for the inducibility of cytochrome P450, and methimazole was used as the inhibitor of flavin-containing monooxygenase (FMO). RESULTS A sulfonic acid, N-[3-methyl-5-sulfo-1,3,4-thiadiazol-2(3H)-ylidene]acetamide (MSO) was identified as the final metabolite. Dexamethasone and β-naphthoflavone behaved as an inducer of cytochrome P450 in the metabolism, but isoniazid did not. The effect of methimazole was not consistent. We did not detect any glucuronide nor any mercapturic acid (N-acetylcysteine conjugate). CONCLUSION N-[3-methyl-5-sulfo-1,3,4-thiadiazol-2(3H)-ylidene]acetamide (MSO) is not considered to be a direct product of an enzymatic reaction, but rather an auto-oxidation product of N-[3-methyl-5- sulfe-1,3,4-thiadiazol-2(3H)-ylidene]acetamide, a chemically unstable sulfenic acid, which is produced by cytochrome P450 from the β-lyase product of cysteine conjugate of methazolamide. MSO is considered to be susceptible to glutathione and to return to glutathione conjugate of methazolamide, forming a futile cycle. A hypothetical scenario is presented as to the onset of the disease.
Collapse
Affiliation(s)
- Tetsuo Sasabe
- Department of Ophthalmology, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, 3-7-1 Habikino, Habikino-shi Osaka 583-8588. Japan
| | - Shinichiro Maeda
- Department of Pharmacy, Osaka University Hospital, Yamadaoka, Suita, Osaka 565-0871. Japan
| | - Kenichi Kishida
- School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka 583-8555. Japan
| | - Mariko Yamano
- School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka 583-8555. Japan
| | - Yoshihiro Miwa
- Department of Pharmacy, Osaka University Hospital, Yamadaoka, Suita, Osaka 565-0871. Japan
| | - Toshihiro Sugiyama
- Department of Biochemistry, Akita University Graduate School of Medicine, Hondo, Akita 010-8543. Japan
| |
Collapse
|
33
|
Efficacy, Safety and Targets in Topical and Transdermal Active and Excipient Delivery. PERCUTANEOUS PENETRATION ENHANCERS DRUG PENETRATION INTO/THROUGH THE SKIN 2017. [PMCID: PMC7121119 DOI: 10.1007/978-3-662-53270-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A key requirement for topical and transdermal active delivery is the effective delivery of an active to a desired target site, to achieve both safe and efficacious outcomes. This chapter seeks to explore the importance of the pharmacological, toxicological and therapeutic properties of actives and excipients, as well as the site of action as complementary components in percutaneous absorption. This is crucial for optimized topical and transdermal product design.
Collapse
|
34
|
Saito K, Takenouchi O, Nukada Y, Miyazawa M, Sakaguchi H. An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. Toxicol In Vitro 2016; 40:11-25. [PMID: 27965148 DOI: 10.1016/j.tiv.2016.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
To evaluate chemicals (e.g. lipophilic chemicals, pre/pro-haptens) that are difficult to correctly evaluate using in vitro skin sensitization tests (e.g. DPRA, KeratinoSens or h-CLAT), we developed a novel in vitro test termed "Epidermal Sensitization Assay: EpiSensA" that uses reconstructed human epidermis. This assay is based on the induction of multiple marker genes (ATF3, IL-8, DNAJB4 and GCLM) related to two keratinocyte responses (inflammatory or cytoprotective) in the induction of skin sensitization. Here, we first confirmed the mechanistic relevance of these marker genes by focusing on key molecules that regulate keratinocyte responses in vivo (P2X7 for inflammatory and Nrf2 for cytoprotective responses). The up-regulation of ATF3 and IL-8, or DNAJB4 and GCLM induced by the representative sensitizer 2,4-dinitrochlorobenzene in human keratinocytes was significantly suppressed by a P2X7 specific antagonist KN-62, or by Nrf2 siRNA, respectively, which supported mechanistic relevance of marker genes. Moreover, the EpiSensA had sensitivity, specificity and accuracy of 93%, 100% and 93% for 29 lipophilic chemicals (logKow≥3.5), and of 96%, 75% and 88% for 43 hydrophilic chemicals including 11 pre/pro-haptens, compared with the LLNA. These results suggested that the EpiSensA could be a mechanism-based test applicable to broad sets of chemicals including lipophilic chemicals and pre/pro-haptens.
Collapse
Affiliation(s)
- Kazutoshi Saito
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan.
| | - Osamu Takenouchi
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Yuko Nukada
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Masaaki Miyazawa
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| | - Hitoshi Sakaguchi
- Kao Corporation, R&D, Safety Science Research, 2606 Akabane Ichikai-Machi Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
35
|
Lou Y, Wang Q, Zheng J, Hu H, Liu L, Hong D, Zeng S. Possible Pathways of Capecitabine-Induced Hand–Foot Syndrome. Chem Res Toxicol 2016; 29:1591-1601. [PMID: 27631426 DOI: 10.1021/acs.chemrestox.6b00215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Lou
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Qian Wang
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Jinqi Zheng
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, People’s Republic of China
| | - Haihong Hu
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Lin Liu
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Dongsheng Hong
- The
First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, People’s Republic of China
| | - Su Zeng
- Laboratory
of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province
Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People’s Republic of China
| |
Collapse
|
36
|
Planz V, Lehr CM, Windbergs M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Control Release 2016; 242:89-104. [PMID: 27612408 DOI: 10.1016/j.jconrel.2016.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
For preclinical testing of novel therapeutics, predictive in vitro models of the human skin are required to assess efficacy, absorption and safety. Simple as well as more sophisticated three-dimensional organotypic models of the human skin emerged as versatile and powerful tools simulating healthy as well as diseased skin states. Besides addressing the demands of research and industry, such models serve as valid alternative to animal testing. Recently, the acceptance of several models by regulatory authorities corroborates their role as important building block for preclinical development. However, valid assessment of readout parameters derived from these models requires suitable analytical techniques. Standard analytical methods are mostly destructive and limited regarding in-depth investigation on molecular level. The combination of adequate in vitro models with modern non-invasive analytical modalities bears a great potential to address important skin drug delivery related questions. Topics of interest are for instance the assessment of repeated dosing effects and xenobiotic biotransformation, which cannot be analyzed by destructive techniques. This review provides a comprehensive overview of current in vitro skin models differing in functional complexity and mimicking healthy as well as diseased skin states. Further, benefits and limitations regarding analytical evaluation of efficacy, absorption and safety of novel drug carrier systems applied to such models are discussed along with a prospective view of anticipated future directions. In addition, emerging non-invasive imaging modalities are introduced and their significance and potential to advance current knowledge in the field of skin drug delivery is explored.
Collapse
Affiliation(s)
- Viktoria Planz
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; PharmBioTec GmbH, 66123 Saarbrücken, Germany.
| |
Collapse
|
37
|
Spriggs S, Sheffield D, Olayanju A, Kitteringham NR, Naisbitt DJ, Aleksic M. Effect of Repeated Daily Dosing with 2,4-Dinitrochlorobenzene on Glutathione Biosynthesis and Nrf2 Activation in Reconstructed Human Epidermis. Toxicol Sci 2016; 154:5-15. [PMID: 27492222 DOI: 10.1093/toxsci/kfw140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glutathione (GSH) plays a major role in skin detoxification processes due to its ability to conjugate electrophilic exogenous compounds with, and sometimes without, catalysis by glutathione-s-transferase (GST). GST activity has been demonstrated both in skin and in most in vitro skin equivalents but so far studies have focussed on chemical clearance (conjugate identification and rate of conjugation) and did not consider the GSH lifecycle (conjugation, recycling, synthesis). We used the model skin sensitizer 2,4-dinitrochlorobenzene (DNCB) to investigate the effects of chemical exposure on GSH lifecycle in reconstructed human epidermis (RHE). We demonstrated that the RHE model is suitable to carry out repeated cycles of 2-h exposure to DNCB over a 3-day period. After each exposure to DNCB, the level of GSH is diminished in a dose dependent manner. After a 22-h recovery period, GSH is replenished back to initial levels. Accumulation of the nuclear factor E2-related factor 2 (Nrf2) in the cytosol also occurs within the 2 h of exposure to DNCB but returns to baseline during each recovery period, demonstrating that activation of the Nrf2 signaling pathway offers a rapid response to chemical stress. The amount of dinitrophenyl-glutathione (DNP-SG) formed with DNCB (1) increased between the first and second exposure and (2) reached a plateau between the second and third exposure. Collectively, these data suggest that the metabolic capacity of skin may not be fixed in time but defence mechanisms might be activated in response to exposure to exogenous compounds, resulting in their accelerated clearance.
Collapse
Affiliation(s)
- Sandrine Spriggs
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | - David Sheffield
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Adedamola Olayanju
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Neil R Kitteringham
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, the University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Maja Aleksic
- *Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
38
|
Moss E, Debeuckelaere C, Berl V, Elbayed K, Moussallieh FM, Namer IJ, Lepoittevin JP. In Situ Metabolism of Cinnamyl Alcohol in Reconstructed Human Epidermis: New Insights into the Activation of This Fragrance Skin Sensitizer. Chem Res Toxicol 2016; 29:1172-8. [PMID: 27281158 DOI: 10.1021/acs.chemrestox.6b00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemical modification of epidermal proteins by skin sensitizers is the molecular event which initiates the induction of contact allergy. However, not all chemical skin allergens react directly as haptens with epidermal proteins but need either a chemical (prehaptens) or metabolic (prohaptens) activation step to become reactive. Cinnamyl alcohol has been considered a model prohapten, as this skin sensitizer has no intrinsic reactivity. Therefore, the prevailing theory is that cinnamyl alcohol is enzymatically oxidized into the protein-reactive cinnamaldehyde, which is the sensitizing agent. Knowing that reconstructed human epidermis (RHE) models have been demonstrated to be quite similar to the normal human epidermis in terms of metabolic enzymes, use of RHE may be useful to investigate the in situ metabolism/activation of cinnamyl alcohol, particularly when coupled with high-resolution magic angle spinning nuclear magnetic resonance. Incubation of carbon-13 substituted cinnamyl derivatives with RHE did not result in the formation of cinnamaldehyde. The metabolites formed suggest the formation of an epoxy-alcohol and an allylic sulfate as potential electrophiles. These data suggest that cinnamyl alcohol is inducing skin sensitization through a route independent of the one involving cinnamaldehyde and should therefore be considered as a skin sensitizer on its own.
Collapse
Affiliation(s)
- Eric Moss
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Camille Debeuckelaere
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Valérie Berl
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Karim Elbayed
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), CNRS UMR 7357 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - François-Marie Moussallieh
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France.,Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), CNRS UMR 7357 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), CNRS UMR 7357 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - J-P Lepoittevin
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg , 4 Rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
39
|
Urbisch D, Becker M, Honarvar N, Kolle SN, Mehling A, Teubner W, Wareing B, Landsiedel R. Assessment of Pre- and Pro-haptens Using Nonanimal Test Methods for Skin Sensitization. Chem Res Toxicol 2016; 29:901-13. [DOI: 10.1021/acs.chemrestox.6b00055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Urbisch
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Matthias Becker
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Naveed Honarvar
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Britta Wareing
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | |
Collapse
|
40
|
Kalashnikova I, Albekairi N, Ali S, Al Enazy S, Rytting E. Cell Culture Models for Drug Transport Studies. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Korkina L. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2016; 12:377-88. [PMID: 26854731 DOI: 10.1517/17425255.2016.1149569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. AREAS COVERED Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) EXPERT OPINION Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.
Collapse
Affiliation(s)
- Liudmila Korkina
- a Scientific Direction, Centre for Innovative Biotechnological Investigations 'NANOLAB' , Moscow , Russia
| |
Collapse
|
42
|
Mitchell CA, Donaldson M, Francese S, Clench MR. MALDI MSI analysis of lipid changes in living skin equivalents in response to emollient creams containing palmitoylethanolamide. Methods 2016; 104:93-100. [PMID: 26845462 DOI: 10.1016/j.ymeth.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 01/17/2023] Open
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. The use of matrix-assisted laser desorption/ionisation (MALDI) MSI for the study of the distribution and effect of emollient treatment on sections of reconstructed living skin equivalents during their development and maturation is described. Living skin equivalent (LSE) samples were obtained at 14days development, re-suspended in maintenance medium and incubated for 24h after delivery. The medium was changed, the LSE treated with either Physiogel A.I.® or Oilatum Junior® emollients and then re-incubated and samples taken at 4, 6 and 24h time points. Mass spectra and mass spectral images were recorded from 12μm sections of the LSE taken at each time point for comparison using MALDI mass spectrometry (MS). It was possible to detect ions characteristic of each emollient in the LSE. In addition a number of lipid species previously reported as being significant in the maturation of the LSE were observable. At the 24h time point, the images revealed what appeared to be differences in the organisation of the skin cells observed across the Physiogel A.I.® treatment group tissue sections when directly compared to the untreated tissue group.
Collapse
Affiliation(s)
- Christopher A Mitchell
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom.
| | - Michael Donaldson
- Stiefel A GSK Company, GlaxoSmithKline, Stockley Park West, Uxbridge, Middlesex UB1 1BT, United Kingdom.
| | - Simona Francese
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom.
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom.
| |
Collapse
|
43
|
Debeuckelaere C, Berl V, Elbayed K, Moussallieh FM, Namer IJ, Lepoittevin JP. Matrix Effect of Human Reconstructed Epidermis on the Chemoselectivity of a Skin Sensitizing α-Methylene-γ-Butyrolactone: Consequences for the Development of in Chemico Alternative Methods. Chem Res Toxicol 2015; 28:2192-8. [DOI: 10.1021/acs.chemrestox.5b00363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Debeuckelaere
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Valérie Berl
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Karim Elbayed
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - François-Marie Moussallieh
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - J.-P. Lepoittevin
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
44
|
Elentner A, Ortner D, Clausen B, Gonzalez FJ, Fernández-Salguero PM, Schmuth M, Dubrac S. Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp Dermatol 2015; 24:835-40. [PMID: 26013842 PMCID: PMC6334296 DOI: 10.1111/exd.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Skin is in daily contact with potentially harmful molecules from the environment such as cigarette smoke, automobile emissions, industrial soot and groundwater. Pregnane X receptor (PXR) is a transcription factor expressed in liver and intestine that is activated by xenobiotic chemicals including drugs and environmental pollutants. Topical application of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) enhances Pxr, Cyp1a1, Cyp1b1 and Cyp3a11, but not Ahr expression in the skin. Surprisingly, DMBA-induced Pxr upregulation is largely impaired in Langerin(+) cell-depleted skin, suggesting that DMBA mainly triggers Pxr in Langerin(+) cells. Furthermore, PXR deficiency protects from DNA damage in epidermal cells but to a lesser extent than aryl hydrocarbon receptor (AHR) deficiency. Interestingly, skin exposure to low doses of DMBA induces migration of PXR-deficient but not of wild-type and AHR-deficient Langerhans cells (LCs). PXR-humanized mice show a marked increase in DNA damage to epidermal cells after topical application of DMBA, demonstrating relevance of these findings in human tissue. This is the first report suggesting that carcinogens might trigger PXR in epidermal cells, particularly in LCs, thus leading to DNA damage. Further studies are required to better delineate the role of PXR in cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes, Gutenberg-University Mainz, Mainz, Germany
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro M. Fernández-Salguero
- Department of Biochemistry, Molecular Biology and Genetic, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Matthias Schmuth
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Quantin P, Thélu A, Catoire S, Ficheux H. Perspectives and strategies of alternative methods used in the risk assessment of personal care products. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:422-35. [DOI: 10.1016/j.pharma.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
46
|
Manwaring J, Rothe H, Obringer C, Foltz DJ, Baker TR, Troutman JA, Hewitt NJ, Goebel C. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro. Toxicol Appl Pharmacol 2015; 287:139-148. [DOI: 10.1016/j.taap.2015.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
|
47
|
Reijnders CMA, van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part A 2015; 21:2448-59. [PMID: 26135533 PMCID: PMC4554934 DOI: 10.1089/ten.tea.2015.0139] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Collapse
Affiliation(s)
| | - Amanda van Lier
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Sanne Roffel
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Duco Kramer
- 2 Department of Dermatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands .,4 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
48
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
49
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
50
|
Vinardell M. The use of non-animal alternatives in the safety evaluations of cosmetics ingredients by the Scientific Committee on Consumer Safety (SCCS). Regul Toxicol Pharmacol 2015; 71:198-204. [DOI: 10.1016/j.yrtph.2014.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 01/08/2023]
|