1
|
Tian CB, Qin ML, Qian YL, Qin SS, Shi ZQ, Zhao YL, Luo XD. Liver injury protection of Artemisia stechmanniana besser through PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118590. [PMID: 39029542 DOI: 10.1016/j.jep.2024.118590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Cai-Bo Tian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Ma-Long Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yan-Ling Qian
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Shi-Shi Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhuo-Qi Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China.
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| |
Collapse
|
2
|
Wu W, Tang J, Bao W, Feng Q, Zheng J, Hong M, Guo S, Zhu Y, Huang S, Zhao M, Duan JA, Liu R. Thiols-rich peptide from water buffalo horn keratin alleviates oxidative stress and inflammation through co-regulating Nrf2/Hmox-1 and NF-κB signaling pathway. Free Radic Biol Med 2024; 223:131-143. [PMID: 39084576 DOI: 10.1016/j.freeradbiomed.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Water buffalo horn (WBH), a traditional Chinese medicine, is known for its antipyretic, anti-inflammatory and antioxidant properties. This study aims to investigate the therapeutic potential of WBH keratin (WBHK) and its derived thiol-rich peptide fractions (SHPF) for oxidative stress and inflammation. WBHK and SHPF were prepared and tested using various models including LPS-induced fever in rabbits, H2O2-induced oxidative damage in bEnd.3 cells, TNF-α-induced inflammation in bEnd.3 cells and LPS-induced inflammation in RAW 264.7 cells. Expression of key markers, such as Nrf2, Hmox-1 and NF-κB, were analyzed using qRT-PCR, ELISA and Western blotting. Label-free quantitative proteomic analysis was used to identify key differential proteins associated with the efficacy of SHPF. Our results demonstrated that treatment with WBHK significantly reduced body temperature after 0.5 h of administration in the fever rabbit model. SHPF could alleviate cellular inflammatory injury and oxidative damage by activating the key transcription factor Nrf2 and increasing the expression level of Hmox-1. SHPF could inhibit the NF-κB pathway by reducing IκB phosphorylation. It was also found that SHPF could reduce pro-inflammatory cytokine (IL-6, COX-2 and PGE2) and inhibit the expression of VCAM-1, ICAM-1, IL-6 and MCP-1. Proteomics analysis showed that SHPF could inhibit HMGB1 expression and release. The results indicated that SHPF could significantly reduce inflammation and oxidative stress by regulating the Nrf2/Hmox-1 and NF-κB pathways. These findings suggest the potential therapeutic applications of WBH components in the treatment of oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Wenxing Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiayao Tang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Zhangzhou Institute for Drug Control, ZhangZhou 363099, PR China
| | - Wanglin Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qiyuan Feng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Min Hong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Guo
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Zhu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Siying Huang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Rui Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China.
| |
Collapse
|
3
|
Zhang L, Han H, Xu A, Sathe A, Fu S, Zhao J, Cai W, Yang Y, Liu J, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Gu Y, Xing C, Schiattarella GG, Cheng SY, Zhang H, Chen Q. Lysozyme 1 Inflamed CCR2 + Macrophages Promote Obesity-Induced Cardiac Dysfunction. Circ Res 2024; 135:596-613. [PMID: 39056179 DOI: 10.1161/circresaha.124.324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.
Collapse
Affiliation(s)
- Lai Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, China (L.Z.)
| | - Huian Han
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Andi Xu
- Department of Pathology, Nanjing Drum Tower Hospital, China (A.X.)
| | - Adwait Sathe
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Siying Fu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jiaqi Zhao
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Wenhan Cai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Yaqing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jinting Liu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hui Bai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jingjing Ben
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xudong Zhu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xiaoyu Li
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Zidun Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China (Z.W.)
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine (Y.G.), Nanjing Medical University, Jiangsu, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Bioinformatics (C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Population and Data Sciences (C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité - Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (G.G.S.)
| | - Steven Yan Cheng
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
4
|
Liu C, Ge P, Zhang B, Chan L, Pang Y, Tao C, Li J, He Q, Liu W, Mou S, Zheng Z, Zhao Z, Sun W, Zhang Q, Wang R, Zhang Y, Wang W, Zhang D, Zhao J. Mass cytometry revealed the circulating immune cell landscape across different Suzuki stages of Moyamoya disease. Immunol Res 2024; 72:654-664. [PMID: 38376705 PMCID: PMC11347468 DOI: 10.1007/s12026-024-09464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Moyamoya disease (MMD) is a cerebrovascular disorder marked by progressive arterial narrowing, categorized into six stages known as Suzuki stages based on angiographic features. Growing evidence indicates a pivotal role of systemic immune and inflammatory responses in the initiation and advancement of MMD. This study employs high-dimensional mass cytometry to reveal the immunophenotypic characteristics of peripheral blood immune cells (PBMCs) at various Suzuki stages, offering insights into the progression of MMD. PBMC samples from eight patients with early-stage MMD (Suzuki stages II and III) and eight patients with later-stage MMD (Suzuki stages IV, V, and VI) were analyzed using high-dimensional mass cytometry to evaluate the frequency and phenotype of immune cell subtypes. We identified 15 cell clusters and found that the immunological features of early-stage MMD and later-stage MMD are composed of cluster variations. In this study, we confirmed that, compared to later-stage MMD, the early-stage MMD group exhibits an increase in non-classical monocytes. As the Suzuki stage level increases, the proportions of plasmacytoid DCs and monocyte-derived DCs decrease. Furthermore, T cells, monocytes, DCs, and PMN-MDSCs in the early-stage MMD group show activation of the canonical NF-κB signaling pathway. We summarized and compared the similarities and differences between early-stage MMD patients and later-stage MMD patients. There is a potential role of circulating immune dysfunction and inflammatory responses in the onset and development of MMD.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Chuming Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China.
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
5
|
Maroni P, Lombardi G, Ferraretto A, Bendinelli P. Immunohistochemistry analysis of autophagy-related proteins Beclin-1, p62/SQSTM1, and LC3B in breast carcinoma progression to bone metastasis. Pathol Res Pract 2024; 260:155414. [PMID: 38901141 DOI: 10.1016/j.prp.2024.155414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Autophagy is a catabolic pathway involved both in tissue homeostasis and in cellular response to stress. The precise role of autophagy in cancer is still undefined and seems to depend on the tumor stage, appearing tumor-suppressive in physiological conditions and helpful to tumor progression in the established tumor. Here we analyzed by immunohistochemistry Beclin-1, p62, and LC3B, autophagic markers, in human specimens of normal breast, bone metastasis together with pair-matched invasive breast carcinoma of no special type (IBC-NST) as well as non-metastatic breast carcinoma, to disclose the possibility that they could be early prognostic indicators of the evolution of the disease toward the worst outcome. Different regions of metastatic carcinomas, i.e., areas adjacent to the tumor without signs of neoplastic growth, dysplastic lesions, and areas with invasive growth were considered. The pattern of autophagic parameters showed differences among the stages of breast carcinoma progression with a trend that indicated the activation of autophagic process in normal breast (Beclin-1 more elevated than p62), a pattern that was maintained in non-metastatic carcinoma. As the neoplasia proceeds with malignancy, the modification of the pattern of expression of autophagic markers (low ratio between Beclin-1 and p62) in areas of invasive growth of carcinomas suggested inhibition of the process. Of note, the parameters showed a different pattern in bone metastasis with respect to bone metastatic (bm)-IBC-NST, suggesting the reactivation of the autophagic process in the new growth site, helpful to the colonization. The course of autophagy markers during tumor progression could have a prognostic value towards bone metastasis and reveal different roles of the process in different phases of neoplastic growth. The understanding of the role of autophagy in bone metastasis could disclose new therapeutic targets to improve the conditions of patients.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, Milano 20161, Italy.
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, Milano 20161, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Anita Ferraretto
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via L. Mangiagalli 31, Milano 20133, Italy
| | - Paola Bendinelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via L. Mangiagalli 31, Milano 20133, Italy
| |
Collapse
|
6
|
Chakraborty A, Ghosh S, Chakraborty MP, Mukherjee S, Roy SS, Das R, Acharya M, Mukherjee A. Inhibition of NF-κB-Mediated Proinflammatory Transcription by Ru(II) Complexes of Anti-Angiogenic Ligands in Triple-Negative Breast Cancer. J Med Chem 2024; 67:5902-5923. [PMID: 38520399 DOI: 10.1021/acs.jmedchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Nuclear factor kappa beta (NF-κB) plays a pivotal role in breast cancer, particularly triple-negative breast cancer, by promoting inflammation, proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance. Upregulation of NF-κB boosts vascular endothelial growth factor (VEGF) expression, assisting angiogenesis. The Ru(II) complexes of methyl- and dimethylpyrazolyl-benzimidazole N,N donors inhibit phosphorylation of ser536 in p65 and translocation of the NF-κB heterodimer (p50/p65) to the nucleus, disabling transcription to upregulate inflammatory signaling. The methyl- and dimethylpyrazolyl-benzimidazole inhibit VEGFR2 phosphorylation at Y1175, disrupting downstream signaling through PLC-γ and ERK1/2, ultimately suppressing Ca(II)-signaling. Partial release of the antiangiogenic ligand in a reactive oxygen species-rich environment is possible as per our observation to inhibit both NF-κB and VEGFR2 by the complexes. The complexes are nontoxic to zebrafish embryos up to 50 μM, but the ligands show strong in vivo antiangiogenic activity at 3 μM during embryonic growth in Tg(fli1:GFP) zebrafish but no visible effect on the adult phase.
Collapse
Affiliation(s)
- Ayan Chakraborty
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Sujato Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Rahul Das
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| |
Collapse
|
7
|
Li L, Gong S. The discovery of a novel IκB kinase β inhibitor based on pharmacophore modeling, virtual screening and biological evaluation. Future Med Chem 2024; 16:531-544. [PMID: 38385164 DOI: 10.4155/fmc-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 02/23/2024] Open
Abstract
Background: IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. Materials & methods: The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. Results: Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC50 = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage in vivo. Conclusion: The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Luyao Li
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Shouping Gong
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| |
Collapse
|
8
|
Su J, Mao X, Wang L, Chen Z, Wang W, Zhao C, Li G, Guo W, Hu Y. Lactate/GPR81 recruits regulatory T cells by modulating CX3CL1 to promote immune resistance in a highly glycolytic gastric cancer. Oncoimmunology 2024; 13:2320951. [PMID: 38419759 PMCID: PMC10900271 DOI: 10.1080/2162402x.2024.2320951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Lactate plays an important role in shaping immune tolerance in tumor microenvironment (TME) and correlates with poor prognosis in various solid tumors. Overcoming the immune resistance in an acidic TME may improve the anti-tumor immunity. Here, this study elucidated that via G-protein-coupled receptor 81 (GPR81), lactate could modulate immune tolerance in TME by recruiting regulatory T cells (Tregs) in vitro and in vivo. A high concentration of lactate was detected in cell supernatant and tissues of gastric cancer (GC), which was modulated by lactic dehydrogenase A (LDHA). GPR81 was the natural receptor of lactate and was overexpressed in different GC cell lines and samples, which correlated with poor outcomes in GC patients. Lactate/GPR81 signaling could promote the infiltration of Tregs into TME by inducing the expression of chemokine CX3CL1. GPR81 deficiency could decrease the infiltration of Tregs into TME, thereby inhibiting GC progression by weakening the inhibition of CD8+T cell function in a humanized mouse model. In conclusion, targeting the lactate/GPR81 signaling may potentially serve as a critical process to overcome immune resistance in highly glycolytic GC.
Collapse
Affiliation(s)
- Jin Su
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Zhuzhou Hospital affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xinyuan Mao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingzhi Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhian Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weisheng Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cuiyin Zhao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Chiu HW, Lin CH, Lee HH, Lu HW, Lin YHK, Lin YF, Lee HL. Guanylate binding protein 5 triggers NF-κB activation to foster radioresistance, metastatic progression and PD-L1 expression in oral squamous cell carcinoma. Clin Immunol 2024; 259:109892. [PMID: 38185269 DOI: 10.1016/j.clim.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
Radioresistance and metastasis are critical issues in managing oral squamous cell carcinoma (OSCC). Although immune checkpoint inhibitors (ICIs) has been recommended to treat OSCC, lacking useful biomarkers limited their anti-cancer effectiveness. We found that guanylate binding protein 5 (GBP5) is upregulated in primary tumors and associates with radioresistance in OSCC. GBP5 expression causally associated with cellular radioresistance and migration ability in the OSCC cell variants. GBP5 upregulation was examined to be correlated with NF-κB activation and programmed cell death-ligand 1 (PD-L1) elevation in OSCC samples. GBP5 knockdown was mitigated, but overexpression enhanced, NF-κB activity and PD-L1 expression in the OSCC cells. NF-κB inhibition by SN50 dramatically suppressed the GBP5-forested irradiation resistance, cellular migration ability and PD-L1 expression in OSCC cells. Importantly, GBP5 upregulation predicted a favorable outcome in cancer patients received ICI treatment. Our findings provide GBP5 as a useful biomarker to predict the anti-OSCC effectiveness of irradiation and ICIs.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Hsuan Lin
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hsiao-Wei Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Otolaryngology Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yu-Hsien Kent Lin
- Department of Obstetrics and Gynaecology, North Shore Private Hospital, Sydney, NSW, Australia; Department of Gynecology, Ryde Hospital, Northern Sydney Local Health District, Sydney, Australia; Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
10
|
Rauf A, Khalil AA, Awadallah S, Khan SA, Abu‐Izneid T, Kamran M, Hemeg HA, Mubarak MS, Khalid A, Wilairatana P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors-A review. Food Sci Nutr 2024; 12:675-693. [PMID: 38370049 PMCID: PMC10867483 DOI: 10.1002/fsn3.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 02/20/2024] Open
Abstract
Reactive oxygen species (ROS) are produced under normal physiological conditions and may have beneficial and harmful effects on biological systems. ROS are involved in many physiological processes such as differentiation, proliferation, necrosis, autophagy, and apoptosis by acting as signaling molecules or regulators of transcription factors. In this case, maintaining proper cellular ROS levels is known as redox homeostasis. Oxidative stress occurs because of the imbalance between the production of ROS and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways such as nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. The possible ROS pathways are NF-κB, MAPKs, PI3K-Akt, and the Keap1-Nrf2-ARE signaling pathway. This review covers the literature pertaining to the possible ROS pathways and strategies to inhibit them. Additionally, this review summarizes the literature related to finding ROS inhibitors.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical SciencesZarqa UniversityZarqaJordan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural SciencesNational University of Science and Technology (NUST)IslamabadPakistan
| | - Tareq Abu‐Izneid
- Pharmaceutical Sciences, College of PharmacyAl Ain UniversityAl Ain, Abu DhabiUAE
| | - Muhammad Kamran
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical SciencesTaibah UniversityAl‐Medinah Al‐MonawaraSaudi Arabia
| | | | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| |
Collapse
|
11
|
Bo Z, Li X, Wang S, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Suppression of NF-κB signaling by Pseudorabies virus DNA polymerase processivity factor UL42 via recruiting SOCS1 to promote the ubiquitination degradation of p65. Vet Microbiol 2023; 287:109896. [PMID: 37931575 DOI: 10.1016/j.vetmic.2023.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
The NF-κB pathway is a critical signaling involved in the regulation of the inflammatory and innate immune responses. Previous studies have shown that Pseudorabies Virus (PRV), a porcine alpha herpesvirus, could lead to the phosphorylation and nucleus translocation of p65 while inhibiting the expression of NF-κB-dependent inflammatory cytokines, which indicated that there may be unknown mechanisms downstream of p65 that downregulate the activation of NF-κB signaling. Here, we found that PRV DNA polymerase factor UL42 inhibited TNFα-, LPS-, IKKα-, IKKβ-, and p65-mediated transactivation of NF-κB signaling, which demonstrated UL42 worked either at or downstream of p65. In addition, it was found that the DNA-binding activity of UL42 was required for inhibition of NF-κB signaling. Importantly, it was revealed that UL42 could induce the ubiquitination degradation of p65 by upregulating the suppressor of cytokine signaling 1 (SOCS1). Additionally, it was found that UL42 could promote the K6/K29-linked ubiquitination of p65. Finally, knockdown of SOCS1 attenuated the replication of PRV and led to a significant increase of the inflammatory cytokines. Taken together, our findings uncovered a novel mechanism that PRV-UL42 could upregulated SOCS1 to promote the ubiquitination degradation of p65 to prevent excessive inflammatory response during PRV infection.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shixu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Korkaya AK, Fischer J, Peppers A, Crosson SM, Rayamajhi M, Miao EA, Baldwin AS, Bradford JW. Production of a p65 fl/fl/LysMCre mouse model with dysfunctional NF-κB signaling in bone marrow-derived macrophages. Innate Immun 2023; 29:171-185. [PMID: 37828842 PMCID: PMC10621469 DOI: 10.1177/17534259231205993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Here, we describe the production and characterization of a novel p65fl/fl/LysMCre mouse model, which lacks canonical nuclear factor-kappaB member RelA/p65 (indicated as p65 hereafter) in bone marrow-derived macrophages. Cultured bone marrow-derived macrophages that lack p65 protein reveal NF-κB signaling deficiencies, a reduction in phagocytic ability, and reduced ability to produce nitrites. Despite abnormal bone marrow-derived macrophage function, p65fl/fl/LysMCre mice do not exhibit differences in naïve systemic immune profiles or colony forming units and time to death following Salmonella infection as compared to controls. Additionally, p65fl/fl/LysMCre mice, especially females, display splenomegaly, but no other obvious physical or behavioral differences as compared to control animals. As bone marrow-derived macrophages from this transgenic model are almost completely devoid of canonical nuclear factor-kappaB pathway member p65, this model has the potential for being very useful in investigating bone marrow-derived macrophage NF-kappaB signaling in diverse biological and biomedical studies.
Collapse
Affiliation(s)
- Ahmet K. Korkaya
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Jeffrey Fischer
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Anthony Peppers
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Sean M. Crosson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manira Rayamajhi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
14
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Yuan Q, Su K, Li S, Long X, Liu L, Sun J, Yuan X, Yang M, Tian R, Zhang W, Deng Z, Li Q, Ke C, He Y, Cheng C, Yuan J, Wen Z, Zhou W, Yuan Z. Selective CDK9 knockdown sensitizes TRAIL response by suppression of antiapoptotic factors and NF-kappaB pathway. Apoptosis 2023:10.1007/s10495-023-01842-4. [PMID: 37060507 DOI: 10.1007/s10495-023-01842-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.
Collapse
Affiliation(s)
- Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Kui Su
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Changhong Ke
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yue He
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Chunming Cheng
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Jingna Yuan
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Zhuohao Wen
- Jinhang Bio-Science and Biotechnology Co. Ltd, Guangzhou, 510630, People's Republic of China
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
17
|
Brierly G, Celentano A, Breik O, Moslemivayeghan E, Patini R, McCullough M, Yap T. Tumour Necrosis Factor Alpha (TNF-α) and Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15061841. [PMID: 36980727 PMCID: PMC10046488 DOI: 10.3390/cancers15061841] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Uncovering the inflammatory mechanisms underpinning initiation, progression, and promotion of oral squamous cell carcinoma (OSCC) development is fundamental to the rational pursuit of targeted therapeutics. Here we present a review of the current knowledge of the role of TNF-α in the aetiology, pathogenesis, and potential therapies with regards to OSCC. TNF-α is worthy of particular attention in OSCC, with its presence demonstrated to enhance cell proliferation and its downregulation demonstrated to inhibit proliferation and migration in other carcinomas in both in vitro and in vivo models and oral cancer patients. Increased TNF-α in the OSCC tumour microenvironment has been demonstrated to favour invasion through promotion of firstly the pro-inflammatory, pro-invasive phenotypes of OSCC cells and secondly its paracrine mechanism mediating recruitment and activation of inflammatory cells. Polymorphisms affecting the gene expression of TNF-α have been strongly associated with an increased risk for oral squamous cell carcinoma. A number of studies have considered TNF-α within biofluids, including saliva and serum, as a potential biomarker for the early detection of OSCC, as well as its staging, differentiation, and prognosis. The broad and multifaceted role that TNF-α plays in many inflammatory states presents an obvious confounder, particularly with demonstrated increased TNF-α levels in common oral disease states. Lastly, biologic agents targeting TNF-α are currently in clinical use for immune-mediated inflammatory rheumatological and gastrointestinal diseases. There is the potential that these biological agents might have an adjunctive role in OSCC prevention and treatment.
Collapse
Affiliation(s)
- Gary Brierly
- Maxillofacial/Head and Neck Surgery, Royal Brisbane and Women's Hospital, Queensland Health, Brisbane, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Antonio Celentano
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Omar Breik
- Maxillofacial/Head and Neck Surgery, Royal Brisbane and Women's Hospital, Queensland Health, Brisbane, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elham Moslemivayeghan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Romeo Patini
- Department of Head, Neck and Sense Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Michael McCullough
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Tami Yap
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
- Dermatology, Royal Melbourne Hospital, Melbourne Health, Parkville, VIC 3050, Australia
| |
Collapse
|
18
|
Zhang C, Liao W, Li W, Li M, Xu X, Sun H, Xue Y, Liu L, Qiu J, Zhang C, Zhang X, Ye J, Du J, Deng DYB, Deng W, Li T. Human umbilical cord mesenchymal stem cells derived extracellular vesicles alleviate salpingitis by promoting M1-to-M2 transformation. Front Physiol 2023; 14:1131701. [PMID: 36875046 PMCID: PMC9977816 DOI: 10.3389/fphys.2023.1131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Background: With an increasing number of patients experiencing infertility due to chronic salpingitis after Chlamydia trachomatis (CT) infection, there is an unmet need for tissue repair or regeneration therapies. Treatment with human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EV) provides an attractive cell-free therapeutic approach. Methods: In this study, we investigated the alleviating effect of hucMSC-EV on tubal inflammatory infertility caused by CT using in vivo animal experiments. Furthermore, we examined the effect of hucMSC-EV on inducing macrophage polarization to explore the molecular mechanism. Results: Our results showed that tubal inflammatory infertility caused by Chlamydia infection was significantly alleviated in the hucMSC-EV treatment group compared with the control group. Further mechanistic experiments showed that the application of hucMSC-EV induced macrophage polarization from the M1 to the M2 type via the NF-κB signaling pathway, improved the local inflammatory microenvironment of fallopian tubes and inhibited tube inflammation. Conclusion: We conclude that this approach represents a promising cell-free avenue to ameliorate infertility due to chronic salpingitis.
Collapse
Affiliation(s)
- Changlin Zhang
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Liao
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weizhao Li
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mengxiong Li
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoyu Xu
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haohui Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yaohua Xue
- Department of Clinical Laboratory, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lixiang Liu
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiehong Qiu
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chi Zhang
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Juntong Ye
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingran Du
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - David Y B Deng
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tian Li
- Pelvic Floor Disorders Center, Scientific Research Center, Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
19
|
Gao M, Yang N, Lei Y, Zhang W, Liu H, Lin H. Tannic acid antagonizes atrazine exposure-induced autophagy and DNA damage crosstalk in grass carp hepatocytes via NO/iNOS/NF-κB signaling pathway to maintain stable immune function. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1075-1084. [PMID: 36396070 DOI: 10.1016/j.fsi.2022.11.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a herbicide widely used in grass crops. The pollution of the soil and water environment is extremely harmful to aquatic animals and their offspring. iNOS/NO upregulation, DNA damage and cellular autophagy affect the immune function of fish liver cells. The effects of ATR at exposure doses on grass carp hepatocytes in terms of autophagy and DNA damage effects in genotoxicity, as well as the antagonistic effects of TAN on the above phenotypes and the internal mechanisms are not known. Therefore, we constructed control (Con group), ATR exposure (ATR group), TAN exposure (TAN group) and mixed group (ATR + TAN group) models on grass carp hepatocytes. Validation was performed by comet assay, MDC staining, qRT-PCR and protein blotting assay as well as iNOS/NO indicator levels and expression of immune factors as these experimental methods. Our data indicate that iNOS/NO assay kit measured that ATR treatment resulted in a significant increase in iNOS/NO activity and levels in grass carp hepatocytes (p < 0.05). We also found that NO/iNOS/NF-κB pathway genes were significantly activated (p < 0.05) at the exposure dose of ATR (3 μg mL-1). In addition, the proportion of cells that died due to DNA damage, autophagy, and immunotoxic effects was significantly increased at the exposure dose of ATR. Comet assay protein blotting detected increased DNA damage in cells at the ATR exposure dose (p < 0.05). MDC staining and qRT-PCR and protein blotting to detect the proportion of autophagic cells and autophagy-related genes also appeared upregulated at the exposed dose of ATR (p < 0.05). In brief, this study showed that ATR exposure caused cellular DNA damage and autophagy via the NO/iNOS/NF-κB axis, which led to immunotoxic effects and eventual death of grass carp hepatocytes. The present study facilitates the demonstration of the molecular mechanism of TAN alleviation of ATR cytotoxicity from the perspective of NO-mediated iNOS/NF-κB axis. It provides insights into the protection of farmed fish from agricultural contaminants and opens up new horizons in the use of natural plant-derived monomers for the clinical treatment of antagonistic triazine pesticide poisoning.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
20
|
Talaat SM, Elnaggar YSR, El-Ganainy SO, Gowayed MA, Abdel-Bary A, Abdallah OY. Novel bio-inspired lipid nanoparticles for improving the anti-tumoral efficacy of fisetin against breast cancer. Int J Pharm 2022; 628:122184. [PMID: 36252641 DOI: 10.1016/j.ijpharm.2022.122184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amany Abdel-Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
21
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
22
|
Liu Y, Xu Y, Yao Y, Cao Y, Chen G, Cai Y, Chen W, Chen X, Qiu Z. I-κB kinase-ε deficiency improves doxorubicin-induced dilated cardiomyopathy by inhibiting the NF-κB pathway. Front Physiol 2022; 13:934899. [PMID: 35991177 PMCID: PMC9386238 DOI: 10.3389/fphys.2022.934899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) can lead to heart expansion and severe heart failure, but its specific pathogenesis is still elusive. In many cardiovascular diseases, I-κB kinase-ε (IKKε) has been recognized as a pro-inflammatory molecule. In this study, wild-type mice (WT, n = 14) and IKKε knockout mice (IKKε-KO, n = 14) were intraperitoneally injected with a cumulative dose of 25 mg/kg with Dox or Saline five times in 30 days. Finally, the experimental mice were divided into WT + Saline group、WT + DOX group、IKKε-KO + Saline group and IKKε-KO + Dox group. Echocardiography was performed to assess cardiac structure and function. Moreover, the mechanism was validated by immunohistochemistry and western blotting. Our results demonstrated that compared to WT + Dox mice, IKKε-KO + Dox mice exhibited attenuation of dilated cardiomyopathy-related morphological changes and alleviation of heart failure. Additionally, compared to the WT mice after Dox-injected, the expression of fibrosis and proinflammatory were decreased in IKKε-KO mice, and the expression of cardiac gap junction proteins was much higher in IKKε-KO mice. Further testing found that pyroptosis and apoptosis in the myocardium were also ameliorated in IKKε-KO mice compared to WT mice after Dox was injected. Mechanistically, our results showed that deficiency of IKKε might inhibit the phosphorylation of IκBα, p65, RelB, and p100 in mouse heart tissues after Dox stimulation. In summary, our research suggests that IKKε might play an essential role in the development of Dox-induced dilated cardiomyopathy and may be a potential target for the treatment of dilated cardiomyopathy in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin Chen
- *Correspondence: Xin Chen, ; Zhibing Qiu,
| | | |
Collapse
|
23
|
Liang W, Li X, Wang H, Nie K, Meng Q, He J, Zheng C. Puerarin: A Potential Therapeutic for SARS-CoV-2 and Hantavirus Co-Infection. Front Immunol 2022; 13:892350. [PMID: 35663983 PMCID: PMC9161725 DOI: 10.3389/fimmu.2022.892350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Hantavirus-caused epidemic hemorrhagic fever (EHF) are at risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is currently no validated EHF/SARS-CoV-2 strategy. Several studies have recently shown Puerarin, a natural product, has potent antiviral properties. The goal of present study was to determine the mechanism of puerarin in patients with EHF/COVID-19. We use network pharmacology and bioinformatics to investigate the possible pharmacological targets, bioactivities, and molecular mechanisms of puerarin in the treatment of patients with EHF/SARS-CoV-2. The study investigated the pathogenesis of COVID-19 and EHF and the signaling pathway impacted by puerarin. 68 common genes linked to puerarin and EHF/SARS-CoV-2 were discovered during the investigation. By using protein-protein interaction (PPI) network, we identified RELA, JUN, NF-B1, NF-B2, and FOS as potential therapeutic targets. The bioactivity and signaling pathways of puerarin have also been demonstrated in the treatment of EHF and COVID-19. According to present study, puerarin could reduce excessive immune responses and inflammation through the NF-B, TNF, and HIF-1 signaling pathways. This study explored the potential therapeutic targets and mechanisms of Puerarin in the treatment of EHF/COVID-19.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Internal Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Junli He
- Department of Pediatrics, Shenzhen University General Hospital Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines 2022; 10:biomedicines10050974. [PMID: 35625711 PMCID: PMC9138898 DOI: 10.3390/biomedicines10050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over several decades, cell biology research has characterized distinct forms of regulated cell death, identified master regulators such as nuclear factor kappa B (NFκB), and contributed to translating these findings in order to improve anti-cancer therapies. In the era of immunotherapy, however, the field warrants a new appraisal-the targeted induction of immunogenic cell death may offer personalized strategies to optimize anti-tumor immunity. Once again, the spotlight is on NFκB, which is not only a master regulator of cancer cell death, survival, and inflammation, but also of adaptive anti-tumor immune responses that are triggered by dying tumor cells.
Collapse
|
25
|
Di Paola R, Modafferi S, Siracusa R, Cordaro M, D’Amico R, Ontario ML, Interdonato L, Salinaro AT, Fusco R, Impellizzeri D, Calabrese V, Cuzzocrea S. S-Acetyl-Glutathione Attenuates Carbon Tetrachloride-Induced Liver Injury by Modulating Oxidative Imbalance and Inflammation. Int J Mol Sci 2022; 23:ijms23084429. [PMID: 35457246 PMCID: PMC9024626 DOI: 10.3390/ijms23084429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/14/2023] Open
Abstract
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A valid approach to protect against the disease would be to replenish the endogenous antioxidants; thus, we investigated the protective mechanisms of the S-acetyl-glutathione (SAG), a glutathione (GSH) prodrug. Preliminary in vitro analyses were conducted on primary hepatic cells. SAG pre-treatment significantly protected against cytotoxicity induced by CCl4. Additionally, CCl4 induced a marked increase in AST and ALT levels, whereas SAG significantly reduced these levels, reaching values found in the control group. For the in vivo analyses, mice were administered twice a week with eight consecutive intraperitoneal injections of 1 mL/kg CCl4 (diluted at 1:10 in olive oil) to induce oxidative imbalance and liver inflammation. SAG (30 mg/kg) was administered orally for 8 weeks. SAG significantly restored SOD activity, GSH levels and GPx activity, while it strongly reduced GSSG levels, lipid peroxidation and H2O2 and ROS levels in the liver. Additionally, CCl4 induced a decrease in anti-oxidants, including Nrf2, HO-1 and NQO-1, which were restored by treatment with SAG. The increased oxidative stress characteristic on liver disfunction causes the impairment of mitophagy and accumulation of dysfunctional and damaged mitochondria. Our results showed the protective effect of SAG administration in restoring mitophagy, as shown by the increased PINK1 and Parkin expressions in livers exposed to CCl4 intoxication. Thus, the SAG administration showed anti-inflammatory effects decreasing pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-1β in both serum and liver, and suppressing the TLR4/NFkB pathway. SAG attenuated reduced fibrosis, collagen deposition, hepatocellular damage and organ dysfunction. In conclusion, our results suggest that SAG administration protects the liver from CCl4 intoxication by restoring the oxidative balance, ameliorating the impairment of mitophagy and leading to reduced inflammation.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
- Correspondence: (A.T.S.); (R.F.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (A.T.S.); (R.F.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| |
Collapse
|
26
|
Guo Y, Fan J, Liu S, Hao D. Orai1 downregulation causes proliferation reduction and cell cycle arrest via inactivation of the Ras-NF-κB signaling pathway in osteoblasts. BMC Musculoskelet Disord 2022; 23:347. [PMID: 35410330 PMCID: PMC8996479 DOI: 10.1186/s12891-022-05311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to determine the role of Orai1 in the regulation of the proliferation and cell cycle of osteoblasts. Methods The expression of Orai1 was inhibited by Orai1 small interfering RNA (siRNA) in MC3T3-E1 cells. Following Orai1 downregulation, cell proliferation and cell cycle were examined. Furthermore, the expression of cyclin D1, cyclin E, CDK4, and CDK6 was analyzed. The activity of the Ras-NF-κB signaling pathway was investigated to identify the role of Orai1 in the regulation of osteoblast proliferation. Results Orai1 was successfully downregulated in MC3T3-E1 cells by the Orai1 siRNA transfection (p < 0.05). We found that MC3T3-E1 cell proliferation was decreased, and the cell cycle was arrested by Orai1 downregulation (p < 0.05). Additionally, the expression of cyclin D1 was decreased by Orai1 downregulation (p < 0.05), as was the activity of the Ras-NF-κB signaling pathway (p < 0.05). Orai1 siRNA did not further reduce cell proliferation, the proportion of cells in the S phase, and cyclin D1 expression after chemical blockage of the Ras signaling pathway in MC3T3-E1 cells (p > 0.05). Conclusions The results reveal that Orai1 downregulation may reduce cyclin D1 expression by inactivating the Ras-NF-κB signaling pathway thus blocking osteoblast proliferation and cell cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05311-y.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Jinzhu Fan
- Department of bone microsurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Dingjun Hao
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| |
Collapse
|
27
|
Yan Y, Chen X, Huang J, Huan C, Li C. H2O2-induced oxidative stress impairs meat quality by inducing apoptosis and autophagy via ROS/NF-κB signaling pathway in broiler thigh muscle. Poult Sci 2022; 101:101759. [PMID: 35240354 PMCID: PMC8889410 DOI: 10.1016/j.psj.2022.101759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress is the downstream of various adverse stresses which impairs meat quality of broiler chickens. Yet, the specific molecular mechanisms of oxidative stress in meat quality of broiler thigh muscle remains unclear. This study investigated the effects and mechanisms of H2O2-induced oxidative stress on meat quality of broiler thigh muscle, with particular emphasis on apoptosis and autophagy and the ROS/NF-κB signaling pathway. The results showed that 10%H2O2-treated broilers exhibited significantly higher drip loss and shear force and lower pH24h and muscle weight. Moreover, the ROS formation, the contents of oxidation products, the expressions of caspases (3, 6, 8, 9), Beclin1, and LC3-II/LC3-I were significantly increased, whereas the levels of antioxidation products and the expression of phosphorylation of NF-κBp65 were significantly decreased. These findings from the present study indicating that H2O2-induced oxidative stress significantly impaired the meat quality by inducing apoptosis and abnormal autophagy via ROS/NF-κB signaling pathway in the broiler thigh muscle.
Collapse
|
28
|
Nuan-Aliman S, Bordereaux D, Thieblemont C, Baud V. The Alternative RelB NF-kB Subunit Exerts a Critical Survival Function upon Metabolic Stress in Diffuse Large B-Cell Lymphoma-Derived Cells. Biomedicines 2022; 10:biomedicines10020348. [PMID: 35203557 PMCID: PMC8961793 DOI: 10.3390/biomedicines10020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma in adults and reveals distinct genetic and metabolic signatures. NF-κB transcription factor family is involved in diverse biological processes enabling tumor development and resistance to anticancer-therapy through activation of its two main pathways, the canonical and the alternative NF-κB pathways, the main actor of the latter being the RelB NF-kB subunit. RelB DNA binding activity is frequently activated in DLBCL patients and cell lines. RelB activation defines a new DLBCL subgroup with dismal outcome upon immunochemotherapy, and RelB confers DLBCL cell resistance to DNA damage. However, whether RelB can impact on DLBCL cell metabolism and survival upon metabolic stress is unknown. Here, we reveal that RelB controls DLBCL oxidative energetic metabolism. Accordingly, RelB inhibition reduce DLBCL mitochondrial ATP production, and sensitizes DLBCL cells to apoptosis induced by Metformin and L-asparaginase (®Kidrolase), two FDA approved antimetabolic drugs targeting mitochondrial metabolism. RelB also confers DLBCL cell resistance to glutamine deprivation, an essential amino acid that feeds the TCA cycle. Taken together, our findings uncover a new role for RelB in the regulation of DLBCL cell metabolism and DLBCL cell survival upon metabolic stress.
Collapse
Affiliation(s)
- Stéphanie Nuan-Aliman
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Didier Bordereaux
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
| | - Catherine Thieblemont
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Hémato-Oncologie, APHP Hôpital Saint-Louis, 75010 Paris, France
| | - Véronique Baud
- NF-kappaB, Différenciation et Cancer, Université de Paris, 75006 Paris, France; (S.N.-A.); (D.B.); (C.T.)
- Correspondence:
| |
Collapse
|
29
|
Liu C, Zeng Y, Wen Y, Huang X, Liu Y. Natural Products Modulate Cell Apoptosis: A Promising Way for the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:806148. [PMID: 35173617 PMCID: PMC8841338 DOI: 10.3389/fphar.2022.806148] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease impacting patients’ quality of life and imposing heavy societal and economic burdens. Apoptosis of intestinal epithelial cells (IECs) has been considered an early event during the onset of UC and plays a crucial role in disease development. Thus, effectively inhibiting apoptosis of IECs is of critical significance for the clinical management of UC, presenting a potential direction for the research and development of pharmacotherapeutic agents. In recent years, research on the ameliorative effects of natural products on UC through inhibiting IECs apoptosis has attracted increasing attention and made remarkable achievements in ameliorating UC. In this review, we summarized the currently available research about the anti-apoptotic effects of natural products on UC and its mechanisms involving the death-receptor mediated pathway, mitochondrial-dependent pathway, ERS-mediated pathway, MAPK-mediated pathway, NF-κB mediated pathway, P13k/Akt pathway, JAK/STAT3 pathway, and NLRP3/ASC/Caspase-1 pathway. Hopefully, this review may yield useful information about the anti-apoptotic effects of natural products on UC and their potential molecular mechanisms and provide helpful insights for further investigations.
Collapse
Affiliation(s)
- Chenhao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinggui Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Liu,
| |
Collapse
|
30
|
Pavel M, Tanasa R, Park SJ, Rubinsztein DC. The complexity of biological control systems: An autophagy case study. Bioessays 2022; 44:e2100224. [PMID: 35032045 DOI: 10.1002/bies.202100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 01/18/2023]
Abstract
Autophagy and YAP1-WWTR1/TAZ signalling are tightly linked in a complex control system of forward and feedback pathways which determine different cellular outcomes in differing cell types at different time-points after perturbations. Here we extend our previous experimental and modelling approaches to consider two possibilities. First, we have performed additional mathematical modelling to explore how the autophagy-YAP1 crosstalk may be controlled by posttranslational modifications of components of the pathways. Second, since analogous contrasting results have also been reported for autophagy as a regulator of other transduction pathways engaged in tumorigenesis (Wnt/β-catenin, TGF-β/Smads, NF-kB or XIAP/cIAPs), we have considered if such discrepancies may be explicable through situations involving competing pathways and feedback loops in different cell types, analogous to the autophagy-YAP/TAZ situation. Since distinct posttranslational modifications dominate those pathways in distinct cells, these need to be understood to enable appropriate cell type-specific therapeutic strategies for cancers and other diseases.
Collapse
Affiliation(s)
- Mariana Pavel
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | - Radu Tanasa
- Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - So Jung Park
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.,Cambridge Biomedical Campus, Cambridge Biomedical Campus, UK Dementia Research Institute, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge, UK.,Cambridge Biomedical Campus, Cambridge Biomedical Campus, UK Dementia Research Institute, Cambridge, UK
| |
Collapse
|
31
|
Wang QS, Fan KJ, Teng H, Chen S, Xu BX, Chen D, Wang TY. Mir204 and Mir211 suppress synovial inflammation and proliferation in rheumatoid arthritis by targeting Ssrp1. eLife 2022; 11:78085. [PMID: 36511897 PMCID: PMC9747153 DOI: 10.7554/elife.78085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease characterized by synovial hyperplasia. Mir204 and Mir211 are homologous miRNAs with the same gene targeting spectrum. It is known that Mir204/211 play an important role in protecting osteoarthritis development; however, the roles of Mir204/211 in RA disease have not been determined. In the present study, we investigated the effects and molecular mechanisms of Mir204/211 on synovial inflammation and hyperproliferation in RA. The effects of Mir204/211 on the inflammation and abnormal proliferation in primary fibroblast-like synoviocytes (FLSs) were examined by Mir204/211 gain-of-function and loss-of-function approaches in vitro and in vivo. We identified the structure-specific recognition protein 1 (Ssrp1) as a downstream target gene of Mir204/211 based on the bioinformatics analysis. We overexpressed Ssrp1and Mir204/211 in FLS to determine the relationship between Ssrp1 and Mir204/211 and their effects on synovial hyperplasia. We created a collagen-induced arthritis (CIA) model in wild-type as well as Mir204/211 double knockout (dKO) mice to induce RA phenotype and administered adeno-associated virus (AAV)-mediated Ssrp1-shRNA (AAV-shSsrp1) by intra-articular injection into Mir204/211 dKO mice. We found that Mir204/211 attenuated excessive cell proliferation and synovial inflammation in RA. Ssrp1 was the downstream target gene of Mir204/211. Mir204/211 affected synovial proliferation and decelerated RA progression by targeting Ssrp1. CIA mice with Mir204/211 deficiency displayed enhanced synovial hyperplasia and inflammation. RA phenotypes observed in Mir204/211 deficient mice were significantly ameliorated by intra-articular delivery of AAV-shSsrp1, confirming the involvement of Mir204/211-Ssrp1signaling during RA development. In this study, we demonstrated that Mir204/211 antagonize synovial hyperplasia and inflammation in RA by regulation of Ssrp1. Mir204/211 may serve as novel agents to treat RA disease.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai-Jian Fan
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Teng
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sijia Chen
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bing-Xin Xu
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Ting-Yu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
32
|
Zhu X, Huang L, Wu K, Sun Z, Wang K, Ru J, Zhuge Q, Ruan L. Shikonin regulates autophagy via the AMPK/mTOR pathway and reduces apoptosis of human umbilical cord mesenchymal stem cells to improve survival in tissues surrounding brain contusion. Exp Ther Med 2021; 22:1475. [PMID: 34765016 PMCID: PMC8576632 DOI: 10.3892/etm.2021.10910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 03/24/2021] [Indexed: 12/22/2022] Open
Abstract
Shikonin has been reported to regulate autophagy via the AMP-activated protein kinase (AMPK)/mTOR signalling pathway and decrease apoptosis in transplanted human umbilical cord mesenchymal stem cells (HUMSCs). In the present study, HUMSCs were exposed to oxygen glucose deprivation (OGD) in vitro for 12 h, and TUNEL fluorescence staining was used to detect apoptosis. Differences in autophagy and AMPK/mTOR pathway-related protein expression following treatment with shikonin were quantitatively analyzed by western blotting. Green fluorescent protein-labelled stem cells were implanted into traumatic brain injury-model mice and the survival of HUMSCs was observed after 7 days. Shikonin increased the number of cells in brain tissue surrounding the contusion 7 days after transplantation. Furthermore, shikonin treatment decreased apoptosis, increased the expression of autophagy-related proteins, increased phosphorylated AMPK expression and downregulated phosphorylated mTOR expression. In addition, the autophagy inhibitor 3-methyladenine attenuated these effects and aggravated apoptosis. Subsequently, shikonin upregulated autophagy and protected HUMSCs in the area surrounding contused brain tissue. Shikonin may regulate autophagy via the AMPK/mTOR signalling pathway and protect transplanted HUMSCs from apoptosis induced by hypoxia/ischemia.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lijie Huang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ke Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhezhe Sun
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junnan Ru
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Linhui Ruan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
Abu-Elfotuh K, Ragab GM, Salahuddin A, Jamil L, Abd Al Haleem EN. Attenuative Effects of Fluoxetine and Triticum aestivum against Aluminum-Induced Alzheimer's Disease in Rats: The Possible Consequences on Hepatotoxicity and Nephrotoxicity. Molecules 2021; 26:molecules26216752. [PMID: 34771159 PMCID: PMC8588015 DOI: 10.3390/molecules26216752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting β-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. METHOD Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. CONCLUSIONS AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aβ, the elevation of ACHE and GSK-3β, down-regulation of BDNF, and β-catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. CONCLUSION Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| | - Ghada M. Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt;
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
- Correspondence: ; Tel.: +20-100-518-2320
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University, Giza 12585, Egypt;
| | - Ekram Nemr Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11754, Egypt; (K.A.-E.); (E.N.A.A.H.)
| |
Collapse
|
34
|
Ishibashi JR, Keshri R, Taslim TH, Brewer DK, Chan TC, Lyons S, McManamen AM, Chen A, Del Castillo D, Ruohola-Baker H. Chemical Genetic Screen in Drosophila Germline Uncovers Small Molecule Drugs That Sensitize Stem Cells to Insult-Induced Apoptosis. Cells 2021; 10:cells10102771. [PMID: 34685753 PMCID: PMC8534514 DOI: 10.3390/cells10102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells, in contrast to their more differentiated daughter cells, can endure genotoxic insults, escape apoptosis, and cause tumor recurrence. Understanding how normal adult stem cells survive and go to quiescence may help identify druggable pathways that cancer stem cells have co-opted. In this study, we utilize a genetically tractable model for stem cell survival in the Drosophila gonad to screen drug candidates and probe chemical-genetic interactions. Our study employs three levels of small molecule screening: (1) a medium-throughput primary screen in male germline stem cells (GSCs), (2) a secondary screen with irradiation and protein-constrained food in female GSCs, and (3) a tertiary screen in breast cancer organoids in vitro. Herein, we uncover a series of small molecule drug candidates that may sensitize cancer stem cells to apoptosis. Further, we have assessed these small molecules for chemical-genetic interactions in the germline and identified the NF-κB pathway as an essential and druggable pathway in GSC quiescence and viability. Our study demonstrates the power of the Drosophila stem cell niche as a model system for targeted drug discovery.
Collapse
Affiliation(s)
- Julien Roy Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tommy Henry Taslim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Kennedy Brewer
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Tung Ching Chan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Anika Marie McManamen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ashley Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; (J.R.I.); (R.K.); (T.H.T.); (D.K.B.); (T.C.C.); (S.L.); (A.M.M.); (A.C.); (D.D.C.)
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
35
|
Zarate MA, De Dios RK, Balasubramaniyan D, Zheng L, Sherlock LG, Rozance PJ, Wright CJ. The Acute Hepatic NF-κB-Mediated Proinflammatory Response to Endotoxemia Is Attenuated in Intrauterine Growth-Restricted Newborn Mice. Front Immunol 2021; 12:706774. [PMID: 34539638 PMCID: PMC8440955 DOI: 10.3389/fimmu.2021.706774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a relevant predictor for higher rates of neonatal sepsis worldwide and is associated with an impaired neonatal immunity and lower immune cell counts. During the perinatal period, the liver is a key immunological organ responsible for the nuclear factor kappa B (NF-κB)-mediated innate immune response to inflammatory stimuli, but whether this role is affected by IUGR is unknown. Herein, we hypothesized that the newborn liver adapts to calorie-restriction IUGR by inducing changes in the NF-κB signaling transcriptome, leading to an attenuated acute proinflammatory response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic gene expression of key NF-κB factors in the IUGR and normally grown (NG) newborn mice. Real-time quantitative PCR (RT-qPCR) analysis revealed an upregulation of both IκB proteins genes (Nfkbia and Nfkbib) and the NF-κB subunit Nfkb1 in IUGR vs. NG. We next measured the LPS-induced hepatic expression of acute proinflammatory genes (Ccl3, Cxcl1, Il1b, Il6, and Tnf) and observed that the IUGR liver produced an attenuated acute proinflammatory cytokine gene response (Il1b and Tnf) to LPS in IUGR vs. unexposed (CTR). Consistent with these results, LPS-exposed hepatic tumor necrosis factor alpha (TNF-α) protein concentrations were lower in IUGR vs. LPS-exposed NG and did not differ from IUGR CTR. Sex differences at the transcriptome level were observed in the IUGR male vs. female. Our results demonstrate that IUGR induces key modifications in the NF-κB transcriptomic machinery in the newborn that compromised the acute proinflammatory cytokine gene and protein response to LPS. Our results bring novel insights in understanding how the IUGR newborn is immunocompromised due to fundamental changes in NF-κB key factors.
Collapse
Affiliation(s)
- Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robyn K De Dios
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Durganili Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J Rozance
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
36
|
Silke J, O’Reilly LA. NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers (Basel) 2021; 13:4510. [PMID: 34572737 PMCID: PMC8469693 DOI: 10.3390/cancers13184510] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.
Collapse
Affiliation(s)
- John Silke
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Lorraine Ann O’Reilly
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
37
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Crosstalk between Autophagy and Inflammatory Processes in Cancer. Life (Basel) 2021; 11:life11090903. [PMID: 34575052 PMCID: PMC8466094 DOI: 10.3390/life11090903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammation is an adaptive response to tissue injury, which is a critical process in order to restore tissue functionality and homeostasis. The association between inflammation and cancer has been a topic of interest for many years, not only inflammatory cells themselves but also the chemokines and cytokines they produce, which affect cancer development. Autophagy is an intracellular self-degradative process providing elimination of damaged or dysfunctional organelles under stressful conditions such as nutrient deficiency, hypoxia, or chemotherapy. Interestingly, the signaling pathways that are involved in cancer-associated inflammation may regulate autophagy as well. These are (1) the toll-like receptor (TLR) signaling cascade, (2) the reactive oxygen species (ROS) signaling pathway, (3) the inflammatory cytokine signaling pathway, and (4) the IκB kinase (IKK)/Nuclear factor-κB (NF-κB) signaling axis. Moreover, the studies on the context-specific functions of autophagy during inflammatory responses in cancer will be discussed here. On that basis, we focus on autophagy inhibitors and activators regulating inflammatory process in cancer as useful candidates for enhancing anticancer effects. This review summarizes how the autophagic process regulates these key inflammatory processes and vice versa in various cancers.
Collapse
|
39
|
Cao W, Gao J, Zhang Y, Li A, Yu P, Cao N, Liang J, Tang X. Autophagy up-regulated by MEK/ERK promotes the repair of DNA damage caused by aflatoxin B1. Toxicol Mech Methods 2021; 32:87-96. [PMID: 34396909 DOI: 10.1080/15376516.2021.1968985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aflatoxin B1 (AFB1), a kind of mycotoxin, exerts its cytotoxicity by increasing the oxidative damage of target organs, especially the liver. In vivo and in vitro experiments were carried out to elucidate the toxic mechanism of AFB1. The results of MTT, cloning-formation, flow cytometry, immunocytochemistry, Reverse transcription PCR (RT-PCR) and western blot showed that AFB1 activated NOX2 gp91 phox, inhibited proliferation and migration, and blocked cell cycle at G0/G1 period of HHL-5 cells. Autophagy promoted the repair of NOX2-dependent DNA damage. NOX2/gp91 phox mainly activates MEK/ERK pathway and then up-regulates autophagy. In vivo experiments have shown that AFB1 (0.75 mg/kg daily orally, 4 weeks) had no significant changes in the size and shape of the liver in mice. However, these treatments lead to structural abnormalities of hepatocytes and DNA damage. In summary, AFB1 caused intracellular oxidative stress and DNA damage, NOX2/gp91-phox activates the MEK/ERK pathway, and upregulated autophagy to promote the repair of DNA damage. We concluded that by increasing the level of autophagy, the ability of anti-AFB1 toxicity of liver can be increased.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
40
|
Prostate Apoptotic Induction and NFκB Suppression by Dammarolic Acid: Mechanistic Insight into Onco-Therapeutic Action of an Aglycone Asiaticoside. Curr Issues Mol Biol 2021; 43:932-940. [PMID: 34449548 PMCID: PMC8928952 DOI: 10.3390/cimb43020066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is addressed as the second most common form of onco-threat worldwide and is usually considered as the major cause of mortality in men. Recent times have seen a surge in exploration of plant-derived components for alternative therapeutical interventions against different oncological malignancies. Dammarolic acid or Asiatic acid (AsA) is an aglycone asiaticoside that has been reported for its efficacy in several ailments including cancer. The current study aimed to investigate the anti-proliferative potency of AsA against human prostate cancer PC-3 cells. Purified AsA was diluted and PC-3 cells were exposed to 20, 40, and 80 µM concentration and incubated for 24 h. Post-exposure, PC-3 cells showcased a substantial loss of their viability at 20 µM (p < 0.05), moreover, this reduction in cell viability escalated proportionally with an increase in AsA at concentrations of 40 and 80 µM (p < 0.01; p < 0.001) respectively. AsA-impelled loss of cellular viability was also evident from the acridine orange-stained photomicrographs, which was also used to quantify the viable and apoptotic cells using Image J software. Additionally, quantification of ROS within PC-3 cells also exhibited an increase in DCF-DA-mediated fluorescence intensity post-exposure to AsA in a dose-dependent manner. AsA-induced apoptosis in PC-3 cells was shown to be associated with augmented activity of caspase-3 proportionally to the AsA concentrations. Thus, initially, this exploratory study explicated that AsA treatment leads to anti-proliferative effects in PC-3 cells by enhancing oxidative stress and inciting apoptosis en route to onset of nuclear fragmentation.
Collapse
|
41
|
The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood 2021; 139:384-398. [PMID: 34232979 DOI: 10.1182/blood.2020010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.
Collapse
|
42
|
Role of RONS and eIFs in Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522054. [PMID: 34285764 PMCID: PMC8275427 DOI: 10.1155/2021/5522054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/05/2022]
Abstract
Various research works have piled up conflicting evidence questioning the effect of oxidative stress in cancer. Reactive oxygen and nitrogen species (RONS) are the reactive radicals and nonradical derivatives of oxygen and nitrogen. RONS can act as a double-edged weapon. On the one hand, RONS can promote cancer initiation through activating certain signal transduction pathways that direct proliferation, survival, and stress resistance. On the other hand, they can mitigate cancer progression via their resultant oxidative stress that causes many cancer cells to die, as some recent studies have proposed that high RONS levels can limit the survival of cancer cells during certain phases of cancer development. Similarly, eukaryotic translation initiation factors are key players in the process of cellular transformation and tumorigenesis. Dysregulation of such translation initiation factors in the form of overexpression, downregulation, or phosphorylation is associated with cancer cell's altering capability of survival, metastasis, and angiogenesis. Nonetheless, eIFs can affect tumor age-related features. Data shows that alternating the eukaryotic translation initiation apparatus can impact many downstream cellular signaling pathways that directly affect cancer development. Hence, researchers have been conducting various experiments towards a new trajectory to find novel therapeutic molecular targets to improve the efficacy of anticancer drugs as well as reduce their side effects, with a special focus on oxidative stress and initiation of translation to harness their effect in cancer development. An increasing body of scientific evidence recently links oxidative stress and translation initiation factors to cancer-related signaling pathways. Therefore, in this review, we present and summarize the recent findings in this field linking certain signaling pathways related to tumorigeneses such as MAPK and PI3K, with either RONS or eIFs.
Collapse
|
43
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
44
|
Yang M, Wang L, Ni M, Neuber B, Wang S, Gong W, Sauer T, Schubert ML, Hückelhoven-Krauss A, Xia R, Ge J, Kleist C, Eckstein V, Sellner L, Müller-Tidow C, Dreger P, Schmitt M, Schmitt A. Dual Effects of Cyclooxygenase Inhibitors in Combination With CD19.CAR-T Cell Immunotherapy. Front Immunol 2021; 12:670088. [PMID: 34122428 PMCID: PMC8189155 DOI: 10.3389/fimmu.2021.670088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells targeting CD19 came into clinical practice for the treatment of B cell lymphoma in 2018. However, patients being treated for B cell lymphoma often suffer from comorbidities such as chronic pain, cardiovascular diseases and arthritis. Thus, these patients frequently receive concomitant medications that include nonsteroidal anti-inflammatory drugs (NSAIDs) like cyclooxygenase (COX) inhibitors. Celecoxib, a selective COX-2 inhibitor, and aspirin, a non-selective COX-1 and COX-2 inhibitor, are being used as anti-inflammatory, analgesic and anti-pyretic drugs. In addition, several studies have also focused on the anti-neoplastic properties of COX-inhibitors. As the influence of COX-inhibitors on CD19.CAR-T cells is still unknown, we investigated the effect of celecoxib and aspirin on the quantity and quality of CD19.CAR-T cells at different concentrations with special regard to cytotoxicity, activation, cytokine release, proliferation and exhaustion. A significant effect on CAR-T cells could be observed for 0.1 mmol/L of celecoxib and for 4 mmol/L of aspirin. At these concentrations, we found that both COX-inhibitors could induce intrinsic apoptosis of CD19.CAR-T cells showing a significant reduction in the ratio of JC-10 red to JC-10 green CAR-T cells from 6.46 ± 7.03 (mean ± SD) to 1.76 ± 0.67 by celecoxib and to 4.41 ± 0.32 by aspirin, respectively. Additionally, the ratios of JC-10 red to JC-10 green Daudi cells were also decreased from 3.41 ± 0.30 to 0.77 ± 0.06 by celecoxib and to 1.26 ± 0.04 by aspirin, respectively. Although the cytokine release by CD19.CAR-T cells upon activation was not hampered by both COX-inhibitors, activation and proliferation of CAR-T cells were significantly inhibited via diminishing the NF-ĸB signaling pathway by a significant down-regulation of expression of CD27 on CD4+ and CD8+ CAR-T cells, followed by a clear decrease of phosphorylated NF-ĸB p65 in both CD4+ and CD8+ CAR-T cells by a factor of 1.8. Of note, COX-inhibitors hampered expansion and induced exhaustion of CAR-T cells in an antigen stress assay. Collectively, our findings indicate that the use of COX-inhibitors is a double-edged sword that not only induces apoptosis in tumor cells but also impairs the quantity and quality of CAR-T cells. Therefore, COX-inhibitors should be used with caution in patients with B cell lymphoma under CAR-T cell therapy.
Collapse
Affiliation(s)
- Mingya Yang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Lei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ming Ni
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Brigitte Neuber
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Sanmei Wang
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Wenjie Gong
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Department of Hematology, the first Affiliated Hospital of Soochow University, Suzhou, China
| | - Tim Sauer
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Maria-Luisa Schubert
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ruixiang Xia
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Jian Ge
- Department of Hematology, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Christian Kleist
- Department of Nuclear Medicine, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Volker Eckstein
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Leopold Sellner
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,Takeda Pharma Vertrieb GmbH & Co. KG, Berlin, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anita Schmitt
- Department of Internal Medicine V, University Clinic Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
45
|
Gu J, Qiu Z, Li L, Qin B, Zhou Y, Liu Y, Liu X, Zhu M, Sang A. Geniposide alleviates choroidal neovascularization by downregulating HB-EGF release from RPE cells by downregulating the miR-145-5p/NF-κB axis. Exp Eye Res 2021; 208:108624. [PMID: 34022175 DOI: 10.1016/j.exer.2021.108624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD), mainly wet AMD, is the major reason for nonreversible vision loss worldwide. Choroidal neovascularization (CNV) is a characteristic pathological manifestation of wet AMD. Stress or injury to the retinal pigment epithelium (RPE) induces proangiogenic factors that drive CNV. An iridoid glycoside extracted from the fruit of gardenia, geniposide (GEN) plays an antiangiogenic role. In this study, GEN inhibited the transcription and expression of heparin-binding epidermal growth factor (HB-EGF), a proangiogenic factor, in hypoxic RPE cells and a mouse laser-induced CNV model. Inhibition of glucagon-like peptide-1 receptor (GLP-1R), a GEN receptor blocker, eliminated the protective effect of GEN. Additionally, GEN decreased the transcription and expression of HB-EGF in hypoxia-exposed RPE cells by downregulating the miR-145-5p/NF-κB axis. Therefore, our research provides a promising novel strategy for wet AMD therapy.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhaoxian Qiu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lele Li
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China
| | - Yu Liu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
46
|
Zhao J, Geng W, Wan K, Guo K, Xi F, Xu X, Xiong X, Huang X, Liu J, Kuang X. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. J Int Med Res 2021; 49:300060520981259. [PMID: 33528285 PMCID: PMC7871081 DOI: 10.1177/0300060520981259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To explore the role of lipoxin A4 (LXA4) on inflammasome and inflammatory activity in macrophages activated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) one of the major causative agents of chronic periodontitis. Methods The mouse macrophage cell line RAW264.7 was used to produce an activated inflammation model. Markers of inflammasome and inflammatory activity and autophagy were assessed by ELISA, reverse transcription polymerase chain reaction (RT-PCR), and Western blot assay. Results Markers of inflammasome activity, inflammation and autophagy increased with Pg LPS concentration. They also increased with increasing exposure to Pg LPS up to 12h but decreased at 24h. However, markers of autophagy increased. Phosphorylated NF-κBp65 decreased with LXA4, which was similar to results obtained with the autophagy inducer, rapamycin. Conclusions LXA4 promoted autophagy and inhibited activation of inflammasomes and inflammation markers in macrophage inflammation induced by PgLPS and this action was linked to the phosphorylation of NF-κB.
Collapse
Affiliation(s)
- Jie Zhao
- Affiliated Stomatological Hospital of Nanchang University, China
| | - Wenjing Geng
- Queen Mary College of Nanchang University, China
| | - Kefei Wan
- The Second Clinical Medical College of Nanchang University, China
| | - Kailei Guo
- Undergraduate course of the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Fengjun Xi
- Undergraduate course of the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiangqun Xu
- Hospital of Integrated Traditional Chinese and Western Medicine in Jiangxi province, China
| | - Xiujuan Xiong
- Hospital of Integrated Traditional Chinese and Western Medicine in Jiangxi province, China
| | - Xu Huang
- The Second Clinical Medical College of Nanchang University, China
| | - Jiayi Liu
- School of Basic Medical Sciences, Nanchang University, China
| | - Xiaodong Kuang
- Department of Pathology, School of Basic Medicine, Nanchang University, China
| |
Collapse
|
47
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
48
|
Wang H, Chinnathambi A, Alahmadi TA, Alharbi SA, Veeraraghavan VP, Krishna Mohan S, Hussain S, Ramamoorthy K, Rengarajan T. Phyllanthin inhibits MOLT-4 leukemic cancer cell growth and induces apoptosis through the inhibition of AKT and JNK signaling pathway. J Biochem Mol Toxicol 2021; 35:1-10. [PMID: 33724660 DOI: 10.1002/jbt.22758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 01/13/2023]
Abstract
Among cancers, leukemia is a multistep progression that involves genetic modifications of normal hematopoietic progenitor cells to cancerous cells. In recent times, leukemia cases and their mortality rate have increased rapidly. Therefore, the immense need for a therapeutic approach is crucial that can control this type of cancer. Phyllanthin is a lignan compound constituent from the Phyllanthus species and has numerous beneficial effects as a dietary component. The present study aims to determine the impact of phyllanthin on the MOLT-4 cytotoxic effect. MOLT-4 cells and MS-5 cells were cultured at different concentrations of phyllanthin (5, 10, 25, 50, 75, and 100 μM/ml), and the viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The level of reactive oxygen species, the membrane potential of mitochondria, apoptosis by 2',7'-dichlorofluorescin-diacetate (DCF-DA), rhodamine, acridine orange (AO)/ethidium bromide (EB), 4',6-diamidino-2-phenylindole (DAPI)/propidium iodide (PI) staining, gene expression of signaling molecules, and protein levels were assessed by reverse-transcription polymerase chain reaction and western blot analysis. Phyllanthin did not show toxicity toward MS-5 cells and significantly decreased the cell viability of MOLT-4 cells with an IC50 value of 25 µM/ml. Also, phyllanthin induced the production of reactive oxygen species and led to the loss of mitochondrial membrane potential. AO/EB and DAPI/PI staining fluorescent image confirmed the induction of apoptosis by phyllanthin treatment. The messenger RNA (mRNA) expression of cell cycle regulator cyclin D1, antiapoptotic gene Bcl-2, NF-κB, and TNF-α decreased, but the proapoptotic Bax mRNA expression was increased. The phosphorylated protein levels of p-PI3K1/2, p-ERK1/2, and p-AKT were decreased, whereas the levels of p-p38 and p-JNKT1/2 increased. Our results confirmed that phyllanthin inhibits the MOLT-4 cells, increases apoptosis, and inhibits MOLT-4 migration and cell invasion. Therefore, phyllanthin can be used as a potential target for leukemia treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, Riyadh-, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Clinical Skills & Simulation and Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India
| | - Sardar Hussain
- Department of Biotechnology, Government Science College, Chitradurga, Karnataka, India
| | - Kavitha Ramamoorthy
- Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, Tamil Nadu, India
| | - Thamaraiselvan Rengarajan
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Thanjavur, Tamil Nadu, India
| |
Collapse
|
49
|
Wu H, Chu Y, Sun S, Li G, Xu S, Zhang X, Jiang Y, Gao S, Wang Q, Zhang J, Pang D. Hypoxia-Mediated Complement 1q Binding Protein Regulates Metastasis and Chemoresistance in Triple-Negative Breast Cancer and Modulates the PKC-NF-κB-VCAM-1 Signaling Pathway. Front Cell Dev Biol 2021; 9:607142. [PMID: 33708767 PMCID: PMC7940382 DOI: 10.3389/fcell.2021.607142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Complement 1q binding protein (C1QBP/HABP1/p32/gC1qR) has been found to be overexpressed in triple-negative breast cancer (TNBC). However, the underlying mechanisms of high C1QBP expression and its role in TNBC remain largely unclear. Hypoxia is a tumor-associated microenvironment that promotes metastasis and paclitaxel (PTX) chemoresistance in tumor cells. In this study, we aimed to assess C1QBP expression and explore its role in hypoxia-related metastasis and chemoresistance in TNBC. Materials and Methods RNA-sequencing of TNBC cells under hypoxia was performed to identify C1QBP. The effect of hypoxia inducible factor 1 subunit alpha (HIF-1α) on C1QBP expression was investigated using chromatin immunoprecipitation (ChIP) assay. The role of C1QBP in mediating metastasis, chemoresistance to PTX, and regulation of metastasis-linked vascular cell adhesion molecule 1 (VCAM-1) expression were studied using in vitro and in vivo experiments. Clinical tissue microarrays were used to verify the correlation of C1QBP with the expression of HIF-1α, VCAM-1, and RELA proto-oncogene nuclear factor-kappa B subunit (P65). Results We found that hypoxia-induced HIF-1α upregulated C1QBP. The inhibition of C1QBP notably blocked metastasis of TNBC cells and increased their sensitivity to PTX under hypoxic conditions. Depletion of C1QBP decreased VCAM-1 expression by reducing the amount of P65 in the nucleus and suppressed the activation of hypoxia-induced protein kinase C-nuclear factor-kappa B (PKC-NF-κB) signaling.immunohistochemistry (IHC) staining of the tissue microarray showed positive correlations between the C1QBP level and those of HIF-1α, P65, and VCAM-1. Conclusion Targeting C1QBP along with PTX treatment might be a potential treatment for TNBC patients.
Collapse
Affiliation(s)
- Hao Wu
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yijun Chu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Sun
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guozheng Li
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xianyu Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yongdong Jiang
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Song Gao
- Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
50
|
Cao Y, Li L, Liu Y, Chen G, Tao Z, Wang R, Chen W. I- κB Kinase- ε Deficiency Attenuates the Development of Angiotensin II-Induced Myocardial Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6429197. [PMID: 33628362 PMCID: PMC7886514 DOI: 10.1155/2021/6429197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
I-κB kinase-ε (IKKε) is a member of the IKK complex and a proinflammatory regulator that is active in many diseases. Angiotensin II (Ang II) is a vasoconstricting peptide hormone, and Ang II-induced myocardial hypertrophy is a common cardiovascular disease that can result in heart failure. In this study, we sought to determine the role of IKKε in the development of Ang II-induced myocardial hypertrophy in mice. Wild-type (WT) and IKKε-knockout (IKKε-KO) mice were generated and infused with saline or Ang II for 8 weeks. We found that WT mouse hearts have increased IKKε expression after 8 weeks of Ang II infusion. Our results further indicated that IKKε-KO mice have attenuated myocardial hypertrophy and alleviated heart failure compared with WT mice. Additionally, Ang II-induced expression of proinflammatory and collagen factors was much lower in the IKKε-KO mice than in the WT mice. Apoptosis and pyroptosis were also ameliorated in IKKε-KO mice. Mechanistically, IKKε bound to extracellular signal-regulated kinase (ERK) and the mitogen-activated protein kinase p38, resulting in MAPK/ERK kinase (MEK) phosphorylation, and IKKε deficiency inhibited the phosphorylation of MEK-ERK1/2 and p38 in mouse heart tissues after 8 weeks of Ang II infusion. The findings of our study reveal that IKKε plays an important role in the development of Ang II-induced myocardial hypertrophy and may represent a potential therapeutic target for the management of myocardial hypertrophy.
Collapse
Affiliation(s)
- Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, China
| |
Collapse
|