1
|
Sandal L, Sæther BE, Freckleton RP, Noble DG, Schwarz J, Leivits A, Grøtan V. Species richness and evenness of European bird communities show differentiated responses to measures of productivity. J Anim Ecol 2024; 93:1212-1224. [PMID: 38979934 DOI: 10.1111/1365-2656.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
Understanding patterns of species diversity is crucial for ecological research and conservation, and this understanding may be improved by studying patterns in the two components of species diversity, species richness and evenness of abundance of species. Variation in species richness and evenness has previously been linked to variation in total abundance of communities as well as productivity gradients. Exploring both components of species diversity is essential because these components could be unrelated or driven by different mechanisms. The aim of this study was to investigate the relationship between species richness and evenness in European bird communities along an extensive latitudinal gradient. We examined their relationships with latitude and Net Primary Productivity, which determines energy and matter availability for heterotrophs, as well as their responses to territory densities (i.e. the number of territories per area) and community biomass (i.e. the bird biomass per area). We applied a multivariate Poisson log-normal distribution to unique long-term, high-quality time-series data, allowing us to estimate species richness of the community as well as the variance of this distribution, which acts as an inverse measure of evenness. Evenness in the distribution of abundance of species in the community was independent of species richness. Species richness increased with increasing community biomass, as well as with increasing density. Since both measures of abundance were explained by NPP, species richness was partially explained by energy-diversity theory (i.e. the more energy, the more species sustained by the ecosystem). However, species richness did not increase linearly with NPP but rather showed a unimodal relationship. Evenness was not explained either by productivity nor by any of the aspects of community abundance. This study highlights the importance of considering both richness and evenness to gain a better understanding of variation in species diversity. We encourage the study of both components of species diversity in future studies, as well as use of simulation studies to verify observed patterns between richness and evenness.
Collapse
Affiliation(s)
- Lisa Sandal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernt-Erik Sæther
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert P Freckleton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David G Noble
- British Trust for Ornithology, Thetford, Norfolk, UK
| | | | - Agu Leivits
- Department of Nature Conservation, Environmental Board, Pärnu, Estonia
| | - Vidar Grøtan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Xie Y, Huang H, Xie X, Ou J, Chen Z, Lu X, Kong D, Nong L, Lin M, Qian Z, Mao Y, Chen Y, Wang Y, Chen Z, Deng C. Landscape, Human Disturbance, and Climate Factors Drive the Species Richness of Alien Invasive Plants on Subtropical Islands. PLANTS (BASEL, SWITZERLAND) 2024; 13:2437. [PMID: 39273921 PMCID: PMC11397202 DOI: 10.3390/plants13172437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Invasive alien plants (IAPs) pose a significant threat to island biodiversity and severely impact ecosystems. Understanding the species-area relationship and environmental determinants of growth forms for IAP species on subtropical islands is crucial for establishing an IAP's early warning mechanism, enhancing island ecological management, and protecting the ecosystems of Fujian and other subtropical islands. The study identified significant species-area relationships for IAPs and different life-form plants (trees, shrubs, and herbs), with slopes of 0.27, 0.16, 0.15, and 0.24, respectively. The small island effect does not apply to all species. Isolation has little effect on species richness, and the IAPs on Fujian islands do not conform to the isolation effect in island biogeography. Landscape factors are the main determinants of IAPs and different life-form species richness, with area, shape index, and perimeter-area ratio being the three primary landscape factors. These environmental factors are closely related to habitat heterogeneity. Besides landscape factors, different life forms respond differently to environmental factors. Climate drives the species richness distribution of shrubs and herbs, while trees are mainly influenced by human activities. Overall, landscape, human disturbance, and climate jointly drive the distribution of IAPs, with landscape factors being the most significant.
Collapse
Affiliation(s)
- Yanqiu Xie
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Hui Huang
- College of Architecture and Civil Engineering, Fujian College of Water Conservancy and Electric Power, Sanming 365000, China
| | - Xinran Xie
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Jingyao Ou
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Zhen Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xiaoxue Lu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Deyi Kong
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Liebo Nong
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Manni Lin
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Zhijun Qian
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Yue Mao
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Ying Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Yingxue Wang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Zujian Chen
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Chuanyuan Deng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| |
Collapse
|
3
|
Qian H, Vanderpoorten A, Dai Z, Kessler M, Kasprzyk T, Wang J. Spatial patterns and climatic drivers of phylogenetic structure of regional liverwort assemblages in China. ANNALS OF BOTANY 2024; 134:427-436. [PMID: 38795069 PMCID: PMC11341670 DOI: 10.1093/aob/mcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIMS Latitudinal diversity gradients have been intimately linked to the tropical niche conservatism hypothesis, which posits that there has been a strong filter due to the challenges faced by ancestral tropical lineages to adapt to low temperatures and colonize extra-tropical regions. In liverworts, species richness is higher towards the tropics, but the centres of diversity of the basal lineages are distributed across extra-tropical regions, pointing to the colonization of tropical regions by phylogenetically clustered assemblages of species of temperate origin. Here, we test this hypothesis through analyses of the relationship between macroclimatic variation and phylogenetic diversity in Chinese liverworts. METHODS Phylogenetic diversity metrics and their standardized effect sizes for liverworts in each of the 28 regional floras at the province level in China were related to latitude and six climate variables using regression analysis. We conducted variation partitioning analyses to determine the relative importance of each group of climatic variables. KEY RESULTS We find that the number of species decreases with latitude, whereas phylogenetic diversity shows the reverse pattern, and that phylogenetic diversity is more strongly correlated with temperature-related variables compared with precipitation-related variables. CONCLUSIONS We interpret the opposite patterns observed in phylogenetic diversity and species richness in terms of a more recent origin of tropical diversity coupled with higher extinctions in temperate regions.
Collapse
Affiliation(s)
- Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | | | - Zun Dai
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | | | - Jian Wang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), 3663 Northern Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
4
|
Ibalim S, Toko PS, Segar ST, Sagata K, Koane B, Miller SE, Novotny V, Janda M. Phylogenetic structure of moth communities (Geometridae, Lepidoptera) along a complete rainforest elevational gradient in Papua New Guinea. PLoS One 2024; 19:e0308698. [PMID: 39133743 PMCID: PMC11318904 DOI: 10.1371/journal.pone.0308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
We use community phylogenetics to elucidate the community assembly mechanisms for Geometridae moths (Lepidoptera) collected along a complete rainforest elevational gradient (200-3700 m a.s.l) on Mount Wilhelm in Papua New Guinea. A constrained phylogeny based on COI barcodes for 604 species was used to analyse 1390 species x elevation occurrences at eight elevational sites separated by 500 m elevation increments. We obtained Nearest Relatedness Index (NRI), Nearest Taxon Index (NTI) and Standardised Effect Size of Faith's Phylogenetic Diversity (SES.PD) and regressed these on temperature, plant species richness and predator abundance as key abiotic and biotic predictors. We also quantified beta diversity in the moth communities between elevations using the Phylogenetic Sorensen index. Overall, geometrid communities exhibited phylogenetic clustering, suggesting environmental filters, particularly at higher elevations at and above 2200 m a.s.l and no evidence of overdispersion. NRI, NTI and SES.PD showed no consistent trends with elevation or the studied biotic and abiotic variables. Change in community structure was driven by turnover of phylogenetic beta-diversity, except for the highest 2700-3200 m elevations, which were characterised by nested subsets of lower elevation communities. Overall, the elevational signal of geometrid phylogeny was weak-moderate. Additional insect community phylogeny studies are needed to understand this pattern.
Collapse
Affiliation(s)
- Sentiko Ibalim
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pagi S. Toko
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Simon T. Segar
- Department of Crop and Environment Sciences, Harper Adams University, Newport, United Kingdom
| | - Katayo Sagata
- PNG Institute of Biological Research, Madang, Papua New Guinea
| | - Bonny Koane
- New Guinea Binatang Research Centre, Madang, Papua New Guinea
| | - Scott E. Miller
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States of America
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Milan Janda
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
- Faculty of Science, Department of Zoology, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
5
|
Roberts WR, Siepielski AM, Alverson AJ. Diatom abundance in the polar oceans is predicted by genome size. PLoS Biol 2024; 22:e3002733. [PMID: 39116044 PMCID: PMC11309476 DOI: 10.1371/journal.pbio.3002733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
A principal goal in ecology is to identify the determinants of species abundances in nature. Body size has emerged as a fundamental and repeatable predictor of abundance, with smaller organisms occurring in greater numbers than larger ones. A biogeographic component, known as Bergmann's rule, describes the preponderance, across taxonomic groups, of larger-bodied organisms in colder areas. Although undeniably important, the extent to which body size is the key trait underlying these patterns is unclear. We explored these questions in diatoms, unicellular algae of global importance for their roles in carbon fixation and energy flow through marine food webs. Using a phylogenomic dataset from a single lineage with worldwide distribution, we found that body size (cell volume) was strongly correlated with genome size, which varied by 50-fold across species and was driven by differences in the amount of repetitive DNA. However, directional models identified temperature and genome size, not cell size, as having the greatest influence on maximum population growth rate. A global metabarcoding dataset further identified genome size as a strong predictor of species abundance in the ocean, but only in colder regions at high and low latitudes where diatoms with large genomes dominated, a pattern consistent with Bergmann's rule. Although species abundances are shaped by myriad interacting abiotic and biotic factors, genome size alone was a remarkably strong predictor of abundance. Taken together, these results highlight the cascading cellular and ecological consequences of macroevolutionary changes in an emergent trait, genome size, one of the most fundamental and irreducible properties of an organism.
Collapse
Affiliation(s)
- Wade R. Roberts
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Adam M. Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
6
|
Xu L, Li X, Tang X, Kou Y, Li C, Li J, Yao M, Zhang B, Wang L, Xu H, You C, Li H, Liu S, Zhang L, Liu Y, Huang X, Tu L, Tan B, Xu Z. Consistent community assembly but contingent species pool effects drive β-diversity patterns of multiple microbial groups in desert biocrust systems. Mol Ecol 2024; 33:e17386. [PMID: 38751195 DOI: 10.1111/mec.17386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
One of the key goals of ecology is to understand how communities are assembled. The species co-existence theory suggests that community β-diversity is influenced by species pool and community assembly processes, such as environmental filtering, dispersal events, ecological drift and biotic interactions. However, it remains unclear whether there are similar β-diversity patterns among different soil microbial groups and whether all these mechanisms play significant roles in mediating β-diversity patterns. By conducting a broad survey across Chinese deserts, we aimed to address these questions by investing biological soil crusts (biocrusts). Through amplicon-sequencing, we acquired β-diversity data for multiple microbial groups, that is, soil total bacteria, diazotrophs, phoD-harbouring taxa, and fungi. Our results have shown varying distance decay rates of β-diversity across microbial groups, with soil total bacteria showing a weaker distance-decay relationship than other groups. The impact of the species pool on community β-diversity varied across microbial groups, with soil total bacteria and diazotrophs being significantly influenced. While the contributions of specific assembly processes to community β-diversity patterns varied among different microbial groups, significant effects of local community assembly processes on β-diversity patterns were consistently observed across all groups. Homogenous selection and dispersal limitation emerged as crucial processes for all groups. Precipitation and soil C:P were the key factors mediating β-diversity for all groups. This study has substantially advanced our understanding of how the communities of multiple microbial groups are structured in desert biocrust systems.
Collapse
Affiliation(s)
- Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiangzhen Li
- Engineering Research Centre of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Tang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaonan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Jiabao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Minjie Yao
- Engineering Research Centre of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingchang Zhang
- Shanxi Normal University, School of Geographical Sciences, Taiyuan, China
| | - Lixia Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sining Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiong Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lihua Tu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Passy SI, Larson CA, Mruzek JL, Budnick WR, Leboucher T. A new perspective on the spatial, environmental, and metacommunity controls of local biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171618. [PMID: 38467253 DOI: 10.1016/j.scitotenv.2024.171618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Influential ecological research in the 1980s, elucidating that local biodiversity (LB) is a function of local ecological factors and the size of the regional species pool (γ-diversity), has prompted numerous investigations on the local and regional origins of LB. These investigations, however, have been mostly limited to single scales and target groups and centered exclusively on γ-diversity. Here we developed a unified framework including scale, environmental factors (heterogeneity and ambient levels), and metacommunity properties (intraspecific spatial aggregation, regional evenness, and γ-diversity) as hierarchical predictors of LB. We tested this framework with variance partitioning and structural equation modeling using subcontinental data on stream diatoms, insects, and fish as well as local physicochemistry, climate, and land use. Pure aggregation + regional evenness outperformed pure γ-diversity in explaining LB across groups. The covariance of the environment with aggregation + regional evenness rather than with γ-diversity generally explained a much greater proportion of the variance in diatom and insect LB, especially at smaller scales. Thus, disregarding aggregation and regional evenness, as commonly done, may lead to gross underestimation of the pure metacommunity effects and the indirect environmental effects on LB. We examined the shape of the local-regional species richness relationship, which has been widely used to infer local vs. regional effects on LB. We showed that this shape has an ecological basis, but its interpretation is not straightforward. Therefore, we advocate that the variance partitioning analysis under the proposed framework is adopted instead. In diatoms, metacommunity properties had the greatest total effects on LB, while in insects and fish, it was the environment, suggesting that larger organisms are more strongly controlled by the environment. Broader use of our framework may lead to novel biogeographical insights into the drivers of LB and improved projections of its trends along current and future environmental gradients.
Collapse
Affiliation(s)
- Sophia I Passy
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| | - Chad A Larson
- Washington State Department of Ecology, Environmental Assessment Program, Lacey, WA, USA.
| | - Joseph L Mruzek
- Forestry and Environmental Conservation Department, Clemson University, Clemson, SC, USA.
| | - William R Budnick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - Thibault Leboucher
- Laboratory for Continental Environments, National Scientific Research Center, University of Lorraine, Metz, France.
| |
Collapse
|
8
|
Souza-Oliveira AF, Zuquim G, Martins LF, Bandeira LN, Diele-Viegas LM, Cavalcante VH, Baccaro F, Colli GR, Tuomisto H, Werneck FP. The role of environmental gradients and microclimates in structuring communities and functional groups of lizards in a rainforest-savanna transition area. PeerJ 2024; 12:e16986. [PMID: 38685936 PMCID: PMC11057429 DOI: 10.7717/peerj.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/30/2024] [Indexed: 05/02/2024] Open
Abstract
Environmental heterogeneity poses a significant influence on the functional characteristics of species and communities at local scales. Environmental transition zones, such as at the savanna-forest borders, can act as regions of ecological tension when subjected to sharp variations in the microclimate. For ectothermic organisms, such as lizards, environmental temperatures directly influence physiological capabilities, and some species use different thermoregulation strategies that produce varied responses to local climatic conditions, which in turn affect species occurrence and community dynamics. In the context of global warming, these various strategies confer different types of vulnerability as well as risks of extinction. To assess the vulnerability of a species and understand the relationships between environmental variations, thermal tolerance of a species and community structure, lizard communities in forest-savanna transition areas of two national parks in the southwestern Amazon were sampled and their thermal functional traits were characterized. Then, we investigated how community structure and functional thermal variation were shaped by two environmental predictors (i.e., microclimates estimated locally and vegetation structure estimated from remote sensing). It was found that the community structure was more strongly predicted by the canopy surface reflectance values obtained via remote sensing than by microclimate variables. Environmental temperatures were not the most important factor affecting the occurrence of species, and the variations in ecothermal traits demonstrated a pattern within the taxonomic hierarchy at the family level. This pattern may indicate a tendency for evolutionary history to indirectly influence these functional features. Considering the estimates of the thermal tolerance range and warming tolerance, thermoconformer lizards are likely to be more vulnerable and at greater risk of extinction due to global warming than thermoregulators. The latter, more associated with open environments, seem to take advantage of their lower vulnerability and occur in both habitat types across the transition, potentially out-competing and further increasing the risk of extinction and vulnerability of forest-adapted thermoconformer lizards in these transitional areas.
Collapse
Affiliation(s)
- Alan F. Souza-Oliveira
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | - Gabriela Zuquim
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, University of Turku, Turku, Finland
| | - Lidia F. Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | - Lucas N. Bandeira
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| | | | | | - Fabricio Baccaro
- Departamento de Biologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisa da Amazonia, Manaus, Amazonas, Brazil
| |
Collapse
|
9
|
Williams PJ, Zipkin EF, Brodie JF. Deep biogeographic barriers explain divergent global vertebrate communities. Nat Commun 2024; 15:2457. [PMID: 38548741 PMCID: PMC10978928 DOI: 10.1038/s41467-024-46757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how the degree of biogeographic isolation among communities may lead to differences in biodiversity. Biogeographic analyses generally treat regions as discrete units, but species assemblages differ in how much biogeographic history they share, just as species differ in how much evolutionary history they share. Here, we use a continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. On average, biodiversity is better predicted by environment than by isolation, especially for birds. However, mammals in deeply isolated regions are strongly influenced by isolation; mammal assemblages in Australia and Madagascar, for example, are much less diverse than predicted by environment alone and contain unique combinations of functional traits compared to other regions. Neotropical bat assemblages are far more functionally diverse than Paleotropical assemblages, reflecting the different trajectories of bat communities that have developed in isolation over tens of millions of years. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.
Collapse
Affiliation(s)
- Peter J Williams
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - Elise F Zipkin
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jedediah F Brodie
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| |
Collapse
|
10
|
Qian H, Qian S, Zhang J, Kessler M. Effects of climate and environmental heterogeneity on the phylogenetic structure of regional angiosperm floras worldwide. Nat Commun 2024; 15:1079. [PMID: 38316752 PMCID: PMC10844608 DOI: 10.1038/s41467-024-45155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The tendency of species to retain ancestral ecological distributions (phylogenetic niche conservatism) is thought to influence which species from a species pool can persist in a particular environment. Thus, investigating the relationships between measures of phylogenetic structure and environmental variables at a global scale can help understand the variation in species richness and phylogenetic structure in biological assemblages across the world. Here, we analyze a comprehensive data set including 341,846 species in 391 angiosperm floras worldwide to explore the relationships between measures of phylogenetic structure and environmental variables for angiosperms in regional floras across the world and for each of individual continental (biogeographic) regions. We find that the global phylogenetic structure of angiosperms shows clear and meaningful relationships with environmental factors. Current climatic variables have the highest predictive power, especially on phylogenetic metrics reflecting recent evolutionary relationships that are also related to current environmental heterogeneity, presumably because this favors plant speciation in various ways. We also find evidence that past climatic conditions, and particularly refugial conditions, play an important role in determining the phylogenetic structure of regional floras. The relationships between environmental conditions and phylogenetic metrics differ between continents, reflecting the different evolutionary histories of their floras.
Collapse
Affiliation(s)
- Hong Qian
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL, 62703, USA.
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Sonne J, Rahbek C. Idiosyncratic patterns of local species richness and turnover define global biodiversity hotspots. Proc Natl Acad Sci U S A 2024; 121:e2313106121. [PMID: 38190521 PMCID: PMC10801871 DOI: 10.1073/pnas.2313106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Tropical mountains are global biodiversity hotspots, owing to a combination of high local species richness and turnover in species composition. Typically, the highest local richness and turnover levels are implicitly assumed to converge in the same mountain regions, resulting in extraordinary species richness at regional to global scales. We investigated this untested assumption using high-resolution distribution data for all 9,788 bird species found in 134 mountain regions worldwide. Contrary to expectations, the mountain regions with the highest local richness differed from those with the highest species turnover. This finding reflects dissimilarities in the regions' climates and habitat compositions. Forest habitats and humid tropical climates characterize the mountain regions with the highest local richness. In contrast, mountain regions with the highest turnover are generally colder with drier climates and have mostly open habitat types. The highest local species richness and turnover levels globally converge in only a few mountain regions with the greatest climate volumes and topographic heterogeneity, resulting in the most prominent global hotspots for avian biodiversity. These results underline that species-richness hotspots in tropical mountains arise from idiosyncratic levels of local species richness and turnover, a pattern that traditional analyses of overall regional species richness do not detect.
Collapse
Affiliation(s)
- Jesper Sonne
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen2100, Denmark
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø2100, Denmark
- Department of Life Sciences, Imperial College London, AscotSL5 7PY, United Kingdom
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M5230, Denmark
- Institute of Ecology, Peking University, Beijing100871, China
| |
Collapse
|
12
|
Ceccarelli DM, Evans RD, Logan M, Jones GP, Puotinen M, Petus C, Russ GR, Srinivasan M, Williamson DH. Physical, biological and anthropogenic drivers of spatial patterns of coral reef fish assemblages at regional and local scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166695. [PMID: 37660823 DOI: 10.1016/j.scitotenv.2023.166695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Species abundance, diversity and community assemblage structure are determined by multiple physical, habitat and management drivers that operate across multiple spatial scales. Here we used a multi-scale coral reef monitoring dataset to examine regional and local differences in the abundance, species richness and composition of fish assemblages in no-take marine reserve (NTMR) and fished zones at four island groups in the Great Barrier Reef Marine Park, Australia. We applied boosted regression trees to quantify the influence of 20 potential drivers on the coral reef fish assemblages. Reefs in two locations, Magnetic Island and the Keppel Islands, had distinctive fish assemblages and low species richness, while the Palm and Whitsunday Islands had similar species composition and higher species richness. Overall, our analyses identified several important physical (temperature, wave exposure) and biological (coral, turf, macroalgal and unconsolidated substratum cover) drivers of inshore reef fish communities, some of which are being altered by human activities. Of these, sea surface temperature (SST) was more influential at large scales, while wave exposure was important both within and between island groups. Species richness declined with increasing macroalgal cover and exposure to cyclones, and increased with SST. Species composition was most strongly influenced by mean SST and percent cover of macroalgae. There was substantial regional variation in the local drivers of spatial patterns. Although NTMR zoning influenced total fish density in some regions, it had negligible effects on fish species richness, composition and trophic structure because of the relatively small number of species targeted by the fishery. These findings show that inshore reef fishes are directly influenced by disturbances typical of the nearshore Great Barrier Reef, highlighting the need to complement global action on climate change with more targeted localised efforts to maintain or improve the condition of coral reef habitats.
Collapse
Affiliation(s)
- Daniela M Ceccarelli
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Richard D Evans
- Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia; Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Caroline Petus
- Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - Garry R Russ
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Water and Aquatic System Research, James Cook University, Townsville, QLD 4811, Australia
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Great Barrier Reef Marine Park Authority, Townsville, QLD 4811, Australia
| |
Collapse
|
13
|
Noriega JA, Hortal J, deCastro-Arrazola I, Alves-Martins F, Ortega JCG, Bini LM, Andrew NR, Arellano L, Beynon S, Davis ALV, Favila ME, Floate KD, Horgan FG, Menéndez R, Milotic T, Nervo B, Palestrini C, Rolando A, Scholtz CH, Senyüz Y, Wassmer T, Ádam R, Araújo CDO, Barragan-Ramírez JL, Boros G, Camero-Rubio E, Cruz M, Cuesta E, Damborsky MP, Deschodt CM, Rajan PD, D'hondt B, Díaz Rojas A, Dindar K, Escobar F, Espinoza VR, Ferrer-Paris JR, Gutiérrez Rojas PE, Hemmings Z, Hernández B, Hill SJ, Hoffmann M, Jay-Robert P, Lewis K, Lewis M, Lozano C, Marín-Armijos D, de Farias PM, Murcia-Ordoñez B, Karimbumkara SN, Navarrete-Heredia JL, Ortega-Echeverría C, Pablo-Cea JD, Perrin W, Pessoa MB, Radhakrishnan A, Rahimi I, Raimundo AT, Ramos DC, Rebolledo RE, Roggero A, Sánchez-Mercado A, Somay L, Stadler J, Tahmasebi P, Triana Céspedes JD, Santos AMC. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat Commun 2023; 14:8070. [PMID: 38057312 PMCID: PMC10700315 DOI: 10.1038/s41467-023-43760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape.
Collapse
Affiliation(s)
- Jorge Ari Noriega
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Grupo de Agua, Salud y Ambiente, Facultad de Ingeniería, Universidad El Bosque, Bogotá, Colombia
| | - Joaquín Hortal
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.
| | - Indradatta deCastro-Arrazola
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Fernanda Alves-Martins
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jean C G Ortega
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luis Mauricio Bini
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Nigel R Andrew
- Insect Ecology Laboratory, Natural History Museum, University of New England, Armidale, NSW, Australia
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Lucrecia Arellano
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Sarah Beynon
- Dr Beynon's Bug Farm; St Davids, Pembrokeshire, United Kingdom
| | - Adrian L V Davis
- Invertebrate Systematics and Conservation Group, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Mario E Favila
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Kevin D Floate
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Finbarr G Horgan
- EcoLaVerna Integral Restoration Ecology; Bridestown, County Cork, Ireland
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Curicó, Chile
| | - Rosa Menéndez
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Tanja Milotic
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Beatrice Nervo
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Claudia Palestrini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Clarke H Scholtz
- Invertebrate Systematics and Conservation Group, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Yakup Senyüz
- Kütahya Dumlupinar University, Faculty of Art and Science, Department of Biology, Kütahya, Turkey
| | - Thomas Wassmer
- Department of Biology, Siena Heights University, Adrian, MI, USA
| | - Réka Ádam
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Cristina de O Araújo
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Gergely Boros
- Hungarian University of Agriculture and Life Sciences, Institute for Wildlife Management and Nature Conservation, Department of Zoology and Ecology, Budapest, Hungary
| | - Edgar Camero-Rubio
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Melvin Cruz
- Independent researcher, Chalatenango, El Salvador
| | - Eva Cuesta
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miryam Pieri Damborsky
- Biología de los Artrópodos, Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE-FaCENA), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Christian M Deschodt
- Invertebrate Systematics and Conservation Group, Department of Zoology & Entomology, University of Pretoria, Hatfield, South Africa
| | - Priyadarsanan Dharma Rajan
- Insect Biosystematics and Conservation Laboratory, Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore, India
| | - Bram D'hondt
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Alfonso Díaz Rojas
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Kemal Dindar
- Kütahya Dumlupinar University, Faculty of Art and Science, Department of Biology, Kütahya, Turkey
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
| | - Verónica R Espinoza
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - José Rafael Ferrer-Paris
- Centro de Estudios Botánicos y Agroforestales, Instituto Venezolano de Investigaciones Científicas, Maracaibo, Venezuela
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
- UNSW Data Science Hub, University of New South Wales, Kensington, Australia
| | - Pablo Enrique Gutiérrez Rojas
- Grupo de investigación Biodiversidad y desarrollo Amazónico - BYDA, Centro de investigación Cesar Augusto Estrada González - MACAGUAL, Programa de Biología, Facultad Ciencias Básicas- Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Zac Hemmings
- Insect Ecology Laboratory, Natural History Museum, University of New England, Armidale, NSW, Australia
| | - Benjamín Hernández
- Departamento de Ciencias Básicas, Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México; Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Sarah J Hill
- Insect Ecology Laboratory, Natural History Museum, University of New England, Armidale, NSW, Australia
| | - Maurice Hoffmann
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
- Terrestrial Ecology Unit (TEREC), Ghent University, Ghent, Belgium
| | - Pierre Jay-Robert
- CEFE, University Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Kyle Lewis
- Dr Beynon's Bug Farm; St Davids, Pembrokeshire, United Kingdom
- Pembrokeshire College, Haverfordwest, United Kingdom
| | - Megan Lewis
- Harper Adams University, Newport, United Kingdom
- School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Cecilia Lozano
- Centro de Estudios Botánicos y Agroforestales, Instituto Venezolano de Investigaciones Científicas, Maracaibo, Venezuela
- Instituto de Biociências, Programa de Pós Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Diego Marín-Armijos
- Colección de Invertebrados Sur del Ecuador, Museo de Zoología CISEC-MUTPL, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Patrícia Menegaz de Farias
- Laboratório de Entomologia, Departamento de Ciências Agrárias e Ambientais, Universidade do Sul de Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Betselene Murcia-Ordoñez
- Grupo de investigación Biodiversidad y desarrollo Amazónico - BYDA, Centro de investigación Cesar Augusto Estrada González - MACAGUAL, Programa de Biología, Facultad Ciencias Básicas- Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Seena Narayanan Karimbumkara
- Insect Biosystematics and Conservation Laboratory, Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore, India
| | | | | | - José D Pablo-Cea
- Escuela de Biología, Facultad de Ciencias Naturales y Matemática, Universidad de El Salvador, San Salvador, El Salvador
| | - William Perrin
- CEFE, University Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Marcelo Bruno Pessoa
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Anu Radhakrishnan
- Insect Biosystematics and Conservation Laboratory, Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore, India
| | - Iraj Rahimi
- Department of Rangeland and Watershed Management, Shahrekord University, Shahrekord, Iran
| | - Amalia Teresa Raimundo
- Biología de los Artrópodos, Facultad de Ciencias Exactas y Naturales y Agrimensura (UNNE-FaCENA), Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | - Ramón E Rebolledo
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Angela Roggero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Ada Sánchez-Mercado
- Centro de Estudios Botánicos y Agroforestales, Instituto Venezolano de Investigaciones Científicas, Maracaibo, Venezuela
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
- Ciencias Ambientales, Universidad Espíritu Santo, Samborondón, Ecuador
| | - László Somay
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Jutta Stadler
- Department Community Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
| | - Pejman Tahmasebi
- Department of Rangeland and Watershed Management, Shahrekord University, Shahrekord, Iran
| | - José Darwin Triana Céspedes
- Grupo de investigación Biodiversidad y desarrollo Amazónico - BYDA, Centro de investigación Cesar Augusto Estrada González - MACAGUAL, Programa de Biología, Facultad Ciencias Básicas- Universidad de la Amazonia, Florencia, Caquetá, Colombia
| | - Ana M C Santos
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Macheriotou L, Derycke S, Vanreusel A. Environmental filtering along a bathymetric gradient: A metabarcoding meta-analysis of free-living nematodes. Mol Ecol 2023; 32:6177-6189. [PMID: 37971160 DOI: 10.1111/mec.17201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Identifying and understanding patterns of biological diversity is crucial at a time when even the most remote and pristine marine ecosystems are threatened by resource exploitation such as deep-seabed mining. Metabarcoding provides the means through which one can perform comprehensive investigations of diversity by examining entire assemblages simultaneously. Nematodes commonly represent the most abundant infaunal metazoan group in marine soft sediments. In this meta-analysis, we compiled all publicly available metabarcoding datasets targeting the 18S rRNA v1-v2 region from sediment samples to conduct a global-scale examination of nematode amplicon sequence variant (ASV) alpha diversity patterns and phylogenetic community structure at different depths and habitats. We found that nematode ASV richness followed a parabolic trend, increasing from the intertidal to the shelf, reaching a maximum in the bathyal and decreasing in the abyssal zone. No depth- or habitat-specific assemblages were identified as a large fraction of genera were shared. Contrastingly, the vast majority of ASVs were unique to each habitat and/or depth zone; genetic diversity was thus highly localized. Overwhelmingly, nematode ASVs in all habitats exhibited phylogenetic clustering, pointing to environmental filtering as the primary force defining community assembly rather than competitive interactions. This finding stresses the importance of habitat preservation for the maintenance of marine nematode diversity.
Collapse
Affiliation(s)
- Lara Macheriotou
- Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie Derycke
- Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
- Aquatic Environment and Quality, Institute for Agricultural and Fisheries Research (ILVO), Oostende, Belgium
| | - Ann Vanreusel
- Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Chatterjee S, De R, Hens C, Dana SK, Kapitaniak T, Bhattacharyya S. Response of a three-species cyclic ecosystem to a short-lived elevation of death rate. Sci Rep 2023; 13:20740. [PMID: 38007582 PMCID: PMC10676407 DOI: 10.1038/s41598-023-48104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - Rina De
- Department of Physics, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, 712406, India
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, 500 032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | - Syamal K Dana
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | | |
Collapse
|
16
|
Mayfield MM, Lau JA, Tobias JA, Ives AR, Strauss SY. What Can Evolutionary History Tell Us about the Functioning of Ecological Communities? The ASN Presidential Debate. Am Nat 2023; 202:587-603. [PMID: 37963115 DOI: 10.1086/726336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractIn January 2018, Sharon Strauss, then president of the American Society of Naturalists, organized a debate on the following topic: does evolutionary history inform the current functioning of ecological communities? The debaters-Ives, Lau, Mayfield, and Tobias-presented pro and con arguments, caricatured in standard debating format. Numerous examples show that both recent microevolutionary and longer-term macroevolutionary history are important to the ecological functioning of communities. On the other hand, many other examples illustrate that the evolutionary history of communities or community members does not influence ecological function, or at least not very much. This article aims to provide a provocative discussion of the consistent and conflicting patterns that emerge in the study of contemporary and historical evolutionary influences on community function, as well as to identify questions for further study. It is intended as a thought-provoking exercise to explore this complex field, specifically addressing (1) key assumptions and how they can lead us astray and (2) issues that need additional study. The debaters all agree that evolutionary history can inform us about at least some aspects of community function. The underlying question at the root of the debate, however, is how the fields of ecology and evolution can most profitably collaborate to provide a deeper and broader understanding of ecological communities.
Collapse
|
17
|
Ramírez JP, Reeder TW, Spasojevic MJ. Extinction debt and functional traits mediate community saturation over large spatiotemporal scales. J Anim Ecol 2023; 92:2228-2239. [PMID: 37786361 DOI: 10.1111/1365-2656.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Determining if ecological communities are saturated (have a limit to the number of species they can support) has important implications for understanding community assembly, species invasions, and climate change. However, previous studies have generally been limited to short time frames that overlook extinction debt and have not explicitly considered how functional trait diversity may mediate patterns of community saturation. Here, we combine data from biodiversity surveys with functional and phylogenetic data to explore if the colonisation events after the Great American Biotic Interchange (closure of the Panamanian Isthmus) resulted in increases in species richness of communities of the snake family Dipsadidae. We determined the number and the direction of dispersal events between Central and South America by estimating ancestral areas based on a Bayesian time-calibrated phylogenetic analysis. We then evaluated whether variation in community saturation was mediated by the functional similarity of six traits for the resident and colonizing snakes and/or local environmental conditions. We found that colonised communities did not support more species than those that were not colonised. Moreover, we did not find an association between the functional diversity across sites and whether they were colonised by members from the lineages dispersing across the Isthmus or not. Instead, variation in species richness was predicted best by covariates such as time since colonisation and local environment. Taken together, our results suggest that snake communities of the Dipsadidae across the neotropics are saturated. Moreover, our research highlights two important factors to consider in studies of community saturation: extinction debt and the functional differences and similarities in species' ecological roles.
Collapse
Affiliation(s)
- Juan P Ramírez
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Tod W Reeder
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
18
|
Sankone C, Bedwell C, McCreadie J. Regional β-Diversity of Stream Insects in Coastal Alabama Is Correlated with Stream Conditions, Not Distance among Sites. INSECTS 2023; 14:847. [PMID: 37999046 PMCID: PMC10671468 DOI: 10.3390/insects14110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
β-diversity is often measured over both spatial and temporal gradients of elevation, latitude, and environmental conditions. It is of particular interest to ecologists, as it provides opportunities to test and infer potential causal mechanisms determining local species assemblages. However, studies of invertebrate β-diversity, especially aquatic insects, have lagged far behind other biota. Using partial Mantel tests, we explored the associations between β-diversity of insects found in the coastal streams of Alabama, USA, and stream conditions and distances among sites. β-diversity was expressed using the Sørensen index, βSor, stream conditions were expressed as principal components (PCs), and distances as Euclidean distances (km) among sites. We also investigated the impact of seasonality (fall, summer) and taxonomic resolution (genus, species) on βSor. Regardless of season, βSor was significantly correlated (p < 0.01; r > 0.44) with stream conditions (stream size and water chemistry), while taxonomic resolution had minimal effect on associations between βSor and stream conditions. Distance was never correlated with changes in βSor (p > 0.05). We extended the use of the Sørensen pair-wise index to a multiple-site dissimilarity, βMult, which was partitioned into patterns of spatial turnover (βTurn) and nestedness (βNest). Changes in βMult were driven mostly by turnover rather than nestedness.
Collapse
Affiliation(s)
- Carlos Sankone
- Biology Department, University of South Alabama, Mobile, AL 36688, USA;
| | - Chris Bedwell
- Bedwell Biological LLC., 2617 Grey Stone Rd, Henderson, NV 89074, USA;
| | - John McCreadie
- Biology Department, University of South Alabama, Mobile, AL 36688, USA;
| |
Collapse
|
19
|
De Camargo RX. Avian Diversity Responds Unimodally to Natural Landcover: Implications for Conservation Management. Animals (Basel) 2023; 13:2647. [PMID: 37627438 PMCID: PMC10451700 DOI: 10.3390/ani13162647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Predicting species' ecological responses to landcovers within landscapes could guide conservation practices. Current modelling efforts derived from classic species-area relationships almost always predict richness monotonically increasing as the proportion of landcovers increases. Yet evidence to explain hump-shaped richness-landcover patterns is lacking. We tested predictions related to hypothesised drivers of peaked relationships between richness and proportion of natural landcover. We estimated richness from breeding bird atlases at different spatial scales (25 to 900 km2) in New York State and Southern Ontario. We modelled richness to gradients of natural landcover, temperature, and landcover heterogeneity. We controlled models for sampling effort and regional size of the species pool. Species richness peaks as a function of the proportion of natural landcover consistently across spatial scales and geographic regions sharing similar biogeographic characteristics. Temperature plays a role, but peaked relationships are not entirely due to climate-landcover collinearities. Heterogeneity weakly explains richness variance in the models. Increased amounts of natural landcover promote species richness to a limit in landscapes with relatively little (<30%) natural cover. Higher amounts of natural cover and a certain amount of human-modified landcovers can provide habitats for species that prefer open habitats. Much of the variation in richness among landscapes must be related to variables other than natural versus human-dominated landcovers.
Collapse
Affiliation(s)
- Rafael X. De Camargo
- Laboratoire Chrono-Environnement, UMR-CNRS 6249, Université Franche-Comté—UFC, 25030 Besançon, France;
- TRANSBIO Graduate School, Université Bourgogne Franche Comté—COMUE UBFC, 25000 Besançon, France
| |
Collapse
|
20
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
21
|
Pie MR, Divieso R, Caron FS. Clade density and the evolution of diversity-dependent diversification. Nat Commun 2023; 14:4576. [PMID: 37516766 PMCID: PMC10387094 DOI: 10.1038/s41467-023-39629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/16/2023] [Indexed: 07/31/2023] Open
Abstract
The assumption of an ecological limit to the number of species in a given region is frequently invoked in evolutionary studies, yet its empirical basis is remarkably meager. We explore this assumption by integrating data on geographical distributions and phylogenetic relationships of nearly six thousand terrestrial vertebrate species. In particular, we test whether sympatry with closely-related species leads to decreasing speciation rates. We introduce the concept of clade density, which is the sum of the areas of overlap between a given species and other members of its higher taxon, weighted by their phylogenetic distance. Our results showed that, regardless of the chosen taxon and uncertainty in the phylogenetic relationships between the studied species, there is no significant relationship between clade density and speciation rate. We argue that the mechanistic foundation of diversity-dependent diversification is fragile, and that a better understanding of the mechanisms driving regional species pools is sorely needed.
Collapse
Affiliation(s)
- Marcio R Pie
- Biology Department, Edge Hill University, Ormskirk, Lancashire, UK.
| | - Raquel Divieso
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Fernanda S Caron
- Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
22
|
Seabloom EW, Caldeira MC, Davies KF, Kinkel L, Knops JMH, Komatsu KJ, MacDougall AS, May G, Millican M, Moore JL, Perez LI, Porath-Krause AJ, Power SA, Prober SM, Risch AC, Stevens C, Borer ET. Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores. Nat Commun 2023; 14:3516. [PMID: 37316485 DOI: 10.1038/s41467-023-39179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.
Collapse
Affiliation(s)
- Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Maria C Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Kendi F Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80305, USA
| | - Linda Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | | | | | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael Millican
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Joslin L Moore
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, VIC, 3010, Australia
| | - Luis I Perez
- IFEVA-Facultad de Agronomía (UBA)/CONICET, Departamento de Recursos Naturales, Catedra ´ de Ecología, Av. San Martín, 4453, Buenos Aires, C1417DSE, Argentina
| | - Anita J Porath-Krause
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
23
|
Qian H, Zhang J, Jiang M. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. PLANT DIVERSITY 2023; 45:265-271. [PMID: 37397596 PMCID: PMC10311147 DOI: 10.1016/j.pld.2023.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 07/04/2023]
Abstract
Species diversity of angiosperms (flowering plants) varies greatly among regions. Geographic patterns of variation in species diversity are shaped by the interplay of ecological and evolutionary processes. Here, using a comprehensive data set for regional angiosperm floras across the world, we show geographic patterns of taxonomic (species) diversity, phylogenetic diversity, phylogenetic dispersion, and phylogenetic deviation (i.e., phylogenetic diversity after accounting for taxonomic diversity) across the world. Phylogenetic diversity is strongly and positively correlated with taxonomic diversity; as a result, geographic patterns of taxonomic and phylogenetic diversity across the world are highly similar. Areas with high taxonomic and phylogenetic diversity are located in tropical regions whereas areas with low taxonomic and phylogenetic diversity are located in temperate regions, particularly in Eurasia and North America, and in northern Africa. Similarly, phylogenetic dispersion is, in general, higher in tropical regions and lower in temperate regions. However, the geographic pattern of phylogenetic deviation differs substantially from those of taxonomic and phylogenetic diversity and phylogenetic dispersion. As a result, hotspots and coldspots of angiosperm diversity identified based on taxonomic and phylogenetic diversity and phylogenetic dispersion are incongruent with those identified based on phylogenetic deviations. Each of these metrics may be considered when selecting areas to be protected for their biodiversity.
Collapse
Affiliation(s)
- Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Jian Zhang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Meichen Jiang
- Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
24
|
Pinheiro HT, MacDonald C, Quimbayo JP, Shepherd B, Phelps TA, Loss AC, Teixeira JB, Rocha LA. Assembly rules of coral reef fish communities along the depth gradient. Curr Biol 2023; 33:1421-1430.e4. [PMID: 36917975 DOI: 10.1016/j.cub.2023.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Coral reefs are home to some of the most studied ecological assemblages on the planet. However, differences in large-scale assembly rules have never been studied using empirical quantitative data stratified along the depth gradient of reefs. Consequently, little is known about the small- and regional-scale effects of depth on coral reef assemblages. Using a large dataset of underwater surveys, we observed that the influence of classic biogeographic drivers on the species richness of coral reef fishes changes significantly with depth, shaping distinct assemblages governed by different rules in mesophotic coral ecosystems. We show that a general pattern of decreased taxonomic and functional richness of reef fish assemblages with depth results from convergent filtering of species composition and trophic strategies on deeper reefs across ocean basins and that at smaller scales deep-reef communities are less influenced by regional factors than shallower reefs.
Collapse
Affiliation(s)
- Hudson T Pinheiro
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA; Center for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109, Brazil.
| | - Chancey MacDonald
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Juan Pablo Quimbayo
- Center for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109, Brazil
| | - Bart Shepherd
- Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Tyler A Phelps
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA; Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa, ES 29650-000, Brazil
| | - João Batista Teixeira
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, ES 29075-910, Brazil
| | - Luiz A Rocha
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|
25
|
Massante JC, Gastauer M. Evolutionary history of marginal habitats regulates the diversity of tree communities in the Atlantic Forest. ANNALS OF BOTANY 2023; 131:261-274. [PMID: 36048726 PMCID: PMC9992936 DOI: 10.1093/aob/mcac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The Atlantic Forest biodiversity hotspot is a complex mosaic of habitat types. However, the diversity of the rain forest at the core of this complex has received far more attention than that of its marginal habitats, such as cloud forest, semi-deciduous forest or restinga. Here, we investigate broad-scale angiosperm tree diversity patterns along elevation gradients in the south-east Atlantic Forest and test if the diversity of marginal habitats is shaped from the neighbouring rain forest, as commonly thought. METHODS We calculated phylogenetic indices that capture basal [mean pairwise phylogenetic distance (MPD)] and terminal [mean nearest taxon distance (MNTD)] phylogenetic variation, phylogenetic endemism (PE) and taxonomic and phylogenetic beta diversity (BD and PBD) for 2074 angiosperm tree species distributed in 108 circular sites of 10 km diameter across four habitat types i.e. rain forest, cloud forest, semi-deciduous forest and coastal vegetation known as restinga. We then related these metrics to elevation and environmental variables. KEY RESULTS Communities in wetter and colder forests show basal phylogenetic overdispersion and short phylogenetic distances towards the tips, respectively. In contrast, communities associated with water deficit and salinity show basal phylogenetic clustering and no phylogenetic structure toward the tips. Unexpectedly, rain forest shows low PE given its species richness, whereas cloud and semi-deciduous forests show unusually high PE. The BD and PBD between most habitat types are driven by the turnover of species and lineages, except for restinga. CONCLUSIONS Our results contradict the idea that all marginal habitat types of the Atlantic Forest are sub-sets of the rain forest. We show that marginal habitat types have different evolutionary histories and may act as 'equilibrium zones for biodiversity' in the Atlantic Forest, generating new species or conserving others. Overall, our results add evolutionary insights that reinforce the urgency of encompassing all habitat types in the Atlantic Forest concept.
Collapse
Affiliation(s)
- Jhonny Capichoni Massante
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Bairro Umarizal, Belém, Brazil
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, Tartu 50409, Estonia
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Markus Gastauer
- Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Bairro Umarizal, Belém, Brazil
| |
Collapse
|
26
|
McFadden IR, Sendek A, Brosse M, Bach PM, Baity‐Jesi M, Bolliger J, Bollmann K, Brockerhoff EG, Donati G, Gebert F, Ghosh S, Ho H, Khaliq I, Lever JJ, Logar I, Moor H, Odermatt D, Pellissier L, de Queiroz LJ, Rixen C, Schuwirth N, Shipley JR, Twining CW, Vitasse Y, Vorburger C, Wong MKL, Zimmermann NE, Seehausen O, Gossner MM, Matthews B, Graham CH, Altermatt F, Narwani A. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol Lett 2023; 26:203-218. [PMID: 36560926 PMCID: PMC10107666 DOI: 10.1111/ele.14153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.
Collapse
Affiliation(s)
- Ian R. McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
- Present address:
Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Agnieszka Sendek
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Morgane Brosse
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Peter M. Bach
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Marco Baity‐Jesi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Janine Bolliger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Eckehard G. Brockerhoff
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Giulia Donati
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Friederike Gebert
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Hsi‐Cheng Ho
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Imran Khaliq
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Jelle Lever
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Ivana Logar
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Helen Moor
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Daniel Odermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)DavosSwitzerland
| | - Nele Schuwirth
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Ryan Shipley
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Cornelia W. Twining
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Christoph Vorburger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Mark K. L. Wong
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Niklaus E. Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Catherine H. Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anita Narwani
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| |
Collapse
|
27
|
Xing D, Zhang J, He F. Comment on "Interspecific competition limits bird species' ranges in tropical mountains". Science 2023; 379:eade2109. [PMID: 36701468 DOI: 10.1126/science.ade2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Freeman et al. (Reports, 22 July 2022, p. 416) argue that interspecific competition rather than climate is the leading driver of bird species' elevational ranges. A reanalysis of their data shows no support for the competition hypothesis, but a strong effect of climate seasonality on species ranges. Their results are artifacts arising from a suboptimal model that misses important variables.
Collapse
Affiliation(s)
- Dingliang Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China.,Zhoushan Archipelago Observation and Research Station, East China Normal University, China.,Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Jian Zhang
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200241, China.,Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Park JS, Post E. Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology. PLoS Biol 2022; 20:e3001952. [PMID: 36574457 PMCID: PMC9829184 DOI: 10.1371/journal.pbio.3001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/09/2023] [Indexed: 12/29/2022] Open
Abstract
Phenology refers to the seasonal timing patterns commonly exhibited by life on Earth, from blooming flowers to breeding birds to human agriculture. Climate change is altering abiotic seasonality (e.g., longer summers) and in turn, phenological patterns contained within. However, how phenology should evolve is still an unsolved problem. This problem lies at the crux of predicting future phenological changes that will likely have substantial ecosystem consequences, and more fundamentally, of understanding an undeniably global phenomenon. Most studies have associated proximate environmental variables with phenological responses in case-specific ways, making it difficult to contextualize observations within a general evolutionary framework. We outline the complex but universal ways in which seasonal timing maps onto evolutionary fitness. We borrow lessons from life history theory and evolutionary demography that have benefited from a first principles-based theoretical scaffold. Lastly, we identify key questions for theorists and empiricists to help advance our general understanding of phenology.
Collapse
Affiliation(s)
- John S. Park
- Department of Biology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Shinohara N, Nakadai R, Suzuki Y, Terui A. Spatiotemporal dimensions of community assembly. POPUL ECOL 2022. [DOI: 10.1002/1438-390x.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naoto Shinohara
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| | - Ryosuke Nakadai
- Biodiversity Division National Institute for Environmental Studies Tsukuba Japan
| | - Yuka Suzuki
- Department of Computational Biology Institut Pasteur, Université de Paris Paris France
| | - Akira Terui
- Department of Biology University of North Carolina at Greensboro Greensboro North Carolina USA
| |
Collapse
|
30
|
Donald ML, Galbraith JA, Erastova DA, Podolyan A, Miller TEX, Dhami MK. Nectar resources affect bird-dispersed microbial metacommunities in suburban and rural gardens. Environ Microbiol 2022; 24:5654-5665. [PMID: 36102191 PMCID: PMC10087401 DOI: 10.1111/1462-2920.16159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
As cities expand, understanding how urbanization affects biodiversity is a key ecological goal. Yet, little is known about how host-associated microbial diversity responds to urbanization. We asked whether communities of microbial (bacterial and fungal) in floral nectar and sugar-water feeders and vectored by nectar-feeding birds-thus forming a metacommunity-differed in composition and diversity between suburban and rural gardens. Compared to rural birds, we found that suburban birds vectored different and more diverse bacterial communities. These differences were not detected in the nectar of common plant species, suggesting that nectar filters microbial taxa and results in metacommunity convergence. However, when considering all the nectar sources present, suburban beta diversity was elevated compared to rural beta diversity due to turnover of bacterial taxa across a plant species and sugar-water feeders. While fungal metacommunity composition and beta diversity in nectar were similar between suburban and rural sites, alpha diversity was elevated in suburban sites, which mirrored the trend of increased fungal alpha diversity on birds. These results emphasize the interdependence of host, vector, and microbial diversity and demonstrate that human decisions can shape nectar microbial diversity in contrasting ways for bacteria and fungi.
Collapse
Affiliation(s)
- Marion L Donald
- Department of Biosciences, Rice University, Houston, Texas, USA.,Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Josie A Galbraith
- Department of Natural Sciences, Auckland Museum, Auckland, New Zealand
| | - Daria A Erastova
- School of Biological Science, The University of Auckland, Auckland, New Zealand
| | - Anastasija Podolyan
- Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | - Tom E X Miller
- Program in Ecology and Evolutionary Biology, Department of Biosciences, Rice University, Houston, Texas, USA
| | - Manpreet K Dhami
- Biocontrol & Molecular Ecology, Manaaki Whenua Landcare Research, Lincoln, New Zealand
| |
Collapse
|
31
|
Wu G, Wiens JJ. The origins of climate-diversity relationships and richness patterns in Chinese plants. Ecol Evol 2022; 12:e9607. [PMID: 36523535 PMCID: PMC9745389 DOI: 10.1002/ece3.9607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
A major goal of ecology and evolutionary biology is to explain geographic patterns of species richness. Richness is often correlated with climatic variables. However, the processes underlying these climate-diversity relationships remain poorly understood. Two potential hypotheses to explain these relationships involve: (i) faster diversification rates (speciation minus extinction) in high-richness climates and (ii) earlier colonization of high-richness climates, allowing more time for speciation to build up richness. Few studies have tested these hypotheses directly, and most focused on animal clades with limited richness. In this study, we test these hypotheses in Chinese angiosperms, encompassing ~10% of Earth's plant species, using large-scale phylogenetic, climatic, and distributional data including 26,977 species. We find that climatic zones that were colonized earlier have higher species richness. By contrast, relationships between diversification rates and richness of climatic zones are often nonsignificant or negative. Our study reveals that even when richness is strongly correlated with climate, the underlying explanation may still be rooted in phylogenetic history. Thus, climate may not be a competing explanation for richness patterns relative to colonization times and diversification rates. We also show that the timing of colonization can be crucial for explaining richness patterns. Yet, many recent studies have ignored this explanation and instead have focused solely on rates of speciation and diversification as drivers of diversity gradients.
Collapse
Affiliation(s)
- Guilin Wu
- Hainan Jianfengling Forest Ecosystem National Field Science Observation and Research Station, Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouGuangdongChina
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - John J. Wiens
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
32
|
Utami CY, Sholihah A, Condamine FL, Thébaud C, Hubert N. Cryptic diversity impacts model selection and macroevolutionary inferences in diversification analyses. Proc Biol Sci 2022; 289:20221335. [PMID: 36382998 PMCID: PMC9667750 DOI: 10.1098/rspb.2022.1335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2023] Open
Abstract
Species persist in landscapes through ecological dynamics but proliferate at wider spatial scales through evolutionary mechanisms. Disentangling the contribution of each dynamic is challenging, but the increasing use of dated molecular phylogenies opened new perspectives. First, the increasing use of DNA sequences in biodiversity inventory shed light on a substantial amount of cryptic diversity in species-rich ecosystems. Second, explicit diversification models accounting for various eco-evolutionary models are now available. Integrating both advances, we explored diversification trajectories among 10 lineages of freshwater fishes in Sundaland, for which time-calibrated and taxonomically rich phylogenies are available. By fitting diversification models to dated phylogenies and incorporating DNA-based species delimitation methods, the impact of cryptic diversity on diversification model selection and related inferences is explored. Eight clades display constant speciation rate model as the most likely if cryptic diversity is accounted, but nine display a signature of diversification slowdowns when cryptic diversity is ignored. Cryptic diversification occurs during the last 5 Myr for most groups, and palaeoecological models received little support. Most cryptic lineages display restricted range distribution, supporting geographical isolation across homogeneous landscapes as the main driver of diversification. These patterns question the persistence of cryptic diversity and its role during species proliferation.
Collapse
Affiliation(s)
- C. Y. Utami
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
- UMR 5174 EDB (CNRS, Université Paul Sabatier, IRD), 31062 Toulouse Cedex 9, France
| | - A. Sholihah
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - F. L. Condamine
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - C. Thébaud
- UMR 5174 EDB (CNRS, Université Paul Sabatier, IRD), 31062 Toulouse Cedex 9, France
| | - N. Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
33
|
Huang Q, Xu L, Xie L, Liu P, Rizo EZC, Han BP. Spatial and temporal variation of genetic diversity and genetic differentiation in Daphnia galeata populations in four large reservoirs in southern China. Front Microbiol 2022; 13:1041011. [PMID: 36439856 PMCID: PMC9691881 DOI: 10.3389/fmicb.2022.1041011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 03/21/2024] Open
Abstract
Daphnia galeata is a common and dominant species in warmer waters, and has a strong top-down effect on both phytoplankton and bacteria. The knowledge of its temporal and spatial patterns of genetic diversity is fundamental in understanding its population dynamics and potential ecological function in ecosystems. Its population genetics have been investigated at regional scales but few within regions or at smaller spatial scales. Here, we examined the fine-scale spatial genetic variation of D. galeata within four large, deep reservoirs in wet and dry seasons and the six-year variation of genetic diversity in one of the reservoirs by using cytochrome c oxidase subunit I and microsatellites (simple sequence repeat). Our study shows that fine-scale spatial genetic variation commonly occurred within the reservoirs, indicating strong environmental selection at least in the two of reservoirs with strong longitudinal gradients. Since the environmental gradients established in the dry season was largely reduced in the wet season, the fine-scale spatial genetic variation was much higher in the dry season. The dynamics of local genetic diversity did not follow the theoretical pattern of rapid erosion but peaked in mid or mid-late growth season. The local genetic diversity of D. galeata appears to be shaped and maintained not only by recruitment from resting egg banks but also by gene flow within reservoirs. The temporal and fine-scale genetic variation within a water body suggests that it is necessary to pay attention to sampling periods and locations of a given water body in regional studies.
Collapse
Affiliation(s)
- Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
| | - Lei Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Lili Xie
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Eric Zeus C. Rizo
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines-Visayas, Miagao, Iloilo, Philippines
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, Guangdong, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| |
Collapse
|
34
|
Berrios HK, Coronado I, Marsico TD. High species richness and turnover of vascular epiphytes is associated with water availability along the elevation gradient of Volcán Maderas, Nicaragua. Ecol Evol 2022; 12:e9501. [PMID: 36440308 PMCID: PMC9682193 DOI: 10.1002/ece3.9501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Research that has been conducted documenting species richness patterns on tropical mountains has resulted in conflicting observations: monotonic declines with increasing elevation, monotonic increases with increasing elevation, and a mid-elevation "bulge." Currently, it is unclear if these differences are due to environmental differences among study areas, the taxonomic groups or ecological groups (e.g., growth form) sampled, or the scale of study along elevation gradients. Because of the difficulty in sampling and identifying canopy-dwelling plants, the number of inventories quantifying tropical epiphytes is relatively limited and recent. In this study, we provide a detailed qualitative and quantitative assessment of the vascular epiphyte flora and its spatial distribution on Volcán Maderas, Isla de Ometepe, Nicaragua, including weather and environmental measurements along the entire elevation gradient of the volcano. We sampled epiphytes in five distinct forest types associated with increasing elevation as follows: dry forest, humid forest, wet forest, cloud forest, and elfin forest. Five weather stations were placed along the elevation gradient for us to relate observed patterns to environmental conditions. A mid-elevation peak in species richness was detected for all vascular epiphytes at approximately 1000 m in elevation (cloud forest), yet epiphyte abundance increased with increasing elevation. In total we identified 206 taxa of vascular epiphytes belonging to 26 families and 73 genera. The most species-rich family was the Orchidaceae with 55 species for the entire elevation gradient, followed by Bromeliaceae (29 species), Araceae (23), Polypodiaceae (25), Dryopteridaceae (16), and Piperaceae (11), with all other families represented by fewer than 10 species each. We found that richness patterns differ phylogenetically across epiphyte groups, possibly due to different adaptive strategies, and species for the most part appear to be narrowly distributed within specific habitat zones along the elevation gradient. Variables associated with moisture, precipitation, humidity, mist, or cloud cover are key to understanding the observed patterns.
Collapse
Affiliation(s)
- Hazel K. Berrios
- Department of Biological SciencesArkansas State University, State UniversityJonesboroArkansasUSA
| | - Indiana Coronado
- Universidad Nacional Autónoma de Nicaragua (UNAN‐León)LeónNicaragua
| | - Travis D. Marsico
- Department of Biological SciencesArkansas State University, State UniversityJonesboroArkansasUSA
| |
Collapse
|
35
|
Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishes. Proc Natl Acad Sci U S A 2022; 119:e2123544119. [PMID: 36252009 PMCID: PMC9618140 DOI: 10.1073/pnas.2123544119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep sea contains a surprising diversity of life, including iconic fish groups such as anglerfishes and lanternfishes. Still, >65% of marine teleost fish species are restricted to the photic zone <200 m, which comprises less than 10% of the ocean's total volume. From a macroevolutionary perspective, this paradox may be explained by three hypotheses: 1) shallow water lineages have had more time to diversify than deep-sea lineages, 2) shallow water lineages have faster rates of speciation than deep-sea lineages, or 3) shallow-to-deep sea transition rates limit deep-sea richness. Here we use phylogenetic comparative methods to test among these three non-mutually exclusive hypotheses. While we found support for all hypotheses, the disparity in species richness is better described as the uneven outcome of alternating phases that favored shallow or deep diversification over the past 200 million y. Shallow marine teleosts became incredibly diverse 100 million y ago during a period of warm temperatures and high sea level, suggesting the importance of reefs and epicontinental settings. Conversely, deep-sea colonization and speciation was favored during brief episodes when cooling temperatures increased the efficiency of the ocean's carbon pump. Finally, time-variable ecological filters limited shallow-to-deep colonization for much of teleost history, which helped maintain higher shallow richness. A pelagic lifestyle and large jaws were associated with early deep-sea colonists, while a demersal lifestyle and a tapered body plan were typical of later colonists. Therefore, we also suggest that some hallmark characteristics of deep-sea fishes evolved prior to colonizing the deep sea.
Collapse
|
36
|
Xu Y, Wang L, Tang Q, Naselli-Flores L, Jeppesen E, Han BP. The Relationship Between Phytoplankton Diversity and Ecosystem Functioning Changes with Disturbance Regimes in Tropical Reservoirs. Ecosystems 2022. [DOI: 10.1007/s10021-022-00791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol Lett 2022; 25:2384-2396. [PMID: 36192673 DOI: 10.1111/ele.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.
Collapse
|
38
|
Wu N, Liu G, Zhang M, Wang Y, Peng W, Qu X. Spatial Factors Outperform Local Environmental and Geo-Climatic Variables in Structuring Multiple Facets of Stream Macroinvertebrates' β-Diversity. Animals (Basel) 2022; 12:ani12192648. [PMID: 36230389 PMCID: PMC9558512 DOI: 10.3390/ani12192648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary One of the key targets of community ecology and biogeography concerns revealing the variability and underlying drivers of biodiversity. Most current studies understand biodiversity based on taxonomic information alone. Our study was based on macroinvertebrates from 179 stream sampling sites in the Hun-Tai River Basin in Northeastern China. The correlation of different facets of β-diversity was compared while revealing the relative contribution of multiple abiotic factors (i.e., local environmental, geo-climatic, and spatial factors) to shaping β-diversity based on taxonomic, functional, and phylogenetic information. The results showed that functional β-diversity provides important complementary information to taxonomic and phylogenetic β-diversity. Moreover, spatial factors outperform local environmental and geo-climatic variables in structuring multiple facets of stream macroinvertebrates’ β-diversity. Our study provides guidance for future conservation studies of watershed biodiversity, as well as implications for future studies of β-diversity. Abstract One of the key targets of community ecology and biogeography concerns revealing the variability and underlying drivers of biodiversity. Most current studies understand biodiversity based on taxonomic information alone, but few studies have shown the relative contributions of multiple abiotic factors in shaping biodiversity based on taxonomic, functional, and phylogenetic information. We collected 179 samples of macroinvertebrates in the Hun-Tai River Basin. We validated the complementarity between the three facets and components of β-diversity using the Mantel test. Distance-based redundancy analysis and variance partitioning were applied to explore the comparative importance of local environmental, geo-climatic, and spatial factors on each facet and component of β-diversity. Our study found that taxonomic and phylogenetic total β-diversity was mainly forced by turnover, while functional total β-diversity was largely contributed by nestedness. There is a strong correlation between taxonomic and phylogenetic β-diversity. However, the correlations of functional with both taxonomic and phylogenetic β-diversity were relatively weak. The findings of variation partitioning suggested that distinct facets and components of macroinvertebrates’ β-diversity were impacted by abiotic factors to varying degrees. The contribution of spatial factors was greater than that of the local environment and geo-climatic factors for taxonomic, functional, and phylogenetic β-diversity. Thus, studying different facets and components of β-diversity allows a clearer comprehension of the influence of abiotic factors on diversity patterns. Therefore, future research should investigate patterns and mechanisms of β-diversity from taxonomic, functional, and phylogenetic perspectives.
Collapse
Affiliation(s)
- Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China or
| | - Guohao Liu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China or
| | - Min Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yixia Wang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China or
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Correspondence:
| |
Collapse
|
39
|
Shabalin SA. Microstatial Distribution of Dung Beetles (Coleoptera: Scarabaeoidea) in Horse Excrement in the Southern Sikhote-Alina, Russia. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Tanshi I, Obitte BC, Monadjem A, Rossiter SJ, Fisher‐Phelps M, Kingston T. Multiple dimensions of biodiversity in paleotropical hotspots reveal comparable bat diversity. Biotropica 2022. [DOI: 10.1111/btp.13143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Iroro Tanshi
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
- Department of Biology University of Washington Seattle Washington USA
- Department of Animal and Environmental Biology University of Benin Benin City Nigeria
- Small Mammal Conservation Organization Benin City Nigeria
| | - Benneth C. Obitte
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
- Small Mammal Conservation Organization Benin City Nigeria
| | - Ara Monadjem
- Department of Biological Sciences University of Eswatini Kwaluseni Eswatini
- Department of Zoology & Entomology, Mammal Research Institute University of Pretoria Hatfield South Africa
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences Queen Mary University of London London UK
| | - Marina Fisher‐Phelps
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
- National Audubon Society Dallas Texas USA
| | - Tigga Kingston
- Department of Biological Sciences Texas Tech University Lubbock Texas USA
| |
Collapse
|
41
|
Sabatini FM, Jiménez-Alfaro B, Jandt U, Chytrý M, Field R, Kessler M, Lenoir J, Schrodt F, Wiser SK, Arfin Khan MAS, Attorre F, Cayuela L, De Sanctis M, Dengler J, Haider S, Hatim MZ, Indreica A, Jansen F, Pauchard A, Peet RK, Petřík P, Pillar VD, Sandel B, Schmidt M, Tang Z, van Bodegom P, Vassilev K, Violle C, Alvarez-Davila E, Davidar P, Dolezal J, Hérault B, Galán-de-Mera A, Jiménez J, Kambach S, Kepfer-Rojas S, Kreft H, Lezama F, Linares-Palomino R, Monteagudo Mendoza A, N'Dja JK, Phillips OL, Rivas-Torres G, Sklenář P, Speziale K, Strohbach BJ, Vásquez Martínez R, Wang HF, Wesche K, Bruelheide H. Global patterns of vascular plant alpha diversity. Nat Commun 2022; 13:4683. [PMID: 36050293 PMCID: PMC9436951 DOI: 10.1038/s41467-022-32063-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.
Collapse
Affiliation(s)
- Francesco Maria Sabatini
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany.
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany.
- BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Borja Jiménez-Alfaro
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany
- Biodiversity Research Institute (CSIC/UO/PA), University of Oviedo, Campus de Mieres, Gonzalo Gutierrez Quiros, 33600, Mieres, Spain
| | - Ute Jandt
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany
| | - Milan Chytrý
- Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Richard Field
- University of Nottingham, School of Geography, University Park, NG7 2RD, Nottingham, UK
| | - Michael Kessler
- University of Zurich, Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 Rue des Louvels, 80037, Amiens Cedex 1, France
| | - Franziska Schrodt
- University of Nottingham, School of Geography, University Park, NG7 2RD, Nottingham, UK
| | - Susan K Wiser
- Manaaki Whenua - Landcare Research, Ecosystems and Conservation, 54 Gerald Street, 7608, Lincoln, New Zealand
| | - Mohammed A S Arfin Khan
- Shahjalal University of Science and Technology, Department of Forestry and Environmental Science, Akhalia, 3114, Sylhet, Bangladesh
| | - Fabio Attorre
- Sapienza University of Rome, Department of Environmental Biology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Luis Cayuela
- Universidad Rey Juan Carlos, Department of Biology and Geology, Physics and Inorganic Chemistry, c/ Tulipán s/n, 28933, Móstoles, Spain
| | - Michele De Sanctis
- Sapienza University of Rome, Department of Environmental Biology, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Jürgen Dengler
- Zurich University of Applied Sciences (ZHAW), Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Grüentalstr. 14, 8820, Wädenswil, Switzerland
- University of Bayreuth, Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany
| | - Mohamed Z Hatim
- Wageningen University and Research, Environmental Sciences Group (ESG) Department, Plant Ecology and Nature conservation Group (PEN), Wageningen Campus, Building 100 (Lumen), P.O. Box Postbus 47, Droevendaalsesteeg 3, 6700 AA, Wageningen, The Netherlands
- Tanta University, Faculty of Science, Botany & Microbiology Department, El-Geish st., Tanta University, 31527, Tanta, Egypt
| | - Adrian Indreica
- Transilvania University of Brasov, Department of Silviculture, Sirul Beethoven 1, 500123, Brasov, Romania
| | - Florian Jansen
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Aníbal Pauchard
- Universidad de Concepción, Laboratorio de Invasiones Biológicas (LIB). Facultad de Ciencias Forestales, Victoria 631, 4030000, Concepción, Chile
- Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 342, 7750000, Santiago, Chile
| | - Robert K Peet
- University of North Carolina, Department of Biology, Campus Box 3280, 27599-3280, Chapel HIll, NC, USA
| | - Petr Petřík
- Czech Academy of Sciences, Institute of Botany, Department of Vegetation Ecology, Zámek 1, 25243, Průhonice, Czech Republic
- Faculty of Environment UJEP, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Valério D Pillar
- Universidade Federal do Rio Grande do Sul, Department of Ecology, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Brody Sandel
- Santa Clara University, Department of Biology, 500 El Camino Real, 95053, Santa Clara, CA, USA
| | - Marco Schmidt
- Palmengarten Frankfurt, Scientific Service, Siesmayerstr. 61, 60323, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Data and Modelling Centre, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Zhiyao Tang
- Peking University, College of Urban and Environmental Sciences, Yiheyuan Rd. 5, 100871, Beijing, China
| | - Peter van Bodegom
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, the Netherlands
| | - Kiril Vassilev
- Institute of Biodiversity and Ecosystem Research, Department of Plant and Fungal Diversity and Resources, Acad. Georgi Bonchev St., bl. 23, 1113, Sofia, Bulgaria
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Esteban Alvarez-Davila
- Universidad Nacional Abierta y a Distancia, Escuela de Ciencias Agropecuarias y Ambientales, Sede Nacional, Cl. 14 Sur # 14-23, 111411, Bogotá, Colombia
| | - Priya Davidar
- Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, 643223, Mavinhalla, India
| | - Jiri Dolezal
- Czech Academy of Sciences, Institute of Botany, Department of Vegetation Ecology, Zámek 1, 25243, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- Université de Montpellier, UPR Forêts et Sociétés, Montpellier, France
- Institut National Polytechnique Félix Houphouët-Boigny, Département Forêts, Eaux, Environnement, Yamoussoukro, Côte d'Ivoire
| | - Antonio Galán-de-Mera
- Universidad San Pablo-CEU, CEU Universities, Laboratorio de Botánica, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Jorge Jiménez
- Universidad de San Carlos de Guatemala, Escuela de Biología, Ciudad Universitaria, zona 12, 1012, Guatemala City, Guatemala
| | - Stephan Kambach
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany
| | - Sebastian Kepfer-Rojas
- University of Copenhagen, Department of Geosciences and Natural Resource Management, Rolighedsvej, 23, 2400, Copenhagen, Denmark
| | - Holger Kreft
- University of Göttingen, Biodiversity, Macroecology & Biogeography, 37077, Göttingen, Germany
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37077, Göttingen, Germany
| | - Felipe Lezama
- Universidad de la República, Departamento de Sistemas ambientales, Facultad de Agronomía, Av. Garzón 780, 12900, Montevideo, Uruguay
| | | | - Abel Monteagudo Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Av. de la Cultura 733, Cusco, Peru
- Jardín Botánico de Missouri Oxapampa, Bolognesi Mz-E-6, Oxapampa, Pasco, Peru
| | - Justin K N'Dja
- Université Félix Houphouët-Boigny, Laboratoire de Botanique, Campus de Cocody, Abdijan, Côte d'Ivoire
| | - Oliver L Phillips
- University of Leeds, School of Geography, Woodhouse Lane, LS2 9JT, Leeds, UK
| | - Gonzalo Rivas-Torres
- Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Petr Sklenář
- Charles University, Department of Botany, Benátská 2, 12801, Prague, Czech Republic
| | - Karina Speziale
- INIBOMA (CONICET-UNCOMA), Department of Ecology, Pasaje Gutierrez 125, 8400, Bariloche, Argentina
| | - Ben J Strohbach
- Namibia University of Science and Technlogy, Biodiversity Research Center, Faculty of Natural Resources and Spatial Sciences, 13 Jackson Kaujeua Street, 10005, Windhoek, Namibia
| | | | - Hua-Feng Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Karsten Wesche
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Botany Department, Senckenberg Museum of Natural History, Görlitz, PO Box 300 154, 02806, Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763, Zittau, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108, Halle, Saale, Germany
| |
Collapse
|
42
|
Vieira TB, Da Silva LC, Oprea M, Mendes P, Pimenta VT, Brito D, Esbérard CEL, de Souza Aguiar LM, Ditchfield AD. Species Composition of Bats in Brazilian Restingas: Testing Environmental Versus Geographical Hypotheses for Community Composition. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thiago B. Vieira
- Laboratório de Ecologia, Universidade Federal do Pará, Campus Altamira. Rua Coronel José Porfírio 2515, São Sebastião, 68372-040, Altamira, PA, Brazil
| | - Liriann C. Da Silva
- Laboratório de Ecologia, Universidade Federal do Pará, Campus Altamira. Rua Coronel José Porfírio 2515, São Sebastião, 68372-040, Altamira, PA, Brazil
| | - Monik Oprea
- Programa de Pós-graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Rodovia Goiânia-Nerópolis km 5, Campus II Itatiaia, 74001-970, Goiânia, GO, Brazil
| | - Poliana Mendes
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon Paul-Comtois, rue de l'Agriculture, Université Laval, Québec, G1V 0A6, Canada
| | - Vinícius Teixeira Pimenta
- Laboratório de Estudos de Quirópteros, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Avenida Marechal Campos 1468, Maruípe, 29040-090, Vitória, ES, Brazil
| | - Daniel Brito
- Programa de Pós-graduação em Ecologia e Evolução, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Rodovia Goiânia-Nerópolis km 5, Campus II Itatiaia, 74001-970, Goiânia, GO, Brazil
| | - Carlos E. L. Esbérard
- Instituto de Biologia, Universidade Federal Rural do Estado do Rio de Janeiro, km 47 da antiga Rio-São Paulo, 23851-970, Seropédica, RJ, Brazil
| | - Ludmilla M. de Souza Aguiar
- Laboratório de Biologia e Conservação de Morcegos, Departamento de Zoologia, Universidade de Brasília, Campus Darcy Ribeiro s/n, 70910-900, Brasília, DF, Brazil
| | - Albert D. Ditchfield
- Laboratório de Estudos de Quirópteros, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Avenida Marechal Campos 1468, Maruípe, 29040-090, Vitória, ES, Brazil
| |
Collapse
|
43
|
Bergmann GE, Leveau JHJ. A metacommunity ecology approach to understanding microbial community assembly in developing plant seeds. Front Microbiol 2022; 13:877519. [PMID: 35935241 PMCID: PMC9355165 DOI: 10.3389/fmicb.2022.877519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have the potential to affect plant seed germination and seedling fitness, ultimately impacting plant health and community dynamics. Because seed-associated microbiota are highly variable across individual plants, plant species, and environments, it is challenging to identify the dominant processes that underlie the assembly, composition, and influence of these communities. We propose here that metacommunity ecology provides a conceptually useful framework for studying the microbiota of developing seeds, by the application of metacommunity principles of filtering, species interactions, and dispersal at multiple scales. Many studies in seed microbial ecology already describe individual assembly processes in a pattern-based manner, such as correlating seed microbiome composition with genotype or tracking diversity metrics across treatments in dispersal limitation experiments. But we see a lot of opportunities to examine understudied aspects of seed microbiology, including trait-based research on mechanisms of filtering and dispersal at the micro-scale, the use of pollination exclusion experiments in macro-scale seed studies, and an in-depth evaluation of how these processes interact via priority effect experiments and joint species distribution modeling.
Collapse
Affiliation(s)
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
44
|
Albor C, Ashman T, Stanley A, Martel C, Arceo‐Gómez G. Flower color and flowering phenology mediate plant‐pollinator interaction assembly in a diverse co‐flowering community. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristopher Albor
- Department of Biological Sciences University of Calgary Calgary Alberta Canada
| | - Tia‐Lynn Ashman
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Amber Stanley
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
| | - Carlos Martel
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
- Current address: Royal Botanical Gardens at Kew London United Kingdom
| | - Gerardo Arceo‐Gómez
- Department of Biological Sciences East Tennessee State University Johnson City Tennessee USA
| |
Collapse
|
45
|
Human impact modulates chytrid fungus occurrence in amphibians in the Brazilian Atlantic Forest. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Carteron A, Vellend M, Laliberté E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat Ecol Evol 2022; 6:370-374. [PMID: 35210575 DOI: 10.1038/s41559-021-01634-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022]
Abstract
Ectomycorrhizas and arbuscular mycorrhizas, the two most widespread plant-fungal symbioses, are thought to differentially influence tree species diversity, with positive plant-soil feedbacks favouring locally abundant ectomycorrhizal tree species and negative feedbacks promoting species coexistence and diversity in arbuscular mycorrhizal forests. While seedling recruitment studies and cross-biome patterns of plant diversity and mycorrhizal dominance support this hypothesis, it remains to be tested at the forest stand level over continental scales. Here, we analyse approximately 82,000 forest plots across the USA to show that both ectomycorrhizal-dominated and arbuscular mycorrhizal-dominated forests show relatively low tree diversity, while forests with a mixture of mycorrhizal strategies support a higher number of tree species. Our findings suggest that mycorrhizal dominance, rather than mycorrhizal type, shapes tree diversity in forests.
Collapse
Affiliation(s)
- Alexis Carteron
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada. .,Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Etienne Laliberté
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
47
|
Del Rio-Hortega L, Martín-Forés I, Castro I, De Miguel JM, Acosta-Gallo B. Network-based analysis reveals differences in plant assembly between the native and the invaded ranges. NEOBIOTA 2022. [DOI: 10.3897/neobiota.72.72066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Associated with the introduction of alien species in a new area, interactions with other native species within the recipient community occur, reshaping the original community and resulting in a unique assemblage. Yet, the differences in community assemblage between native and invaded ranges remain unclear. Mediterranean grasslands provide an excellent scenario to study community assembly following transcontinental naturalisation of plant species. Here, we compared the community resemblance of plant communities in Mediterranean grasslands from both the native (Spain) and invaded (Chile) ranges. We used a novel approach, based on network analysis applied to co-occurrence analysis in plant communities, allowing us to study the co-existence of native and alien species in central Chile. This useful methodology is presented as a step forward in invasion ecology studies and conservation strategies. We found that community structure differed between the native and the invaded range, with alien species displaying a higher number of connections and, therefore, acting as keystones to sustain the structure within the invaded community. Alien species acting like keystones within the Chilean grassland communities might exacerbate the threat posed by biological invasions for the native biodiversity assets. Controlling the spread of the alien species identified here as keystones should help managing potential invasion in surrounding areas. Network analyses is a free, easy-to-implement and straightforward visual tool that can be widely used to reveal shifts in native communities and elucidate the role of multiple invaders into communities.
Collapse
|
48
|
Abstract
SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence. These factors present a conundrum: How strong must a barrier be before between-region speciation outpaces dispersal? We designed a phylogenetic model of dispersal, extinction, and speciation that allows regional features to influence rates of biogeographic change and applied it to the neotropical radiation of Anolis lizards. Separation by water induces a threefold steeper barrier to movement than equivalent distances over land. Our model will help biologists detect relationships between evolutionary processes and the spatial contexts in which they operate.
Collapse
|
49
|
Green MD, Anderson KE, Herbst DB, Spasojevic M. Rethinking biodiversity patterns and processes in stream ecosystems. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew D. Green
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| | - Kurt E. Anderson
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| | - David B. Herbst
- Sierra Nevada Aquatic Research Laboratory University of California Mammoth Lakes California U.S.A
- Institute of Marine Sciences, University of California Santa Cruz California U.S.A
| | - Marko Spasojevic
- Department of Evolution, Ecology, and Organismal Biology University of California Riverside Riverside California U.S.A
| |
Collapse
|
50
|
Dri GF, Cáceres NC, Della‐Flora F, Dambros CS. Mixed‐species bird flocks enhance the benefits of group aggregation by minimizing variation in body mass while maximizing variation in diet. OIKOS 2022. [DOI: 10.1111/oik.09115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriela Franzoi Dri
- Dept of Wildlife, Fisheries and Conservation Biology, Univ. of Maine Orono ME USA
| | - Nilton Carlos Cáceres
- Depto de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Univ. Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| | | | - Cristian Sales Dambros
- Depto de Ecologia e Evolução, Centro de Ciências Naturais e Exatas, Univ. Federal de Santa Maria Santa Maria Rio Grande do Sul Brazil
| |
Collapse
|