1
|
Yuan C, Gualdrón Duarte JL, Takeda H, Georges M, Druet T. Evaluation of heritability partitioning approaches in livestock populations. BMC Genomics 2024; 25:690. [PMID: 39003468 PMCID: PMC11246585 DOI: 10.1186/s12864-024-10600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Heritability partitioning approaches estimate the contribution of different functional classes, such as coding or regulatory variants, to the genetic variance. This information allows a better understanding of the genetic architecture of complex traits, including complex diseases, but can also help improve the accuracy of genomic selection in livestock species. However, methods have mainly been tested on human genomic data, whereas livestock populations have specific characteristics, such as high levels of relatedness, small effective population size or long-range levels of linkage disequilibrium. RESULTS Here, we used data from 14,762 cows, imputed at the whole-genome sequence level for 11,537,240 variants, to simulate traits in a typical livestock population and evaluate the accuracy of two state-of-the-art heritability partitioning methods, GREML and a Bayesian mixture model. In simulations where a single functional class had increased contribution to heritability, we observed that the estimators were unbiased but had low precision. When causal variants were enriched in variants with low (< 0.05) or high (> 0.20) minor allele frequency or low (below 1st quartile) or high (above 3rd quartile) linkage disequilibrium scores, it was necessary to partition the genetic variance into multiple classes defined on the basis of allele frequencies or LD scores to obtain unbiased results. When multiple functional classes had variable contributions to heritability, estimators showed higher levels of variation and confounding between certain categories was observed. In addition, estimators from small categories were particularly imprecise. However, the estimates and their ranking were still informative about the contribution of the classes. We also demonstrated that using methods that estimate the contribution of a single category at a time, a commonly used approach, results in an overestimation. Finally, we applied the methods to phenotypes for muscular development and height and estimated that, on average, variants in open chromatin regions had a higher contribution to the genetic variance (> 45%), while variants in coding regions had the strongest individual effects (> 25-fold enrichment on average). Conversely, variants in intergenic or intronic regions showed lower levels of enrichment (0.2 and 0.6-fold on average, respectively). CONCLUSIONS Heritability partitioning approaches should be used cautiously in livestock populations, in particular for small categories. Two-component approaches that fit only one functional category at a time lead to biased estimators and should not be used.
Collapse
Affiliation(s)
- Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium.
| | | | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de L'Hôpital, 1, 4000, Liège, Belgium
| |
Collapse
|
2
|
Hewett AM, Johnston SE, Morris A, Morris S, Pemberton JM. Genetic architecture of inbreeding depression may explain its persistence in a population of wild red deer. Mol Ecol 2024; 33:e17335. [PMID: 38549143 DOI: 10.1111/mec.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, FROH, we use chromosome-specific inbreeding coefficients (FROHChr) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of FROHChr from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.
Collapse
Affiliation(s)
- Anna M Hewett
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Ecology and Evolution, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alison Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Fraimout A, Guillaume F, Li Z, Sillanpää MJ, Rastas P, Merilä J. Dissecting the genetic architecture of quantitative traits using genome-wide identity-by-descent sharing. Mol Ecol 2024; 33:e17299. [PMID: 38380534 DOI: 10.1111/mec.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.
Collapse
Affiliation(s)
- Antoine Fraimout
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Frédéric Guillaume
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, FI-90014 University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Jablonszky M, Canal D, Hegyi G, Herényi M, Laczi M, Markó G, Nagy G, Rosivall B, Szöllősi E, Török J, Garamszegi LZ. The estimation of additive genetic variance of body size in a wild passerine is sensitive to the method used to estimate relatedness among the individuals. Ecol Evol 2024; 14:e10981. [PMID: 38352200 PMCID: PMC10862163 DOI: 10.1002/ece3.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Assessing additive genetic variance is a crucial step in predicting the evolutionary response of a target trait. However, the estimated genetic variance may be sensitive to the methodology used, e.g., the way relatedness is assessed among the individuals, especially in wild populations where social pedigrees can be inaccurate. To investigate this possibility, we investigated the additive genetic variance in tarsus length, a major proxy of skeletal body size in birds. The model species was the collared flycatcher (Ficedula albicollis), a socially monogamous but genetically polygamous migratory passerine. We used two relatedness matrices to estimate the genetic variance: (1) based solely on social links and (2) a genetic similarity matrix based on a large array of single-nucleotide polymorphisms (SNPs). Depending on the relatedness matrix considered, we found moderate to high additive genetic variance and heritability estimates for tarsus length. In particular, the heritability estimates were higher when obtained with the genetic similarity matrix instead of the social pedigree. Our results confirm the potential for this crucial trait to respond to selection and highlight methodological concerns when calculating additive genetic variance and heritability in phenotypic traits. We conclude that using a social pedigree instead of a genetic similarity matrix to estimate relatedness among individuals in a genetically polygamous wild population may significantly deflate the estimates of additive genetic variation.
Collapse
Affiliation(s)
- Mónika Jablonszky
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - David Canal
- Department of Evolutionary EcologyNational Museum of Natural Sciences (MNCN‐CSIC)MadridSpain
| | - Gergely Hegyi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Márton Herényi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- Department of Zoology and EcologyHungarian University of Agriculture and Life SciencesGodolloHungary
| | - Miklós Laczi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
- HUN‐REN‐ELTE‐MTM Integrative Ecology Research GroupBudapestHungary
| | - Gábor Markó
- Department of Plant Pathology, Institute of Plant ProtectionHungarian University of Agriculture and Life SciencesBudapestHungary
| | - Gergely Nagy
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Balázs Rosivall
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - Eszter Szöllősi
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and EcologyELTE Eötvös Loránd UniversityBudapestHungary
| | - László Zsolt Garamszegi
- Evolutionary Ecology Research GroupInstitute of Ecology and Botany, HUN_REN Centre for Ecological ResearchVácrátotHungary
| |
Collapse
|
5
|
Ashraf B, Hunter DC, Bérénos C, Ellis PA, Johnston SE, Pilkington JG, Pemberton JM, Slate J. Genomic prediction in the wild: A case study in Soay sheep. Mol Ecol 2022; 31:6541-6555. [PMID: 34719074 DOI: 10.1111/mec.16262] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023]
Abstract
Genomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.
Collapse
Affiliation(s)
- Bilal Ashraf
- School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Anthropology, Durham University, Durham, UK
| | - Darren C Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK.,School of Biology, University of St Andrews, St Andrews, UK
| | - Camillo Bérénos
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Philip A Ellis
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Ogawa S, Matsuda H, Taniguchi Y, Watanabe T, Sugimoto Y, Iwaisaki H. Estimation of the autosomal contribution to total additive genetic variability of carcass traits in Japanese Black cattle. Anim Sci J 2022; 93:e13710. [PMID: 35416392 DOI: 10.1111/asj.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
We attempted to estimate the additive genetic variance explained by each autosome, using genotype data of 33,657 single nucleotide polymorphism (SNP) markers in 2271 Japanese Black fattened steers. Traits were cold carcass weight, ribeye area, rib thickness, subcutaneous fat thickness, estimated yield percentage, and marbling score. Two mixed linear models were used: One is that (model 1) incorporating a genomic relationship matrix (G matrix) constructed by using all available SNPs, and another (model 2), incorporating two G matrices constructed by using the SNPs on one autosome and using those on the remaining autosomes. Genomic heritabilities estimated using model 1 were moderate to high. The sums of the proportions of the additive genetic variance explained by each autosome to the total genetic variance estimated by using model 2 were >90%. For carcass weight, the proportions explained by Bos taurus autosomes 6, 8, and 14 were higher than those explained by the remaining autosomes. In some cases, the estimated proportion was close to 0. The results obtained from model 2 could provide a novel insight into the genetic architecture, such as heritability per chromosome, of carcass traits in Japanese Black cattle, although further careful investigation would be required.
Collapse
Affiliation(s)
| | | | - Yukio Taniguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Tokyo, Japan
| | | |
Collapse
|
7
|
Stuart KC, Sherwin WB, Cardilini AP, Rollins LA. Genetics and Plasticity Are Responsible for Ecogeographical Patterns in a Recent Invasion. Front Genet 2022; 13:824424. [PMID: 35360868 PMCID: PMC8963341 DOI: 10.3389/fgene.2022.824424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Patterns of covariation between phenotype and environment are presumed to be reflective of local adaptation, and therefore translate to a meaningful influence on an individual's overall fitness within that specific environment. However, these environmentally driven patterns may be the result of numerous and interacting processes, such as genetic variation, epigenetic variation, or plastic non-heritable variation. Understanding the relative importance of different environmental variables on underlying genetic patterns and resulting phenotypes is fundamental to understanding adaptation. Invasive systems are excellent models for such investigations, given their propensity for rapid evolution. This study uses reduced representation sequencing data paired with phenotypic data to examine whether important phenotypic traits in invasive starlings (Sturnus vulgaris) within Australia appear to be highly heritable (presumably genetic) or appear to vary with environmental gradients despite underlying genetics (presumably non-heritable plasticity). We also sought to determine which environmental variables, if any, play the strongest role shaping genetic and phenotypic patterns. We determined that environmental variables-particularly elevation-play an important role in shaping allelic trends in Australian starlings and may also reinforce neutral genetic patterns resulting from historic introduction regime. We examined a range of phenotypic traits that appear to be heritable (body mass and spleen mass) or negligibly heritable (e.g. beak surface area and wing length) across the starlings' Australian range. Using SNP variants associated with each of these phenotypes, we identify key environmental variables that correlate with genetic patterns, specifically that temperature and precipitation putatively play important roles shaping phenotype in this species. Finally, we determine that overall phenotypic variation is correlated with underlying genetic variation, and that these interact positively with the level of vegetation variation within a region, suggesting that ground cover plays an important role in shaping selection and plasticity of phenotypic traits within the starlings of Australia.
Collapse
Affiliation(s)
- Katarina C. Stuart
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Adam P.A. Cardilini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee A. Rollins
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Linking genetic, morphological, and behavioural divergence between inland island and mainland deer mice. Heredity (Edinb) 2022; 128:97-106. [PMID: 34952930 PMCID: PMC8814197 DOI: 10.1038/s41437-021-00492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
The island syndrome hypothesis (ISH) stipulates that, as a result of local selection pressures and restricted gene flow, individuals from island populations should differ from individuals within mainland populations. Specifically, island populations are predicted to contain individuals that are larger, less aggressive, more sociable, and that invest more in their offspring. To date, tests of the ISH have mainly compared oceanic islands to continental sites, and rarely smaller spatial scales such as inland watersheds. Here, using a novel set of genome-wide SNP markers in wild deer mice (Peromyscus maniculatus) we conducted a genomic assessment of predictions underlying the ISH in an inland riverine island system: analysing island-mainland population structure, and quantifying heritability of phenotypes thought to underlie the ISH. We found clear genomic differentiation between the island and mainland populations and moderate to high marker-based heritability estimates for overall variation in traits previously found to differ in line with the ISH between mainland and island locations. FST outlier analyses highlighted 12 loci associated with differentiation between mainland and island populations. Together these results suggest that the island populations examined are on independent evolutionary trajectories, the traits considered have a genetic basis (rather than phenotypic variation being solely due to phenotypic plasticity). Coupled with the previous results showing significant phenotypic differentiation between the island and mainland groups in this system, this study suggests that the ISH can hold even on a small spatial scale.
Collapse
|
9
|
Peters L, Huisman J, Kruuk LEB, Pemberton JM, Johnston SE. Genomic analysis reveals a polygenic architecture of antler morphology in wild red deer (Cervus elaphus). Mol Ecol 2021; 31:1281-1298. [PMID: 34878674 DOI: 10.1111/mec.16314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Sexually selected traits show large variation and rapid evolution across the animal kingdom, yet genetic variation often persists within populations despite apparent directional selection. A key step in solving this long-standing paradox is to determine the genetic architecture of sexually selected traits to understand evolutionary drivers and constraints at the genomic level. Antlers are a form of sexual weaponry in male red deer (Cervus elaphus). On the island of Rum, Scotland, males with larger antlers have increased breeding success, yet there has been no evidence of any response to selection at the genetic level. To try and understand the mechanisms underlying this observation, we investigate the genetic architecture of ten antler traits and their principal components using genomic data from >38,000 SNPs. We estimate the heritabilities and genetic correlations of the antler traits using a genomic relatedness approach. We then use genome-wide association and haplotype-based regional heritability to identify regions of the genome underlying antler morphology, and an empirical Bayes approach to estimate the underlying distributions of allele effect sizes. We show that antler morphology is highly repeatable over an individual's lifetime, heritable and has a polygenic architecture and that almost all antler traits are positively genetically correlated with some loci identified as having pleiotropic effects. Our findings suggest that a large mutational target and genetic covariances among antler traits, in part maintained by pleiotropy, are likely to contribute to the maintenance of genetic variation in antler morphology in this population.
Collapse
Affiliation(s)
- Lucy Peters
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jisca Huisman
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Loeske E B Kruuk
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan E Johnston
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Pennington LK, Slatyer RA, Ruiz-Ramos DV, Veloz SD, Sexton JP. How is adaptive potential distributed within species ranges? Evolution 2021; 75:2152-2166. [PMID: 34164814 DOI: 10.1111/evo.14292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Quantitative genetic variation (QGV) represents a major component of adaptive potential and, if reduced toward range-edge populations, could prevent a species' expansion or adaptive response to rapid ecological change. It has been hypothesized that QGV will be lower at the range edge due to small populations-often the result of poor habitat quality-and potentially decreased gene flow. However, whether central populations are higher in QGV is unknown. We used a meta-analytic approach to test for a general QGV-range position relationship, including geographic and climatic distance from range centers. We identified 35 studies meeting our criteria, yielding nearly 1000 estimates of QGV (including broad-sense heritability, narrow-sense heritability, and evolvability) from 34 species. The relationship between QGV and distance from the geographic range or climatic niche center depended on the focal trait and how QGV was estimated. We found some evidence that QGV declines from geographic centers but that it increases toward niche edges; niche and geographic distances were uncorrelated. Nevertheless, few studies have compared QGV in both central and marginal regions or environments within the same species. We call for more research in this area and discuss potential research avenues related to adaptive potential in the context of global change.
Collapse
Affiliation(s)
- Lillie K Pennington
- Environmental Systems Graduate Group, University of California, Merced, California, 95343
| | - Rachel A Slatyer
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, 53703.,Current Address: Research School of Biology, Australian National University, Acton, ACT, 2600, Australia
| | - Dannise V Ruiz-Ramos
- Life and Environmental Sciences Department, University of California, Merced, California, 95343.,Current Address: U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, 65201
| | - Samuel D Veloz
- Point Blue Conservation Science, Petaluma, California, 94954
| | - Jason P Sexton
- Life and Environmental Sciences Department, University of California, Merced, California, 95343
| |
Collapse
|
11
|
Seppälä O, Çetin C, Cereghetti T, Feulner PGD, Adema CM. Examining adaptive evolution of immune activity: opportunities provided by gastropods in the age of 'omics'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200158. [PMID: 33813886 PMCID: PMC8059600 DOI: 10.1098/rstb.2020.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Otto Seppälä
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Cansu Çetin
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Teo Cereghetti
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Coen M. Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
12
|
Sin SYW, Hoover BA, Nevitt GA, Edwards SV. Demographic History, Not Mating System, Explains Signatures of Inbreeding and Inbreeding Depression in a Large Outbred Population. Am Nat 2021; 197:658-676. [PMID: 33989142 DOI: 10.1086/714079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractInbreeding depression is often found in small, inbred populations, but whether it can be detected in and have evolutionary consequences for large, wide-ranging populations is poorly known. Here, we investigate the possibility of inbreeding in a large population to determine whether mild levels of inbreeding can still have genetic and phenotypic consequences and how genomically widespread these effects can be. We apply genome-wide methods to investigate whether individual and parental heterozygosity is related to morphological, growth, or life-history traits in a pelagic seabird, Leach's storm-petrel (Oceanodroma leucorhoa). Examining 560 individuals as part of a multiyear study, we found a substantial effect of maternal heterozygosity on chick traits: chicks from less heterozygous (relatively inbred) mothers were significantly smaller than chicks from more heterozygous (noninbred) mothers. We show that these heterozygosity-fitness correlations were due to general genome-wide effects and demonstrate a correlation between heterozygosity and inbreeding, suggesting inbreeding depression. We used population genetic models to further show that the variance in inbreeding was probably due to past demographic events rather than the current mating system and ongoing mate choice. Our findings demonstrate that inbreeding depression can be observed in large populations and illustrate how the integration of genomic techniques and fieldwork can elucidate its underlying causes.
Collapse
|
13
|
Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Lett 2021; 5:196-213. [PMID: 34136269 PMCID: PMC8190449 DOI: 10.1002/evl3.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Hernán E Morales
- Evolutionary Genetics Section Globe Institute University of Copenhagen Copenhagen Denmark.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Jenny Larsson
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Anja M Westram
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,IST Austria Klosterneuburg Austria
| | - Rui Faria
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida FL 32306-4120
| | - E Moriarty Lemmon
- Department of Biological Science Florida State University Tallahassee Florida FL 32306-4295
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Roger K Butlin
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| |
Collapse
|
14
|
Ruiz-López MJ. Genomic architecture of gapeworm resistance in a natural bird population. Mol Ecol 2020; 29:3809-3811. [PMID: 32860449 DOI: 10.1111/mec.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/02/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
Abstract
Parasites are recognized to be some of the strongest agents of natural selection, sometimes causing major changes in the phenotypes of their hosts. Understanding the genomic determinants leading to these adaptive processes is key to understand host-parasite interactions. However, dissecting the genetic architecture of host resistance in natural systems is difficult because of the multiple factors affecting these complex traits in the wild. In this issue of Molecular Ecology, Lundregan et al. (2020) use an impressive long-term data set to analyse the genomic architecture of host resistance to gapeworm in a metapopulation of house sparrows. The authors elegantly combine different approaches (variance component analyses, genome partitioning and genome-wide associations) to reveal that resistance to gapeworm is under polygenic control and can have both a significant additive genetic and dominance variance. This study is one of the first to simultaneously determine genomic architecture and assess additive genetic and dominance genetic variance in parasite resistance in natural populations.
Collapse
Affiliation(s)
- María José Ruiz-López
- Departamento de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Sevilla, España
| |
Collapse
|
15
|
Duntsch L, Tomotani BM, de Villemereuil P, Brekke P, Lee KD, Ewen JG, Santure AW. Polygenic basis for adaptive morphological variation in a threatened Aotearoa | New Zealand bird, the hihi ( Notiomystis cincta). Proc Biol Sci 2020; 287:20200948. [PMID: 32842928 PMCID: PMC7482260 DOI: 10.1098/rspb.2020.0948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
To predict if a threatened species can adapt to changing selective pressures, it is crucial to understand the genetic basis of adaptive traits, especially in species historically affected by severe bottlenecks. We estimated the heritability of three hihi (Notiomystis cincta) morphological traits known to be under selection (nestling tarsus length, body mass and head-bill length) using 523 individuals and 39 699 single nucleotide polymorphisms (SNPs) from a 50 K Affymetrix SNP chip. We then examined the genetic architecture of the traits via chromosome partitioning analyses and genome-wide association scans (GWAS). Heritabilities estimated using pedigree relatedness or genomic relatedness were low. For tarsus length, the proportion of genetic variance explained by each chromosome was positively correlated with its size, and more than one chromosome explained significant variation for body mass and head-bill length. Finally, GWAS analyses suggested many loci of small effect contributing to trait variation for all three traits, although one locus (an SNP within an intron of the transcription factor HEY2) was tentatively associated with tarsus length. Our findings suggest a polygenic nature for the morphological traits, with many small effect size loci contributing to the majority of the variation, similar to results from many other wild populations. However, the small effective population size, polygenic architecture and already low heritabilities suggest that both the total response and rate of response to selection are likely to be limited in hihi.
Collapse
Affiliation(s)
- Laura Duntsch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études PSL, MNHN, CNRS, Sorbonne Université, Université des Antilles, Paris, France
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Kate D. Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - John G. Ewen
- Institute of Zoology, Zoological Society of London, Regents Park, London, UK
| | - Anna W. Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Alexandre H, Truffaut L, Ducousso A, Louvet JM, Nepveu G, Torres-Ruiz JM, Lagane F, Firmat C, Musch B, Delzon S, Kremer A. In situ estimation of genetic variation of functional and ecological traits in Quercus petraea and Q.robur. TREE GENETICS & GENOMES 2020; 16:32. [PMID: 32256274 PMCID: PMC7136077 DOI: 10.1007/s11295-019-1407-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. AIMS The aim of the current study was to estimate three genetic parameters (i.e. heritability, evolvability and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology and defence). METHODS First we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. RESULTS Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals, however we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. CONCLUSION We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Torres-Ruiz
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- PIAF, Univ. Clermont-Auvergne, INRA, 63000 Clermont-Ferrand, France
| | | | - Cyril Firmat
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- URP3F, INRA, 86600 Lusignan, France
| | - Brigitte Musch
- BIOFORA, INRA, ONF, CS 40001 Ardon 45075 Orléans Cedex 2, France
| | | | | |
Collapse
|
17
|
Laine VN, Verhagen I, Mateman AC, Pijl A, Williams TD, Gienapp P, van Oers K, Visser ME. Exploration of tissue-specific gene expression patterns underlying timing of breeding in contrasting temperature environments in a song bird. BMC Genomics 2019; 20:693. [PMID: 31477015 PMCID: PMC6720064 DOI: 10.1186/s12864-019-6043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Seasonal timing of breeding is a life history trait with major fitness consequences but the genetic basis of the physiological mechanism underlying it, and how gene expression is affected by date and temperature, is not well known. In order to study this, we measured patterns of gene expression over different time points in three different tissues of the hypothalamic-pituitary-gonadal-liver axis, and investigated specifically how temperature affects this axis during breeding. We studied female great tits (Parus major) from lines artificially selected for early and late timing of breeding that were housed in two contrasting temperature environments in climate-controlled aviaries. We collected hypothalamus, liver and ovary samples at three different time points (before and after onset of egg-laying). For each tissue, we sequenced whole transcriptomes of 12 pools (n = 3 females) to analyse gene expression. RESULTS Birds from the selection lines differed in expression especially for one gene with clear reproductive functions, zona pellucida glycoprotein 4 (ZP4), which has also been shown to be under selection in these lines. Genes were differentially expressed at different time points in all tissues and most of the differentially expressed genes between the two temperature treatments were found in the liver. We identified a set of hub genes from all the tissues which showed high association to hormonal functions, suggesting that they have a core function in timing of breeding. We also found ample differentially expressed genes with largely unknown functions in birds. CONCLUSIONS We found differentially expressed genes associated with selection line and temperature treatment. Interestingly, the latter mainly in the liver suggesting that temperature effects on egg-laying date may happen down-stream in the physiological pathway. These findings, as well as our datasets, will further the knowledge of the mechanisms of tissue-specific avian seasonality in the future.
Collapse
Affiliation(s)
- Veronika N. Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - A. Christa Mateman
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Agata Pijl
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
18
|
Gervais L, Perrier C, Bernard M, Merlet J, Pemberton JM, Pujol B, Quéméré E. RAD-sequencing for estimating genomic relatedness matrix-based heritability in the wild: A case study in roe deer. Mol Ecol Resour 2019; 19:1205-1217. [PMID: 31058463 DOI: 10.1111/1755-0998.13031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
Estimating the evolutionary potential of quantitative traits and reliably predicting responses to selection in wild populations are important challenges in evolutionary biology. The genomic revolution has opened up opportunities for measuring relatedness among individuals with precision, enabling pedigree-free estimation of trait heritabilities in wild populations. However, until now, most quantitative genetic studies based on a genomic relatedness matrix (GRM) have focused on long-term monitored populations for which traditional pedigrees were also available, and have often had access to knowledge of genome sequence and variability. Here, we investigated the potential of RAD-sequencing for estimating heritability in a free-ranging roe deer (Capreolous capreolus) population for which no prior genomic resources were available. We propose a step-by-step analytical framework to optimize the quality and quantity of the genomic data and explore the impact of the single nucleotide polymorphism (SNP) calling and filtering processes on the GRM structure and GRM-based heritability estimates. As expected, our results show that sequence coverage strongly affects the number of recovered loci, the genotyping error rate and the amount of missing data. Ultimately, this had little effect on heritability estimates and their standard errors, provided that the GRM was built from a minimum number of loci (above 7,000). Genomic relatedness matrix-based heritability estimates thus appear robust to a moderate level of genotyping errors in the SNP data set. We also showed that quality filters, such as the removal of low-frequency variants, affect the relatedness structure of the GRM, generating lower h2 estimates. Our work illustrates the huge potential of RAD-sequencing for estimating GRM-based heritability in virtually any natural population.
Collapse
Affiliation(s)
- Laura Gervais
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France
| | | | - Maria Bernard
- SIGENAE, INRA, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Joël Merlet
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université Fédérale de Toulouse Midi-Pyrénées, Toulouse, France.,PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, Perpignan, France
| | - Erwan Quéméré
- CEFS, INRA, Université de Toulouse, Castanet-Tolosan, Cedex, France
| |
Collapse
|
19
|
Gienapp P, Calus MPL, Laine VN, Visser ME. Genomic selection on breeding time in a wild bird population. Evol Lett 2019; 3:142-151. [PMID: 31289689 PMCID: PMC6591552 DOI: 10.1002/evl3.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Artificial selection experiments are a powerful tool in evolutionary biology. Selecting individuals based on multimarker genotypes (genomic selection) has several advantages over phenotype-based selection but has, so far, seen very limited use outside animal and plant breeding. Genomic selection depends on the markers tagging the causal loci that underlie the selected trait. Because the number of necessary markers depends, among other factors, on effective population size, genomic selection may be in practice not feasible in wild populations as most wild populations have much higher effective population sizes than domesticated populations. However, the current possibilities of cost-effective high-throughput genotyping could overcome this limitation and thereby make it possible to apply genomic selection also in wild populations. Using a unique dataset of about 2000 wild great tits (Parus major), a small passerine bird, genotyped on a 650 k SNP chip we calculated genomic breeding values for egg-laying date using the so-called GBLUP approach. In this approach, the pedigree-based relatedness matrix of an "animal model," a special form of the mixed model, is replaced by a marker-based relatedness matrix. Using the marker-based relatedness matrix, the model seemed better able to disentangle genetic and permanent environmental effects. We calculated the accuracy of genomic breeding values by correlating them to the phenotypes of individuals whose phenotypes were excluded from the analysis when estimating the genomic breeding values. The obtained accuracy was about 0.20, with very little effect of the used genomic relatedness estimator but a strong effect of the number of SNPs. The obtained accuracy is lower than typically seen in domesticated species but considerable for a trait with low heritability (∼0.2) as avian breeding time. Our results show that genomic selection is possible also in wild populations with potentially many applications, which we discuss here.
Collapse
Affiliation(s)
- Phillip Gienapp
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Mario P. L. Calus
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| | - Veronika N. Laine
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Animal Breeding and GenomicsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
20
|
Aykanat T, Ozerov M, Vähä JP, Orell P, Niemelä E, Erkinaro J, Primmer CR. Co-inheritance of sea age at maturity and iteroparity in the Atlantic salmon vgll3 genomic region. J Evol Biol 2019; 32:343-355. [PMID: 30697850 DOI: 10.1101/412288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 05/25/2023]
Abstract
Co-inheritance in life-history traits may result in unpredictable evolutionary trajectories if not accounted for in life-history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life-history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that these two traits are co-inherited around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8-3.5 90% CI) times higher for fish with the early-maturing vgll3 genotype (EE) compared to fish with the late-maturing genotype (LL). The L allele was dominant in individuals remaining only one year at sea before maturation, but the dominance was reversed, with the E allele being dominant in individuals maturing after two or more years at sea. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first-time spawners, across all age groups, whereas this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life-history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.
Collapse
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Mikhail Ozerov
- Department of Biology, University of Turku, Turku, Finland
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Juha-Pekka Vähä
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland
- Association for Water and Environment of Western Uusimaa, Lohja, Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | - Eero Niemelä
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Muff S, Niskanen AK, Saatoglu D, Keller LF, Jensen H. Animal models with group-specific additive genetic variances: extending genetic group models. Genet Sel Evol 2019; 51:7. [PMID: 30819110 PMCID: PMC6394059 DOI: 10.1186/s12711-019-0449-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/07/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The animal model is a key tool in quantitative genetics and has been used extensively to estimate fundamental parameters, such as additive genetic variance or heritability. An implicit assumption of animal models is that all founder individuals derive from a single population. This assumption is commonly violated, for instance in crossbred livestock or when a meta-population is split into genetically differentiated subpopulations. Ignoring that base populations are genetically heterogeneous and thus split into different 'genetic groups' may lead to biased parameter estimates, especially for additive genetic variance. To avoid such biases, genetic group animal models, which account for the presence of more than one genetic group, have been proposed. Unfortunately, the method to date is only computationally feasible when the breeding values of the groups are allowed to differ in their means, but not in their variances. RESULTS We present an extension of the animal model that permits estimation of group-specific additive genetic variances. This is achieved by employing group-specific relatedness matrices for the breeding value components to different genetic groups. We derive these matrices by decomposing the full relatedness matrix via the generalized Cholesky decomposition, and by scaling the respective matrix components for each group. We propose a computationally convenient approximation for the matrix component that encodes for the Mendelian sampling variance, and show that this approximation is not critical. In addition, we explain why segregation variances are often negligible when analyzing the complex polygenic traits that are frequently the focus of evolutionary ecologists and animal breeders. Simulations and an example from an insular meta-population of house sparrows in Norway with three distinct genetic groups illustrate that the method is successful in estimating group-specific additive genetic variances, and that segregation variances are indeed negligible in the empirical example. CONCLUSIONS Quantifying differences in additive genetic variance within and among populations is of major biological interest in ecology, evolution, and animal and plant breeding. The proposed method allows to estimate such differences for subpopulations that form a connected set of populations, and may thus also be useful to study temporal or spatial variation of additive genetic variances.
Collapse
Affiliation(s)
- Stefanie Muff
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland. .,Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, Zurich, Switzerland.
| | - Alina K Niskanen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, Norway.,Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, Oulu, Finland
| | - Dilan Saatoglu
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, Norway
| | - Lukas F Keller
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.,Zoological Museum, University of Zurich, Karl-Schmid-Strasse 4, Zurich, Switzerland
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, Norway
| |
Collapse
|
22
|
Aykanat T, Ozerov M, Vähä J, Orell P, Niemelä E, Erkinaro J, Primmer CR. Co‐inheritance of sea age at maturity and iteroparity in the Atlantic salmonvgll3genomic region. J Evol Biol 2019; 32:343-355. [DOI: 10.1111/jeb.13418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research ProgrammeUniversity of Helsinki Helsinki Finland
- Department of BiologyUniversity of Turku Turku Finland
| | - Mikhail Ozerov
- Department of BiologyUniversity of Turku Turku Finland
- Kevo Subarctic Research InstituteUniversity of Turku Turku Finland
| | - Juha‐Pekka Vähä
- Kevo Subarctic Research InstituteUniversity of Turku Turku Finland
- Association for Water and Environment of Western Uusimaa Lohja Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke) Oulu Finland
| | - Eero Niemelä
- Natural Resources Institute Finland (Luke) Oulu Finland
| | | | - Craig R. Primmer
- Organismal and Evolutionary Biology Research ProgrammeUniversity of Helsinki Helsinki Finland
- Institute of BiotechnologyUniversity of Helsinki Helsinki Finland
- Helsinki Institute of Sustainability ScienceUniversity of Helsinki Helsinki Finland
| |
Collapse
|
23
|
Kemppainen P, Husby A. Accounting for heteroscedasticity and censoring in chromosome partitioning analyses. Evol Lett 2018; 2:599-609. [PMID: 30564443 PMCID: PMC6292708 DOI: 10.1002/evl3.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 01/02/2023] Open
Abstract
A fundamental assumption in quantitative genetics is that traits are controlled by many loci of small effect. Using genomic data, this assumption can be tested using chromosome partitioning analyses, where the proportion of genetic variance for a trait explained by each chromosome (h2c), is regressed on its size. However, as h2c‐estimates are necessarily positive (censoring) and the variance increases with chromosome size (heteroscedasticity), two fundamental assumptions of ordinary least squares (OLS) regression are violated. Using simulated and empirical data we demonstrate that these violations lead to incorrect inference of genetic architecture. The degree of bias depends mainly on the number of chromosomes and their size distribution and is therefore specific to the species; using published data across many different species we estimate that not accounting for this effect overall resulted in 28% false positives. We introduce a new and computationally efficient resampling method that corrects for inflation caused by heteroscedasticity and censoring and that works under a large range of dataset sizes and genetic architectures in empirical datasets. Our new method substantially improves the robustness of inferences from chromosome partitioning analyses.
Collapse
Affiliation(s)
- Petri Kemppainen
- Organismal and Evolutionary Biology Research Programme University of Helsinki 00014 Helsinki Finland
| | - Arild Husby
- Organismal and Evolutionary Biology Research Programme University of Helsinki 00014 Helsinki Finland.,Department of Ecology and Genetics Uppsala University 75236 Uppsala Sweden
| |
Collapse
|
24
|
Goudet J, Kay T, Weir BS. How to estimate kinship. Mol Ecol 2018; 27:4121-4135. [PMID: 30107060 PMCID: PMC6220858 DOI: 10.1111/mec.14833] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
The concept of kinship permeates many domains of fundamental and applied biology ranging from social evolution to conservation science to quantitative and human genetics. Until recently, pedigrees were the gold standard to infer kinship, but the advent of next‐generation sequencing and the availability of dense genetic markers in many species make it a good time to (re)evaluate the usefulness of genetic markers in this context. Using three published data sets where both pedigrees and markers are available, we evaluate two common and a new genetic estimator of kinship. We show discrepancies between pedigree values and marker estimates of kinship and explore via simulations the possible reasons for these. We find these discrepancies are attributable to two main sources: pedigree errors and heterogeneity in the origin of founders. We also show that our new marker‐based kinship estimator has very good statistical properties and behaviour and is particularly well suited for situations where the source population is of small size, as will often be the case in conservation biology, and where high levels of kinship are expected, as is typical in social evolution studies.
Collapse
Affiliation(s)
- Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Perrier C, Lozano del Campo A, Szulkin M, Demeyrier V, Gregoire A, Charmantier A. Great tits and the city: Distribution of genomic diversity and gene-environment associations along an urbanization gradient. Evol Appl 2018; 11:593-613. [PMID: 29875805 PMCID: PMC5979639 DOI: 10.1111/eva.12580] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/19/2017] [Indexed: 01/02/2023] Open
Abstract
Urbanization is a growing concern challenging the evolutionary potential of wild populations by reducing genetic diversity and imposing new selection regimes affecting many key fitness traits. However, genomic footprints of urbanization have received little attention so far. Using RAD sequencing, we investigated the genomewide effects of urbanization on neutral and adaptive genomic diversity in 140 adult great tits Parus major collected in locations with contrasted urbanization levels (from a natural forest to highly urbanized areas of a city; Montpellier, France). Heterozygosity was slightly lower in the more urbanized sites compared to the more rural ones. Low but significant effect of urbanization on genetic differentiation was found, at the site level but not at the nest level, indicative of the geographic scale of urbanization impact and of the potential for local adaptation despite gene flow. Gene-environment association tests identified numerous SNPs with small association scores to urbanization, distributed across the genome, from which a subset of 97 SNPs explained up to 81% of the variance in urbanization, overall suggesting a polygenic response to selection in the urban environment. These findings open stimulating perspectives for broader applications of high-resolution genomic tools on other cities and larger sample sizes to investigate the consistency of the effects of urbanization on the spatial distribution of genetic diversity and the polygenic nature of gene-urbanization association.
Collapse
Affiliation(s)
- Charles Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Ana Lozano del Campo
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Marta Szulkin
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
- Wild Urban Evolution and Ecology LaboratoryCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Virginie Demeyrier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Arnaud Gregoire
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE UMR 5175, Campus CNRS, Université de MontpellierMontpellier Cedex 5France
| |
Collapse
|
26
|
Perrier C, Delahaie B, Charmantier A. Heritability estimates from genomewide relatedness matrices in wild populations: Application to a passerine, using a small sample size. Mol Ecol Resour 2018; 18:838-853. [DOI: 10.1111/1755-0998.12886] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 01/16/2023]
Affiliation(s)
- C. Perrier
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS‐UMR5175 CEFE Montpellier France
| | - B. Delahaie
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS‐UMR5175 CEFE Montpellier France
| | - A. Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS‐UMR5175 CEFE Montpellier France
| |
Collapse
|
27
|
Malenfant RM, Davis CS, Richardson ES, Lunn NJ, Coltman DW. Heritability of body size in the polar bears of Western Hudson Bay. Mol Ecol Resour 2018; 18:854-866. [DOI: 10.1111/1755-0998.12889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- René M. Malenfant
- Department of Biology University of New Brunswick Fredericton NB Canada
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - Corey S. Davis
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - Evan S. Richardson
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada Winnipeg MB Canada
| | - Nicholas J. Lunn
- Wildlife Research Division Science and Technology Branch Environment and Climate Change Canada University of Alberta Edmonton AB Canada
| | - David W. Coltman
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| |
Collapse
|
28
|
Kim JM, Santure AW, Barton HJ, Quinn JL, Cole EF, Visser ME, Sheldon BC, Groenen MAM, van Oers K, Slate J. A high-density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour. Mol Ecol Resour 2018; 18:877-891. [PMID: 29573186 DOI: 10.1111/1755-0998.12778] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
High-density SNP microarrays ("SNP chips") are a rapid, accurate and efficient method for genotyping several hundred thousand polymorphisms in large numbers of individuals. While SNP chips are routinely used in human genetics and in animal and plant breeding, they are less widely used in evolutionary and ecological research. In this article, we describe the development and application of a high-density Affymetrix Axiom chip with around 500,000 SNPs, designed to perform genomics studies of great tit (Parus major) populations. We demonstrate that the per-SNP genotype error rate is well below 1% and that the chip can also be used to identify structural or copy number variation. The chip is used to explore the genetic architecture of exploration behaviour (EB), a personality trait that has been widely studied in great tits and other species. No SNPs reached genomewide significance, including at DRD4, a candidate gene. However, EB is heritable and appears to have a polygenic architecture. Researchers developing similar SNP chips may note: (i) SNPs previously typed on alternative platforms are more likely to be converted to working assays; (ii) detecting SNPs by more than one pipeline, and in independent data sets, ensures a high proportion of working assays; (iii) allele frequency ascertainment bias is minimized by performing SNP discovery in individuals from multiple populations; and (iv) samples with the lowest call rates tend to also have the greatest genotyping error rates.
Collapse
Affiliation(s)
- J-M Kim
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Korea
| | - A W Santure
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - H J Barton
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| | - J L Quinn
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland
| | - E F Cole
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | | | - M E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - B C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - M A M Groenen
- Wageningen University and Research - Animal Breeding and Genomics, Wageningen, Netherlands
| | - K van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - J Slate
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Kemppainen P, Husby A. Inference of genetic architecture from chromosome partitioning analyses is sensitive to genome variation, sample size, heritability and effect size distribution. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Petri Kemppainen
- Metapopulation Research Centre Department of Biosciences University of Helsinki Helsinki Finland
| | - Arild Husby
- Metapopulation Research Centre Department of Biosciences University of Helsinki Helsinki Finland
- Department of Ecology and Genetics (Evolutionary Biology) EBC Uppsala University Uppsala Sweden
| |
Collapse
|
30
|
Miller JM, Festa-Bianchet M, Coltman DW. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium ® HD SNP BeadChip. PeerJ 2018; 6:e4364. [PMID: 29473002 PMCID: PMC5817937 DOI: 10.7717/peerj.4364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the genetic basis of fitness-related traits is a major goal of molecular ecology. Traits subject to sexual selection are particularly interesting, as non-random mate choice should deplete genetic variation and thereby their evolutionary benefits. We examined the genetic basis of three sexually selected morphometric traits in bighorn sheep (Ovis canadensis): horn length, horn base circumference, and body mass. These traits are of specific concern in bighorn sheep as artificial selection through trophy hunting opposes sexual selection. Specifically, horn size determines trophy status and, in most North American jurisdictions, if an individual can be legally harvested. Using between 7,994–9,552 phenotypic measures from the long-term individual-based study at Ram Mountain (Alberta, Canada), we first showed that all three traits are heritable (h2 = 0.15–0.23). We then conducted a genome-wide association study (GWAS) utilizing a set of 3,777 SNPs typed in 76 individuals using the Ovine Infinium® HD SNP BeadChip. We found suggestive association for body mass at a single locus (OAR9_91647990). The absence of strong associations with SNPs suggests that the traits are likely polygenic. These results represent a step forward for characterizing the genetic architecture of fitness related traits in sexually dimorphic ungulates.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Current affiliation: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
31
|
Jighly A, Joukhadar R, Singh S, Ogbonnaya FC. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat. Front Genet 2018; 9:27. [PMID: 29467793 PMCID: PMC5807918 DOI: 10.3389/fgene.2018.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Abstract
Whole genome duplication (WGD) is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW) to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes) with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome). The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy, which will facilitate the effective utilization of wheat wild relatives in breeding.
Collapse
Affiliation(s)
- Abdulqader Jighly
- Agriculture Victoria, Agriculture Research Division, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Reem Joukhadar
- Agriculture Victoria, Agriculture Research Division, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | |
Collapse
|
32
|
Fisher DN, McAdam AG. Social traits, social networks and evolutionary biology. J Evol Biol 2017; 30:2088-2103. [DOI: 10.1111/jeb.13195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023]
Affiliation(s)
- D. N. Fisher
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| | - A. G. McAdam
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
33
|
Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csilléry K. Genomic Quantitative Genetics to Study Evolution in the Wild. Trends Ecol Evol 2017; 32:897-908. [PMID: 29050794 DOI: 10.1016/j.tree.2017.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022]
Abstract
Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation.
Collapse
Affiliation(s)
- Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Simone Fior
- Plant Ecological Genetics, ETH Zurich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Katalin Csilléry
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Switzerland; Biodiversity and Conservation Biology, WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
34
|
Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A. Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity (Edinb) 2017; 119:197-205. [PMID: 28613280 DOI: 10.1038/hdy.2017.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/08/2017] [Accepted: 05/04/2017] [Indexed: 01/15/2023] Open
Abstract
Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits.
Collapse
Affiliation(s)
- C N S Silva
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - S E McFarlane
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - I J Hagen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - L Rönnegård
- School of Technology and Business Studies, Dalarna University, Falun, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A M Billing
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - P Kemppainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B Rønning
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - T H Ringsby
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - B-E Sæther
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - H Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, Helsinki, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
35
|
Knief U, Schielzeth H, Backström N, Hemmrich‐Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W. Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations. Mol Ecol 2017; 26:1285-1305. [DOI: 10.1111/mec.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Holger Schielzeth
- Department of Population Ecology Friedrich Schiller University Jena 07743 Jena Germany
| | - Niclas Backström
- Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | | | - Michael Wittig
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University 24105 Kiel Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University 24105 Kiel Germany
| | - Simon C. Griffith
- Department of Biological Sciences Macquarie University Sydney NSW 2109 Australia
- School of Biological, Earth & Environmental Sciences University of New South Wales Sydney NSW 2057 Australia
| | - Hans Ellegren
- Department of Ecology and Genetics Uppsala University 752 36 Uppsala Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology 82319 Seewiesen Germany
| |
Collapse
|
36
|
Autosomal and X-Linked Additive Genetic Variation for Lifespan and Aging: Comparisons Within and Between the Sexes in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:3903-3911. [PMID: 27678519 PMCID: PMC5144961 DOI: 10.1534/g3.116.028308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Theory makes several predictions concerning differences in genetic variation between the X chromosome and the autosomes due to male X hemizygosity. The X chromosome should: (i) typically show relatively less standing genetic variation than the autosomes, (ii) exhibit more variation in males compared to females because of dosage compensation, and (iii) potentially be enriched with sex-specific genetic variation. Here, we address each of these predictions for lifespan and aging in Drosophila melanogaster. To achieve unbiased estimates of X and autosomal additive genetic variance, we use 80 chromosome substitution lines; 40 for the X chromosome and 40 combining the two major autosomes, which we assay for sex-specific and cross-sex genetic (co)variation. We find significant X and autosomal additive genetic variance for both traits in both sexes (with reservation for X-linked variation of aging in females), but no conclusive evidence for depletion of X-linked variation (measured through females). Males display more X-linked variation for lifespan than females, but it is unclear if this is due to dosage compensation since also autosomal variation is larger in males. Finally, our results suggest that the X chromosome is enriched for sex-specific genetic variation in lifespan but results were less conclusive for aging overall. Collectively, these results suggest that the X chromosome has reduced capacity to respond to sexually concordant selection on lifespan from standing genetic variation, while its ability to respond to sexually antagonistic selection may be augmented.
Collapse
|
37
|
Gagnaire PA, Gaggiotti OE. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr Zool 2016; 62:603-616. [PMID: 29491948 PMCID: PMC5804256 DOI: 10.1093/cz/zow088] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
Highly fecund marine species with dispersive life-history stages often display large population sizes and wide geographic distribution ranges. Consequently, they are expected to experience reduced genetic drift, efficient selection fueled by frequent adaptive mutations, and high migration loads. This has important consequences for understanding how local adaptation proceeds in the sea. A key issue in this regard, relates to the genetic architecture underlying fitness traits. Theory predicts that adaptation may involve many genes but with a high variance in effect size. Therefore, the effect of selection on allele frequencies may be substantial for the largest effect size loci, but insignificant for small effect genes. In such a context, the performance of population genomic methods to unravel the genetic basis of adaptation depends on the fraction of adaptive genetic variance explained by the cumulative effect of outlier loci. Here, we address some methodological challenges associated with the detection of local adaptation using molecular approaches. We provide an overview of genome scan methods to detect selection, including those assuming complex demographic models that better describe spatial population structure. We then focus on quantitative genetics approaches that search for genotype-phenotype associations at different genomic scales, including genome-wide methods evaluating the cumulative effect of variants. We argue that the limited power of single locus tests can be alleviated by the use of polygenic scores to estimate the joint contribution of candidate variants to phenotypic variation.
Collapse
Affiliation(s)
- Pierre-Alexandre Gagnaire
- Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- ISEM – CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| | - Oscar E. Gaggiotti
- Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 9LB, UK
| |
Collapse
|
38
|
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W. Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol 2016; 17:199. [PMID: 27687629 PMCID: PMC5043542 DOI: 10.1186/s13059-016-1056-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inversion polymorphisms constitute an evolutionary puzzle: they should increase embryo mortality in heterokaryotypic individuals but still they are widespread in some taxa. Some insect species have evolved mechanisms to reduce the cost of embryo mortality but humans have not. In birds, a detailed analysis is missing although intraspecific inversion polymorphisms are regarded as common. In Australian zebra finches (Taeniopygia guttata), two polymorphic inversions are known cytogenetically and we set out to detect these two and potentially additional inversions using genomic tools and study their effects on embryo mortality and other fitness-related and morphological traits. Results Using whole-genome SNP data, we screened 948 wild zebra finches for polymorphic inversions and describe four large (12–63 Mb) intraspecific inversion polymorphisms with allele frequencies close to 50 %. Using additional data from 5229 birds and 9764 eggs from wild and three captive zebra finch populations, we show that only the largest inversions increase embryo mortality in heterokaryotypic males, with surprisingly small effect sizes. We test for a heterozygote advantage on other fitness components but find no evidence for heterosis for any of the inversions. Yet, we find strong additive effects on several morphological traits. Conclusions The mechanism that has carried the derived inversion haplotypes to such high allele frequencies remains elusive. It appears that selection has effectively minimized the costs associated with inversions in zebra finches. The highly skewed distribution of recombination events towards the chromosome ends in zebra finches and other estrildid species may function to minimize crossovers in the inverted regions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1056-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany. .,Current address: Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany.
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105, Kiel, Germany
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2057, Australia
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany
| |
Collapse
|
39
|
Ristov S, Brajkovic V, Cubric-Curik V, Michieli I, Curik I. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information. Genet Sel Evol 2016; 48:65. [PMID: 27613390 PMCID: PMC5018160 DOI: 10.1186/s12711-016-0242-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022] Open
Abstract
Background Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. Results We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. Conclusions MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0242-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Strahil Ristov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Vladimir Brajkovic
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Vlatka Cubric-Curik
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Ivan Michieli
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ino Curik
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| |
Collapse
|
40
|
Poissant J, Morrissey MB, Gosler AG, Slate J, Sheldon BC. Multivariate selection and intersexual genetic constraints in a wild bird population. J Evol Biol 2016; 29:2022-2035. [PMID: 27338121 DOI: 10.1111/jeb.12925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 01/18/2023]
Abstract
When selection differs between the sexes for traits that are genetically correlated between the sexes, there is potential for the effect of selection in one sex to be altered by indirect selection in the other sex, a situation commonly referred to as intralocus sexual conflict (ISC). While potentially common, ISC has rarely been studied in wild populations. Here, we studied ISC over a set of morphological traits (wing length, tarsus length, bill depth and bill length) in a wild population of great tits (Parus major) from Wytham Woods, UK. Specifically, we quantified the microevolutionary impacts of ISC by combining intra- and intersex additive genetic (co)variances and sex-specific selection estimates in a multivariate framework. Large genetic correlations between homologous male and female traits combined with evidence for sex-specific multivariate survival selection suggested that ISC could play an appreciable role in the evolution of this population. Together, multivariate sex-specific selection and additive genetic (co)variance for the traits considered accounted for additive genetic variance in fitness that was uncorrelated between the sexes (cross-sex genetic correlation = -0.003, 95% CI = -0.83, 0.83). Gender load, defined as the reduction in a population's rate of adaptation due to sex-specific effects, was estimated at 50% (95% CI = 13%, 86%). This study provides novel insights into the evolution of sexual dimorphism in wild populations and illustrates how quantitative genetics and selection analyses can be combined in a multivariate framework to quantify the microevolutionary impacts of ISC.
Collapse
Affiliation(s)
- J Poissant
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK. .,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | - M B Morrissey
- School of Biology, University of St Andrews, St Andrews, UK
| | - A G Gosler
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - J Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - B C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Gauzere J, Oddou-Muratorio S, Gay L, Klein EK. Partial genotyping at polymorphic markers can improve heritability estimates in sibling groups. Mol Ecol Resour 2016; 16:1340-1352. [DOI: 10.1111/1755-0998.12536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 11/27/2022]
Affiliation(s)
- J. Gauzere
- URFM; INRA; 84000 Avignon France
- BioSP; INRA; 84000 Avignon France
| | | | - L. Gay
- AGAP; INRA; 34000 Montpellier France
| | - E. K. Klein
- URFM; INRA; 84000 Avignon France
- BioSP; INRA; 84000 Avignon France
| |
Collapse
|
42
|
Wellenreuther M, Hansson B. Detecting Polygenic Evolution: Problems, Pitfalls, and Promises. Trends Genet 2016; 32:155-164. [DOI: 10.1016/j.tig.2015.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
43
|
Santure AW, Poissant J, De Cauwer I, van Oers K, Robinson MR, Quinn JL, Groenen MAM, Visser ME, Sheldon BC, Slate J. Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Mol Ecol 2015; 24:6148-62. [PMID: 26661500 PMCID: PMC4738425 DOI: 10.1111/mec.13452] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 01/07/2023]
Abstract
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.
Collapse
Affiliation(s)
- Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jocelyn Poissant
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Isabelle De Cauwer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Unité Evolution, Ecologie et Paléontologie, UMR 8198, Université de Lille - Sciences et Technologies, 59655 Cedex, Villeneuve d'Ascq, France
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| | - Matthew R Robinson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Queensland Brain Institute, University of Queensland, Brisbane, Qld, 4072, Australia
| | - John L Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland.,Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, UK
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| | - Ben C Sheldon
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, UK
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
44
|
Castellanos MC, González-Martínez SC, Pausas JG. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol Ecol 2015; 24:5633-42. [DOI: 10.1111/mec.13421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- M. C. Castellanos
- Consejo Superior de Investigaciones Científicas; Centro de Investigaciones sobre Desertificación (CIDE-CSIC-UV-GV); 46113 Moncada Valencia Spain
| | | | - J. G. Pausas
- Consejo Superior de Investigaciones Científicas; Centro de Investigaciones sobre Desertificación (CIDE-CSIC-UV-GV); 46113 Moncada Valencia Spain
| |
Collapse
|
45
|
Charmantier A, Doutrelant C, Dubuc-Messier G, Fargevieille A, Szulkin M. Mediterranean blue tits as a case study of local adaptation. Evol Appl 2015; 9:135-52. [PMID: 27087844 PMCID: PMC4780380 DOI: 10.1111/eva.12282] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/27/2015] [Indexed: 02/01/2023] Open
Abstract
While the study of the origins of biological diversity across species has provided numerous examples of adaptive divergence, the realization that it can occur at microgeographic scales despite gene flow is recent, and scarcely illustrated. We review here evidence suggesting that the striking phenotypic differentiation in ecologically relevant traits exhibited by blue tits Cyanistes caeruleus in their southern range‐edge putatively reflects adaptation to the heterogeneity of the Mediterranean habitats. We first summarize the phenotypic divergence for a series of life history, morphological, behavioural, acoustic and colour ornament traits in blue tit populations of evergreen and deciduous forests. For each divergent trait, we review the evidence obtained from common garden experiments regarding a possible genetic origin of the observed phenotypic differentiation as well as evidence for heterogeneous selection. Second, we argue that most phenotypically differentiated traits display heritable variation, a fundamental requirement for evolution to occur. Third, we discuss nonrandom dispersal, selective barriers and assortative mating as processes that could reinforce local adaptation. Finally, we show how population genomics supports isolation – by – environment across landscapes. Overall, the combination of approaches converges to the conclusion that the strong phenotypic differentiation observed in Mediterranean blue tits is a fascinating case of local adaptation.
Collapse
Affiliation(s)
- Anne Charmantier
- Centre d'Ecologie Fonctionnelle et Evolutive Campus CNRS Montpellier France
| | - Claire Doutrelant
- Centre d'Ecologie Fonctionnelle et Evolutive Campus CNRS Montpellier France
| | - Gabrielle Dubuc-Messier
- Centre d'Ecologie Fonctionnelle et Evolutive Campus CNRS Montpellier France; Département des sciences biologiques Université du Québec à Montréal Succursalle centre-ville QC Canada
| | | | - Marta Szulkin
- Centre d'Ecologie Fonctionnelle et Evolutive Campus CNRS Montpellier France
| |
Collapse
|
46
|
Wenzel MA, James MC, Douglas A, Piertney SB. Genome-wide association and genome partitioning reveal novel genomic regions underlying variation in gastrointestinal nematode burden in a wild bird. Mol Ecol 2015; 24:4175-92. [PMID: 26179597 DOI: 10.1111/mec.13313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023]
Abstract
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco-evolutionary processes in natural populations. Host-parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade-offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome-wide SNPs. We first use genome-wide association to identify individual SNPs associated with nematode burden. We then partition genome-wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome-wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large-effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic).
Collapse
Affiliation(s)
- Marius A Wenzel
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Marianne C James
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Stuart B Piertney
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
47
|
Veltsos P, Gregson E, Morrissey B, Slate J, Hoikkala A, Butlin RK, Ritchie MG. The genetic architecture of sexually selected traits in two natural populations of Drosophila montana. Heredity (Edinb) 2015. [PMID: 26198076 DOI: 10.1038/hdy.2015.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.
Collapse
Affiliation(s)
- P Veltsos
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - E Gregson
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - B Morrissey
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - J Slate
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R K Butlin
- Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Sheffield, UK.,Sven Lovén Centre-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - M G Ritchie
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| |
Collapse
|
48
|
Bérénos C, Ellis PA, Pilkington JG, Lee SH, Gratten J, Pemberton JM. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol 2015; 24:1810-30. [PMID: 25753777 PMCID: PMC4405094 DOI: 10.1111/mec.13146] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023]
Abstract
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.
Collapse
Affiliation(s)
| | | | | | - S. Hong Lee
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | - Jake Gratten
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | | |
Collapse
|
49
|
Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, Colling G, Dalén L, De Meester L, Ekblom R, Fawcett KD, Fior S, Hajibabaei M, Hill JA, Hoezel AR, Höglund J, Jensen EL, Krause J, Kristensen TN, Krützen M, McKay JK, Norman AJ, Ogden R, Österling EM, Ouborg NJ, Piccolo J, Popović D, Primmer CR, Reed FA, Roumet M, Salmona J, Schenekar T, Schwartz MK, Segelbacher G, Senn H, Thaulow J, Valtonen M, Veale A, Vergeer P, Vijay N, Vilà C, Weissensteiner M, Wennerström L, Wheat CW, Zieliński P. Genomics and the challenging translation into conservation practice. Trends Ecol Evol 2015; 30:78-87. [DOI: 10.1016/j.tree.2014.11.009] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
50
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|