1
|
Evangelista E, de Jesus IS, Pauli FP, de Souza AS, Borges ADA, Gomes MVF, Ferreira VF, da Silva FDC, Melo MA, Forezi LDSM. Recent Advances in the Application of Coumarins as Photosensitizers for the Construction of a Dye-Sensitized Solar Cell. ACS OMEGA 2025; 10:13726-13748. [PMID: 40256496 PMCID: PMC12004169 DOI: 10.1021/acsomega.4c11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
Dye-sensitized solar cells (DSSCs) have emerged as a promising alternative in photovoltaic energy, owing to their efficiency, cost-effectiveness, and versatility. Sensitizers are crucial in efficiently converting solar energy into electricity in these systems. This review focuses on employing coumarins, a class of aromatic organic compounds, as sensitizers in DSSCs. We address the synthesis of coumarins, their photophysical and electronic properties, and their application in optimizing the energy conversion efficiency of DSSCs. We explore the molecular engineering strategies used to improve the properties of coumarins, including structural modification and the combination with other materials. Furthermore, we discuss current challenges and prospects for the development of DSSCs using coumarins as sensitizers. This review aims to provide a comprehensive overview of the current state and future directions of this exciting area of solar energy research.
Collapse
Affiliation(s)
- Edson Evangelista
- Departamento
de Química Orgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Iva S. de Jesus
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
- Programa
de Pós-Graduação em Ciências Aplicadas
a Produtos para a Saúde - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
| | - Fernanda P. Pauli
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Acácio S. de Souza
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
- Programa
de Pós-Graduação em Ciências Aplicadas
a Produtos para a Saúde - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
| | - Amanda de A. Borges
- Departamento
de Química Orgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Maria Vitória
S. F. Gomes
- Departamento
de Química Orgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Vitor F. Ferreira
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
- Programa
de Pós-Graduação em Ciências Aplicadas
a Produtos para a Saúde - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
| | - Fernando de C. da Silva
- Departamento
de Química Orgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Mauricio A. Melo
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Luana da S. M. Forezi
- Departamento
de Química Orgânica, Universidade
Federal Fluminense - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Programa
de Pós-Graduação em Química - UFF, Niterói, Rio de Janeiro 24020-141, Brazil
- Programa
de Pós-Graduação em Ciências Aplicadas
a Produtos para a Saúde - UFF, Niterói, Rio de Janeiro 24241-000, Brazil
| |
Collapse
|
2
|
Zhao H, Cai Z, Wang A, Li J, Wang Q, Zhao H, Hu G, Zhong N, Xu L, Pan H, Yang Q, Hu J. Sustainable and robust polypyrrole/carbon nitride/regenerated cellulose fiber with visible-light-enhanced capacitance and bacterial inactivation. Int J Biol Macromol 2025; 307:142022. [PMID: 40090662 DOI: 10.1016/j.ijbiomac.2025.142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
With the rise of wearable devices, it is important but challenge to develop flexible energy storage materials that combine excellent mechanical properties, good electrochemical properties, and other functions. Here, a polypyrrole (PPy)/carbon nitride (C3N4)/regenerated cellulose composite fiber (PCCF) was firstly fabricated through a straightforward in situ polymerization and wet spinning process. The results show that PCCF can well balance mechanical properties, visible light antibacterial property and energy storage when compared to PPy/regenerated cellulose composite fiber (PCF). The tensile strength of PCCF was 152.5 MPa which was 2.5 times of PCF. The inhibition zone of PCCF under visible light conditions is significantly increased by approximately 98.65 % compared to dark condition, which cannot be observed in PCF. Besides, the specific capacitance of PCCF (103.75 mF cm-1) is 6.15 times superior to that of PCF (16.88 mF cm-1) under visible light conditions. PCCF also demonstrates visible-light enhanced energy storage performance with a specific capacitance enhancement of about 44.35 % and double of the discharge time (1 mA cm-1) from dark condition to visible light condition. However, PCF does not have visible light-enhanced energy storage properties. This study introduces a novel concept for the advancement of flexible and multifunctional light-enhanced energy storage devices.
Collapse
Affiliation(s)
- Hong Zhao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada; Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Zaisheng Cai
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| | - Aiguo Wang
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Jia Li
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Qing Wang
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Heng Zhao
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Guichun Hu
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Na Zhong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada
| | - Lihui Xu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hong Pan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinguang Hu
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
3
|
Gaeta M, Gangemi CMA, Barcellona M, Travagliante G, Milone M, Notti A, Fragalà ME, Pisagatti I, Parisi MF, Purrello R, D'Urso A. Towards 1D supramolecular chiral assemblies based on porphyrin-calixarene complexes. NANOSCALE 2025; 17:6530-6538. [PMID: 39945471 DOI: 10.1039/d4nr04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The design of functional chiral nanostructures in aqueous solution represents one of the most exciting challenges in supramolecular chemistry, offering potential applications in catalysis, sensing, and materials science. In this scenario, it has already been shown that the hierarchical step-by-step addition of porphyrins to calix[4]arene aqueous solutions yields porphyrin-calixarene supramolecular complexes with exact and tuneable stoichiometries and defined dimensionality. The present study reports the formation of novel 1D porphyrin-calix[4]arene assemblies, achieved through a hierarchical and stoichiometrically controlled self-assembly process in water using host-guest interactions between the anionic trisulfonated porphyrin, H2DPPS3, and the cationic bis-calix[4]arene, BC4. In addition, to obtain chiral 1D noncovalent assemblies, the copper(II) porphyrin, CuDPPS3, and the enantiomerically pure bis-calix[4]arenes, (R,R)- and (S,S)-BC4, were also used in aqueous solution. The stepwise formation of linear noncovalent and chiral assemblies, based on porphyrin-calixarene complexes, was demonstrated by a number of different techniques such as: UV-vis spectroscopy, circular dichroism (CD), resonance light scattering (RLS) and scanning electron microscopy (SEM), revealing precise stoichiometries, sequence, dimensionality and induction of chirality.
Collapse
Affiliation(s)
- Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Chiara M A Gangemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Matteo Barcellona
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Gabriele Travagliante
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Marco Milone
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Anna Notti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria E Fragalà
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Ilenia Pisagatti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Melchiorre F Parisi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
4
|
Sanusi K, Olukoya AO, Sanyaolu NO, Ibikunle AA, Yussuf ST, Ogundare SA, Fatomi NO, Atewolara-Odule OC, Khoza PB. The Performance Evaluation of Meso-Tetraphenyl Porphyrin and Azo Dyes as Photosensitizers in Dye-sensitized Solar Cells. J Fluoresc 2025; 35:1661-1673. [PMID: 38427223 DOI: 10.1007/s10895-024-03632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
The photovoltaic properties of five different mono-azo function and meso-tetraphenyl porphyrin dyes have been investigated by computational DFT/TDDFT calculations and measurement of the J-V properties of their cells. The photovoltaic efficiency of the cells based on these dyes were determined by both experimental and theoretical methods. The efficiency-to-cost ratios of the azo-dye cells showed that they could be cheaper substitutes to porphyrin-based cells. Eriochrome blue black (EBB) and eriochrome black T (EBT) cells were shown to possess the best photovoltaic properties by the two methods employed (theory and experiment). The presence of two naphthol moieties at both ends of their -N = N- group has been adduced as possible reason for their relatively outstanding performance. The extremely low efficiency-to-cost ratio obtained for cell-POR suggests that the use of porphyrin as sensitizer may not be as economically viable as some azo dyes. MTO, EBB and EBT were found to be the most cost-effective among the investigated dyes. The porphyrin's low performance may have been amplified by the absence of an effective anchor group in its molecular structure.
Collapse
Affiliation(s)
- Kayode Sanusi
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria.
| | - Anuoluwapo O Olukoya
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Nurudeen O Sanyaolu
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Adeola A Ibikunle
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Sodiq T Yussuf
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Segun A Ogundare
- Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Nafisat O Fatomi
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Phindile B Khoza
- School of Chemistry and Physics, University of Kwazulu Natal, Westville Campus, Durban, 3629, South Africa
| |
Collapse
|
5
|
Kainda R, Behera SK, Dehury AK, Chaudhary YS. Deciphering the Photophysical Properties of Nonplanar Heterocyclic Compounds in Different Polarity Environments. J Phys Chem B 2025; 129:1323-1330. [PMID: 39812147 DOI: 10.1021/acs.jpcb.4c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nonplanar (butterfly-shaped) phenothiazine (PTZ) and its derivative's (M-PTZ) photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker n-π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process. The band at a shorter wavelength corresponds to the locally excited (LE) state, while the longer wavelength band arises from the planarized excited state resulting from ESCE. With the increase in solvent polarity, the LE band is less affected, whereas strong positive solvatochromism is observed for the ESCE band. As the solvent polarity increases, the ESCE band demonstrates significant positive solvatochromism, while emission intensity decreases with higher solvent polarity, suggesting stabilization of the excited state. The biexponential decay of fluorescence lifetimes further corroborates the dual emission behavior of PTZ and M-PTZ. PTZ exhibits a higher photoluminescence quantum yield (PLQY) than that observed for M-PTZ, and the solvent viscosity influences the PLQY, indicating that nonradiative decay is activated during the planarization of the excited state, also known as excited-state conjugation enhancement. Furthermore, the (time-dependent) density functional theory (TD) DFT calculations performed to understand the geometrical parameters and the electronic transitions of these model molecules further corroborate experimental findings. These findings underscore the significant influence of solvent polarity and molecular structure on the dual emission and excited-state dynamics of PTZ and M-PTZ, which eventually hold substantial implications for advanced photophysical applications.
Collapse
Affiliation(s)
- Rajeswari Kainda
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Behera
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Asish K Dehury
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Vallejo W, Lerma M, Díaz-Uribe C. Dye sensitized solar cells: Meta-analysis of effect sensitizer-type on photovoltaic efficiency. Heliyon 2025; 11:e41092. [PMID: 39801998 PMCID: PMC11719345 DOI: 10.1016/j.heliyon.2024.e41092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes). The objective of this study is to compare DSSCs performance when using three different sensitizers. In general, the best reported results related to DSSCs are based on organic and organometallic sensitizers. DSSCs based on organometallic compounds have an average efficiency of approximately 9.1 %, which displays the best average result; the maximum efficiency value recorded for DSSCs sensitized to organometallic compounds is 13.0 %. DSSCs based on synthetic organic sensitizers without the presence of metals in their structure, the average efficiency is approximately 7.1 % and the maximum efficiency values is 15.2 % (DSSCs utilize the co-photosensitization system and dye pre-adsorption treatment). DSSCs based on natural sensitizers indicated an average efficiency value about 0.5 % and the maximum efficiency value recorded is 2.3 %.
Collapse
Affiliation(s)
- William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia
| | - Mileidy Lerma
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia
| | - Carlos Díaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia
| |
Collapse
|
7
|
Kharazmi A, Ghorbani-Vaghei R, Khazaei A, Karakaya I, Karimi-Nami R. Application of novel silica stabilized on a covalent triazine framework as a highly efficient heterogeneous and recyclable catalyst in the effective green synthesis of porphyrins. RSC Adv 2025; 15:1081-1094. [PMID: 39807203 PMCID: PMC11726313 DOI: 10.1039/d4ra07875f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of N 2,N 4,N 6-tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites. This framework demonstrated exceptional catalytic performance in the synthesis of porphyrins. Substituting aerobic conditions in lieu of costly oxidizing agents represents a significant advancement in our methodology. Due to the insolubility of the catalyst, it is possible to separate it from the reaction mixture through filtration or centrifugation. This property enhances its reusability and minimizes waste generation. This development in the synthesis and application of CTFs could pave the way for more sustainable and cost-effective catalytic processes in organic synthesis, particularly in the synthesis of complex molecules like porphyrins. The research highlights the potential of CTFs as versatile materials in catalysis, owing to their structural properties and the ability to tailor their functionalities for specific applications.
Collapse
Affiliation(s)
- Azin Kharazmi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +989183122123
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +989183122123
- Department of Organic Chemistry, Faculty of Chemistry, University of Guilan Rasht Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +988138380709 +989183122123
| | - Idris Karakaya
- Department of Chemistry, College of Basic Sciences, Gebze Technical University 41400 Gebze Turkey
| | - Rahman Karimi-Nami
- Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran
| |
Collapse
|
8
|
Zhang X, Liu Z, Shao B, Liang Q, Wu T, Pan Y, He Q, He M, Ge L, Huang J. Porphyrin-Based Metal-Organic Framework Photocatalysts: Structure, Mechanism and Applications. SMALL METHODS 2025:e2402096. [PMID: 39757519 DOI: 10.1002/smtd.202402096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Indexed: 01/07/2025]
Abstract
In recent years, porphyrins have been frequently reported as photocatalysts due to their fascinating photochemical properties. However, porphyrins have the same shortcomings as other homogeneous photocatalysts, such as poor stability and difficulty in recovering. To solve this problem, it is a good strategy to form a porphyrin-based metal-organic framework (PMOF) by modifying porphyrin functional groups and adding metals as nodes to connect and control the arrangement of porphyrins. The metal nodes control the rigidity and connectivity of the porphyrin modules to order them in the MOF, which improves the stability of the porphyrins, avoids porphyrin aggregation and folding, and increases the active sites for photocatalytic reactions. This review summarized the research progress of PMOF photocatalysts in the last ten years and analyzed the effects of the spatial structure, porphyrin ligands, porphyrin central metals, and metal nodes of PMOF on the photocatalytic performance. The applications of PMOF-based photocatalysts in H2 production, CO2 reduction, pollutant degradation, and sterilization are reviewed. In addition, the mechanism of these processes is described in detail. Finally, some suggestions on the development of PMOF photocatalysts are put forward.
Collapse
Affiliation(s)
- Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Miao He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Lin Ge
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| | - Jian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, P. R. China
| |
Collapse
|
9
|
Goh ZL, Farhana NK, Kamarulazam F, Pershaanaa M, Bashir S, Ramesh K, Ramesh S. Water as Dual-Function Plasticizer and Cosolvent in Gel Electrolytes for Dye-Sensitized Solar Cells. Macromol Rapid Commun 2025; 46:e2400481. [PMID: 39405501 DOI: 10.1002/marc.202400481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/16/2024] [Indexed: 01/30/2025]
Abstract
This study presents a novel approach to developing eco-friendly dye-sensitized solar cells (DSSCs) using natural and renewable materials for gel polymer electrolytes (GPEs), reducing reliance on unsustainable solvents. Water is added to polar aprotic solvents, specifically ethylene carbonate/propylene carbonate (EC/PC), across various mass fractions (0:100 to 100:0). An amphiphilic hydroxypropyl cellulose (HPC) natural polymer is employed to formulate GPEs within this water-EC/PC cosolvent system, achieving successful gelation up to 50:50 mass fractions. Incorporating water reduced the gel strength and viscosity of the GPEs. Water acted as a plasticizer, enhancing the polymer chains mobility, and creating a more flexible and permeable structure. This increased ion diffusion coefficients and ion mobility, resulting in a maximum ionic conductivity of 18.17 mS cm-1. The highest efficiency achieved in DSSCs using these GPEs is 5.81%, with elevated short-circuit current density and reduced recombination losses. However, some compositions experienced syneresis, affecting their stability. The GPE with a 40:60 mass fraction exhibited superior long-term stability because it is free from syneresis, though it achieved a lower efficiency (4.83%), making it the best-performing sample. This work demonstrates the feasibility and benefits of using gel polymer electrolytes in an aqueous system, improving DSSC efficiency and sustainability.
Collapse
Affiliation(s)
- Z L Goh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - N K Farhana
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai, Tamilnadu, 602105, India
| |
Collapse
|
10
|
Alinia Z, Abdulhamied E, Selmani S, Miclette Lamarche R, Eichhorn SH, DeWolf CE. Amphiphilicity of Tetraazaporphyrins Containing Four Terminal Carboxylic Acid and Four Alkyl Groups Promotes Face-On Orientation in Langmuir Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26672-26684. [PMID: 39623767 DOI: 10.1021/acs.langmuir.4c03800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Control over the orientation of polycyclic aromatic dyes in thin films is paramount to tailoring their optical, electronic, and mechanical properties. Their supramolecular assembly in films is tuned here by converting the macrocyclic dyes to large amphiphiles. Two octaalkythio-substituted tetraazaporphyrins (TAPs) with one 5-carboxypentyl and one pentyl or dodecyl chain per pyrrole ring were synthesized as statistical mixtures of four regioisomers. The unsymmetrically substituted maleodinitrile precursors were prepared in good yield with a flow reactor. Neither the tetraester precursor TAPs nor the tetraacid TAPs show mesomorphism, and both belong to the small class of porphyrin derivatives that display isotropic liquid phases at or close to room temperature. Interfacial properties of the two amphiphilic tetraacids were probed using Langmuir films on aqueous subphases at different pH values, and Langmuir-Blodgett films were transferred onto mica substrates. The tetraacid with the longer dodecyl chains forms inhomogeneous films comprising a combination of monolayer, stacked macrocycles with interdigitated chains, and 3D structures, with the latter favored at higher subphase pH and higher surface pressures. In contrast, films of the tetraacid with the shorter pentyl chains yielded relatively homogeneous monolayers. The combination of atomic force microscopy imaging and packing correlations elucidated by grazing incidence X-ray diffraction suggests that these form spider-like conformations, with the macrocycles close packed and oriented parallel to the substrate (face-on). This difference in molecular packing is attributed to a possible intramolecular mixing of 5-carboxypentyl and pentyl chains that gives a better match between the footprints of the macrocycle, acid groups, and alkyl groups. The longer dodecyl chains are too large for filling the space between 5-carboxypentyl chains (mixing) and too small for filling the footprint of a TAP macrocycle. We demonstrate that by judicious tailoring of the chain length and subphase conditions, a desirable homogeneous film of face-on oriented macrocycles can be formed.
Collapse
Affiliation(s)
- Zahra Alinia
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Elmahdy Abdulhamied
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Serxho Selmani
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - S Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
11
|
Zhang Y, Higashino T, Nishimura I, Imahori H. Umbrella-Shaped m-Terphenyls for Highly π-Extended Planar Dyes toward High-Performance Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67761-67770. [PMID: 39586774 DOI: 10.1021/acsami.4c15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Porphyrin dyes with π-extended structures, particularly those with aromatic fused designs, have garnered considerable attention as efficient sensitizers for dye-sensitized solar cells (DCCSs). However, their photovoltaic performance has often been limited due to high aggregation tendencies caused by strong π-π interactions and charge recombination processes. Since m-terphenyls can be used as effective sterically protecting groups, the incorporation of umbrella-shaped m-terphenyls on the top of porphyrin dyes could provide an effective approach to unlock the full potential of highly π-extended porphyrin dyes. In this study, we report new fused porphyrin dyes, T-Ph, T-tBuPh, TT-Ph, and TT-tBuPh, introducing m-terphenyl groups. This innovative design ensures both blocking effects on dye aggregation on TiO2 and charge recombination against redox shuttles. Under the optimized conditions, DSSCs using thiophene-fused porphyrins T-Ph and T-tBuPh achieved a remarkable power conversion efficiency (PCE) of 11.5%. This is high compared to those with reference porphyrins, GY50 possessing steric hindrance due to the orthogonal orientation of a V-shaped diarylamino group to the porphyrin plane and DfZnP without the bulky umbrella-shaped m-terphenyl, demonstrating the proof of our concept. More importantly, the cosensitized DSSC using T-tBuPh and the complementary dye XY1B afforded the highest PCE of 12.3% ever reported for DSSCs with fused porphyrin dyes. This demonstrates that the "umbrella-shaped m-terphenyl" design is an attractive methodology for enhancing the photovoltaic performance of DSSCs with highly π-extended planar dyes, especially fused porphyrin dyes.
Collapse
Affiliation(s)
- Yuzhe Zhang
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Issei Nishimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Kyoto 606-8316, Japan
| |
Collapse
|
12
|
Guo Q, Xu J, Li J, Tang S, Cheng Y, Gao B, Xiong LB, Xiong J, Wang FQ, Wei DZ. Synergistic increase in coproporphyrin III biosynthesis by mitochondrial compartmentalization in engineered Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 9:834-841. [PMID: 39113689 PMCID: PMC11305229 DOI: 10.1016/j.synbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. S. cerevisiae has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in S. cerevisiae. By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.
Collapse
Affiliation(s)
- Qidi Guo
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Xu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiacun Li
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuyan Tang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhui Cheng
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang-Bin Xiong
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jie Xiong
- Department of Gastroenterology, Tongji Institute of Digestive Disease, Tongji Hospital, School of Medicine, TongJi University, Shanghai, 200065, China
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Zeng C, Li Y, Chen T, Wu W, Chen Z. Unraveling the Mechanisms of the Formations and Transformations of Metal-Ligand Charge Transfer States in [Ru(tpy) 2] 2+*: Consequences of Jahn-Teller Conical Intersections and the Pseudo-Jahn-Teller Effect. J Phys Chem A 2024; 128:9846-9860. [PMID: 39513928 DOI: 10.1021/acs.jpca.4c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work investigates Jahn-Teller conical intersections (CoIns) and the pseudo-Jahn-Teller effect on the formations and transformations of the low-lying singlet metal-ligand charge transfer (1MLCT) excited states during the ultrafast evolution process of photoexcited [Ru(tpy)2]2+* (tpy = 2,2':6',2″-terpyridine). Longuet-Higgins' geometric phase analyses indicate that the potential energy surface (PES) crossing between charge transfer states 1MLCT1 and 1MLCT2 is a CoIn, originating from the change in diabatic Hamiltonian matrix elements around the CoIn. Moreover, an E⊗(b1 + b2) Jahn-Teller distortion can occur around the Franck-Condon and minimal energy CoIn (MECI) configurations, causing the molecule to distort spontaneously from the high-symmetry D2d configuration to C2v symmetry configurations that are close to it. Furthermore, the pseudo-Jahn-Teller effect can cause the molecule to distort further from C2v to C1 geometries since the former is a second-order saddle point on the whole dimensional PES but the latter is a true minimum. Eight minima in total are symmetrically distributed around the MECI. These minima are connected by the interligand electron transfer, the charge transfer, and the butterfly-like conformational inversion reactions, all of which have extremely small energy barriers.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tengwei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
14
|
Kaur H, Goel N. Engineering highly efficient porphyrin sensitizers through metal, ligand and bridge modification: a DFT study. Phys Chem Chem Phys 2024. [PMID: 39565337 DOI: 10.1039/d4cp03473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This work presents a systematic investigation of porphyrin sensitizers for application in dye-sensitized solar cells (DSSCs). Density functional theory calculations, including both static and time-dependent methods, were employed to evaluate a series of candidate dyes for their potential to achieve high power conversion efficiency. The well-established SM315 dye, known for its record-breaking PCE of 13%, was adopted as a reference point. A range of metal atoms including alkaline-earth and 3d transition metals were screened, Ca was identified as the most promising metal for light capture and conversion. Ca-porphyrin-based sensitizer was further modified by introducing different axial ligands and four distinct bridging units. The designed dyes exhibit red-shifted absorption spectra and optimal frontier orbital alignment with the semiconductor's conduction band, promoting efficient light capture and charge transfer. In addition to these core parameters, a comprehensive analysis of light harvesting efficiency (LHE), reorganization energy (λ), short-circuit current density (JSC), exciton binding energy (EBE), open-circuit voltage (VOC), electron transfer rate (k), polarization (α) and hyperpolarization (βtot) collectively paint a clear picture of superior light capture, efficient charge transport dynamics, and minimized energy losses within the designed dyes. This ultimately translates to the remarkable power conversion efficiency (PCE) exceeding 27% achieved by the specifically designed dye with the Ca as metal atom, 4,4'-bipyridine as axial ligands and cyclopenta-1,3-diene as bridging unit, surpassing the performance of SM315 dye (13% PCE). This systematic study combines the design of high-performance porphyrin sensitizers through molecular engineering with a comprehensive investigation of their impact on DSSC function using advanced computational methods.
Collapse
Affiliation(s)
- Hemjot Kaur
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
15
|
Liao JM, Chen YH, Lee HW, Guo BC, Su PC, Wang LH, Reddy NM, Yella A, Zhang ZJ, Chang CY, Chen CY, Zakeeruddin SM, Tsai HHG, Yeh CY, Grätzel M. Advanced High-Throughput Rational Design of Porphyrin-Sensitized Solar Cells Using Interpretable Machine Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407235. [PMID: 39316380 DOI: 10.1002/advs.202407235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Accurately predicting the power conversion efficiency (PCE) in dye-sensitized solar cells (DSSCs) represents a crucial challenge, one that is pivotal for the high throughput rational design and screening of promising dye sensitizers. This study presents precise, predictive, and interpretable machine learning (ML) models specifically designed for Zn-porphyrin-sensitized solar cells. The model leverages theoretically computable, effective, and reusable molecular descriptors (MDs) to address this challenge. The models achieve excellent performance on a "blind test" of 17 newly designed cells, with a mean absolute error (MAE) of 1.02%. Notably, 10 dyes are predicted within a 1% error margin. These results validate the ML models and their importance in exploring uncharted chemical spaces of Zn-porphyrins. SHAP analysis identifies crucial MDs that align well with experimental observations, providing valuable chemical guidelines for the rational design of dyes in DSSCs. These predictive ML models enable efficient in silico screening, significantly reducing analysis time for photovoltaic cells. Promising Zn-porphyrin-based dyes with exceptional PCE are identified, facilitating high-throughput virtual screening. The prediction tool is publicly accessible at https://ai-meta.chem.ncu.edu.tw/dsc-meta.
Collapse
Affiliation(s)
- Jian-Ming Liao
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
| | - Yu-Hsuan Chen
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Hsuan-Wei Lee
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Bo-Cheng Guo
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Po-Cheng Su
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Lun-Hong Wang
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Nagannagari Masi Reddy
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Aswani Yella
- Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Zhao-Jie Zhang
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
| | - Chuan-Yung Chang
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
| | - Chia-Yuan Chen
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
- Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 32001, Taiwan
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Hui-Hsu Gavin Tsai
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City, 32001, Taiwan
- Research Center of New Generation Light Driven Photovoltaic Modules, National Central University, Taoyuan, 32001, Taiwan
| | - Chen-Yu Yeh
- Department of Chemistry, i-Center for Advanced Science and Technology (i-CAST), Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City, 402, Taiwan
| | - Michael Grätzel
- Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
16
|
Liu Y, Bin Mohamad Annuar A, Rodríguez-Jiménez S, Yeung CWS, Wang Q, Coito AM, Manuel RR, Pereira IA, Reisner E. Solar Fuel Synthesis Using a Semiartificial Colloidal Z-Scheme. J Am Chem Soc 2024; 146:29865-29876. [PMID: 39413284 PMCID: PMC11528412 DOI: 10.1021/jacs.4c11827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
The integration of enzymes with semiconductor light absorbers in semiartificial photosynthetic assemblies offers an emerging strategy for solar fuel production. However, such colloidal biohybrid systems rely currently on sacrificial reagents, and semiconductor-enzyme powder systems that couple fuel production to water oxidation are therefore needed to mimic an overall photosynthetic reaction. Here, we present a Z-scheme colloidal enzyme system that produces fuel with electrons sourced from water. This "closed-cycle" semiartificial approach utilizes particulate SrTiO3:La,Rh and BiVO4:Mo (light absorbers), hydrogenase or formate dehydrogenase (cocatalyst), and a molecular cobalt complex (a redox mediator). Under simulated solar irradiation, this system continuously generates molecular hydrogen or formate, while co-producing molecular oxygen for 10 h using only sunlight, water, and carbon dioxide as inputs. In-depth analysis using quartz crystal microbalance, photoelectrochemical impedance spectroscopy, transient photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy provides mechanistic understanding and characterization of the semiconductor-enzyme hybrid interface. This study provides a rational platform to assemble functional semiartificial colloidal Z-scheme systems for solar fuel synthesis.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | | | | | - Celine Wing See Yeung
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Qian Wang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ana M. Coito
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rita R. Manuel
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A.
C. Pereira
- Instituto
de Tecnologia Química e Biológica António Xavier
(ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
17
|
Li H, Shen XF, Lin YS, Lin YH, Hung YT, Chen NH, Watanabe M, Chang YJ. Enhancing DSSCs and Photocatalytic Hydrogen Production with D-A 1-A 2-π-A Sensitizers Containing 10'H-Spiro [Fluorene-9,9'-Phenanthren]-10'-one and Benzo[c][1,2,5]Thiadiazole. Chem Asian J 2024; 19:e202400697. [PMID: 38941239 DOI: 10.1002/asia.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Novel D-A1-A2-π-A organic sensitizers (FZ-sensitizer), utilizing spiro [fluorene-9,9'-phenanthren]-10'-one and benzo [c][1,2,5]thiadiazole moiety as two auxiliary acceptors, are synthesized and applied in dye-sensitized solar cells (DSSCs) and hydrogen production. By incorporating a bulky spiro [fluorene-9,9'-phenanthrene]-10'-one (A1) and benzo[c][1,2,5]thiadiazole (A2) between the donor (D) and π-bridge moiety, structural modifications inhibit molecular aggregation, while the carbonyl group enhances the capture of Li+ ions, thereby delaying charge recombination. Furthermore, the extended π-conjugation broadens the light absorption range and enhances the power conversion efficiency (PCE) of FZ-2 under AM1.5 conditions, achieving up to 5.72%. Co-sensitization with N719 and FZ-2 shows PCE of 9.60% under one sun. Under TL84 indoor light conditions, the efficiency is 29.69% at 2500 lux. The superior co-sensitization performance of N719 and FZ-2 can be attributed to FZ-2's high absorptivity at short wavelengths, compensating for N719's shortcomings in this range. FZ-sensitizers also exhibit high efficiency in photocatalytic hydrogen production. The hydrogen production activities of FZ-2 are 9190 μmol/g (1 hour) and 76582 μmol/g (12 hours) respectively, while those of FZ-1 are 7430 μmol/g (1 hour) and 64004 μmol/g (12 hours), indicating that FZ-2 can inject charges into TiO2 more efficiently and utilize them for water splitting. Stability testing of photocatalytic water splitting after 12 hours shows a turnover number (TON) of 4249 for FZ-1 and 5378 for FZ-2.
Collapse
Affiliation(s)
- Hsin Li
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Xiao-Feng Shen
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
- International Institute for Carbon-Energy Research (I2CNER), Kyushu University, 819-0385, Motooka 744, Nishi-ku, Fukuoka, Japan
| | - Ying-Sheng Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu Hsuan Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Tong Hung
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Nai-Hwa Chen
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Motonori Watanabe
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
- International Institute for Carbon-Energy Research (I2CNER), Kyushu University, 819-0385, Motooka 744, Nishi-ku, Fukuoka, Japan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| |
Collapse
|
18
|
Feng JD, Zhang WD, Gu ZG. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. Chempluschem 2024; 89:e202400069. [PMID: 38955991 DOI: 10.1002/cplu.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
19
|
Park JH, Pattipaka S, Hwang GT, Park M, Woo YM, Kim YB, Lee HE, Jeong CK, Zhang T, Min Y, Park KI, Lee KJ, Ryu J. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. NANO-MICRO LETTERS 2024; 16:276. [PMID: 39186184 PMCID: PMC11347555 DOI: 10.1007/s40820-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
This review provides a comprehensive overview of the progress in light-material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu Mi Woo
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
| | - Yuho Min
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Kwi-Il Park
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jungho Ryu
- School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
20
|
Agoro MA, Meyer EL, Olayiwola OI. Assemble of porous heterostructure thin film through CuS passivation for efficient electron transport in dye-sensitized solar cells. DISCOVER NANO 2024; 19:130. [PMID: 39158675 PMCID: PMC11333774 DOI: 10.1186/s11671-024-04082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Three different modified solar cells have been passivated with copper sulfide (CuS) on a TiO2 electrode and manganese sulfide (γ-MnS) hexagonal as photon absorbers. The MnS were prepared using (a-c) bis(N-Piperl-N-p-anisildithiocarbamato)Manganese(II) Complexes Mn[N-Piper-N-p-Anisdtc] as (MnS_1), N-p-anisidinyldithiocarbamato Mn[N-p-anisdtc] as (MnS_2) and N-piperidinyldithiocarbamato Mn[N-piperdtc] as (MnS_3). The corresponding passivated films were denoted as CM-1, CM-2, and CM-3. The influence of passivation on the structural, optical, morphological, and photochemical properties of the prepared devices has been investigated. Raman spectra show that the combination of this heterostructure is triggered by the variation in particle size and surface effect, thus resulting in good electronic conductivity. The narrow band gaps could be attributed to good interaction between the passivative materials on the TiO2 surface. CM-2 cells, stability studies show that the cell is polarized and current flows due to electron migration across the electrolyte and interfaces at this steady state. The cyclic voltammetry (CV) curve for the CM-3 with the highest current density promotes the electrocatalytic activity of the assembled solar cell. The catalytic reactions are further confirmed by the interfacial electron lifetimes in the Bode plots and the impedance spectra. The current-voltage (J-V) analysis suggests that the electrons in the conduction band of TiO2/CuS recombine with the semiconductor quantum dots (QDs) and the iodolyte HI-30 electrolyte, resulting in 5.20-6.85% photo-conversions.
Collapse
Affiliation(s)
- Mojeed A Agoro
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
- Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa.
| | - Edson L Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | | |
Collapse
|
21
|
Mai S, Zhang W, Mu X, Cao J. Structural Decoration of Porphyrin/Phthalocyanine Photovoltaic Materials. CHEMSUSCHEM 2024; 17:e202400217. [PMID: 38494448 DOI: 10.1002/cssc.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weilun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
22
|
Consiglio G, Gorczyński A, Spoto G, Petralia S, Forte G. Optimizing photovoltaic performance of squaraine derivative dyes: a DFT study on different anchoring groups. RSC Adv 2024; 14:24185-24195. [PMID: 39101065 PMCID: PMC11294986 DOI: 10.1039/d4ra05322b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
In this study, we designed squaraine-based dyes with a 2-amino pyrrole donor unit and acene groups like anthracene and pentacene. These dyes incorporate three different electron-withdrawing groups - cyanoacrylate (A1), phosphonate (A2) and boronic acid (A3) - as linkers to the TiO2 semiconductor. The spectroscopic, electronic and photochemical properties of these compounds were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) simulations. Compared to the squarylium dye, SQD, the UV-vis data indicate excellent absorption especially for pentacene-based dyes, which extended beyond 920 nm, enhancing the panchromatic effect. The calculated excited-state lifetimes of these dyes were notably longer than SQD, particularly for those containing pentacene and either A1 or A2 withdrawing groups, with lifetimes approximately four times longer. In contrast, boronic acid derivatives had shorter excited-state lifetimes, hindering charge transfer. Simulations suggest all sensitizers can inject electrons into TiO2 and be efficiently regenerated by electron transfer from the electrolyte. The best results were achieved with pentacene and A1 or A2 as linkers, notably A1 dyes achieve superior short circuit photocurrent, J sc, and power conversion efficiency, PCE, with over 50% improvement compared to SQD. Phosphonate derivatives exhibited the highest energy adsorption on TiO2 while still achieving significant open-circuit voltage, V oc, J sc, and PCE values. After surface adsorption, all dyes displayed efficient electron recovery, with HOMO levels significantly dropping below -4.8 eV. Our study demonstrates that computational design can significantly enhance experimental work, offering valuable insights to improve dye design and boost the performance of dye-sensitized solar cells.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Department of Chemical Science University of Catania Via S. Sofia 64 95125 Italy
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Guido Spoto
- InfoBiotech S.r.l Via del Bersagliere, 45 90143 Palermo Italy
| | - Salvatore Petralia
- Department of Drug Science and Health University of Catania Via S. Sofia 64 95125 Italy
| | - Giuseppe Forte
- Department of Drug Science and Health University of Catania Via S. Sofia 64 95125 Italy
| |
Collapse
|
23
|
Reis MA, Pereira AMVM, Moura NMM, Neves MGPMS. Porphyrin-Based Hole-Transporting Materials for Perovskite Solar Cells: Boosting Performance with Smart Synthesis. ACS OMEGA 2024; 9:31196-31219. [PMID: 39072093 PMCID: PMC11270557 DOI: 10.1021/acsomega.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
Perovskite solar cells (PSCs) are becoming a promising and revolutionary advancement within the photovoltaic field globally. Continuous improvement in efficiency, straightforward processing methods, and use of lightweight and cost-effective materials represent superior features, among other notable aspects. Still, long-term stability and durability are issues to address to facilitate widespread commercial adoption and practical application prospects. Research has focused on overcoming these challenges, and charge transport materials play a critical role in determining charge dynamics, photovoltaic performance, and device stability. Conventional hole-transporting materials (HTMs), spiro-OMeTAD and PTAA, contribute to remarkable power conversion efficiencies owing to high thin-film quality and matched energy alignment. However, they often show a high material cost, low carrier mobility, and poor stability, which greatly limit their practical applications. Now, this review outlines recent advances in synthetic approaches to porphyrin-based HTMs to tune the charge dynamics by optimizing their molecular structures and properties. The main structural features comprise porphyrins of A4-type, trans A2B2-type, and photosynthetic pigment analogues. Strategies include well-established routes to provide the required macrocycles, such as condensation of pyrrole or dipyrromethanes with suitable aldehydes, metalation of the porphyrin inner core, and postfunctionalization of peripheral positions. These functionalizations involve conventional procedures (e.g., halogenation, esterification, transesterification, nucleophilic oxidation, reduction, and nucleophilic substitution) as well as metal-catalyzed ones such as Suzuki-Miyaura, Sonogashira, Buchwald-Hartwig, and Ullmann cross-coupling reactions. As HTMs can also protect the perovskite layer from the external environment, porphyrin structures play a pivotal role in chemical, mechanical, and environmental stability, with their high hydrophobicity ability as the most significant parameter. The impact of porphyrins on the hole hopping of other HTMs while acting as an additive or an interlayer, passivating defects, and improving charge transport is also highlighted to provide real insights into ways to develop efficient and stable porphyrin-based materials for PSCs. This perspective aims to guide the scientific community in the design of new porphyrin molecules to place PSCs as an outperformer in photovoltaic technologies.
Collapse
Affiliation(s)
- Melani
J. A. Reis
- LAQV-Requimte
and Department of Chemistry, University
of Aveiro, 3010-193 Aveiro, Portugal
| | - Ana M. V. M. Pereira
- LEPABE
− Laboratory for Process Engineering, Environment, Biotechnology
and Energy, Faculty of Engineering, University
of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE
− Associate Laboratory in Chemical Engineering, Faculty of
Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. M. Moura
- LAQV-Requimte
and Department of Chemistry, University
of Aveiro, 3010-193 Aveiro, Portugal
| | | |
Collapse
|
24
|
Jadhav AP, Singh AK, Pandya R, Vanka K, Krishnamoorthy K, Jayaraj N. Far-red active unsymmetrical squaraine dyes containing N-arylated indoline donors for dye sensitized solar cells. Photochem Photobiol 2024; 100:1116-1126. [PMID: 38282075 DOI: 10.1111/php.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Squaraine dyes possess sharp far-red active transition with high extinction coefficient and form aggregates on TiO2 surface. Aggregation of dyes on TiO2 has been considered as a detrimental factor for DSSC device performance, which can be controlled by appending alkyl groups to the dye structures. Hence by integrating alkylated (alkyl groups with both in-plane and out-of-plane) aryl group with indoline moiety to make it compatible with other electrolytes and for controlling the dye-aggregation, a series of squaraine acceptor-based dyes SQA4-6 have been designed and synthesized. SQA4-6 dyes showed absorption between 642 and 653 nm (λmax), photophysical and electrochemical studies indicated that the HOMO energy levels of this sets of dyes are well aligned with the potentials of I-/I 3 - and [Co(bpy)3]2+/3+ redox shuttles for better dye regeneration process. DSSC device efficiency of 3% has been achieved for SQA5 dye with iodolyte (I-/I 3 - ) electrolyte in the presence of 0.3 mM of chenodeoxycholic acid (CDCA). The IPCE profile of DSSC device fabricated with SQA4-6 dyes indicated the contribution of aggregated structures for the photocurrent generation.
Collapse
Affiliation(s)
- Avinash P Jadhav
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambarish Kumar Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rinu Pandya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| | - Nithyanandhan Jayaraj
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Chuncha V, Achary Balahoju S, Dutta S, Giribabu L, Chitta R. Investigating the role of corrole as an excitation energy relay in light-induced processes in closely connected N,N'-bis(biphenyl-4-yl)aniline functionalized corrole donor-acceptor dyad. Photochem Photobiol 2024; 100:1041-1054. [PMID: 38549042 DOI: 10.1111/php.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 07/30/2024]
Abstract
A photosynthetic antenna-reaction center model, BBA-PFCor comprised of N,N'-bis(biphenyl-4-yl)aniline (BBA) covalently functionalized to bis(pentafluoro)corrole moiety has been prepared and the contribution of the BBA as the photoinduced energy transfer antenna was investigated. UV-visible studies have shown that integrating the electron-rich BBA chromophore into the corrole core has broadened the soret band of the corrole moiety with the absorption spanning from 300 to 700 nm. Electrochemical studies, in corroboration with the computational calculations, revealed that, BBA moiety can act as an electron reservoir and, in the excited state, it would transfer the excited energy to the corrole moiety in the dyad. Steady-state fluorescence studies have demonstrated that, upon photoexcitation of the BBA moiety of BBA-PFCor at 310 nm in solvents of varied polarity, the BBA emission centered at 400 nm was observed to be quenched, with the concomitant appearance of the corrole emission from 500 to 700 nm, indicating the happening of photoinduced energy transfer (PEnT) from 1BBA* to corrole moiety. Parallel control experiments involving the excitation of the corrole moiety at 410 nm did not result in the diminishing of the corrole emission, suggesting that the quenching of the BBA emission in BBA-PFCor is majorly due to intramolecular PEnT from 1BBA* to corrole moiety leading to the formation of singlet excited corrole, that is, 1BBA*-PFCor ➔ BBA-1PFCor*. The free energy changes of PEnT, ΔGEnT, were found to be thermodynamically feasible in all the solvents used for the study. Parallel time-resolved fluorescence studies were congruent with the steady-state fluorescence results and provided further evidence for the occurrence of ultrafast PEnT from 1BBA*➔corrole in the dyad with the rates of energy transfer (kEnT) of ~108 s-1.
Collapse
Affiliation(s)
- Vijaykumar Chuncha
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Shivaprasad Achary Balahoju
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Snigdha Dutta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Lingamallu Giribabu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Raghu Chitta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| |
Collapse
|
26
|
Akter R, Kirkwood N, Zaman S, Lu B, Wang T, Takakusagi S, Mulvaney P, Biju V, Takano Y. Bio-catalytic nanoparticle shaping for preparing mesoscopic assemblies of semiconductor quantum dots and organic molecules. NANOSCALE HORIZONS 2024; 9:1128-1136. [PMID: 38780444 DOI: 10.1039/d4nh00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We report a unique bio-catalytic nanoparticle shaping (BNS) method for preparing a variety of mesoscopic particles by a facile process. For example, the BNS method affords mesoscopic QD assembly dispersions. Large-size sedimentations (>1 μm) of QDs are first formed using oligo-L-lysine linkers. These then undergo controlled enzymatic cleavage of the linkers using trypsin, which surprisingly leads to mesoscopic particles about 84 nm in size with a narrow size distribution. A detailed mechanism of the BNS method is investigated using tetrakis(4-carboxyphenyl)porphyrin (TCPP), instead of QDs, as a probe molecule. Interestingly, the BNS method can also be applied to other combinations of enzymes and enzymatically degradable linkers, such as hyaluronidase with hyaluronan. As a potential application, the mesoscopic particles of QDs and oligo-lysine exhibit their ability to act as a drug delivery carrier originating from the features of both QDs and oligo-lysine. The BNS method demonstrates the universality and versatility of preparing mesoscopic particles and opens new doors for studying QD assemblies and molecular-based mesoscopic particles.
Collapse
Affiliation(s)
- Rumana Akter
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Samantha Zaman
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bang Lu
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
- Institute for Catalysis, Hokkaido University, Sapporo 0010021, Japan
| | - Tinci Wang
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
| | - Satoru Takakusagi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
- Institute for Catalysis, Hokkaido University, Sapporo 0010021, Japan
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
- Research Institute of Electronic Science, Hokkaido University, Sapporo 0010020, Japan
| | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, Sapporo 0600810, Japan.
- Research Institute of Electronic Science, Hokkaido University, Sapporo 0010020, Japan
| |
Collapse
|
27
|
Yadav SK, Patter A, Sankar M. Enhanced Catalytic Activity of Binuclear Oxidovanadium(IV) Bisbenzimidazole Linked Porphyrin Dimer for the Generation of Biologically Active 3,4-Dihydropyrimidinones and Their Corresponding Thiones. Inorg Chem 2024; 63:11102-11112. [PMID: 38831586 DOI: 10.1021/acs.inorgchem.4c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Binuclear vanadyl(IV) porphyrin (V2BP), where two vanadium(IV) porphyrin macrocycles are linked through benzimidazole units at the β-positions, has been prepared and characterized with various techniques, such as UV-vis, Fourier transform-infrared, electron paramagnetic resonance, cyclic voltammetry, density functional transform calculations, and mass spectrometry. V2BP exhibits a red shift (Δλmax = 10 nm) in the Soret band as compared with unsubstituted parent vanadyl(IV) meso-tetraphenylporphyrin (VP). The synthesized binuclear vanadyl(IV) porphyrin (V2BP) has further been studied as a catalyst to explore a single-pot multicomponent Biginelli reaction producing biologically active 3,4-dihydropyrimidin-2-(1H)-one (DHPM)-based biomolecules and the corresponding thiones under solvent-free conditions and its catalytic activity has been compared with vanadyl(IV) meso-tetraphenylporphyrin (VP). Several reaction conditions, such as the amount of catalyst, time, solvent, and temperature, have been optimized to obtain the maximum yield of DHPMs or thiones. The synthesized β-functionalized V2BP porphyrin dimer manifests much higher conversion (84-95% yield) of DHPMs or the corresponding thiones under the optimized reaction conditions with high TON (4454-5037) and TOF (1113-1259 h-1) values for the one-pot multicomponent Biginelli reaction as compared to the literature. The catalyst exhibited excellent recyclability up to 10 cycles.
Collapse
Affiliation(s)
- Sumit Kumar Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Akhil Patter
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
28
|
Ganguly G, Havlas Z, Michl J. Ab Initio Calculation of UV-vis Absorption of Parent Mg, Fe, Co, Ni, Cu, and Zn Metalloporphyrins. Inorg Chem 2024; 63:10127-10142. [PMID: 38770816 DOI: 10.1021/acs.inorgchem.3c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d' orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.
Collapse
Affiliation(s)
- Gaurab Ganguly
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Zdenek Havlas
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
29
|
Sun K, Ishikawa A, Itaya R, Toichi Y, Yamakado T, Osuka A, Tanaka T, Sakamoto K, Kawai S. On-Surface Synthesis of Polyene-Linked Porphyrin Cooligomer. ACS NANO 2024; 18:13551-13559. [PMID: 38757371 DOI: 10.1021/acsnano.3c12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
π-Conjugated molecules are viewed as fundamental components in forthcoming molecular nanoelectronics in which semiconducting functional units are linked to each other via metallic molecular wires. However, it is still challenging to construct such block cooligomers on the surface. Here, we present a synthesis of [18]-polyene-linked Zn-porphyrin cooligomers via a two-step reaction of the alkyl groups on Cu(111) and Cu(110). Nonyl groups (-C9H19) substituted at the 5,15-meso positions of Zn-porphyrin were first transformed to alkenyl groups (-C9H10) by dehydrogenation. Subsequently, homocoupling of the terminal -CH2 groups resulted in the formation of extended [18]-polyene-linked porphyrin cooligomers. The structures of the products at each reaction step were investigated by bond-resolved scanning tunneling microscopy at low temperatures. A combination of angle-resolved photoemission spectroscopy and density functional theory calculations revealed the metallic property of the all trans [18]-polyene linker on Cu(110). This finding may provide an approach to fabricate complex nanocarbon structures on the surface.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Atsushi Ishikawa
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryota Itaya
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Toichi
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takayuki Tanaka
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyuki Sakamoto
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
30
|
Coghi P, Coluccini C. Literature Review on Conjugated Polymers as Light-Sensitive Materials for Photovoltaic and Light-Emitting Devices in Photonic Biomaterial Applications. Polymers (Basel) 2024; 16:1407. [PMID: 38794599 PMCID: PMC11125275 DOI: 10.3390/polym16101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Due to their extended p-orbital delocalization, conjugated polymers absorb light in the range of visible-NIR frequencies. We attempt to exploit this property to create materials that compete with inorganic semiconductors in photovoltaic and light-emitting materials. Beyond competing for applications in photonic devices, organic conjugated compounds, polymers, and small molecules have also been extended to biomedical applications like phototherapy and biodetection. Recent research on conjugated polymers has focused on bioapplications based on the absorbed light energy conversions in electric impulses, chemical energy, heat, and light emission. In this review, we describe the working principles of those photonic devices that have been applied and researched in the field of biomaterials.
Collapse
Affiliation(s)
- Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Pishro KA, Gonzalez MH. Use of deep eutectic solvents in environmentally-friendly dye-sensitized solar cells and their physicochemical properties: a brief review. RSC Adv 2024; 14:14480-14504. [PMID: 38708112 PMCID: PMC11063684 DOI: 10.1039/d4ra01610f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
A novel way to mitigate the greenhouse effect is to use dye-sensitized solar cells (DSSCs) to convert carbon dioxide from the air into useful products, such as hydrocarbons, which can also store energy from the sun, a plentiful, clean, and safe resource. The conversion of CO2 can help reduce the impacts of greenhouse gas emissions that contribute to global warming. However, there is a major obstacle in using DSSCs, since many solar devices operate with organic electrolytes, producing pollutants including toxic substances. Therefore, a key research area is to find new eco-friendly electrolytes that can effectively dissolve carbon dioxide. One option is to use deep eutectic solvents (DESs), which are potential substitutes for ionic liquids (ILs) and have similar advantages, such as being customizable, economical, and environmentally friendly. DESs are composed of low-cost materials and have very low toxicity and high biodegradability, making them suitable for use as electrolytes in DSSCs, within the framework of green chemistry. The purpose of this brief review is to explore the existing knowledge about how CO2 dissolves in DESs and how these solvents can be used as electrolytes in solar devices, especially in DSSCs. The physical and chemical properties of the DESs are described, and areas are suggested where further research should be focused.
Collapse
Affiliation(s)
- Khatereh A Pishro
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| |
Collapse
|
32
|
Maity N, Polok K, Piatkowski P, Smortsova Y, Miannay FA, Gadomski W, Idrissi A. Effect of Mixture Composition on the Photophysics of Indoline Dyes in Imidazolium Ionic Liquid-Molecular Solvent Mixtures: A Femtosecond Transient Absorption Study. J Phys Chem B 2024. [PMID: 38687688 DOI: 10.1021/acs.jpcb.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy. Through our analysis, we discovered a peculiar behavior of several photophysical properties at low IL mole fractions (0 < XIL < 0.2). Indeed, in this range of mixture composition, the absorption maximum wavelength decreases noticeably, while the emission maximum wavelength and the Stokes shift, expressed in wavenumbers, reach a maximum. while a minimum occurs in the relative quantum yield and the excited state lifetime. These results indicate that the solvation of dye undergoes a large change in this range of mixture composition. We found that, at high ionic liquid content, the excited relaxation times are correlated with the high viscosity, while at low content, it is the polarity of the solvent that influences the behavior of the excited relaxation times. At a mixture composition of around 0.10, the behavior of the photophysical properties of the studied IL-MS mixtures indicates a crossover between situations where the solvation is dominated by that of ions and that dominated by the solvent.
Collapse
Affiliation(s)
- Nishith Maity
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Kamil Polok
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Piatkowski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | | | - François-Alexandre Miannay
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| | - Wojciech Gadomski
- Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, University of Warsaw, ̇wirki i Wigury 101, Warsaw 02-089, Poland
| | - Abdenacer Idrissi
- CNRS, UMR 8516-LASIRe, Laboratoire Avancé de Spectroscopie pour les Interactions, la réactivité et l'Environement, Universiy of Lille, Lille F-59000, France
| |
Collapse
|
33
|
Kushwaha A, Srivastava D, Prakash O, Kociok-Köhn G, Gosavi SW, Chauhan R, Muddassir M, Kumar A. 1,1'-Bis-(diphenylphosphino)ferrocene appended d 8- and d 10-configuration based thiosquarates: the molecular and electronic configurational insights into their sensitization and co-sensitization properties for dye sensitized solar cells. Dalton Trans 2024; 53:6818-6829. [PMID: 38546210 DOI: 10.1039/d4dt00151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Three new d8- and d10-configuration based 1,1'-bis-(diphenylphosphino)ferrocene (dppf) appended thiosquarates complexes with general composition [M(mtsq)2dppf] (M = Ni2+ (NiL2); Zn2+ (ZnL2) and Cd2+ (CdL2)) (mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized spectroscopically as well as in case of NiL2 by single crystal X-ray diffraction technique. The single crystal X-ray analysis reveals square planar geometry around Ni(II) in NiL2, where Ni(II) coordinates with two sulfur centres of two mtsq ligands in monodentate fashion and two phosphorus of a dppf ligand in chelating mode. The supramolecular architecture of NiL2 is sustained by intermolecular C-H⋯O interactions to form one-dimensional chain. Further, the application of these newly synthesized complexes as sensitizers and co-sensitizers/co-absorbents with ruthenium based N719 sensitizer in dye-sensitized solar cells (DSSCs) have been explored. The DSSC set-up based on NiL2 offers best photovoltaic performance with photovoltaic efficiency (η) 5.12%, short-circuit current (Jsc) 11.60 mA cm-2, open circuit potential (Voc) 0.690 V and incident photon to current conversion efficiency (IPCE) 63%. In co-sensitized DSSC set-up, ZnL2 along with state-of-the-art N719 dye displays best photovoltaic performance with η 6.65%, Jsc 14.47 mA cm-2, Voc 0.729 V and IPCE 69%, thereby showing an improvement by 15.25% in photovoltaic efficiency in comparison to the photovoltaic efficiency of N719 sensitized DSSC set-up. Variation in co-sensitization behaviour have been ascribed to the differences in the excited state energy level of co-sensitizers. The ZnL2 and CdL2 have a higher energy level position than N719 dye, allowing efficient electron transfer to N719 during light irradiation, while excited state of NiL2 is lower than N719 dye, preventing photoexcited electron transfer to N719, resulting in its lowest overall efficiency among the three co-sensitized DSSC setups.
Collapse
Affiliation(s)
- Aparna Kushwaha
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Devyani Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Suresh W Gosavi
- Department of Physics, Savitribai Phule Pune University, Pune-411007, India
| | - Ratna Chauhan
- Department of Environmental Science, Savitribai Phule Pune University, Pune-411007, India.
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| |
Collapse
|
34
|
Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul AB, Jiang Q. Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:391. [PMID: 38470722 PMCID: PMC10933891 DOI: 10.3390/nano14050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Halide perovskite materials have attracted worldwide attention in the photovoltaic area due to the rapid improvement in efficiency, from less than 4% in 2009 to 26.1% in 2023 with only a nanometer lever photo-active layer. Meanwhile, this nova star found applications in many other areas, such as light emitting, sensor, etc. This review started with the fundamentals of physics and chemistry behind the excellent performance of halide perovskite materials for photovoltaic/light emitting and the methods for preparing them. Then, it described the basic principles for solar cells and light emitting devices. It summarized the strategies including nanotechnology to improve the performance and the application of halide perovskite materials in these two areas: from structure-property relation to how each component in the devices affects the overall performance. Moreover, this review listed the challenges for the future applications of halide perovskite materials.
Collapse
Affiliation(s)
- Maoding Cheng
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Jingtian Jiang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chao Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mansour Mortazavi
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Anupama B Kaul
- Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Qinglong Jiang
- Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| |
Collapse
|
35
|
Cao TND, Wang T, Peng Y, Hsu HY, Mukhtar H, Yu CP. Photo-assisted microbial fuel cell systems: critical review of scientific rationale and recent advances in system development. Crit Rev Biotechnol 2024; 44:31-46. [PMID: 36424845 DOI: 10.1080/07388551.2022.2115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Bioelectrochemical systems such as microbial fuel cells (MFCs) have gained extensive attention due to their abilities to simultaneously treat wastewater and generate renewable energy resources. Recently, to boost the system performance, the photoelectrode has been incorporated into MFCs for effectively exploiting the synergistic interaction between light and microorganisms, and the resultant device is known as photo-assisted microbial fuel cells (photo-MFCs). Combined with the metabolic reaction of organic compounds by microorganisms, photo-MFCs are capable of simultaneously converting both chemical energy and light energy into electricity. This article aims to systematically review the recent advances in photo-MFCs, including the introduction of specific photosynthetic microorganisms used in photo-MFCs followed by the discussion of the fundamentals and configurations of photo-MFCs. Moreover, the materials used for photoelectrodes and their fabrication approaches are also explored. This review has shown that the innovative strategy of utilizing photoelectrodes in photo-MFCs is promising and further studies are warranted to strengthen the system stability under long-term operation for advancing practical application.
Collapse
Affiliation(s)
- Thanh Ngoc Dan Cao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - TsingHai Wang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chongli, Taiwan
| | - Yong Peng
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Luff MS, Kerpen C, Sprenger JAP, Finze M, Radius U. Nickel(II) Cyanoborates and Cyanoborate-Ligated Nickel(II) Complexes. Inorg Chem 2024; 63:2204-2216. [PMID: 38206799 DOI: 10.1021/acs.inorgchem.3c04164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nickel(II) cyanoborates Ni[BH2(CN)2]2·H2O (1b·H2O), Ni[BH(CN)3]2·0.5H2O (1c·0.5H2O), and Ni[B(CN)4]2·0.5H2O (1d·0.5H2O) were synthesized, and their reactivity with respect to dppeO2 (=1,2-bis-(diphenylphosphinoethane dioxide)), pyNO (=pyridine-N-oxide), dppe (=1,2-bis-(diphenylphosphinoethane), and DMSO (=dimethyl sulfoxide) was examined. Using these ligands, either cyanoborate (CB) complex salts of [Ni(dppe)2]2+ (2b-d) and [Ni(pyNO)6]2+ (3c-d) were isolated or complexes [Ni(DMSO)4{NC-B(CN)3}2] (1dDMSO) and [Ni(dppeO2)2{NC-B(CN)3}2] (1ddppeO2) were formed. Salt metathesis of [Ni(dppe)Cl2] with alkali metal cyanoborates resulted in mono- and disubstituted coordination compounds [Ni(dppe){NC-BH(CN)2}Cl] (5c) and [Ni(dppe){NC-BH2CN)2}] (4b), which decomposed to salts 2b-d. The synthetical pathways explored offer convenient routes to nickel(II) cyanoborates, nickel(II) complexes ligated with cyanoborates, and nickel(II) complex salts of cyanoborates. Further, our studies demonstrate the diverse character of cyanoborates in coordination chemistry as noncoordinating counteranions and also as medium coordinating anions forming novel transition-metal complexes and salts.
Collapse
Affiliation(s)
- Martin S Luff
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Kerpen
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan A P Sprenger
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
37
|
Wang J, Gadenne V, Patrone L, Raimundo JM. Self-Assembled Monolayers of Push-Pull Chromophores as Active Layers and Their Applications. Molecules 2024; 29:559. [PMID: 38338304 PMCID: PMC10856137 DOI: 10.3390/molecules29030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.
Collapse
Affiliation(s)
- Junlong Wang
- Aix Marseille Univ, CNRS, CINaM, AMUTech, 13288 Marseille, France;
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Virginie Gadenne
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Lionel Patrone
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | | |
Collapse
|
38
|
Zhao C, Zhang Z, Ran X, Zhang T, Yu X, Jin L. Screening novel candidates of ZL003-based organic dyes for dye-sensitized solar cells by modifying auxiliary electron acceptors: A theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123880. [PMID: 38277789 DOI: 10.1016/j.saa.2024.123880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
In this work, a series of ZL003-based free-metal sensitizers with the donor-acceptor-π- conjugated spacer-acceptor (D-A-π-A) structure were designed by modifying auxiliary electron acceptors for the potential application in dye-sensitized solar cells. The energy levels of frontier molecular orbitals, absorption spectra, electronic transition, and photovoltaic parameters for all studied dyes were systematically evaluated using density functional theory (DFT)/time-dependent DFT calculations. Results illustrated that thienopyrazine (TPZ), selenadiazolopyridine (SDP), and thiadiazolopyridine (TDP) are excellent electron acceptors, and dye sensitizers functionalized by these acceptors have smaller HOMO-LUMO gaps, obviously red-shifted absorption bands and stronger light harvesting. The present study revealed that the photoelectric conversion efficiency (PCE) of ZL003 is around 13.42 % with a JSC of 20.21 mA·cm-2, VOC of 966 mV and FF of 0.688 under the AM 1.5G sun exposure, in good agreement with its experimental value (PCE = 13.6 ± 0.2 %, JSC = 20.73 ± 0.20 mA·cm-2, VOC = 956 ± 5 mV, and FF = 0.685 ± 0.005.). With the same procedure, the PCE values for M4, M6, and M7 were estimated to be as high as 19.93 %, 15.38 %, and 15.80 % respectively. Hence, these three dyes are expected to be highly efficient organic sensitizers applied in practical DSSCs.
Collapse
Affiliation(s)
- Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China.
| | - Zhenjia Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China
| | - Xuzhou Ran
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China
| | - Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, PR China.
| |
Collapse
|
39
|
Deshmukh SS, Maibam A, Krishnamurty S, Krishnamoorthy K, Nithyanandhan J. Visible-Light-Active Unsymmetrical Squaraine Dyes with Pyridyl Anchoring Groups for Dye-Sensitized Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:251-263. [PMID: 38115198 DOI: 10.1021/acs.langmuir.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Visible-light-active alkyl group-wrapped unsymmetrical squaraine dyes SD1-SD3 were synthesized, featuring an indoline donor and pyridine and carboxylic acid anchoring groups. Their photophysical, electrochemical, and photovoltaic characteristics were examined by fabricating a dye-sensitized solar cell (DSSC) device. Both carboxylic acid and pyridine anchoring groups containing squaraine dyes SD3 and SD2 possess similar photophysical and electrochemical characteristics. However, their photovoltaic performances were completely different. The SD3 dye with the carboxylic acid anchoring group displayed a DSSC device efficiency of 7.20% (VOC 0.81 V; JSC 12.29 mA/cm2) using iodolyte (I-/I3-) electrolyte, compared to SD1 (VOC 0.659 V; JSC 4.97 mA/cm2; and η - 2.34%) and SD2 (VOC 0.629 V; JSC 1.68 mA/cm2; and η - 0.84%), which were featured with pyridyl anchoring groups. These results were attributed to dye loading on the Lewis and Brønsted acidic sites of TiO2 and the importance of aggregated structures for photocurrent generation. In the incident photon-to-current efficiency (IPCE) analysis, SD1 dye-sensitized devices exhibited photocurrent generation from both monomeric and aggregated dyes on the TiO2 surface. In contrast, SD2 showed photocurrent generation solely from aggregated states. Despite the introduction of long alkyl chains to reduce dye aggregation and charge recombination, the results indicated preferential charge injection from only the aggregated SD2 dye on TiO2. Fluorescence-quenching experiments indicated an efficient charge transfer from the aggregated SD2 dye to TiO2 compared to that of the monomeric dye. Cosensitization, a method to enhance the light-harvesting efficiency and photocurrent generation in DSSCs, was explored by simultaneously cosensitizing pyridyl-based dyes (SD1 and SD2) with a blue-colored carboxylic acid-based squaraine dye SD4. IPCE analysis demonstrated that both SD1 and SD4 contributed to generating a photocurrent of 9.11 mA/cm2. The sequential cosensitization of SD1 and SD4 with the coadsorbent CDCA showed the highest performance, with a VOC of 0.663 V, a JSC of 11.43 mA/cm2, and an efficiency (η) of 5.20%.
Collapse
Affiliation(s)
- Shivdeep Suresh Deshmukh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Gupta RK, Shaikh H, Imran A, Bedja I, Ajaj AF, Aldwayyan AS, Khan A, Ayub R. Electrical transport properties of [(1 - x)succinonitrile: xpoly(ethylene oxide)]-LiCF 3SO 3-Co[tris-(2,2'-bipyridine)] 3(TFSI) 2-Co[tris-(2,2'-bipyridine)] 3(TFSI) 3 solid redox mediators. RSC Adv 2024; 14:539-547. [PMID: 38173611 PMCID: PMC10759195 DOI: 10.1039/d3ra07314a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
A solid redox mediator (solid electrolyte) with an electrical conductivity (σ25°C) greater than 10-4 S cm-1 is an essential requirement for a dye-sensitized solar cell in the harsh weather of Gulf countries. This paper reports the electrical properties of solid redox mediators prepared using highly dissociable ionic salts: Co[tris-(2,2'-bipyridine)]3(TFSI)2, Co[tris-(2,2'-bipyridine)]3(TFSI)3, and LiCF3SO3 as a source of Co2+, Co3+, and Li+ ions, respectively, in a solid matrix: [(1 - x)succinonitrile:xpoly(ethylene oxide)], where x = 0, 0.5, and 1 in weight fraction. In the presence of large size of cations (Co2+ and Co3+) and large-sized and weakly-coordinated anions (TFSI- and CF3SO3-), only the succinonitrile-poly(ethylene oxide) blend (x = 0.5) resulted in highly conductive amorphous regions with σ25°C of 4.7 × 10-4 S cm-1 for EO/Li+ = 108.4 and 3.1 × 10-4 S cm-1 for EO/Li+ = 216.8. These values are slightly lower than 1.5 × 10-3 S cm-1 for x = 0 and higher than 6.3 × 10-7 S cm-1 for x = 1. Only blend-based electrolytes exhibited a downward curve in the log σ-T-1 plot, a low value of pseudo-activation energy (0.06 eV), a high degree of transparency, and high thermal stability, making it useful for device applications.
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Hamid Shaikh
- SABIC Polymer Research Centre, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Idriss Bedja
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University Riyadh 11433 Saudi Arabia
| | - Abrar Fahad Ajaj
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Abdullah Saleh Aldwayyan
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
- K.A. CARE Energy Research and Innovation Centre, King Saud University Riyadh Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Rashid Ayub
- Department of Science, Technology and Innovation Unit, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
41
|
Wang D, Li Y, Ding Y, Jia X, Zhong D, Zhang X, Zhao J, Fang Y. Facile Synthesis of a Multifunctional SnO 2 Nanoparticles/Nanosheets Composite for Dye-Sensitized Solar Cells. ACS OMEGA 2023; 8:44578-44585. [PMID: 38046349 PMCID: PMC10688124 DOI: 10.1021/acsomega.3c04472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Synthesizing SnO2 composite nanostructures via a facile one-step method has been proven to be a great challenge. By adjusting operating variables, such as the reaction solution's pH and solvent type, several SnO2 nanostructures, in particular, a function-matching SnO2 hybrid structure composed of irregular zero-dimensional nanoparticles (NPs) and two-dimensional nanosheets (NSs), could be created. The as-prepared SnO2 composites were then characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) to determine their physical properties. Dye-sensitized solar cells (DSCs) constructed with the resultant multifunctional SnO2 NPs/NSs composite exhibited the highest overall power conversion efficiency (PCE) of 5.16% among all products with a corresponding short-circuit current density of 18.6 mA/cm2 and an open-circuit voltage of 0.626 V. The improved performance can be attributed to the combined effects of each component in the composite, i.e., the intentionally introduced nanosheets provide desired electron transport and enhanced light scattering capability, while the nanoparticles retain their large surface area for efficient dye absorption.
Collapse
Affiliation(s)
- Dongting Wang
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yuchen Li
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yimin Ding
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiangchen Jia
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Daopeng Zhong
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- Shandong Provincial Key Laboratory
of Chemical Energy Storage and Novel Cell Technology, School of Chemistry
and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | | |
Collapse
|
42
|
Gobbato T, Volpato GA, Sartorel A, Bonchio M. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chem Sci 2023; 14:12402-12429. [PMID: 38020375 PMCID: PMC10646967 DOI: 10.1039/d3sc03780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized "body" (from the Greek word "soma") to enable the conversion of light quanta with high efficiency. Therefore, the natural "quantasome" represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009-2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years.
Collapse
Affiliation(s)
- Thomas Gobbato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
- ITM-CNR Section of Padova, INSTM Unit of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
43
|
Sharma SJ, Sekar N. A promising small-sized near-infrared absorbing zwitterionic dye for DSSC and NLO applications: DFT and TD-DFT approaches. Phys Chem Chem Phys 2023; 25:30023-30039. [PMID: 37905435 DOI: 10.1039/d3cp03858k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Herein we investigate three quinoid zwitterionic dye sensitizers having donor-donor (4-dimethylaniline; ZIDM), donor-acceptor (4-dimethylaniline and 4-benzoic acid; ZIMCA), and acceptor-acceptor (4-benzoic acid; ZIDCA) that can be used in dye sensitized-solar cells and non-linear optical (NLO) application through density-functional theory (DFT) and time-dependent-DFT computations. ZIDM showed better charge transfer than ZIMCA and ZIDCA, which showed similar trends in chemical potential, electrophilicity index, hardness, and hyperhardness. The higher values of open circuit voltage, light harvesting efficiency, lower binding, and adsorption energy values for the dye to bind with the TiO2 cluster were observed for ZIDM. The results suggest that these dyes can easily hold with the TiO2 cluster through the monodentate binding mode possible between Ti and oxygen of the zwitterionic backbone. The examination of the linear and NLO properties of these dyes revealed that ZIDM has a higher α0 = 80.64 × 10-24 esu, β0 = 448.54 × 10-30 esu, and γ = 2219.23 × 10-36 esu in DCM. Similarly, higher values of molecular hyperpolarizability of 1335.0 × 10-48 esu and 8818.3 × 10-48 esu were observed in gas and DCM for ZIDM than ZIMCA and ZIDCA.
Collapse
Affiliation(s)
- Suryapratap J Sharma
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| | - Nagaiyan Sekar
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
44
|
Consiglio G, Gorcyński A, Petralia S, Forte G. Predicting the dye-sensitized solar cell performance of novel linear carbon chain-based dyes: insights from DFT simulations. Dalton Trans 2023; 52:15995-16004. [PMID: 37847522 DOI: 10.1039/d3dt01856c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In this paper, we employ density functional theory (DFT) simulations to predict the energy conversion efficiency of a novel class of organic dyes based on linear carbon chain (LCC) linkers for application in dye-sensitized solar cells (DSSCs). We investigate the role of the anchoring group, which serves as a bridge connecting the linker and the surface. Specifically, we compare the performance of cyanoacrylic acid, dyes PY-4N and PY-3N, with that of phosphonate derivatives, dyes PY-4NP and PY-3NP, wherein the carboxylic group of the cyanoacrylic moiety is replaced with phosphonic acid. The observed variations in the UV/VIS absorption spectra have a slight impact on the light harvesting efficiency (LHE). Based on the empirical parameters we have taken into account, the electron injection efficiency (Φinj) and electron collection efficiency (ηcoll) values do not impact the short-circuit current density (JSC) values of all the studied dyes. The open-circuit voltage (Voc) is theoretically predicted using the improved normal model (INM) method. Among the dyes, PY-4N and PY-3N demonstrate the highest Voc values. This can be attributed to a more favorable recombination rate value, which is related to the energy gap between the HOMO level of the dyes and the conduction band minimum (CBM) of the surface. Dyes PY-4N and PY-3N are predicted to demonstrate remarkably high photoelectric conversion efficiency (PCE) values of approximately 21.79% and 16.52%, respectively, and therefore, they are expected to be potential candidates as organic dyes for applications in DSSCs. It is worth noting that PY-4NP and PY-3NP exhibit strong adsorption energy on the surface and interesting PCE values of 11.66% and 8.29%, respectively. This opens up possibilities for their application in DSSCs either as standalone sensitizers or as co-sensitizers alongside metal-free organic dyes or organic-inorganic perovskite solar cells.
Collapse
Affiliation(s)
- Giuseppe Consiglio
- Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95125, Italy
| | - Adam Gorcyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Salvatore Petralia
- Department of Drug Sciences and Health, University of Catania, Via S. Sofia 64, 95125, Italy.
| | - Giuseppe Forte
- Department of Drug Sciences and Health, University of Catania, Via S. Sofia 64, 95125, Italy.
| |
Collapse
|
45
|
Shukor NIA, Chan KY, Thien GSH, Yeoh ME, Low PL, Devaraj NK, Ng ZN, Yap BK. A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells. SENSORS (BASEL, SWITZERLAND) 2023; 23:8412. [PMID: 37896506 PMCID: PMC10610988 DOI: 10.3390/s23208412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Solar cells are pivotal in harnessing renewable energy for a greener and more sustainable energy landscape. Nonetheless, eco-friendly materials for solar cells have not been as extensive as conventional counterparts, highlighting a significant area for further investigation in advancing sustainable energy technologies. This study investigated natural dyes from cost-effective and environmentally friendly blueberries and mulberries. These dyes were utilized as alternative sensitizers for dye-sensitized solar cells (DSSCs). Alongside the natural dyes, a green approach was adopted for the DSSC design, encompassing TiO2 photoanodes, eco-friendly electrolytes, and green counter-electrodes created from graphite pencils and candle soot. Consequently, the best-optimized dye sensitizer was mulberry, with an output power of 13.79 µW and 0.122 µW for outdoor and indoor environments, respectively. This study underscored the feasibility of integrating DSSCs with sensitizers derived from readily available food ingredients, potentially expanding their applications in educational kits and technology development initiatives.
Collapse
Affiliation(s)
- Nurul Izzati Abdul Shukor
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
- Intel Corporation, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Kah-Yoong Chan
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
| | - Gregory Soon How Thien
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
| | - Mian-En Yeoh
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
| | - Pei-Ling Low
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
| | - Nisha Kumari Devaraj
- Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia (N.K.D.)
| | - Zi-Neng Ng
- School of Electrical Engineering and Artificial Intelligence, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Boon Kar Yap
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
- International School of Advanced Materials, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
46
|
Al-Taweel S, Al-Trawneh S, Al-Dmour H, Al-Gzawat O, Alhalasah W, Mousa M. Effect of thiophene rings rigidity on dye-sensitized solar cell performance. Dithienothiophene versus terthiophene as π- donor moiety. Heliyon 2023; 9:e21039. [PMID: 37886744 PMCID: PMC10597862 DOI: 10.1016/j.heliyon.2023.e21039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Solar cells are fabricated based on two new dyes. Dye acts as an additive to thin layer interface. The effect of the π -conjugated rigidity of the thiophene rings on the photovoltaic characteristics has been investigated. The structures of the dye 1 was based on dithieno [3,2-b:2',3'-d] thiophene-2-cyanoacrylic acid, while dye 2 was based on [2,2':5',2″-terthiophene]-5-cyanoacrylic acid and were confirmed by elemental analysis, mass spectrometry, 1H NMR and 13C NMR spectral data. The P3HT/dye 1/nc-TiO2 solar cell produced the highest efficiency of 0.3 % with an open circuit voltage of 0.7 V compared to dye 2 solar cell. This has been attributed to the difference in energy levels of the dyes and location of their HOMO relative to conduction and valence bands of nc-TiO2. The dye 1 has rigid fused thiophene rings and its HOMO is located between valence band of TiO2 and HOMO of P3HT which leads to improve the charge carrier separation and increase the current density to reach 1.2 mA/cm2.
Collapse
Affiliation(s)
- Samir Al-Taweel
- Department of Chemistry, Faculty of Science, Mutah University, Mu'tah, 61710, Jordan
| | - Salah Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, Mu'tah, 61710, Jordan
| | - Hmoud Al-Dmour
- Department of Physics, Faculty of Science, Mutah University, Mu'tah, 61710, Jordan
| | - Osamah Al-Gzawat
- Department of Chemistry, Faculty of Science, Mutah University, Mu'tah, 61710, Jordan
| | - Wasim Alhalasah
- Scientific Research and Innovation Support Fund, Ministry of Higher Education and Scientific Research, Amman, Jordan
| | - Marwan Mousa
- Department of Physics, Faculty of Science, Mutah University, Mu'tah, 61710, Jordan
| |
Collapse
|
47
|
Sekaran B, Guragain M, Misra R, D'Souza F. β-Pyrrole Functionalized Push or Pull Porphyrins: Excited Charge Transfer Promoted Singlet Oxygen Generation. J Phys Chem A 2023; 127:7964-7975. [PMID: 37707534 DOI: 10.1021/acs.jpca.3c05292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Singlet oxygen (1O2) producing photosensitizers are highly sought for developing new photodynamic therapy agents and facilitating 1O2-involved chemical reactions. Often singlet oxygen is produced by the reaction of triplet-excited photosensitizers with dioxygen via an energy transfer mechanism. In the present study, we demonstrate a charge transfer mechanism to produce singlet oxygen involving push or pull functionalized porphyrins. For this, 20 β-pyrrole functionalized porphyrins carrying either an electron-rich push or electron-deficient pull group have been newly synthesized. Photoexcitation of these push-pull porphyrins has been shown to produce high-energy MPδ+-Aδ- or MPδ--Dδ+ charge transfer states. Subsequent charge recombination results in populating the triplet excited states of extended lifetimes in the case of the push group containing porphyrins that eventually react with dioxygen to produce the reactive singlet oxygen of relatively higher quantum yields. The effect of the push and pull groups on the porphyrin periphery in governing initial charge transfer, the population of triplet excited states and their lifetimes, and resulting in improved singlet oxygen quantum yields are systematically probed. The improved performance of 1O2 generation by porphyrins carrying push groups is borne out from this study.
Collapse
Affiliation(s)
- Bijesh Sekaran
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Manan Guragain
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
48
|
Vasilopoulou M, Mohd Yusoff ARB, Nazeeruddin MK. Background and Basic Knowledge of Perovskite Solar Cells. PRINTABLE MESOSCOPIC PEROVSKITE SOLAR CELLS 2023:1-18. [DOI: 10.1002/9783527834297.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
49
|
Zhou H, Ji JM, Lee HS, Masud, Aftabuzzaman M, Lee DN, Kim CH, Kim HK. D-π-A Structured Porphyrin and Organic Dyes with Easily Synthesizable Donor Units for Low-Cost and Efficient Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39426-39434. [PMID: 37578375 DOI: 10.1021/acsami.3c08877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
This study aimed to develop low-cost D-π-A structured porphyrin and organic dyes with easily synthesizable donor units instead of the conventional complex multistep synthetic donor unit of Hexyloxy-BPFA [bis(7-(2,4-bis(hexyloxy)phenyl)-9,9-dimethyl-9H-fluoren-2-yl)amine] used in SGT-021 and SGT-149 as well-known record cosensitizers with an extremely high power conversion efficiency (PCE). The design strategy concerned the easier synthesis of low-cost donor units with inversion structures in donor groups via donor structural engineering, particularly by changing the position of the fluorene and phenylene units in the donor moiety while keeping the π-bridge and acceptor unit unchanged, leading to the synthesis of two D-π-A structured porphyrins [SGT-021(D0) and SGT-021(D)] and one D-π-A structured organic sensitizer [SGT-149(D)] for dye-sensitized solar cells (DSSCs). Specifically, porphyrin SGT-021(D0) incorporated two hexyl chains into the 9-position of each fluorene, while SGT-021(D) and SGT-149(D) substituted two hexyloxy chain units to the terminal position of each fluorene in the donor groups of porphyrin dyes. The effect of the position of the fluorene and phenylene units in the donor moiety on the photochemical and electrochemical properties, as well as the photovoltaic performance, was compared with the reference dyes of SGT-021 and SGT-149, previously reported by the research group. After optimizing the DSSC devices, SGT-021(D) and SGT-021(D0) achieved a high PCE of 11.6 and 10.5%, respectively, while SGT-149(D) exhibited a little lower PCE of 10.3% under the standard AM 1.5G light intensity. The cell performance of DSSC devices based on SGT-021(D) and SGT-149(D) was inferior to the corresponding reference dyes of SGT-021 and SGT-149 due to their lower donating ability of Hexyloxy-BPFA than Hexyloxy-BFPA.
Collapse
Affiliation(s)
- Haoran Zhou
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
- Renewable Energy Materials Laboratory (REML), Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Jung-Min Ji
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
- Max-Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45740 Melheim, Germany
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Masud
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Mohammad Aftabuzzaman
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Dong-Nam Lee
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| | - Hwan Kyu Kim
- Global GET-Future Lab. and Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Korea
| |
Collapse
|
50
|
Dorfner AL, Locoteta DP, Messinger CD, Ramsey MR, Kim NY, Sadzaglishvili E, Kranick JC, Kuehner JS, Timony CJ, Langton M, Winklarek JE, Tucker LJ, O'Donnell JL. Non-isothermal cold crystallization of liquid crystalline porphyrins. SOFT MATTER 2023; 19:6414-6422. [PMID: 37581239 DOI: 10.1039/d3sm00760j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A series of liquid crystalline porphyrins was synthesized, purified, and characterized. Differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy (HS-POM) revealed that the porphyrins in the series with shorter alkyl arm lengths exhibit kinetic cold crystallization, wherein the molecules spontaneously organize into large, disc-like structures that remain stable upon cooling. Using DSC, the kinetic and thermodynamic parameters related to these materials were determined. Analysis of non-isothermal crystallization revealed the presence of multiple nucleation and growth processes related to cold crystallization.
Collapse
Affiliation(s)
- Alec L Dorfner
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Diana P Locoteta
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Caleb D Messinger
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Michael R Ramsey
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Nathaniel Y Kim
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Elene Sadzaglishvili
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Joshua C Kranick
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Joseph S Kuehner
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Collin J Timony
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Michelle Langton
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Jeffrey E Winklarek
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Lucas J Tucker
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| | - Jodi L O'Donnell
- Siena College, Department of Chemistry and Biochemistry, 515 Loudon Road, Loudonville, NY, 12211, USA.
| |
Collapse
|