1
|
Erland LA. Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future. PLANT SIGNALING & BEHAVIOR 2024; 19:2366545. [PMID: 38899558 PMCID: PMC11195476 DOI: 10.1080/15592324.2024.2366545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (N-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.
Collapse
|
2
|
Shi L, Cao M, Lu X, Dong W, Lan Q, Chen W, Yang Z, Li X, Cao S. Melatonin extends shelf life in postharvest okra via delaying fruit softening and reducing weight loss. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9506-9513. [PMID: 39041380 DOI: 10.1002/jsfa.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Melatonin, a hormone present in animals and some plants, has garnered attention for its potential in preserving harvested produce. Softening due to changes in cell wall composition and wilting caused by weight loss are the major reasons for the loss of commercial value in postharvest okra. This study aimed to evaluate the impact of melatonin on the softening and weight loss of postharvest okra. RESULTS The results revealed that the application of melatonin had a significant influence on the maintenance of fruit firmness by inhibiting the breakdown and dissolution of cell wall polysaccharides by suppressing the expression of specific genes responsible for cell wall degradation in okra. Conversely, melatonin treatment positively influenced the expression of genes involved in the synthesis of cell wall components. Furthermore, the treatment exhibited notable benefits in reducing weight loss in okra, which was accomplished by promoting the closure of stomata - the tiny pores on the surface of the fruit. CONCLUSION Melatonin could serve as a novel approach to reduce water loss, delay fruit softening and extend the shelf life of okra. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Mengze Cao
- Seymour College, Glen Osmond, South Australia, Australia
| | - Xiaotian Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wanqi Dong
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qingqing Lan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Shifeng Cao
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
3
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
4
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Dzinyela R, Hwarari D, Opoku KN, Yang L, Movahedi A. Enhancing drought stress tolerance in horticultural plants through melatonin-mediated phytohormonal crosstalk. PLANT CELL REPORTS 2024; 43:272. [PMID: 39466449 DOI: 10.1007/s00299-024-03362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
KEY MESSAGE Melatonin and melatonin-mediated phytohormonal crosstalk play a multifaceted role in improving drought stress tolerance via molecular mechanisms and biochemical interactions in horticultural plants. The physical, physiological, biochemical, and molecular characteristics of plants are all affected by drought stress. Crop yield and quality eventually decline precipitously as a result. A phytohormone, melatonin, controls several plant functions during drought stress. However, the interactions between melatonin and other phytohormones, particularly how they control plant responses to drought stress, have not been clearly explored. This review explores the effects of melatonin and particular phytohormones on improving plant tolerance to drought stress. Specifically, the key melatonin roles in improved photosynthetic performance, better antioxidant activities, up-regulated gene expression, increased plant growth, and yield, etc., during drought stress have been elucidated in this review. Furthermore, this review explains how the intricate networks of melatonin-mediated crosstalk phytohormones, such as IAA, BR, ABA, GA, JA, CK, ET, SA, etc., enable horticultural plants to tolerate drought stress. Thus, this research provides a better understanding of the role of phytohormones, mainly melatonin, elucidates phytohormonal cross-talks in drought stress response, and future perspectives of phytohormonal contributions in plant improvements including engineering plants for better drought stress tolerance via targeting melatonin interactions.
Collapse
Affiliation(s)
- Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, 73019, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Kwadwo Nketia Opoku
- Synthetic Biology Research Center, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
6
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Banerjee A, Roychoudhury A. Molecular characterization of a phytomelatonin receptor and its overexpression as a 'one-stop' solution to nullify the toxic effects of hazardous inorganic agro-pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125041. [PMID: 39343345 DOI: 10.1016/j.envpol.2024.125041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Inorganic toxicants like arsenic, copper, lead, nickel and fluoride are notorious agro-pollutants, impeding plant-productivity due to high bioaccumulation. Consumption of such contaminated plant-parts causes irreversible health hazards. We identified a G-protein coupled receptor, serving as melatonin receptor (MelR) in Nicotiana tabacum (NtMelR), that relayed downstream-signaling after binding melatonin, a potent growth regulator and antioxidant. Using inhibitors against G-protein-α and NADPH oxidase (NOX), and by supplementing epidermal strips with exogenous melatonin and H2O2, we established that NtMelR acted upstream of reactive oxygen species (ROS) production in guard cells. Transgenic lines of N. benthamiana overexpressing NtMelR maintained constitutive melatonin-signaling via MelR, leading to efficient stomatal closure for preventing desiccation during oxidative stress. Melatonin biosynthesis was stimulated in the transgenic lines, exposed to different agro-pollutant stress, providing a steady-abundance of ligand for NtMelR binding and activating the defence machinery, comprising of enzymatic-antioxidants like superoxide dismutase, catalase, peroxidases and glyoxalases. Due to increased antioxidant capacity, the transgenics exhibited less molecular injuries (electrolyte leakage, methylglyoxal accumulation and NOX activity), generated less ROS and bioaccumulated significantly lower levels of toxicants. Unlike the wild-type counterparts, the transgenics maintained high relative water content, photosynthetic efficiency, could flower abundantly and even produce seeds. Overall, we established that overexpression of NtMelR is a single-window strategy to generate multiple-stress tolerant genotypes.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
8
|
Yuan X, Li J, Zhang X, Ai X, Bi H. Auxin as a downstream signal positively participates in melatonin-mediated chilling tolerance of cucumber. PHYSIOLOGIA PLANTARUM 2024; 176:e14526. [PMID: 39318034 DOI: 10.1111/ppl.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Here, we elucidate the interaction between IAA and melatonin (MT) in response to chilling in cucumber. The results showed that chilling stress induced the increase of endogenous MT and IAA, and the application of MT promoted the synthesis of IAA, while IAA could not affect endogenous MT content under chilling stress. Moreover, MT and IAA application both remarkably increased the chilling tolerance of cucumber seedlings in terms of lower contents of MDA and ROS, higher mRNA abundance of cold response genes, net photosynthetic rate (Pn), maximum regeneration rate of ribulose-1,5-diphosphate (Jmax), Rubisco maximum carboxylation efficiency (Vcmax), the activities and gene expression of RCA and Rubisco, as well as the content of active P700 (I/I0) and photosynthetic electron transport, compared with the plants in H2O treatment. Further analysis revealed that the inhibition of IAA transportation significantly reduced the chilling tolerance induced by MT, whereas the inhibition of endogenous MT did not affect the chilling tolerance induced by IAA. Meanwhile, we found that overexpression of the MT biosynthesis gene CsASMT increased the chilling tolerance, which was blocked by inhibition of endogenous IAA, and the silence of IAA biosynthesis gene CsYUCCA10 decreased the chilling tolerance of cucumber, which could not be alleviated by MT. These data implied IAA acted as a downstream signal to participate in the MT-induced chilling tolerance of cucumber seedlings. The study has implications for the production of greenhouse cucumber in winter seasons.
Collapse
Affiliation(s)
- Xinru Yuan
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Junqi Li
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiaowei Zhang
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xizhen Ai
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Huangai Bi
- Key laboratory of crop biology and genetic improvement of horticultural crops in Huanghuai region/College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| |
Collapse
|
9
|
Kolupaev YE, Taraban DA, Karpets YV, Kokorev AI, Yastreb TO, Blume YB, Yemets AI. Involvement of ROS and calcium ions in developing heat resistance and inducing antioxidant system of wheat seedlings under melatonin's effects. PROTOPLASMA 2024; 261:975-989. [PMID: 38622466 DOI: 10.1007/s00709-024-01952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The stress-protective effect of melatonin (N-acetyl-5-methoxytryptamine) on plant cells is mediated by key signaling mediators, in particular calcium ions and reactive oxygen species (ROS). However, the links between changes in calcium and redox homeostasis and the formation of adaptive responses of cultivated cereals (including wheat) to the action of high temperatures have not yet been studied. In the present study, we investigated the possible involvement of ROS and calcium ions as signaling mediators in developing heat resistance in wheat (Triticum aestivum L.) seedlings and activating their antioxidant system. Treatment of 3-day-old etiolated seedlings with melatonin solutions at concentrations 0.01-10 µM increased their survival after exposure to 45 °C for 10 min. The most significant stress-protective effect was exerted by melatonin treatment at 1 µM concentration. Under the influence of melatonin, a transient enhancement of superoxide anion radical (O2•-) generation and an increase in hydrogen peroxide content were observed in roots, with a maximum at 1 h. Four hours after treatment with melatonin, the activity of catalase and guaiacol peroxidase increased in roots, while the activity of superoxide dismutase did not change significantly. After exposure to 45 °C, the activity of catalase and guaiacol peroxidase was higher in the roots of melatonin-treated wheat seedlings, and the indices of ROS generation, content of the lipid peroxidation product malonic dialdehyde, and cell membrane damage were lower than in control seedlings. Melatonin-induced changes in root ROS generation and antioxidant enzyme activities were eliminated by pretreatment with the hydrogen peroxide scavenger dimethylthiourea (DMTU), NADPH oxidase inhibitor imidazole, and calcium antagonists (the extracellular calcium chelator EGTA and phospholipase C inhibitor neomycin). Treatment with DMTU, imidazole, EGTA, and neomycin also abolished the melatonin-induced increase in survival of wheat seedlings after heat stress. The role of calcium ions and ROS, generated with the participation of NADPH oxidase, as signaling mediators in the melatonin-induced antioxidant system and heat stress resistance of wheat seedlings have been demonstrated.
Collapse
Affiliation(s)
- Yuriy E Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
- State Biotechnological University, Kharkiv, Ukraine
- Poltava State Agrarian University, Poltava, Ukraine
| | | | | | - Alexander I Kokorev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Tetiana O Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine.
- Crop Research Institute, Prague, Czech Republic.
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Xu Y, Wang R, Ma Y, Li M, Bai M, Wei G, Wang J, Feng L. Metabolite and Transcriptome Profiling Analysis Provides New Insights into the Distinctive Effects of Exogenous Melatonin on Flavonoids Biosynthesis in Rosa rugosa. Int J Mol Sci 2024; 25:9248. [PMID: 39273197 PMCID: PMC11395435 DOI: 10.3390/ijms25179248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Although the petals of Rosa rugosa are rich in flavonoids and their bioactivity has a significant impact on human health, the flavonoid content decreases during flower development. In this study, R. rugosa 'Feng hua' was used to investigate the effects of the melatonin foliar spray on enhancing the quality of rose by focusing on major flavonoids. The results showed that the contents of total flavonoids in rose petals at the full bloom stage induced by melatonin obeyed a bell-shaped curve, with a maximum at 0.3 mM, indicating the concentration-dependent up-regulation of flavonoid biosynthesis. In the treatment with 0.3 mM melatonin, metabolomic analyses showed that the concentrations of ten main flavonoids were identified to be increased by melatonin induction, with high levels and increases observed in three flavonols and two anthocyanins. KEGG enrichment of transcriptomic analysis revealed a remarkable enrichment of DEGs in flavonoid and flavonol biosynthesis, such as Rr4CL, RrF3H, and RrANS. Furthermore, functional validation using virus-induced gene silencing technology demonstrated that Rr4CL3 is the crucial gene regulating flavonoid biosynthesis in response to the stimulant of melatonin. This study provides insights into the exogenous melatonin regulation mechanism of biosynthesis of flavonoids, thereby offering potential industrial applications.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ruotong Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuanxiao Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Meng Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengjuan Bai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Liu Y, Xu J, Lu X, Huang M, Yu W, Li C. The role of melatonin in delaying senescence and maintaining quality in postharvest horticultural products. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150996 DOI: 10.1111/plb.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca2+, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.
Collapse
Affiliation(s)
- Y Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - J Xu
- College of Agriculture, Guangxi University, Nanning, China
| | - X Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - M Huang
- College of Agriculture, Guangxi University, Nanning, China
| | - W Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - C Li
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Guo Y, Zhang G, Li Z, Liao X, Sun W, Jiang X. Revealing the Effects of Zinc Sulphate Treatment on Melatonin Synthesis and Regulatory Gene Expression in Germinating Hull-Less Barley through Transcriptomic Analysis. Genes (Basel) 2024; 15:1077. [PMID: 39202436 PMCID: PMC11354046 DOI: 10.3390/genes15081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigated the transcriptomic mechanisms underlying melatonin accumulation and the enhancement of salt tolerance in hull-less barley seeds subjected to zinc sulphate stress. Following zinc sulphate treatment, hull-less barley seeds demonstrated increased melatonin accumulation and improved salt tolerance. Through transcriptome analysis, the study compared gene expression alterations in seeds (using the first letter of seed, this group is marked as 'S'), seeds treated with pure water (as the control group, is marked as 'C'), and germinated seeds exposed to varying concentrations of zinc sulphate (0.2 mM and 0.8 mM, the first letter of zinc sulphate, 'Z', is used to mark groups 'Z1' and 'Z2'). The analysis revealed that 8176, 759, and 622 differentially expressed genes (DEGs) were identified in the three comparison groups S.vs.C, C.vs.Z1, and C.vs.Z2, respectively. Most of the DEGs were closely associated with biological processes, including oxidative-stress response, secondary metabolite biosynthesis, and plant hormone signaling. Notably, zinc sulphate stress influenced the expression levels of Tryptophan decarboxylase 1 (TDC1), Acetylserotonin O-methyltransferase 1 (ASMT1), and Serotonin N-acetyltransferase 2 (SNAT2), which are key genes involved in melatonin synthesis. Furthermore, the expression changes of genes such as Probable WRKY transcription factor 75 (WRKY75) and Ethylene-responsive transcription factor ERF13 (EFR13) exhibited a strong correlation with fluctuations in melatonin content. These findings contribute to our understanding of the mechanisms underlying melatonin enrichment in response to zinc sulphate stress.
Collapse
Affiliation(s)
| | - Guoqiang Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Y.G.); (Z.L.); (X.L.); (W.S.); (X.J.)
| | | | | | | | | |
Collapse
|
13
|
Hussain A, Faheem B, Jang HS, Lee DS, Mun BG, Rolly NK, Yun BW. Melatonin-Nitric Oxide Crosstalk in Plants and the Prospects of NOMela as a Nitric Oxide Donor. Int J Mol Sci 2024; 25:8535. [PMID: 39126104 PMCID: PMC11313359 DOI: 10.3390/ijms25158535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Melatonin regulates vital physiological processes in animals, such as the circadian cycle, sleep, locomotion, body temperature, food intake, and sexual and immune responses. In plants, melatonin modulates seed germination, longevity, circadian cycle, photoperiodicity, flowering, leaf senescence, postharvest fruit storage, and resistance against biotic and abiotic stresses. In plants, the effect of melatonin is mediated by various regulatory elements of the redox network, including RNS and ROS. Similarly, the radical gas NO mediates various physiological processes, like seed germination, flowering, leaf senescence, and stress responses. The biosynthesis of both melatonin and NO takes place in mitochondria and chloroplasts. Hence, both melatonin and nitric oxide are key signaling molecules governing their biological pathways independently. However, there are instances when these pathways cross each other and the two molecules interact with each other, resulting in the formation of N-nitrosomelatonin or NOMela, which is a nitrosated form of melatonin, discovered recently and with promising roles in plant development. The interaction between NO and melatonin is highly complex, and, although a handful of studies reporting these interactions have been published, the exact molecular mechanisms governing them and the prospects of NOMela as a NO donor have just started to be unraveled. Here, we review NO and melatonin production as well as RNS-melatonin interaction under normal and stressful conditions. Furthermore, for the first time, we provide highly sensitive, ozone-chemiluminescence-based comparative measurements of the nitric oxide content, as well as NO-release kinetics between NOMela and the commonly used NO donors CySNO and GSNO.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Brekhna Faheem
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hyung-Seok Jang
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
15
|
Khan S, Alvi AF, Fatma M, Al-Hashimi A, Sofo A, Khan NA. Relative effects of melatonin and hydrogen sulfide treatments in mitigating salt damage in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1406092. [PMID: 39119490 PMCID: PMC11306083 DOI: 10.3389/fpls.2024.1406092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Soil salinity poses a significant threat to agricultural productivity, impacting the growth and yield of wheat (Triticum aestivum L.) plants. This study investigates the potential of melatonin (MT; 100 µM) and hydrogen sulfide (H2S; 200 µM sodium hydrosulfide, NaHS) to confer the tolerance of wheat plants to 100 mM NaCl. Salinity stress induced the outburst of reactive oxygen species (ROS) resulting in damage to the chloroplast structure, growth, photosynthesis, and yield. Application of either MT or NaHS augmented the activity of antioxidant enzymes, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione (GSH) levels, upregulated the expression of Na+ transport genes (SOS1, SOS2, SOS3, NHX1), resulting in mitigation of salinity stress. Thus, improved stomatal behavior, gas-exchange parameters, and maintenance of chloroplast structure resulted in enhanced activity of the Calvin cycle enzymes and overall enhancement of growth, photosynthetic, and yield performance of plants under salinity stress. The use of DL-propargylglycine (PAG, an inhibitor of hydrogen sulfide biosynthesis) and p-chlorophenyl alanine (p-CPA, an inhibitor of melatonin biosynthesis) to plants under salt stress showed the comparative necessity of MT and H2S in mitigation of salinity stress. In the presence of PAG, more pronounced detrimental effects were observed than in the presence of p-CPA, emphasizing that MT was involved in mitigating salinity through various potential pathways, one of which was through H2S.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adriano Sofo
- Department of European and Mediterranean Cultures, Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
16
|
Melotto M, Fochs B, Jaramillo Z, Rodrigues O. Fighting for Survival at the Stomatal Gate. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:551-577. [PMID: 39038249 DOI: 10.1146/annurev-arplant-070623-091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
Collapse
Affiliation(s)
- Maeli Melotto
- Department of Plant Sciences, University of California, Davis, California, USA;
| | - Brianna Fochs
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Zachariah Jaramillo
- Department of Plant Sciences, University of California, Davis, California, USA;
- Plant Biology Graduate Group, University of California, Davis, California, USA
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse, INP-PURPAN, Toulouse, France
| |
Collapse
|
17
|
Yildiztugay E, Arikan Abdulveli B, Ozfidan-Konakci C, Turkan I. Melatonin mediated tolerance to benzalkonium chloride phytotoxicity through improved growth, photochemical reactions, and antioxidant system in wild-type and snat2 mutant Arabidopsis lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108779. [PMID: 38823090 DOI: 10.1016/j.plaphy.2024.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Melatonin (Mel) is a phytohormone that plays a crucial role in various plant processes, including stress response. Despite numerous studies on the role of Mel in stress resistance, its significance in plants exposed to benzalkonium chloride (BAC) pollution remains unexplored. BAC, a common antiseptic, poses a threat to terrestrial plants due to its widespread use and inefficient removal, leading to elevated concentrations in the environment. This study investigated the impact of BAC (0.5 mg L-1) pollution on wild-type Col-0 and snat2 knockout mutant Arabidopsis lines, revealing reduced growth, altered water relations, and gas exchange parameters. On the other hand, exogenous Mel (100 μM) treatments mitigated BAC-induced phytotoxicity and increased the growth rate by 1.8-fold in Col-0 and 2-fold in snat2 plants. snat2 mutant seedlings had a suppressed carbon assimilation rate (A) under normal conditions, but BAC contamination led to further A repression by 71% and 48% in Col-0 and snat2 leaves, respectively. However, Mel treatment on stressed plants was successful in improving Fv/Fm and increased the total photosynthesis efficiency by regulating photochemical reactions. Excessive H2O2 accumulation in the guard cells of plants exposed to BAC pollution was detected by confocal microscopy. Mel treatments triggered almost all antioxidant enzyme activities (except POX) in both Arabidopsis lines under stress. This enhanced antioxidant activity, facilitated by foliar Mel application, contributed to the alleviation of oxidative damage, regulation of photosynthesis reactions, and promotion of plant growth in Arabidopsis. In addition to corroborating results observed in many agricultural plants regarding the development of tolerance to environmental stresses, this study provides novel insights into the action mechanisms of Mel under the emerging pollutant benzalkonium chloride.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Ismail Turkan
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
18
|
Chen K, Hu Q, Ma X, Zhang X, Qian R, Zheng J. The effect of exogenous melatonin on waterlogging stress in Clematis. FRONTIERS IN PLANT SCIENCE 2024; 15:1385165. [PMID: 38957603 PMCID: PMC11217522 DOI: 10.3389/fpls.2024.1385165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Clematis is the queen of the vines, being an ornamental plant with high economic value. Waterlogging stress reduces the ornamental value of the plant and limits its application. Melatonin plays an important role in plant resistance to abiotic stresses. In this study, the physiological responses and gene expression levels of two wild species, namely, Clematis tientaiensis and Clematis lanuginosa, and two horticultural varieties, namely, 'Sen-No-Kaze' and 'Viva Polonia,' under waterlogging stress were analyzed to determine the effect of melatonin on waterlogging tolerance. The results showed that the waterlogging tolerances of C. lanuginosa and 'Sen-No-Kaze' were relatively poor, but were significantly improved by concentrations of 100 μmol·L-1 and 50 μmol·L-1 melatonin. C. tientaiensis and 'Viva Polonia' had relatively strong tolerance to waterlogging, and this was significantly improved by 200 μmol·L-1 melatonin. Under waterlogging stress, the relative conductivity and H2O2 content of Clematis increased significantly; the photosynthetic parameters and chlorophyll contents were significantly decreased; photosynthesis was inhibited; the contents of soluble protein and soluble sugars were decreased. Effective improvement of waterlogging tolerance after exogenous melatonin spraying, the relative conductivity was decreased by 4.05%-27.44%; the H2O2 content was decreased by 3.84%-23.28%; the chlorophyll content was increased by 35.59%-103.36%; the photosynthetic efficiency was increased by 25.42%-45.86%; the antioxidant enzyme activities of APX, POD, SOD, and CAT were increased by 28.03%-158.61%; the contents of proline, soluble protein, and soluble sugars were enhanced, and cell homeostasis was improved. Transcription sequencing was performed on wild Clematis with differences in waterlogging tolerance, and nine transcription factors were selected that were highly correlated with melatonin and that had the potential to improve waterlogging tolerance, among which LBD4, and MYB4 were significantly positively correlated with the antioxidant enzyme system, and bHLH36, DOF36, and WRKY4 were significantly negatively correlated. Photosynthetic capacity was positively correlated with DOF36 and WRKY4 while being significantly negatively correlated with MYB4, MOF1, DOF47, REV1 and ABR1. Melatonin could enhance the flooding tolerance of Clematis by improving photosynthetic efficiency and antioxidant enzyme activity. This study provides an important basis and reference for the application of melatonin in waterlogging-resistant breeding of Clematis.
Collapse
Affiliation(s)
- Kai Chen
- College of Landscape Architecture, Zhejiang A & F University, Hangzhou, China
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Qingdi Hu
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiaohua Ma
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xule Zhang
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Renjuan Qian
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Jian Zheng
- Wenzhou Key laboratory of Resource Plant Innovation and Utilization, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
19
|
Zhao C, Wang Z, Liao Z, Liu X, Li Y, Zhou C, Sun C, Wang Y, Cao J, Sun C. Integrated Metabolomic-Transcriptomic Analyses of Flavonoid Accumulation in Citrus Fruit under Exogenous Melatonin Treatment. Int J Mol Sci 2024; 25:6632. [PMID: 38928338 PMCID: PMC11204001 DOI: 10.3390/ijms25126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhendong Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Xiaojuan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yujia Li
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Chenwen Zhou
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Cui Sun
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Yue Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
20
|
Jan R, Asif S, Asaf S, Lubna, Khan Z, Kim KM. Unveiling the protective role of anthocyanin in rice: insights into drought-induced oxidative stress and metabolic regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1397817. [PMID: 38863532 PMCID: PMC11165195 DOI: 10.3389/fpls.2024.1397817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
This study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000). Anthocyanin-treated plants exhibited significant enhancements in various traits, including growth parameters and reproductive characteristics, under normal conditions. When subjected to drought stress, these plants displayed resilience, maintaining or improving essential morphological and physiological features compared to non-treated counterparts. Notably, anthocyanin application mitigated drought-induced oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and lipid membrane peroxidation. The study also elucidates the regulatory role of anthocyanins in the expression of flavonoid biosynthetic genes, leading to increased levels of key secondary metabolites. Furthermore, anthocyanin treatment influenced the levels of stress-related signaling molecules, including melatonin, proline, abscisic acid (ABA), and salicylic acid (SA), contributing to enhanced stress tolerance. The enzymatic activity of antioxidants and the expression of drought-responsive genes were modulated by anthocyanins, emphasizing their role in antioxidant defense and stress response. Additionally, anthocyanin treatment positively influenced macronutrient concentrations, particularly calcium ion (Ca+), potassium ion (K+), and sodium ion (Na+), essential for cell wall and membrane stability. The findings collectively highlight the multifaceted protective effects of anthocyanins, positioning them as potential key players in conferring resilience to drought stress in rice plants. The study provides valuable insights into the molecular and physiological mechanisms underlying anthocyanin-mediated enhancement of drought stress tolerance, suggesting promising applications in agricultural practices for sustainable crop production.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Cheng X, Zheng Y, Liu X, Xu L, An S, Liu Y, Tan M, Wei Y, Shi H. Overexpression of cassava melatonin receptor PMTR1 plays dual roles in development under light and dark conditions in Arabidopsis. PLANT CELL REPORTS 2024; 43:153. [PMID: 38806727 DOI: 10.1007/s00299-024-03246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.
Collapse
Affiliation(s)
- Xiao Cheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yu Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Xinyu Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Lunhui Xu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Shiqin An
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yinghao Liu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Mengting Tan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Yunxie Wei
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China.
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
22
|
Duan Y, Wang X, Jiao Y, Liu Y, Li Y, Song Y, Wang L, Tong X, Jiang Y, Wang S, Wang S. Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: a transcriptomic and metabolomic approach. BMC PLANT BIOLOGY 2024; 24:380. [PMID: 38720246 PMCID: PMC11077714 DOI: 10.1186/s12870-024-05101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.
Collapse
Affiliation(s)
- Yajuan Duan
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Xianxu Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yan Jiao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yangyang Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yue Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yongze Song
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Xiaohong Tong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Yan Jiang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| | - Sui Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
23
|
Sati H, Chinchkar AV, Kataria P, Pareek S. The role of phytomelatonin in plant homeostasis, signaling, and crosstalk in abiotic stress mitigation. PHYSIOLOGIA PLANTARUM 2024; 176:e14413. [PMID: 38924553 DOI: 10.1111/ppl.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
In recent years, there has been an increase in the study of phytomelatonin. Having numerous functions in animals, melatonin produced by plants (phytomelatonin) is also a multi-regulatory molecule with great potential in plant physiology and in mitigating abiotic stresses, such as drought, salinity, chilling, heat, chemical contamination, and UV-radiation stress. This review highlights the primary functions of phytomelatonin as an anti-stress molecule against abiotic stress. We discuss the role of phytomelatonin as a master regulator, oxidative stress manager, reactive oxygen species and reactive nitrogen species regulator, and defense compounds inducer. Although there exist a handful of reviews on the crosstalk of phytomelatonin with other signaling molecules like auxin, cytokinin, gibberellin, abscisic acid, ethylene, nitric oxide, jasmonic acid, and salicylic acid, this review looks at studies that have reported a few aspects of phytomelatonin with newly discovered signaling molecules along with classical signaling molecules with relation to abiotic stress tolerance. The research and applications of phytomelatonin with hydrogen sulfide, strigolactones, brassinosteroids, and polyamines are still in their nascent stage but hold a promising scope for the future. Additionally, this review states the recent developments in the signaling of phytomelatonin with nitrogen metabolism and nitrosative stress in plants.
Collapse
Affiliation(s)
- Hansika Sati
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| | - Ajay V Chinchkar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
- Global Brand Resources Pvt. Ltd., Gandhidham (Kutch), Gujarat, India
| | - Priyanka Kataria
- Department of Food Science & Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana, India
| |
Collapse
|
24
|
Sharma M, Tisarum R, Kohli RK, Batish DR, Cha-Um S, Singh HP. Inroads into saline-alkaline stress response in plants: unravelling morphological, physiological, biochemical, and molecular mechanisms. PLANTA 2024; 259:130. [PMID: 38647733 DOI: 10.1007/s00425-024-04368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
MAIN CONCLUSION This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Environmental Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014, India
- Amity University, Mohali Campus, Sector 82A, Mohali, 140306, Punjab, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
25
|
Kołodziejczyk I, Kaźmierczak A. Melatonin - This is important to know. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170871. [PMID: 38340815 DOI: 10.1016/j.scitotenv.2024.170871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
MEL (N-acetyl-5-methoxytryptamine) is a well-known natural compound that controls cellular processes in both plants and animals and is primarily found in plants as a neurohormone. Its roles have been described very broadly, from its antioxidant function related to the photoperiod and determination of seasonal rhythms to its role as a signalling molecule, imitating the action of plant hormones (or even being classified as a prohormone). MEL positively affects the yield and survival of plants by increasing their tolerance to unfavourable biotic and abiotic conditions, which makes MEL widely applicable in ecological farming as a stimulant of growth and development. Thus, it is called a phytobiostimulator. In this review, we discuss the genesis of MEL functions, the presence of MEL at the cellular level and its effects on gene expression and plant development, which can ensure the survival of plants under the conditions they encounter. Moreover, we consider the future application possibilities of MEL in agriculture.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Institute of Ecology and Environmental Protection, University of Lodz, Lodz 90-236, Banacha 12/16, 90-237, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
26
|
Mukherjee S, Roy S, Arnao MB. Nanovehicles for melatonin: a new journey for agriculture. TRENDS IN PLANT SCIENCE 2024; 29:232-248. [PMID: 38123438 DOI: 10.1016/j.tplants.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, West Bengal 742213, India
| | - Suchismita Roy
- Department for Cell and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
27
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
28
|
Khan Z, Jan R, Asif S, Farooq M, Jang YH, Kim EG, Kim N, Kim KM. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Sci Rep 2024; 14:1214. [PMID: 38216610 PMCID: PMC10786868 DOI: 10.1038/s41598-024-51369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Due to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop's yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants. Eight groups of rice plants (3 replicates, 5 plants each) underwent varied treatments: control, melatonin, salt, drought, salt + drought, salt + melatonin, drought + melatonin, and salt + drought + melatonin. Melatonin (100 µM) was alternately applied a week before stress exposure; salt stress received 100 mM NaCl every 3 days for 3 weeks, and drought stress involved 10% PEG. Young leaves were randomly sampled from each group. The results showed that melatonin treatment markedly reduces salt and drought stress damage by promoting root, shoot length, fresh and dry weight, increasing chlorophyll contents, and inhibiting excessive production of oxidative stress markers. Salt and drought stress significantly decreased the water balance, and damaged cell membrane by reducing relative water contents and increasing electrolyte leakage. However, melatonin treated rice plants showed high relative water contents and low electrolyte leakage. Under salt and drought stress conditions, exogenous application of melatonin boosted the expression level of salt and drought stress responsive genes like OsSOS, OsNHX, OsHSF and OsDREB in rice plants. Taken together, our results reveal that melatonin treatment significantly increases salt and drought tolerance of rice plants, by increasing plant biomass, suppressing ROS accumulation, elevating antioxidants defense efficiency, and up-regulating the expression of salt and drought stress responsive genes.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu, 41566, South Korea.
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
29
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
30
|
Li J, Lv K, Wu J, Xie Y, Zhang J, Zhang N, Xu W. Exogenous Melatonin Promotes Cold Tolerance in Grape Seedlings: Physiological, Transcriptomic, and Functional Evidence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19970-19985. [PMID: 38055343 DOI: 10.1021/acs.jafc.3c05907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melatonin (MEL) is an antioxidant molecule that enhances plant tolerance to environmental stress. However, the mechanisms by which MEL regulates cold signaling pathways in grapes under cold stress remain elusive. Here, we investigated the physiological and transcriptomic changes in grape seedlings treated with exogenous MEL to determine their protective role under cold stress. Results showed that 150 μM MEL effectively attenuated cold-induced cell damage by reducing reactive oxygen species (ROS) and preserving the chloroplast structure and function. MEL also inhibited tannin degradation, which contributed to its protective effect. Exogenous MEL promoted the synthesis of endogenous MEL, abscisic acid, auxin, and cytokinin while inhibiting gibberellin. Transcriptomic profiling revealed 776 differentially expressed transcripts in MEL-treated samples compared to controls. Functional analysis of a candidate hub gene, VvHSFA6b, showed that its overexpression in grape calli enhances cold tolerance by activating jasmonic acid synthesis pathway genes, promoting JA accumulation, and inhibiting JAZ-repressed transcription factors.
Collapse
Affiliation(s)
- Junduo Li
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Kai Lv
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Jieping Wu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Yaping Xie
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Junxia Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Ningbo Zhang
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750021, China
| |
Collapse
|
31
|
Wang M, Fan X, Ding F. Jasmonate: A Hormone of Primary Importance for Temperature Stress Response in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:4080. [PMID: 38140409 PMCID: PMC10748343 DOI: 10.3390/plants12244080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Temperature is a critical environmental factor that plays a vital role in plant growth and development. Temperatures below or above the optimum ranges lead to cold or heat stress, respectively. Temperature stress retards plant growth and development, and it reduces crop yields. Jasmonates (JAs) are a class of oxylipin phytohormones that play various roles in growth, development, and stress response. In recent years, studies have demonstrated that cold and heat stress affect JA biosynthesis and signaling, and JA plays an important role in the response to temperature stress. Recent studies have provided a large body of information elucidating the mechanisms underlying JA-mediated temperature stress response. In the present review, we present recent advances in understanding the role of JA in the response to cold and heat stress, and how JA interacts with other phytohormones during this process.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| |
Collapse
|
32
|
Liu Z, Dai H, Hao J, Li R, Pu X, Guan M, Chen Q. Current research and future directions of melatonin's role in seed germination. STRESS BIOLOGY 2023; 3:53. [PMID: 38047984 PMCID: PMC10695909 DOI: 10.1007/s44154-023-00139-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Seed germination is a complex process regulated by internal and external factors. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous signaling molecule, playing an important role in regulating seed germination under normal and stressful conditions. In this review, we aim to provide a comprehensive overview on melatonin's effects on seed germination on the basis of existing literature. Under normal conditions, exogenous high levels of melatonin can suppress or delay seed germination, suggesting that melatonin may play a role in maintaining seed dormancy and preventing premature germination. Conversely, under stressful conditions (e.g., high salinity, drought, and extreme temperatures), melatonin has been found to accelerate seed germination. Melatonin can modulate the expression of genes involved in ABA and GA metabolism, thereby influencing the balance of these hormones and affecting the ABA/GA ratio. Melatonin has been shown to modulate ROS accumulation and nutrient mobilization, which can impact the germination process. In conclusion, melatonin can inhibit germination under normal conditions while promoting germination under stressful conditions via regulating the ABA/GA ratios, ROS levels, and metabolic enzyme activity. Further research in this area will deepen our understanding of melatonin's intricate role in seed germination and may contribute to the development of improved seed treatments and agricultural practices.
Collapse
Affiliation(s)
- Ze Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hengrui Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jinjiang Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
33
|
Moustakas M, Sperdouli I, Adamakis IDS, Şaş B, İşgören S, Moustaka J, Morales F. Mechanistic Approach on Melatonin-Induced Hormesis of Photosystem II Function in the Medicinal Plant Mentha spicata. PLANTS (BASEL, SWITZERLAND) 2023; 12:4025. [PMID: 38068660 PMCID: PMC10708495 DOI: 10.3390/plants12234025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024]
Abstract
Melatonin (MT) is considered a new plant hormone having a universal distribution from prokaryotic bacteria to higher plants. It has been characterized as an antistress molecule playing a positive role in the acclimation of plants to stress conditions, but its impact on plants under non-stressed conditions is not well understood. In the current research, we evaluated the impact of MT application (10 and 100 μM) on photosystem II (PSII) function, reactive oxygen species (ROS) generation, and chlorophyll content on mint (Mentha spicata L.) plants in order to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process that under non-stressed conditions is still unclear. Seventy-two hours after the foliar spray of mint plants with 100 μM MT, the improved chlorophyll content imported a higher amount of light energy capture, which caused a 6% increase in the quantum yield of PSII photochemistry (ΦPSII) and electron transport rate (ETR). Nevertheless, the spray with 100 μM MT reduced the efficiency of the oxygen-evolving complex (OEC), causing donor-side photoinhibition, with a simultaneous slight increase in ROS. Even so, the application of 100 μM MT decreased the excess excitation energy at PSII implying superior PSII efficiency. The decreased excitation pressure at PSII, after 100 μM MT foliar spray, suggests that MT induced stomatal closure through ROS production. The response of ΦPSII to MT spray corresponds to a J-shaped hormetic curve, with ΦPSII enhancement by 100 μM MT. It is suggested that the hormetic stimulation of PSII functionality was triggered by the non-photochemical quenching (NPQ) mechanism that stimulated ROS production, which enhanced the photosynthetic function. It is concluded that MT molecules can be used under both stress and non-stressed conditions as photosynthetic biostimulants for enhancing crop yields.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece;
| | | | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 19710 Saint-Petersburg, Russia
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (B.Ş.); (S.İ.)
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| |
Collapse
|
34
|
Song Z, Zhao L, Ma W, Peng Z, Shi J, Pan F, Gao Y, Sui X, Rengel Z, Chen Q, Wang B. Ethylene inhibits ABA-induced stomatal closure via regulating NtMYB184-mediated flavonol biosynthesis in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6735-6748. [PMID: 37531314 DOI: 10.1093/jxb/erad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Stomatal movement can be regulated by ABA signaling through synthesis of reactive oxygen species (ROS) in guard cells. By contrast, ethylene triggers the biosynthesis of antioxidant flavonols to suppress ROS accumulation and prevent ABA-induced stomatal closure; however, the underlying mechanism remains largely unknown. In this study, we isolated and characterized the tobacco (Nicotiana tabacum) R2R3-MYB transcription factor NtMYB184, which belongs to the flavonol-specific SG7 subgroup. RNAi suppression and CRISPR/Cas9 mutation (myb184) of NtMYB184 in tobacco caused down-regulation of flavonol biosynthetic genes and decreased the concentration of flavonols in the leaves. Yeast one-hybrid assays, transactivation assays, EMSAs, and ChIP-qPCR demonstrated that NtMYB184 specifically binds to the promoters of flavonol biosynthetic genes via MYBPLANT motifs. NtMYB184 regulated flavonol biosynthesis in guard cells to modulate ROS homeostasis and stomatal aperture. ABA-induced ROS production was accompanied by the suppression of NtMYB184 and flavonol biosynthesis, which may accelerate ABA-induced stomatal closure. Furthermore, ethylene stimulated NtMYB184 expression and flavonol biosynthesis to suppress ROS accumulation and curb ABA-induced stomatal closure. In myb184, however, neither the flavonol and ROS concentrations nor the stomatal aperture varied between the ABA and ABA+ethylene treatments, indicating that NtMYB184 was indispensable for the antagonism between ethylene and ABA via regulating flavonol and ROS concentrations in the guard cells.
Collapse
Affiliation(s)
- Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Zhongping Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Junli Shi
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Feng Pan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, Yunnan, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
35
|
Jiang M, Song Y, Yang R, Zheng C, Zheng Y, Zhang H, Li S, Tan Y, Huang J, Shu Q, Li R. Melatonin activates the OsbZIP79-OsABI5 module that orchestrates nitrogen and ROS homeostasis to alleviate nitrogen-limitation stress in rice. PLANT COMMUNICATIONS 2023; 4:100674. [PMID: 37598294 PMCID: PMC10721462 DOI: 10.1016/j.xplc.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Melatonin (Mel) has previously been reported to effectively alleviate nitrogen-limitation (N-L) stress and thus increase nitrogen-use efficiency (NUE) in several plants, but the underlying mechanism remains obscure. Here, we revealed that OsbZIP79 (BASIC LEUCINE ZIPPER 79) is transcriptionally activated under N-L conditions, and its expression is further enhanced by exogenous Mel. By the combined use of omics, genetics, and biological techniques, we revealed that the OsbZIP79-OsABI5 (ABSCISIC ACID INSENSITIVE 5) module stimulated regulation of reactive oxygen species (ROS) homeostasis and the uptake and metabolism of nitrogen under conditions of indoor nitrogen limitation (1/16 normal level). OsbZIP79 activated the transcription of OsABI5, and OsABI5 then bound to the promoters of target genes, including genes involved in ROS homeostasis and nitrogen metabolism, activating their transcription. This module was also indispensable for upregulation of several other genes involved in abscisic acid catabolism, nitrogen uptake, and assimilation under N-L and Mel treatment, although these genes were not directly transactivated by OsABI5. Field experiments demonstrated that Mel significantly improved rice growth under low nitrogen (L-N, half the normal level) by the same mechanism revealed in the nitrogen-limitation study. Mel application produced a 28.6% yield increase under L-N and thus similar increases in NUE. Also, two OsbZIP79-overexpression lines grown in L-N field plots had significantly higher NUE (+13.7% and +21.2%) than their wild types. Together, our data show that an OsbZIP79-OsABI5 module regulates the rice response to N insufficiency (N limitation or low N), which is important for increasing NUE in rice production.
Collapse
Affiliation(s)
- Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yunchao Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Breeding and Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Shan Li
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Jianzhong Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Qingyao Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China.
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
36
|
Sun Z, Li J, Guo D, Wang T, Tian Y, Ma C, Liu X, Wang C, Zheng X. Melatonin enhances KCl salinity tolerance by maintaining K + homeostasis in Malus hupehensis. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2273-2290. [PMID: 37465981 PMCID: PMC10579713 DOI: 10.1111/pbi.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Large amounts of potash fertilizer are often applied to apple (Malus domestica) orchards to enhance fruit quality and yields, but this treatment aggravates KCl-based salinity stress. Melatonin (MT) is involved in a variety of abiotic stress responses in plants. However, its role in KCl stress tolerance is still unknown. In the present study, we determined that an appropriate concentration (100 μm) of MT significantly alleviated KCl stress in Malus hupehensis by enhancing K+ efflux out of cells and compartmentalizing K+ in vacuoles. Transcriptome deep-sequencing analysis identified the core transcription factor gene MdWRKY53, whose expression responded to both KCl and MT treatment. Overexpressing MdWRKY53 enhanced KCl tolerance in transgenic apple plants by increasing K+ efflux and K+ compartmentalization. Subsequently, we characterized the transporter genes MdGORK1 and MdNHX2 as downstream targets of MdWRKY53 by ChIP-seq. MdGORK1 localized to the plasma membrane and enhanced K+ efflux to increase KCl tolerance in transgenic apple plants. Moreover, overexpressing MdNHX2 enhanced the KCl tolerance of transgenic apple plants/callus by compartmentalizing K+ into the vacuole. RT-qPCR and LUC activity analyses indicated that MdWRKY53 binds to the promoters of MdGORK1 and MdNHX2 and induces their transcription. Taken together, our findings reveal that the MT-WRKY53-GORK1/NHX2-K+ module regulates K+ homeostasis to enhance KCl stress tolerance in apple. These findings shed light on the molecular mechanism of apple response to KCl-based salinity stress and lay the foundation for the practical application of MT in salt stress.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- College of Life ScienceQingdao Agricultural UniversityQingdaoChina
| | - Jianyu Li
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Dianming Guo
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Tianchao Wang
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Yike Tian
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Changqing Ma
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Xiaoli Liu
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Caihong Wang
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| | - Xiaodong Zheng
- College of HorticultureQingdao Agricultural UniversityQingdaoChina
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong ProvinceQingdaoChina
| |
Collapse
|
37
|
Fu Y, Xin L, Mounkaila Hamani AK, Sun W, Wang H, Amin AS, Wang X, Qin A, Gao Y. Foliar Application of Melatonin Positively Affects the Physio-Biochemical Characteristics of Cotton ( Gossypium hirsutum L.) under the Combined Effects of Low Temperature and Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3730. [PMID: 37960086 PMCID: PMC10649641 DOI: 10.3390/plants12213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Low temperature and soil salinization during cotton sowing and seedling adversely affect cotton productivity. Exogenous melatonin (MT) can alleviate the damage caused to plants under non-biological stress; thus, applying MT is a means to improve the growth condition of crops under stress. However, achieving this goal requires a thorough understanding of the physiological regulatory mechanisms of MT on cotton seedlings under low temperature and salinity stress. This study could bring new knowledge on physio-biochemical mechanisms that improve the tolerance of cotton seedlings to combined effects of low temperature and salt stress using an exogenous foliar application of MT. The phytotron experiment comprised two temperature levels of cold stress and control and five MT treatments of 0, 50, 100, 150, and 200 μM and two salinity levels of 0 and 150 mM NaCl. Compared with the control treatments (non-salinity stress under cold stress and control), the combined stress of salt and low temperature reduced cotton seedlings' biomass and net photosynthetic rate (Pn), aggravated the membrane damage, reduced the potassium (K+) content, and increased the sodium (Na+) accumulation in the leaves and roots. Under NaCl stress, exogenously sprayed 50-150 μM MT increased the biomass and gas exchange parameters of cotton seedlings under salt and low temperature combined with salt stress, reduced the degree of membrane damage, and regulated the antioxidant enzyme, ion homeostasis, transport, and absorption of cotton seedlings. The pairwise correlation analysis of each parameter using MT shows that the parameters with higher correlation with MT at cold stress are mainly malondialdehyde (MDA), peroxidase (POD), and catalase (CAT). The highest correlation coefficient at 25 °C is observed between the K+ and Na+ content in cotton seedlings. The conclusion indicates that under salt and low-temperature stress conditions, exogenous application of MT primarily regulates the levels of Pn, superoxide dismutase (SOD), andPOD in cotton seedlings, reduces Na+ and MDA content, alleviates damage to cotton seedlings. Moreover, the most significant effect was observed when an exogenous application of 50-150 μM of MT was administered under these conditions. The current study's findings could serve as a scientific foundation for salinity and low-temperature stress alleviation during the seedling stage of cotton growth.
Collapse
Affiliation(s)
- Yuanyuan Fu
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Lang Xin
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | | | - Weihao Sun
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Hongbo Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Abubakar Sunusi Amin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Xingpeng Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China; (Y.F.); (L.X.); (H.W.); (X.W.)
| | - Anzhen Qin
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
| | - Yang Gao
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Institute of Farmland Irrigation, Chinese Academy of Agriculture Sciences, Xinxiang 453002, China; (W.S.); (A.S.A.); (A.Q.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
38
|
Zhang Y, Dai M, Wu Z, Wang S, Fan Y, Ni K, Lu X, Liu X, Liu M, Chen W, Chen X, Wang D, Wang J, Guo L, Zhao L, Wang X, Ye W. Melatonin receptor, GhCAND2-D5 motivated responding to NaCl signaling in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108001. [PMID: 37688899 DOI: 10.1016/j.plaphy.2023.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
As a receptor for plant melatonin, CAND2/PMTR plays an important role in melatonin signaling. Most of the CANDs are membrane proteins and play indispensable roles in signal transduction. In this study, the CANDs from four cotton species were characterized, and the phylogenetic relationships, expression patterns, stress responses of cotton CANDs were analyzed by bioinformatics. Through the analysis of phylogenetic and protein structure, it was found that the CANDs in clade Ⅱ might function as cotton melatonin receptors, and most of the GhCANDs in clade Ⅱ were induced by melatonin. A putative cotton melatonin receptor, GhCAND2-D5, was functionally probed by gene silencing. The plants with silenced expression of this gene exhibited decreased salt tolerance. Protein interaction prediction identified that GhCAND2-D5 interacted with several membrane proteins and played an important role in melatonin signaling. This study provided a theoretical reference for further investigation of melatonin signaling in cotton.
Collapse
Affiliation(s)
- Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Maohua Dai
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China; Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hebei Key Laboratory of Crops Drought Resistance, Hengshui, 053000, Hebei, China
| | - Zhe Wu
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiuping Wang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, Hebei, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
39
|
Arabia A, Muñoz P, Pallarés N, Munné-Bosch S. Experimental approaches in studying active biomolecules modulating fruit ripening: Melatonin as a case study. PLANT PHYSIOLOGY 2023; 192:1747-1767. [PMID: 36805997 PMCID: PMC10315297 DOI: 10.1093/plphys/kiad106] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Phytohormones are naturally occurring small organic molecules found at low concentrations in plants. They perform essential functions in growth and developmental processes, from organ initiation to senescence, including fruit ripening. These regulatory molecules are studied using different experimental approaches, such as performing exogenous applications, evaluating endogenous levels, and/or obtaining genetically modified lines. Here, we discuss the advantages and limitations of current experimental approaches used to study active biomolecules modulating fruit ripening, focusing on melatonin. Although melatonin has been implicated in fruit ripening in several model fruit crops, current knowledge is affected by the different experimental approaches used, which have given different and sometimes even contradictory results. The methods of application and the doses used have produced different results in studies based on exogenous applications, while different measurement methods and ways of expressing results explain most of the variability in studies using correlative analyses. Furthermore, studies on genetically modified crops have focused on tomato (Solanum lycopersicum L.) plants only. However, TILLING and CRISPR methodologies are becoming essential tools to complement the results from the experimental approaches described above. This will not only help the scientific community better understand the role of melatonin in modulating fruit ripening, but it will also help develop technological advances to improve fruit yield and quality in major crops. The combination of various experimental approaches will undoubtedly lead to a complete understanding of the function of melatonin in fruit ripening in the near future, so that this knowledge can be effectively transferred to the field.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| | - Núria Pallarés
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
40
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
41
|
Ofori-Amanfo KK, Klem K, Veselá B, Holub P, Agyei T, Juráň S, Grace J, Marek MV, Urban O. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies. TREE PHYSIOLOGY 2023; 43:925-937. [PMID: 36864576 DOI: 10.1093/treephys/tpad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.
Collapse
Affiliation(s)
- Kojo Kwakye Ofori-Amanfo
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Barbora Veselá
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Thomas Agyei
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Post Office Box 214, Sunyani, Ghana
| | - Stanislav Juráň
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - John Grace
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Crew Bldg, Kings Bldgs, Alexander Crum Brown Rd, Edinburgh EH9 3FF, UK
| | - Michal V Marek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Institute of Management, Slovak Technical University Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
42
|
Wei H, Wang J, Wang Q, He W, Liao S, Huang J, Hu W, Tang M, Chen H. Role of melatonin in enhancing arbuscular mycorrhizal symbiosis and mitigating cold stress in perennial ryegrass ( Lolium perenne L.). Front Microbiol 2023; 14:1123632. [PMID: 37283923 PMCID: PMC10239815 DOI: 10.3389/fmicb.2023.1123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Melatonin is a biomolecule that affects plant development and is involved in protecting plants from environmental stress. However, the mechanisms of melatonin's impact on arbuscular mycorrhizal (AM) symbiosis and cold tolerance in plants are still unclear. In this research, AM fungi inoculation and exogenous melatonin (MT) were applied to perennial ryegrass (Lolium perenne L.) seedlings alone or in combination to investigate their effect on cold tolerance. The study was conducted in two parts. The initial trial examined two variables, AM inoculation, and cold stress, to investigate the involvement of the AM fungus Rhizophagus irregularis in endogenous melatonin accumulation and the transcriptional levels of its synthesis genes in the root system of perennial ryegrass under cold stress. The subsequent trial was designed as a three-factor analysis, encompassing AM inoculation, cold stress, and melatonin application, to explore the effects of exogenous melatonin application on plant growth, AM symbiosis, antioxidant activity, and protective molecules in perennial ryegrass subjected to cold stress. The results of the study showed that compared to non-mycorrhizal (NM) plants, cold stress promoted an increase in the accumulation of melatonin in the AM-colonized counterparts. Acetylserotonin methyltransferase (ASMT) catalyzed the final enzymatic reaction in melatonin production. Melatonin accumulation was associated with the level of expression of the genes, LpASMT1 and LpASMT3. Treatment with melatonin can improve the colonization of AM fungi in plants. Simultaneous utilization of AM inoculation and melatonin treatment enhanced the growth, antioxidant activity, and phenylalanine ammonia-lyase (PAL) activity, while simultaneously reducing polyphenol oxidase (PPO) activity and altering osmotic regulation in the roots. These effects are expected to aid in the mitigation of cold stress in Lolium perenne. Overall, melatonin treatment would help Lolium perenne to improve growth by promoting AM symbiosis, improving the accumulation of protective molecules, and triggering in antioxidant activity under cold stress.
Collapse
|
43
|
Ma Z, Yang K, Wang J, Ma J, Yao L, Si E, Li B, Ma X, Shang X, Meng Y, Wang H. Exogenous Melatonin Enhances the Low Phosphorus Tolerance of Barley Roots of Different Genotypes. Cells 2023; 12:1397. [PMID: 37408231 PMCID: PMC10217165 DOI: 10.3390/cells12101397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 μM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.
Collapse
Affiliation(s)
- Zengke Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Juncheng Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingwei Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; (Z.M.); (K.Y.)
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
44
|
Ahmad I, Zhu G, Zhou G, Liu J, Younas MU, Zhu Y. Melatonin Role in Plant Growth and Physiology under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24108759. [PMID: 37240106 DOI: 10.3390/ijms24108759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Phyto-melatonin improves crop yield by mitigating the negative effects of abiotic stresses on plant growth. Numerous studies are currently being conducted to investigate the significant performance of melatonin in crops in regulating agricultural growth and productivity. However, a comprehensive review of the pivotal performance of phyto-melatonin in regulating plant morpho-physiological and biochemical activities under abiotic stresses needs to be clarified. This review focused on the research on morpho-physiological activities, plant growth regulation, redox status, and signal transduction in plants under abiotic stresses. Furthermore, it also highlighted the role of phyto-melatonin in plant defense systems and as biostimulants under abiotic stress conditions. The study revealed that phyto-melatonin enhances some leaf senescence proteins, and that protein further interacts with the plant's photosynthesis activity, macromolecules, and changes in redox and response to abiotic stress. Our goal is to thoroughly evaluate phyto-melatonin performance under abiotic stress, which will help us better understand the mechanism by which phyto-melatonin regulates crop growth and yield.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
45
|
Gupta R. Melatonin: A promising candidate for maintaining food security under the threat of phytopathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107691. [PMID: 37031544 DOI: 10.1016/j.plaphy.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Plant immune response is tightly controlled by an interplay of various phytohormones and plant growth regulators. Among them, the role of salicylic acid, jasmonic acid, and ethylene is well established while some others such as nitric oxide, polyamines, and hydrogen sulfide have appeared to be key regulators of plant immunity. In addition, some other chemicals, such as melatonin (N-acetyl-5-methoxytryptamine), are apparently turning out to be the novel regulators of plant defense responses. Melatonin has shown promising results in enhancing resistance of plants to a variety of pathogens including fungi, bacteria, and viruses, however, the molecular mechanism of melatonin-mediated plant immune regulation is currently elusive. Evidence gathered so far indicates that melatonin regulates plant immunity by (1) facilitating the maintenance of ROS homeostasis, (2) interacting with other phytohormones and growth regulators, and (3) inducing the accumulation of defense molecules. Therefore, engineering crops with improved melatonin production could enhance crop productivity under stress conditions. This review extends our understanding of the multifaceted role of melatonin in the regulation of plant defense response and presents a putative pathway of melatonin functioning and its interaction with phytohormones during biotic stress.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
46
|
Xiao L, Ma W, Zhang J, Pu X, Rengel Z, Song Z, Chen Q. Phytomelatonin interferes with flavonols biosynthesis to regulate ROS production and stomatal closure in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153977. [PMID: 37062233 DOI: 10.1016/j.jplph.2023.153977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Flavonols are well-known antioxidants that prevent stomatal closure via interfering with ROS signaling. Phytomelatonin regulates stomatal closure, but the signaling pathways are still largely unknown. Here, we investigated the role of flavonols in phytomelatonin-mediated stomatal closure in tobacco plants. The application of melatonin induced stomatal closure through NADPH oxidase-mediated ROS production. Transgenic tobacco plants overexpressing soybean GmSNAT1 (coding for serotonin N-acetyltransferase that catalyzes the penultimate step in phytomelatonin biosynthesis) had higher phytomelatonin concentration, accumulated more ROS in guard cells and were more sensitive to melatonin-induced stomatal closure than the wild-type plants, which was associated with the higher expression of PMTR1-homologous genes. Exogenous melatonin decreased flavonol concentrations in guard cells and the expression of flavonoid-related genes in wild-type and transgenic tobacco plants, and these inhibitory effects were more obvious in GmSNAT1-overexpressing plants than the wild type. However, the melatonin-mediated stomatal closure and ROS production were diminished by the application of kaempferol (a type of flavonol). Additionally, transgenic tobacco plants with increased expression of NtFLS (encoding flavonol synthase) were less sensitive to melatonin-induced stomatal closure. In conclusion, phytomelatonin hampers the biosynthesis of flavonols in guard cells, which results in high concentration of ROS and induces stomatal closure in tobacco plants.
Collapse
Affiliation(s)
- Lin Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China; Yunnan Modern Professional Technology College, 675000, Chuxiong, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
47
|
Yang LL, Li QL, Han XY, Jiang XL, Wang H, Shi YJ, Chen LL, Li HL, Liu YQ, Yang X, Shi Y. A cysteine-rich secretory protein involves in phytohormone melatonin mediated plant resistance to CGMMV. BMC PLANT BIOLOGY 2023; 23:215. [PMID: 37098482 PMCID: PMC10127030 DOI: 10.1186/s12870-023-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Melatonin is considered to be a polyfunctional master regulator in animals and higher plants. Exogenous melatonin inhibits plant infection by multiple diseases; however, the role of melatonin in Cucumber green mottle mosaic virus (CGMMV) infection remains unknown. RESULTS In this study, we demonstrated that exogenous melatonin treatment can effectively control CGMMV infection. The greatest control effect was achieved by 3 days of root irrigation at a melatonin concentration of 50 μM. Exogenous melatonin showed preventive and therapeutic effects against CGMMV infection at early stage in tobacco and cucumber. We utilized RNA sequencing technology to compare the expression profiles of mock-inoculated, CGMMV-infected, and melatonin+CGMMV-infected tobacco leaves. Defense-related gene CRISP1 was specifically upregulated in response to melatonin, but not to salicylic acid (SA). Silencing CRISP1 enhanced the preventive effects of melatonin on CGMMV infection, but had no effect on CGMMV infection. We also found exogenous melatonin has preventive effects against another Tobamovirus, Pepper mild mottle virus (PMMoV) infection. CONCLUSIONS Together, these results indicate that exogenous melatonin controls two Tobamovirus infections and inhibition of CRISP1 enhanced melatonin control effects against CGMMV infection, which may lead to the development of a novel melatonin treatment for Tobamovirus control.
Collapse
Affiliation(s)
- Ling-Ling Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qing-Lun Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiao-Yu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xing-Lin Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - He Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ya-Juan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lin-Lin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong-Lian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yi-Qing Liu
- Guangdong Baiyun University, Guangzhou, 510550, China
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
48
|
Colombage R, Singh MB, Bhalla PL. Melatonin and Abiotic Stress Tolerance in Crop Plants. Int J Mol Sci 2023; 24:7447. [PMID: 37108609 PMCID: PMC10138880 DOI: 10.3390/ijms24087447] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing food demand by the growing human population and declining crop productivity due to climate change affect global food security. To meet the challenges, developing improved crops that can tolerate abiotic stresses is a priority. Melatonin in plants, also known as phytomelatonin, is an active component of the various cellular mechanisms that alleviates oxidative damage in plants, hence supporting the plant to survive abiotic stress conditions. Exogenous melatonin strengthens this defence mechanism by enhancing the detoxification of reactive by-products, promoting physiological activities, and upregulating stress-responsive genes to alleviate damage during abiotic stress. In addition to its well-known antioxidant activity, melatonin protects against abiotic stress by regulating plant hormones, activating ER stress-responsive genes, and increasing protein homoeostasis, heat shock transcription factors and heat shock proteins. Under abiotic stress, melatonin enhances the unfolded protein response, endoplasmic reticulum-associated protein degradation, and autophagy, which ultimately protect cells from programmed cell death and promotes cell repair resulting in increased plant survival.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Science, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (R.C.); (M.B.S.)
| |
Collapse
|
49
|
Wang XN, Zhang JC, Zhang HY, Wang XF, You CX. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107627. [PMID: 36940523 DOI: 10.1016/j.plaphy.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants. Hence, we cloned MmSERT, a serotonin reuptake transporter, from Mus musculus. Ectopic expression of MmSERT into apple calli, apple roots and Arabidopsis. Because 5-HT plays a momentous role in plant stress tolerance, we used MmSERT transgenic materials for stress treatment. We found that MmSERT transgenic materials, including apple calli, apple roots and Arabidopsis, exhibited a stronger salt tolerance phenotype. The reactive oxygen species (ROS) produced were significantly lower in MmSERT transgenic materials compared with controls under salt stress. Meanwhile, MmSERT induced the expression of SOS1, SOS3, NHX1, LEA5 and LTP1 in response to salt stress. 5-HT is the precursor of melatonin, which regulates plant growth under adversity and effectively scavenges ROS. Detection of MmSERT transgenic apple calli and Arabidopsis revealed higher melatonin levels than controls. Besides, MmSERT decreased the sensitivity of apple calli and Arabidopsis to abscisic acid (ABA). In summary, these results demonstrated that MmSERT plays a vital role in plant stress resistances, which perhaps serves as a reference for the application of transgenic technology to improve crops in the future.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hai-Yuan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
50
|
Kolupaev YE, Taraban DA, Karpets YV, Makaova BE, Ryabchun NI, Dyachenko AI, Dmitriev OP. Induction of Cell Protective Reactions of Triticum aestivum and Secale cereale to the Effect of High Temperatures by Melatonin. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|