1
|
Espinosa-Jovel C. Cannabinoids in epilepsy: clinical efficacy and pharmacological considerations. Neurologia 2023; 38:47-53. [PMID: 34824031 DOI: 10.1016/j.nrleng.2020.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/16/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Advances in the development of drugs with novel mechanisms of action have not been sufficient to significantly reduce the percentage of patients presenting drug-resistant epilepsy. This lack of satisfactory clinical results has led to the search for more effective treatment alternatives with new mechanisms of action. DEVELOPMENT The aim of this study is to examine epidemiological aspects of the use of cannabis-based products for the treatment of epilepsy, with particular emphasis on the main mechanisms of action, indications for use, clinical efficacy, and safety. We conducted a narrative review of articles gathered from the PubMed, EMBASE, and Google Scholar databases and from the reference sections of relevant publications. CONCLUSIONS In recent years there has been growing interest in the use of cannabis-based products for the treatment of a wide range of diseases, including epilepsy. The cannabis plant is currently known to contain more than 100 terpenophenolic compounds, known as cannabinoids. The 2 most abundant are delta-9-tetrahydrocannabinol and cannabidiol. Studies of preclinical models of epilepsy have shown that these cannabinoids have anticonvulsant properties, and 100% purified cannabidiol and cannabidiol-enriched cannabis extracts are now being used to treat epilepsy in humans. Several open-label studies and randomised controlled clinical trials have demonstrated the efficacy and safety of these products.
Collapse
Affiliation(s)
- C Espinosa-Jovel
- Programa de Epilepsia, Servicio de Neurología, Hospital Occidente de Kennedy, Bogotá, Colombia; Posgrado de Neurología, Universidad de La Sabana, Chía, Colombia.
| |
Collapse
|
2
|
Gholami M, Amri J, Pazhoohan S, Sadegh M. Anticonvulsive and anti-epileptogenesis effects of Echinacea purpurea root extract, an involvement of CB2 receptor. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:879-886. [PMID: 34461009 DOI: 10.1515/jcim-2020-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Phytocannabinoids beyond the Δ9-tetrahy-drocannabinol have shown anticonvulsive effects. Also, alkylamides from Echinacea purpurea have been proved as cannabinomimetics. We examined the effect of the hydroalcoholic root extract of E. purpurea on pentylenetetrazol (PTZ)-induced tonic-clonic seizures and kindling model of epileptogenesis and the involvement of CB2 receptors as the mediator of this effect. METHODS Male Wistar rats (200 ± 20 g) were used. Single intraperitoneal (i.p.) injection of PTZ (80 mg/kg) was used to induce tonic-clonic seizures. The kindling model of epileptogenesis was induced by daily injections of PTZ (37 mg/kg; i.p. for 15 days). Latency and duration of the stages were monitored for analysis. The hydroalcoholic root extract of E. purpurea was injected (i.p.) 20 min before seizure induction at the doses of 10, 50, 100 and 200 mg/kg. CB2 receptor antagonist SR144528 was injected (0.1 mg/kg; i.p.) 20 min before the Echinacea injection. RESULTS In the tonic-clonic model, pretreatment with E. purpurea at the doses of 100 and 200 mg/kg significantly increased latencies to S2-S6, while it significantly decreased S6 duration and mortality rate. SR144528 injection before the injection of 100 mg/kg of E. purpurea significantly prevented the effects of the extract on S4-S6 latencies. In the kindling model, E. purpurea at the doses of 100 and 200 mg/kg significantly delayed epileptogenesis and decreased mortality rate, while SR144528 injection before the injection of 100 mg/kg of E. purpurea significantly blocked this effect of the extract. CONCLUSIONS These findings revealed the anticonvulsive and antiepileptogenesis effects of the E. purpurea root extract, which can be mediated by CB2 receptors.
Collapse
Affiliation(s)
- Masoumeh Gholami
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R., Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, I.R., Iran
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Saeed Pazhoohan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Tzadok M, Hamed N, Heimer G, Zohar-Dayan E, Rabinowicz S, Ben Zeev B. The Long-Term Effectiveness and Safety of Cannabidiol-Enriched Oil in Children With Drug-Resistant Epilepsy. Pediatr Neurol 2022; 136:15-19. [PMID: 36049378 DOI: 10.1016/j.pediatrneurol.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Several retrospective studies on pediatric epilepsy reported positive effects of cannabidiol-enriched artisanal cannabis oil and pure cannabidiol oil on seizure reduction. METHODS This is a retrospective study of children and adolescents with refractory epilepsy caused by various etiologies who were treated with artisanal cannabis oil during January 2014 to June 2019, with at least one year follow-up. RESULTS Of 114 patients, 84 (73.3%) reported some improvement in seizure frequency at some point during treatment. Fifty-one (59%) of the 86 patients who continued treatment for at least one year showed >50% improvement in seizure frequency. Seizure etiology, seizure type, and patients' age and sex were not found to be associated with the response to cannabidiol-enriched cannabis oil. Side effects were minor, and positive effects beyond seizure reduction were noted. CONCLUSIONS Artisanal cannabidiol-enriched cannabis may be an effective and safe long-term treatment for refractory epilepsy.
Collapse
Affiliation(s)
- Michal Tzadok
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nasrin Hamed
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Zohar-Dayan
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shira Rabinowicz
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Polidoro D, Temmerman R, Devreese M, Charalambous M, Ham LV, Cornelis I, Broeckx BJG, Mandigers PJJ, Fischer A, Storch J, Bhatti SFM. Pharmacokinetics of Cannabidiol Following Intranasal, Intrarectal, and Oral Administration in Healthy Dogs. Front Vet Sci 2022; 9:899940. [PMID: 35754531 PMCID: PMC9215213 DOI: 10.3389/fvets.2022.899940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022] Open
Abstract
The therapeutic potential of cannabidiol (CBD), a non-psychtropic component of the Cannabis sativa plant, is substantiated more and more. We aimed to determine the pharmacokinetic behavior of CBD after a single dose via intranasal (IN) and intrarectal (IR) administration in six healthy Beagle dogs age 3–8 years old, and compare to the oral administration route (PO). Standardized dosages applied for IN, IR and PO were 20, 100, and 100 mg, respectively. Each dog underwent the same protocol but received CBD through a different administration route. CBD plasma concentrations were determined by ultra-high performance liquid chromatography-tandem mass spectrometry before and at fixed time points after administration. Non-compartmental analysis was performed on the plasma concentration-time profiles. Plasma CBD concentrations after IR administration were below the limit of quantification. The mean area under the curve (AUC) after IN and PO CBD administration was 61 and 1,376 ng/mL*h, respectively. The maximal plasma CBD concentration (Cmax) after IN and PO CBD administration was 28 and 217 ng/mL reached after 0.5 and 3.5 h (Tmax), respectively. Significant differences between IN and PO administration were found in the Tmax (p = 0.04). Higher AUC and Cmax were achieved with 100 mg PO compared to 20 mg IN, but no significant differences were found when AUC (p = 0.09) and Cmax (p = 0.44) were normalized to 1 mg dosages. IN administration of CBD resulted in faster absorption when compared to PO administration. However, PO remains the most favorable route for CBD delivery due to its more feasible administration. The IR administration route is not advised for clinical application.
Collapse
Affiliation(s)
- Dakir Polidoro
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Robin Temmerman
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marios Charalambous
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.,Clinic for Small Animals, Department of Neurology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ine Cornelis
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart J G Broeckx
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Paul J J Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Sofie F M Bhatti
- Small Animal Department, Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
6
|
McNeish AJ. Implications of the effects of cannabigerolic acid on our understanding of the potential of phytocannabinoids in anti-seizure treatment. Br J Pharmacol 2021; 179:1280-1281. [PMID: 34897652 DOI: 10.1111/bph.15740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Alister J McNeish
- Pharmacology, Reading School of Pharmacy, Hopkins Building Reading, Reading University, Reading, UK
| |
Collapse
|
7
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
8
|
Anderson LL, Heblinski M, Absalom NL, Hawkins NA, Bowen M, Benson MJ, Zhang F, Bahceci D, Doohan PT, Chebib M, McGregor IS, Kearney JA, Arnold JC. Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. Br J Pharmacol 2021; 178:4826-4841. [PMID: 34384142 PMCID: PMC9292928 DOI: 10.1111/bph.15661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Cannabis has been used to treat epilepsy for millennia, with such use validated by regulatory approval of cannabidiol (CBD) for Dravet syndrome. Unregulated artisanal cannabis‐based products used to treat children with intractable epilepsies often contain relatively low doses of CBD but are enriched in other phytocannabinoids. This raises the possibility that other cannabis constituents might have anticonvulsant properties. Experimental Approach We used the Scn1a+/− mouse model of Dravet syndrome to investigate the cannabis plant for phytocannabinoids with anticonvulsant effects against hyperthermia‐induced seizures. The most promising, cannabigerolic acid (CBGA), was further examined against spontaneous seizures and survival in Scn1a+/− mice and in electroshock seizure models. Pharmacological effects of CBGA were surveyed across multiple drug targets. Key Results The initial screen identified three phytocannabinoids with novel anticonvulsant properties: CBGA, cannabidivarinic acid (CBDVA) and cannabigerovarinic acid (CBGVA). CBGA was most potent and potentiated the anticonvulsant effects of clobazam against hyperthermia‐induced and spontaneous seizures, and was anticonvulsant in the MES threshold test. However, CBGA was proconvulsant in the 6‐Hz threshold test and a high dose increased spontaneous seizure frequency in Scn1a+/− mice. CBGA was found to interact with numerous epilepsy‐relevant targets including GPR55, TRPV1 channels and GABAA receptors. Conclusion and Implications These results suggest that CBGA, CBDVA and CBGVA may contribute to the effects of cannabis‐based products in childhood epilepsy. Although these phytocannabinoids have anticonvulsant potential and could be lead compounds for drug development programmes, several liabilities would need to be overcome before CBD is superseded by another in this class.
Collapse
Affiliation(s)
- L L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Heblinski
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N L Absalom
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - N A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M Bowen
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - M J Benson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - F Zhang
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - D Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - P T Doohan
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - M Chebib
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - I S McGregor
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - J A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - J C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Ożarowski M, Karpiński TM, Zielińska A, Souto EB, Wielgus K. Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action. Int J Mol Sci 2021; 22:4294. [PMID: 33919010 PMCID: PMC8122338 DOI: 10.3390/ijms22094294] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
As the major nonpsychotropic constituent of Cannabis sativa, cannabidiol (CBD) is regarded as one of the most promising therapeutic agents due to its proven effectiveness in clinical trials for many human diseases. Due to the urgent need for more efficient pharmacological treatments for several chronic diseases, in this review, we discuss the potential beneficial effects of CBD for Alzheimer's disease, epilepsy, multiple sclerosis, and neurological cancers. Due to its wide range of pharmacological activities (e.g., antioxidant, anti-inflammatory, and neuroprotective properties), CBD is considered a multimodal drug for the treatment of a range of neurodegenerative disorders, and various cancer types, including neoplasms of the neural system. The different mechanisms of action of CBD are here disclosed, together with recent progress in the use of this cannabis-derived constituent as a new therapeutic approach.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Karolina Wielgus
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| |
Collapse
|
10
|
Rahim F, Azizimalamiri R, Sayyah M, Malayeri A. Experimental Therapeutic Strategies in Epilepsies Using Anti-Seizure Medications. J Exp Pharmacol 2021; 13:265-290. [PMID: 33732031 PMCID: PMC7959000 DOI: 10.2147/jep.s267029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsies are among the most common neurological problems. The disease burden in patients with epilepsy is significantly high, and epilepsy has a huge negative impact on patients' quality of life with epilepsy and their families. Anti-seizure medications are the mainstay treatment in patients with epilepsy, and around 70% of patients will ultimately control with a combination of at least two appropriately selected anti-seizure medications. However, in one-third of patients, seizures are resistant to drugs, and other measures will be needed. The primary goal in using experimental therapeutic medication strategies in patients with epilepsy is to prevent recurrent seizures and reduce the rate of traumatic events that may occur during seizures. So far, various treatments using medications have been offered for patients with epilepsies, which have been classified according to the type of epilepsy, the effectiveness of the medications, and the adverse effects. Medications such as Levetiracetam, valproic acid, and lamotrigine are at the forefront of these patients' treatment. Epilepsy surgery, neuro-stimulation, and the ketogenic diet are the main measures in patients with medication-resistant epilepsies. In this paper, we will review the therapeutic approach using anti-seizure medications in patients with epilepsy. However, it should be noted that some of these patients still do not respond to existing treatments; therefore, the limited ability of current therapies has fueled research efforts for the development of novel treatment strategies. Thus, it seems that in addition to surgical measures, we should look for more specific agents that have less adverse events and have a greater effect in stopping seizures.
Collapse
Affiliation(s)
- Fakher Rahim
- Molecular Medicine and Bioinformatics, Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatrics, Division of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sayyah
- Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Valdés-Jiménez A, Peña-Varas C, Borrego-Muñoz P, Arrue L, Alegría-Arcos M, Nour-Eldin H, Dreyer I, Nuñez-Vivanco G, Ramírez D. PSC-db: A Structured and Searchable 3D-Database for Plant Secondary Compounds. Molecules 2021; 26:1124. [PMID: 33672700 PMCID: PMC7924326 DOI: 10.3390/molecules26041124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Plants synthesize a large number of natural products, many of which are bioactive and have practical values as well as commercial potential. To explore this vast structural diversity, we present PSC-db, a unique plant metabolite database aimed to categorize the diverse phytochemical space by providing 3D-structural information along with physicochemical and pharmaceutical properties of the most relevant natural products. PSC-db may be utilized, for example, in qualitative estimation of biological activities (Quantitative Structure-Activity Relationship, QSAR) or massive docking campaigns to identify new bioactive compounds, as well as potential binding sites in target proteins. PSC-db has been implemented using the open-source PostgreSQL database platform where all compounds with their complementary and calculated information (classification, redundant names, unique IDs, physicochemical properties, etc.) were hierarchically organized. The source organism for each compound, as well as its biological activities against protein targets, cell lines and different organism were also included. PSC-db is freely available for public use and is hosted at the Universidad de Talca.
Collapse
Affiliation(s)
- Alejandro Valdés-Jiménez
- Center for Bioinformatics, Simulations, and Modeling (CBSM), Faculty of Engineering, University of Talca, Talca 3460000, Chile; (A.V.-J.); (I.D.); (G.N.-V.)
| | - Carlos Peña-Varas
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile; (C.P.-V.); (L.A.); (M.A.-A.)
| | - Paola Borrego-Muñoz
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Lily Arrue
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile; (C.P.-V.); (L.A.); (M.A.-A.)
| | - Melissa Alegría-Arcos
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile; (C.P.-V.); (L.A.); (M.A.-A.)
| | - Hussam Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1017 Copenhagen, Denmark;
| | - Ingo Dreyer
- Center for Bioinformatics, Simulations, and Modeling (CBSM), Faculty of Engineering, University of Talca, Talca 3460000, Chile; (A.V.-J.); (I.D.); (G.N.-V.)
| | - Gabriel Nuñez-Vivanco
- Center for Bioinformatics, Simulations, and Modeling (CBSM), Faculty of Engineering, University of Talca, Talca 3460000, Chile; (A.V.-J.); (I.D.); (G.N.-V.)
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8900000, Chile; (C.P.-V.); (L.A.); (M.A.-A.)
| |
Collapse
|
12
|
Neuropharmacological Effects of the Main Phytocannabinoids: A Narrative Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:29-45. [DOI: 10.1007/978-3-030-57369-0_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Anderson DE, Madhavan D, Swaminathan A. Global brain network dynamics predict therapeutic responsiveness to cannabidiol treatment for refractory epilepsy. Brain Commun 2020; 2:fcaa140. [PMID: 33376981 PMCID: PMC7751013 DOI: 10.1093/braincomms/fcaa140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/29/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
Refractory epilepsy is a chronic brain network disorder characterized by unresponsiveness to multiple (>2) anti-epileptic drugs. Cannabidiol, a non-psychotropic neuroactive substance, is an emerging anti-epileptic treatment that was recently approved by the US Food and Drug Administration for the treatment of refractory epilepsy, especially Lennox Gastaut syndrome and Dravet syndrome. Here, we evaluated associations between global brain network dynamics and related changes and responsiveness to cannabidiol therapy using a combination of electroencephalography phase coherence and graph theoretical analyses. Refractory epilepsy patients with Lennox Gastaut syndrome or Dravet syndrome underwent serial electroencephalography testing prior to and during cannabidiol treatment. Patients showing greater than 70% seizure frequency reduction were classified as treatment responders for the purposes of this study. We calculated inter-electrode electroencephalography phase coherence in delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz) frequency bands. Graph theoretical analysis of brain network dynamics was extracted from phase coherence to evaluate measures of network integration (i.e. characteristic path length, global efficiency and degree) and segregation (i.e. modularity and transitivity). We found that responders, relative to non-responders, showed increased network integration—as indexed by relatively higher global efficiency and lower degree—and increased network segregation—as indexed by relatively higher modularity—exclusively in the beta-frequency band. We also found that larger cannabidiol dosages were associated with increased network integration—as indexed by higher global efficiency with increasing dose—and increased network segregation—as indexed by lower transitivity with increasing dose—in the delta, theta and alpha frequency bands. In summary, we demonstrate novel effects of cannabidiol on brain network dynamics with important implications for the treatment of refractory epilepsy and, possibly, across broader research applications in the future.
Collapse
Affiliation(s)
- David E Anderson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5540, USA
| | - Deepak Madhavan
- Department of Pediatric Neurology, Boys Town National Research Hospital, Omaha, NE 68198-8440, USA
| | - Arun Swaminathan
- Department of Neurological Sciences, University of Nebraska Medical Center, Boys Town, NE 68010, USA
| |
Collapse
|
14
|
Buchanan-Peart KAR, Oribhabor GI, Khokale RV, Nelson ML, Cancarevic I. Cannabis, More Than the Euphoria: Its Therapeutic Use in Drug-Resistant Epilepsy. Cureus 2020; 12:e9299. [PMID: 32832296 PMCID: PMC7437102 DOI: 10.7759/cureus.9299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant number of epilepsy patients are refractory to conventional antiepileptic drugs. These patients experience considerable neurocognitive impairments that impact their quality of life and ability to function independently. This need for alternative treatment has generated increased interest in cannabis use as a therapeutic option in these patients. This review seeks to analyze data presented on the pharmacology, safety, and efficacy of cannabis use in patients with drug-resistant epilepsy (DRE) and to propose any future recommendations regarding its use. PubMed was used to retrieve all published studies and articles which evaluated the use of cannabis in epilepsy. The two foremost phytocannabinoids of cannabis showing anticonvulsant properties are tetrahydrocannabinol (THC) and cannabidiol (CBD). Due to the psychoactive properties of THC, most studies focused on CBD use in these patients. The use of CBD as an adjunct resulted in decreased seizure frequency, and secondary benefits observed included improvement in mood, alertness and sleep. Adverse events (AEs) reported were drowsiness, diarrhea, increased transaminases and worsening of seizures. It can safely be concluded that there is a significant benefit in DRE patients using CBD as adjunctive therapy. However, further controlled and adequately powered studies are needed to assess the pharmacokinetics and impact of the long-term use of cannabis.
Collapse
|
15
|
Espinosa-Jovel C. Cannabinoids in epilepsy: Clinical efficacy and pharmacological considerations. Neurologia 2020; 38:S0213-4853(20)30040-2. [PMID: 32317123 DOI: 10.1016/j.nrl.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/16/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Advances in the development of drugs with novel mechanisms of action have not been sufficient to significantly reduce the percentage of patients presenting drug-resistant epilepsy. This lack of satisfactory clinical results has led to the search for more effective treatment alternatives with new mechanisms of action. DEVELOPMENT The aim of this study is to examine epidemiological aspects of the use of cannabis-based products for the treatment of epilepsy, with particular emphasis on the main mechanisms of action, indications for use, clinical efficacy, and safety. We conducted a narrative review of articles gathered from the PubMed, EMBASE, and Google Scholar databases and from the reference sections of relevant publications. CONCLUSIONS In recent years there has been growing interest in the use of cannabis-based products for the treatment of a wide range of diseases, including epilepsy. The cannabis plant is currently known to contain more than 100 terpenophenolic compounds, known as cannabinoids. The 2 most abundant are delta-9-tetrahydrocannabinol and cannabidiol. Studies of preclinical models of epilepsy have shown that these cannabinoids have anticonvulsant properties, and 100% purified cannabidiol and cannabidiol-enriched cannabis extracts are now being used to treat epilepsy in humans. Several open-label studies and randomised controlled clinical trials have demonstrated the efficacy and safety of these products.
Collapse
Affiliation(s)
- C Espinosa-Jovel
- Programa de Epilepsia, Servicio de Neurología, Hospital Occidente de Kennedy, Bogotá, Colombia; Posgrado de Neurología, Universidad de La Sabana, Chía, Colombia.
| |
Collapse
|
16
|
Lyon L. THC and CBD: is medical cannabis overhyped or under-prescribed? Brain 2020; 143:e34. [DOI: 10.1093/brain/awaa066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Crippa JAS, Zuardi AW, Hallak JEC, Miyazawa B, Bernardo SA, Donaduzzi CM, Guzzi S, Favreto WAJ, Campos A, Queiroz MEC, Guimarães FS, da Rosa Zimmermann PM, Rechia LM, Jose Tondo Filho V, Brum Junior L. Oral Cannabidiol Does Not Convert to Δ 8-THC or Δ 9-THC in Humans: A Pharmacokinetic Study in Healthy Subjects. Cannabis Cannabinoid Res 2020; 5:89-98. [PMID: 32322680 DOI: 10.1089/can.2019.0024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Recent studies have suggested that cannabidiol (CBD) could interconvert into Delta-8- and Delta-9- tetrahydrocannabinol. Materials and Methods: Thus, we tested the plasma samples of 120 healthy human subjects (60 male and 60 female), 60 in fasting and the other 60 under normal feeding conditions after acute administration of an oral solution containing CBD 300 mg. To do this, we developed a bioanalytical method to determine CBD and the presence of THC in plasma samples by Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Results: The results showed that THC was not detected in plasma after the administration of CBD, and those study participants did not present psychotomimetic effects. Conclusions: The findings presented here are consistent with previous evidence suggesting that the oral administration of CBD in a corn oil formulation is a safe route for the administration of the active substance without bioconversion to THC in humans.
Collapse
Affiliation(s)
- José Alexandre S Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| | - Antonio Waldo Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| | - Jaime Eduardo Cecílio Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| | - Bruna Miyazawa
- Clinical Research Unit (UPC-HC-FMRP), Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sandra Aparecido Bernardo
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology for Translational Medicine, Brazilian National Council for Scientific and Technological Development, Brasília, Brazil
| | | | - Silvane Guzzi
- Biocinese-Center for Biopharmaceutical Studies, Toledo, Brazil
| | | | - Alline Campos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Eugênia C Queiroz
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Departamento de Química da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
18
|
Abstract
In recent years, cannabis has been gaining increasing interest in both the medical research and clinical fields, with regard to its therapeutic effects in various disorders. One of the major fields of interest is its role as an anticonvulsant for refractory epilepsy, especially in the pediatric population. This paper presents and discusses the current accumulated knowledge regarding artisanal cannabis and Epidiolex®, a United States Food and Drug Administration (FDA)-approved pure cannabidiol (CBD), in epilepsy management in pediatrics, by reviewing the literature and raising debate regarding further research directions.
Collapse
Affiliation(s)
- Bruria Ben-Zeev
- Pediatric Neurology Department, The Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- E-mail:
| |
Collapse
|
19
|
Cross JH, Cock H. A perspective on cannabinoids for treating epilepsy: Do they really change the landscape? Neuropharmacology 2019; 170:107861. [PMID: 31770546 DOI: 10.1016/j.neuropharm.2019.107861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022]
Abstract
With the licensing of cannabidiol for drug resistant seizures in Dravet and Lennox Gastaut syndromes in the United states in 2018, interest in the potential for cannabis-based-medicinal products to meet currently unmet needs for people with epilepsy continues to grow. This review summarizes current knowledge and discusses the implications for future research and practice. Both cannabidiol and tetrahydrocannabinol, the main components, have been extensively studied in animal models, with multimodal mechanisms of action proposed. Only pure cannabidiol formulations have been rigorously evaluated in controlled trials thus far, with modest but significant improvements in motor seizures. Adverse effects include diarrhoea, somnolence and reduced appetite, with mostly acceptable tolerability, but a not insignificant (up to 1 in 23) risk of serious adverse events. Recognized drug interactions include with valproate (increased risk of hepatotoxicity) and clobazam (contributing to somnolence, increased secretions, probably chest infections, and potentially efficacy). Whilst there is public (and producer) interest in products also containing tetrahydrocannabinol, clinicians have justifiable concerns about exposing a group already vulnerable to mental health and neurobehavioural comorbidities to the associated additional risks in these domains. Artisanal preparations, with often inconsistent/unknown constituents are frequently used but not recommended. A gulf exists between the actual evidence, including a lack of comparative studies and public beliefs, fuelled by media and anecdote. Continued education of the public, policymakers, researchers and healthcare providers about what is and isn't yet known, together with on-going good quality research is essential to mitigate against future potential risks, particularly in relation to vulnerable populations. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health, Guilford St, London, WC1N 1EH, UK; Great Ormond Street for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, UK; Young Epilepsy, Lingfield, Surrey, UK
| | - Hannah Cock
- Institute of Molecular and Clinical Sciences, St George's University of London, SW17 0RE, UK; Atkinson Morley Regional Epilepsy Network, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London, SW17 0QT, UK.
| |
Collapse
|
20
|
Acute effect of cannabidiol on the activity of various novel antiepileptic drugs in the maximal electroshock- and 6 Hz-induced seizures in mice: Pharmacodynamic and pharmacokinetic studies. Neuropharmacology 2019; 158:107733. [DOI: 10.1016/j.neuropharm.2019.107733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
|
21
|
Kopka M. Cannabinoids in the treatment of epilepsy – an updated review. JOURNAL OF EPILEPTOLOGY 2019. [DOI: 10.21307/jepil-2019-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
23
|
Brighenti V, Licata M, Pedrazzi T, Maran D, Bertelli D, Pellati F, Benvenuti S. Development of a new method for the analysis of cannabinoids in honey by means of high-performance liquid chromatography coupled with electrospray ionisation-tandem mass spectrometry detection. J Chromatogr A 2019; 1597:179-186. [PMID: 31006529 DOI: 10.1016/j.chroma.2019.03.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/29/2022]
Abstract
Fibre-type Cannabis sativa L. (hemp) represents a valuable resource in many different fields, including both the pharmaceutical and food ones. This plant contains non-psychoactive cannabinoids, a class of bioactive compounds biosynthesized in both female and male inflorescences. Among them, cannabidiol (CBD) is the most interesting compound from a medicinal point of view. Indeed, several scientific studies have proved its therapeutic potential in a large number of pathologies, in addition to its biological effects attributable to its antioxidant, neuroprotective and anti-inflammatory properties. The analysis of the amount of cannabinoids in food and food supplements represents a critical issue in the ambit of both the quality assurance and the dietary intake control of these biologically active compounds. In this ambit, a particular attention is necessary for apiary products, since they are widely consumed and they can be produced by bees starting from different floral sources. In the light of all the above, the aim of this study was to develop for the first time a new analytical method based on RP-HPLC with ESI-MS/MS detection for the determination of CBD and related cannabinoids in honey. A quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction procedure with an un-buffered method was selected and optimised as the more suitable protocol. As regards detection, it was carried out by using a linear ion trap quadrupole (QTRAP) mass analyser, operated in the multiple reaction monitoring (MRM) mode. Hemp male inflorescences and pollen were analysed in parallel by means of HPLC-UV/DAD, since bees can transfer pollen into their hives and, consequently, into beehive products. The method developed and validated for the first time in this work was finally applied to the analysis of cannabinoids in honey samples, thus demonstrating to be a useful tool for both quality control and safety assurance.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Manuela Licata
- Department of Biomedical, Metabolical and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Tatiana Pedrazzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Maran
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
24
|
Li-Zhulanov NS, Il’ina IV, Chicca A, Schenker P, Patrusheva OS, Nazimova EV, Korchagina DV, Krasavin M, Volcho KP, Salakhutdinov NF. Effect of chiral polyhydrochromenes on cannabinoid system. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02294-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Pharmacokinetics of Bedrocan®, a cannabis oil extract, in fasting and fed dogs: An explorative study. Res Vet Sci 2018; 123:26-28. [PMID: 30580232 DOI: 10.1016/j.rvsc.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/24/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022]
Abstract
The aim of this study was to explore the pharmacokinetics of the two main active compounds (THC and CBD) contained in the cannabis oil extract Bedrocan® in fasting and fed dogs. Bedrocan® (20% delta-9-tetrahydrocannabinol [THC] and 0.5% cannabidiol [CBD]) was administered at 1.5 and 0.037 mg/kg THC and CBD, respectively in fasted and fed dogs according to a 2 × 2 cross over study design. The quantification of the two active ingredients was performed by LC/MS. No detectable concentrations of CDB were found at any collection time. THC was quantifiable from 0.5 to 10 h, although there was large inter-subject variability. Fed dogs showed a longer absorption phase (Tmax 5 vs 1.25 h) and lower maximal blood concentration (7.1 vs 24 ng/mL) compared with the fasted group. A larger AUC was found in the fasted group; the relative oral bioavailability in fed animals was 48.22%.
Collapse
|
26
|
Berman P, Futoran K, Lewitus GM, Mukha D, Benami M, Shlomi T, Meiri D. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci Rep 2018; 8:14280. [PMID: 30250104 PMCID: PMC6155167 DOI: 10.1038/s41598-018-32651-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Most clinical studies of Cannabis today focus on the contents of two phytocannabinoids: (-)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), regardless of the fact that the plant contains over 100 additional phytocannabinoids whose therapeutic effects and interplay have not yet been fully elucidated. This narrow view of a complex Cannabis plant is insufficient to comprehend the medicinal and pharmacological effects of the whole plant. In this study we suggest a new ESI-LC/MS/MS approach to identify phytocannabinoids from 10 different subclasses, and comprehensively profile the identified compounds in diverse medical Cannabis plants. Overall, 94 phytocannabinoids were identified and used for profiling 36 of the most commonly used Cannabis plants prescribed to patients in Israel. In order to demonstrate the importance of comprehensive phytocannabinoid analysis before and throughout medical Cannabis clinical trials, treatments, or experiments, we evaluated the anticonvulsant effects of several equally high-CBD Cannabis extracts (50% w/w). We found that despite the similarity in CBD contents, not all Cannabis extracts produced the same effects. This study's approach for phytocannabinoid profiling can enable researchers and physicians to analyze the effects of specific Cannabis compositions and is therefore critical when performing biological, medical and pharmacological-based research using Cannabis.
Collapse
Affiliation(s)
- Paula Berman
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Kate Futoran
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Gil M Lewitus
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Dzmitry Mukha
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Benami
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Tomer Shlomi
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
27
|
Rodríguez-Muñoz M, Onetti Y, Cortés-Montero E, Garzón J, Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol Brain 2018; 11:51. [PMID: 30223868 PMCID: PMC6142691 DOI: 10.1186/s13041-018-0395-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychotomimetic compound present in the Cannabis sativa plant, exhibits therapeutic potential for various human diseases, including chronic neurodegenerative diseases, such as Alzheimer's and Parkinson's, ischemic stroke, epilepsy and other convulsive syndromes, neuropsychiatric disorders, neuropathic allodynia and certain types of cancer. CBD does not bind directly to endocannabinoid receptors 1 and 2, and despite research efforts, its specific targets remain to be fully identified. Notably, sigma 1 receptor (σ1R) antagonists inhibit glutamate N-methyl-D-aspartate acid receptor (NMDAR) activity and display positive effects on most of the aforesaid diseases. Thus, we investigated the effects of CBD on three animal models in which NMDAR overactivity plays a critical role: opioid analgesia attenuation, NMDA-induced convulsive syndrome and ischemic stroke. In an in vitro assay, CBD disrupted the regulatory association of σ1R with the NR1 subunit of NMDAR, an effect shared by σ1R antagonists, such as BD1063 and progesterone, and prevented by σ1R agonists, such as 4-IBP, PPCC and PRE084. The in vivo administration of CBD or BD1063 enhanced morphine-evoked supraspinal antinociception, alleviated NMDA-induced convulsive syndrome, and reduced the infarct size caused by permanent unilateral middle cerebral artery occlusion. These positive effects of CBD were reduced by the σ1R agonists PRE084 and PPCC, and absent in σ1R-/- mice. Thus, CBD displays antagonist-like activity toward σ1R to reduce the negative effects of NMDAR overactivity in the abovementioned experimental situations.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Yara Onetti
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Elsa Cortés-Montero
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Javier Garzón
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| |
Collapse
|
28
|
Stockings E, Zagic D, Campbell G, Weier M, Hall WD, Nielsen S, Herkes GK, Farrell M, Degenhardt L. Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry 2018; 89:741-753. [PMID: 29511052 DOI: 10.1136/jnnp-2017-317168] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 01/08/2023]
Abstract
UNLABELLED Review evidence for cannabinoids as adjunctive treatments for treatment-resistant epilepsy. Systematic search of Medline, Embase and PsycINFO was conducted in October 2017. Outcomes were: 50%+ seizure reduction, complete seizure freedom; improved quality of life (QoL). Tolerability/safety were assessed by study withdrawals, adverse events (AEs) and serious adverse events (SAEs). Analyses were conducted in Stata V.15.0. 36 studies were identified: 6 randomised controlled trials (RCTs), 30 observational studies. Mean age of participants was 16.1 years (range 0.5-55 years). Cannabidiol (CBD) 20 mg/kg/day was more effective than placebo at reducing seizure frequency by 50%+(relative risk (RR) 1.74, 95% CI 1.24 to 2.43, 2 RCTs, 291 patients, low Grades of Recommendation, Assessment, Development and Evaluation (GRADE) rating). The number needed to treat for one person using CBD to experience 50%+ seizure reduction was 8 (95% CI 6 to 17). CBD was more effective than placebo at achieving complete seizure freedom (RR 6.17, 95% CI 1.50 to 25.32, 3 RCTs, 306 patients, low GRADE rating), and improving QoL (RR 1.73, 95% CI 1.33 to 2.26), however increased risk of AEs (RR 1.24, 95% CI 1.13 to 1.36) and SAEs (RR 2.55, 95% CI 1.48 to 4.38). Pooled across 17 observational studies, 48.5% (95% CI 39.0% to 58.1%) of patients reported 50%+ reductions in seizures; in 14 observational studies 8.5% (95% CI 3.8% to 14.5%) were seizure-free. Twelve observational studies reported improved QoL (55.8%, 95% CI 40.5 to 70.6); 50.6% (95% CI 31.7 to 69.4) AEs and 2.2% (95% CI 0 to 7.9) SAEs. Pharmaceutical-grade CBD as adjuvant treatment in paediatric-onset drug-resistant epilepsy may reduce seizure frequency. Existing RCT evidence is mostly in paediatric samples with rare and severe epilepsy syndromes; RCTs examining other syndromes and cannabinoids are needed. PROSPERO REGISTRATION NUMBER CRD42017055412.
Collapse
Affiliation(s)
- Emily Stockings
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dino Zagic
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Gabrielle Campbell
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Megan Weier
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wayne D Hall
- Centre for Youth Substance Abuse Research, University of Queensland, Brisbane, Queensland, Australia.,National Addiction Centre, Kings College London, London, England
| | - Suzanne Nielsen
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Geoffrey K Herkes
- Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michael Farrell
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget 2018; 7:55840-55862. [PMID: 27323834 PMCID: PMC5342457 DOI: 10.18632/oncotarget.10095] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023] Open
Abstract
Glutamate is probably the most important excitatory neurotransmitter in the brain. The glutamate N-methyl-D-aspartate receptor (NMDAR) is a calcium-gated channel that coordinates with G protein-coupled receptors (GPCRs) to establish the efficiency of the synaptic transmission. Cross-regulation between these receptors requires the concerted activity of the histidine triad nucleotide-binding protein 1 (HINT1) and of the sigma receptor type 1 (σ1R). Essential brain functions like learning, memory formation and consolidation, mood and behavioral responses to exogenous stimuli depend on the activity of NMDARs. In this biological context, endocannabinoids are released to retain NMDAR activity within physiological limits. The efficacy of such control depends on HINT1/σ1R assisting in the physical coupling between cannabinoid type 1 receptors (CB1Rs) and NMDARs to dampen their activity. Subsequently, the calcium-regulated HINT1/σ1R protein tandem uncouples CB1Rs to prevent NMDAR hypofunction. Thus, early recruitment or a disproportionate cannabinoid induced response can bring about excess dampening of NMDAR activity, impeding its adequate integration with GPCR signaling. Alternatively, this control circuit can apparently be overridden in situations where bursts of NMDAR overactivity provoke convulsive syndromes. In this review we will discuss the possible relevance of the HINT1/σ1R tandem and its use by endocannabinoids to diminish NMDAR activity and their implications in psychosis/schizophrenia, as well as in NMDAR-mediated convulsive episodes.
Collapse
|
30
|
Capasso A. Do Cannabinoids Confer Neuroprotection Against Epilepsy? An Overview. Open Neurol J 2018; 11:61-73. [PMID: 29290836 PMCID: PMC5738750 DOI: 10.2174/1874205x01711010061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 01/06/2023] Open
Abstract
Objective: Cannabinoid-based medications provide not only relief for specific symptoms, but also arrest or delay of disease progression in patients with pain, multiple sclerosis, and other conditions. Although they also seem to hold potential as anticonvulsant agents, evidence of their efficacy in epilepsy is supported by several evidences. Method: The data reviewed herein lend support to the notion that the endocannabinoid signalling system plays a key modulation role in the activities subserved by the hippocampus, which is directly or indirectly affected in epilepsy patients. Conclusion: The notion is supported by a variety of anatomical, electrophysiological, biochemical and pharmacological findings. These data suggest the need for developing novel treatments using compounds that selectively target individual elements of the endocannabinoid signalling system.
Collapse
Affiliation(s)
- Anna Capasso
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
31
|
Brodie MJ, Ben-Menachem E. Cannabinoids for epilepsy: What do we know and where do we go? Epilepsia 2017; 59:291-296. [DOI: 10.1111/epi.13973] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 01/12/2023]
|
32
|
Malyshevskaya O, Aritake K, Kaushik MK, Uchiyama N, Cherasse Y, Kikura-Hanajiri R, Urade Y. Natural (∆ 9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB 1 receptor. Sci Rep 2017; 7:10516. [PMID: 28874764 PMCID: PMC5585372 DOI: 10.1038/s41598-017-10447-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Natural cannabinoids and their synthetic substitutes are the most widely used recreational drugs. Numerous clinical cases describe acute toxic symptoms and neurological consequences following inhalation of the mixture of synthetic cannabinoids known as "Spice." Here we report that an intraperitoneal administration of the natural cannabinoid Δ9-tetrahydrocannabinol (10 mg/kg), one of the main constituent of marijuana, or the synthetic cannabinoid JWH-018 (2.5 mg/kg) triggered electrographic seizures in mice, recorded by electroencephalography and videography. Administration of JWH-018 (1.5, 2.5 and 5 mg/kg) increased seizure spikes dose-dependently. Pretreatment of mice with AM-251 (5 mg/kg), a cannabinoid receptor 1-selective antagonist, completely prevented cannabinoid-induced seizures. These data imply that abuse of cannabinoids can be dangerous and represents an emerging public health threat. Additionally, our data strongly suggest that AM-251 could be used as a crucial prophylactic therapy for cannabinoid-induced seizures or similar life-threatening conditions.
Collapse
Affiliation(s)
- Olga Malyshevskaya
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan.
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan
| | - Mahesh K Kaushik
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan
| | - Nahoko Uchiyama
- Division of Pharmacognosy, Phytochemistry, and Narcotics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan
| | - Ruri Kikura-Hanajiri
- Division of Pharmacognosy, Phytochemistry, and Narcotics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8575, Japan
| |
Collapse
|
33
|
De Caro C, Leo A, Citraro R, De Sarro C, Russo R, Calignano A, Russo E. The potential role of cannabinoids in epilepsy treatment. Expert Rev Neurother 2017; 17:1069-1079. [PMID: 28845714 DOI: 10.1080/14737175.2017.1373019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Epilepsy is one of the world's oldest recognized and prevalent neurological diseases. It has a great negative impact on patients' quality of life (QOL) as a consequence of treatment resistant seizures in about 30% of patients together with drugs' side effects and comorbidities. Therefore, new drugs are needed and cannabinoids, above all cannabidiol, have recently gathered attention. Areas covered: This review summarizes the scientific data from human and animal studies on the major cannabinoids which have been of interest in the treatment of epilepsy, including drugs acting on the endocannabinoid system. Expert commentary: Despite the fact that cannabis has been used for many purposes over 4 millennia, the development of drugs based on cannabinoids has been very slow. Only recently, research has focused on their potential effects and CBD is the first treatment of this group with clinical evidence of efficacy in children with Dravet syndrome; moreover, other studies are currently ongoing to confirm its effectiveness in patients with epilepsy. On the other hand, it will be of interest to understand whether drugs acting on the endocannabinoid system will be able to reach the market and prove their known preclinical efficacy also in patients with epilepsy.
Collapse
Affiliation(s)
- Carmen De Caro
- a Department of Science of Health, School of Medicine and Surgery , University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Antonio Leo
- a Department of Science of Health, School of Medicine and Surgery , University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Rita Citraro
- a Department of Science of Health, School of Medicine and Surgery , University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Caterina De Sarro
- a Department of Science of Health, School of Medicine and Surgery , University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| | - Roberto Russo
- b Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Antonio Calignano
- b Department of Pharmacy , University of Naples Federico II , Naples , Italy
| | - Emilio Russo
- a Department of Science of Health, School of Medicine and Surgery , University "Magna Graecia" of Catanzaro , Catanzaro , Italy
| |
Collapse
|
34
|
Tutka P, Wlaź A, Florek-Łuszczki M, Kołodziejczyk P, Bartusik-Aebisher D, Łuszczki JJ. Arvanil, olvanil, AM 1172 and LY 2183240 (various cannabinoid CB1 receptor agonists) increase the threshold for maximal electroshock-induced seizures in mice. Pharmacol Rep 2017; 70:106-109. [PMID: 29335158 DOI: 10.1016/j.pharep.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent evidence reveals therapeutic potential for cannabinoids to reduce seizure frequency, severity and duration. Animal models are useful tools to determine the potential antiseizure or antiepileptic effects of cannabinoids. The objective of this study was evaluation of the effect of arvanil, olvanil, AM 1172 and LY 2183240, the compounds interacted with endocannabinoid and/or endovanilloid systems, on convulsions in the commonly used model of convulsions in mice. METHODS Arvanil and olvanil were injected intraperitoneally (ip) 30min and AM 1172 and LY 2183240 were administered ip 60min before the maximal electroshock seizure threshold (MEST) test. The criterion for convulsant activity was tonic hindlimb extension. RESULTS Arvanil, olvanil, AM 1172 and LY 2183240 dose-dependently increased the electroconvulsive threshold in mice. The TID20 (threshold increasing dose 20) values for arvanil, olvanil, AM 1172 and LY 2183240 were 0.9, 2.18, 2.48 and 3.56mgkg-1, respectively, and the TID50 (threshold increasing dose 50) values were 1.88, 6.45, 6.29 and 10.04mgkg-1, respectively. CONCLUSION This study identified anticonvulsant effects of arvanil, olvanil, AM 1172 and LY 2183240. The order of the magnitude of the anticonvulsant effects of the examined compounds was following: arvanil>olvanil>AM 1172>LY 2183240.
Collapse
Affiliation(s)
- Piotr Tutka
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland; Centre for Innovative Research in Medical and Natural Sciences', Faculty of Medicine, University of Rzeszów, Rzeszów, Poland.
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | | - Patrycjusz Kołodziejczyk
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland; Centre for Innovative Research in Medical and Natural Sciences', Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| |
Collapse
|
35
|
Huizenga MN, Wicker E, Beck VC, Forcelli PA. Anticonvulsant effect of cannabinoid receptor agonists in models of seizures in developing rats. Epilepsia 2017; 58:1593-1602. [PMID: 28691158 DOI: 10.1111/epi.13842] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Although drugs targeting the cannabinoid system (e.g., CB1 receptor agonists) display anticonvulsant efficacy in adult animal models of seizures/epilepsy, they remain unexplored in developing animal models. However, cannabinoid system functions emerge early in development, providing a rationale for targeting this system in neonates. We examined the therapeutic potential of drugs targeting the cannabinoid system in three seizure models in developing rats. METHODS Postnatal day (P) 10, Sprague-Dawley rat pups were challenged with the chemoconvulsant methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) or pentylenetetrazole (PTZ), after treatment with either CB1/2 mixed agonist (WIN 55,212-2), CB1 agonist (arachidonyl-2'-chloroethylamide [ACEA]), CB2 agonist (HU-308), CB1 antagonist (AM-251), CB2 antagonist (AM-630), fatty acid amide hydrolase inhibitor (URB-597), or G protein-coupled receptor 55 agonist (O-1602). P20 Sprague-Dawley pups were challenged with DMCM after treatment with WIN, ACEA, or URB. Finally, after pretreatment with WIN, P10 Sprague-Dawley rats were challenged against acute hypoxia-induced seizures. RESULTS The mixed CB1/2 agonist and the CB1-specific agonist, but no other drugs, displayed anticonvulsant effects against clonic seizures in the DMCM model. By contrast, both CB1 and CB2 antagonism increased seizure severity. Similarly, we found that the CB1/2 agonist displayed antiseizure efficacy against acute hypoxia-induced seizures (automatisms, clonic and tonic-clonic seizures) and tonic-clonic seizures evoked by PTZ. Anticonvulsant effects were seen in P10 animals but not P20 animals. SIGNIFICANCE Early life seizures represent a significant cause of morbidity, with 30-40% of infants and children with epilepsy failing to achieve seizure remission with current pharmacotherapy. Identification of new therapies for neonatal/infantile epilepsy syndromes is thus of high priority. These data indicate that the anticonvulsant action of the CB system is specific to CB1 receptor activation during early development and provide justification for further examination of CB1 receptor agonists as novel antiepileptic drugs targeting epilepsy in infants and children.
Collapse
Affiliation(s)
- Megan N Huizenga
- Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, U.S.A
| | - Evan Wicker
- Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, U.S.A
| | - Veronica C Beck
- Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, U.S.A
| | - Patrick A Forcelli
- Pharmacology & Physiology, Georgetown University, Washington, District of Columbia, U.S.A.,Neuroscience, Georgetown University, Washington, District of Columbia, U.S.A.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, U.S.A
| |
Collapse
|
36
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
37
|
Niaz K, Khan F, Maqbool F, Momtaz S, Ismail Hassan F, Nobakht-Haghighi N, Rahimifard M, Abdollahi M. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach. EXCLI JOURNAL 2017; 16:688-711. [PMID: 28827985 PMCID: PMC5547394 DOI: 10.17179/excli2017-257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis.
Collapse
Affiliation(s)
- Kamal Niaz
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faheem Maqbool
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Fatima Ismail Hassan
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Nobakht-Haghighi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Mersin 10, Turkey
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Aizpurua-Olaizola O, Elezgarai I, Rico-Barrio I, Zarandona I, Etxebarria N, Usobiaga A. Targeting the endocannabinoid system: future therapeutic strategies. Drug Discov Today 2017; 22:105-110. [DOI: 10.1016/j.drudis.2016.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 08/11/2016] [Indexed: 02/03/2023]
|
39
|
Separate and combined effects of gabapentin and [INCREMENT]9-tetrahydrocannabinol in humans discriminating [INCREMENT]9-tetrahydrocannabinol. Behav Pharmacol 2016; 27:215-24. [PMID: 26313650 DOI: 10.1097/fbp.0000000000000187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to examine a potential mechanism of action of gabapentin to manage cannabis-use disorders by determining the interoceptive effects of gabapentin in cannabis users discriminating [INCREMENT]-tetrahydrocannabinol ([INCREMENT]-THC) using a pharmacologically selective drug-discrimination procedure. Eight cannabis users learned to discriminate 30 mg oral [INCREMENT]-THC from placebo and then received gabapentin (600 and 1200 mg), [INCREMENT]-THC (5, 15, and 30 mg), and placebo alone and in combination. Self-report, task performance, and physiological measures were also collected. [INCREMENT]-THC served as a discriminative stimulus, produced positive subjective effects, elevated heart rate, and impaired psychomotor performance. Both doses of gabapentin substituted for the [INCREMENT]-THC discriminative stimulus and engendered subjective and performance-impairing effects that overlapped with those of [INCREMENT]-THC when administered alone. When administered concurrently, gabapentin shifted the discriminative-stimulus effects of [INCREMENT]-THC leftward/upward, and combinations of [INCREMENT]-THC and gabapentin generally produced larger effects on cannabinoid-sensitive outcomes relative to [INCREMENT]-THC alone. These results suggest that one mechanism by which gabapentin might facilitate cannabis abstinence is by producing effects that overlap with those of cannabinoids.
Collapse
|
40
|
Kolbaev SN, Simonova VV, Bobrov MY, Sharonova IN, Khaspekov LG. The effect of N-arachidonoyldopamine on the dynamics of the intracellular calcium concentration in hippocampal neurons in the model of postischemic epileptogenesis in vitro. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Tan WH, Bird LM. Angelman syndrome: Current and emerging therapies in 2016. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:384-401. [PMID: 27860204 DOI: 10.1002/ajmg.c.31536] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a loss of the maternally-inherited UBE3A; the paternal UBE3A is silenced in neurons by a mechanism involving an antisense transcript (UBE3A-AS) at the unmethylated paternal locus. We reviewed all published information on the clinical trials that have been completed as well as the publicly available information on ongoing trials of therapies in AS. To date, all clinical trials that strove to improve neurodevelopment in AS have been unsuccessful. Attempts at hypermethylating the maternal locus through dietary compounds were ineffective. The results of an 8-week open-label trial using minocycline as a matrix metalloproteinase-9 inhibitor were inconclusive, while a subsequent randomized placebo-controlled trial suggested that treatment with minocycline for 8 weeks did not result in any neurodevelopmental gains. A 1-year randomized placebo-controlled trial using levodopa to alter the phosphorylation of calcium/calmodulin-dependent kinase II did not lead to any improvement in neurodevelopment. Topoisomerase inhibitors and antisense oligonucleotides are being developed to directly inhibit UBE3A-AS. Artificial transcription factors are being developed to "super activate" UBE3A or inhibit UBE3A-AS. Other strategies targeting specific pathways are briefly discussed. We also reviewed the medications that are currently used to treat seizures and sleep disturbances, which are two of the more common complications of AS. © 2016 Wiley Periodicals, Inc.
Collapse
|
42
|
Crippa JAS, Crippa ACS, Hallak JEC, Martín-Santos R, Zuardi AW. Δ9-THC Intoxication by Cannabidiol-Enriched Cannabis Extract in Two Children with Refractory Epilepsy: Full Remission after Switching to Purified Cannabidiol. Front Pharmacol 2016; 7:359. [PMID: 27746737 PMCID: PMC5043219 DOI: 10.3389/fphar.2016.00359] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Animal studies and preliminary clinical trials have shown that cannabidiol (CBD)-enriched extracts may have beneficial effects for children with treatment-resistant epilepsy. However, these compounds are not yet registered as medicines by regulatory agencies. We describe the cases of two children with treatment-resistant epilepsy (Case A with left frontal dysplasia and Case B with Dravet Syndrome) with initial symptom improvement after the introduction of CBD extracts followed by seizure worsening after a short time. The children presented typical signs of intoxication by Δ9-THC (inappropriate laughter, ataxia, reduced attention, and eye redness) after using a CBD-enriched extract. The extract was replaced by the same dose of purified CBD with no Δ9-THC in both cases, which led to improvement in intoxication signs and seizure remission. These cases support pre-clinical and preliminary clinical evidence suggesting that CBD may be effective for some patients with epilepsy. Moreover, the cases highlight the need for randomized clinical trials using high-quality and reliable substances to ascertain the safety and efficacy of cannabinoids as medicines.
Collapse
Affiliation(s)
- José A S Crippa
- Department of Neuroscience and Behavior, University of São Paulo Ribeirão Preto, Brazil
| | - Ana C S Crippa
- Department of Clinical Medicine, Federal University of Paraná Curitiba, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, University of São Paulo Ribeirão Preto, Brazil
| | - Rocio Martín-Santos
- Department of Neuroscience and Behavior, University of São PauloRibeirão Preto, Brazil; Institute of Neuroscience, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute - Center for Biomedical Research in Mental Health Network and Department of Medicine - University of BarcelonaBarcelona, Spain
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Khaspekov LG, Sharonova IN, Kolbaev SN. Modeling of acquired postischemic epileptogenesis in cultures of neural cells and tissue. NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol Res 2016; 107:85-92. [PMID: 26976797 DOI: 10.1016/j.phrs.2016.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
Abstract
Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising.
Collapse
|
45
|
Verrotti A, Castagnino M, Maccarrone M, Fezza F. Plant-Derived and Endogenous Cannabinoids in Epilepsy. Clin Drug Investig 2016; 36:331-40. [DOI: 10.1007/s40261-016-0379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
46
|
Reddy DS, Golub VM. The Pharmacological Basis of Cannabis Therapy for Epilepsy. J Pharmacol Exp Ther 2016; 357:45-55. [PMID: 26787773 DOI: 10.1124/jpet.115.230151] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/15/2016] [Indexed: 12/30/2022] Open
Abstract
Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy, both adults and children, who do not respond to current medications. There is a large unmet medical need for new antiepileptics that would not interfere with normal function in patients with refractory epilepsy and conditions associated with refractory seizures. The two chief cannabinoids are Δ-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major nonpsychoactive component of marijuana. Claims of clinical efficacy in epilepsy of CBD-predominant cannabis or medical marijuana come mostly from limited studies, surveys, or case reports. However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy. CBD is anticonvulsant, but it has a low affinity for the cannabinoid receptors CB1 and CB2; therefore the exact mechanism by which it affects seizures remains poorly understood. A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy of their use in the treatment of epilepsy. Identification of mechanisms underlying the anticonvulsant efficacy of CBD is also critical for identifying other potential treatment options.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
47
|
Pharmacological therapies for Angelman syndrome. Wien Med Wochenschr 2016; 167:205-218. [PMID: 26758979 DOI: 10.1007/s10354-015-0408-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/15/2015] [Indexed: 12/16/2022]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by a loss of the maternally inherited UBE3A; the paternal UBE3A is silenced in neurons by a mechanism involving an antisense transcript (UBE3A-AS). We reviewed the published information on clinical trials that have been completed as well as the publicly available information on ongoing trials of therapies for AS. Attempts at hypermethylating the maternal locus through dietary compounds were ineffective. The results of a clinical trial using minocycline as a matrix metalloproteinase-9 inhibitor were inconclusive; another clinical trial is underway. Findings from a clinical trial using L-dopa to alter phosphorylation of calcium/calmodulin-dependent kinase II are awaited. Topoisomerase inhibitors and antisense oligonucleotides are being developed to directly inhibit UBE3A-AS. Other strategies targeting specific pathways are briefly discussed. We also reviewed the medications that are currently used to treat seizures and sleep disturbances, which are two of the more debilitating manifestations of AS.
Collapse
|
48
|
Agar E. The role of cannabinoids and leptin in neurological diseases. Acta Neurol Scand 2015; 132:371-80. [PMID: 25880465 DOI: 10.1111/ane.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 01/14/2023]
Abstract
Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.
Collapse
Affiliation(s)
- E. Agar
- Department of Physiology; Faculty of Medicine; University of Ondokuz Mayis; Samsun Turkey
| |
Collapse
|
49
|
Blair RE, Deshpande LS, DeLorenzo RJ. Cannabinoids: is there a potential treatment role in epilepsy? Expert Opin Pharmacother 2015; 16:1911-4. [PMID: 26234319 DOI: 10.1517/14656566.2015.1074181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management. While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established. This commentary will touch on our understanding of the brain endocannabinoid system's regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures. At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.
Collapse
Affiliation(s)
- Robert E Blair
- Virginia Commonwealth University School of Medicine, Department of Neurology , Box 980599, Richmond, VA 23298 , USA +1 804 828 3391 ; +1 804 828 6432 ;
| | | | | |
Collapse
|
50
|
Klotter F, Studer A. Eine kurze und divergente Totalsynthese von (+)-Machaeriol B, (+)-Machaeriol D, (+)-Δ8-THC und zugehörigen Analoga. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|