1
|
Fang Y, Shen B, Dai Q, Xie Q, Li X, Wu W, Wang M. Composition and diversity analysis of the TCR CDR3 repertoire in patients with idiopathic orbital inflammation using high-throughput sequencing. BMC Ophthalmol 2023; 23:491. [PMID: 38044453 PMCID: PMC10694961 DOI: 10.1186/s12886-023-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Idiopathic orbital inflammation (IOI) is a nonspecific orbital inflammatory disease with the third highest prevalence among orbital diseases, and its pathogenesis is associated with T-cell-mediated immune responses. This study aimed to investigate the differences in T-cell receptor (TCR) expression between IOI patients and healthy subjects by high-throughput sequencing and to characterize TCR expression in patients with IOI and with respect to glucocorticoid response. METHODS A total of 19 subjects were enrolled in this study and were divided into the idiopathic orbital inflammation group (IOI group, n = 13) and the healthy control group (HC group, n = 6), and within the IOI group were further divided into the glucocorticoid therapy sensitive group (IOI(EF) group, n = 6) and the glucocorticoid therapy ineffective group (IOI(IN) group, n = 7) based on the degree of effectiveness to glucocorticoid therapy. High-throughput TCR sequencing was performed on peripheral blood mononuclear cells of IOI patients and healthy control individuals using 5' RACE technology combined with Unique Identifier (UID) digital tag correction technology. The TCR CDR3 region diversity, sharing patterns, and differential sequences between the IOI and HC groups, and between the IOI(EF) and IOI(IN) groups were analyzed. RESULTS It was found that the diversity of TCR CDR3 in the IOI group was significantly lower than that in the HC group, and the frequency of V gene use was significantly different between groups. The diversity of TCR CDR3 in patients in the IOI(EF) group was significantly lower than that in patients in the IOI(IN) group, and the frequency of V and J gene use was significantly different between the IOI(EF) group and the IOI(IN) group. Additionally, we found 133 nucleotide sequences shared in all IOI samples and screened two sequences with higher expression from them. CONCLUSIONS Our results suggested that abnormal clonal expansion of specific T-cells exists in IOI patients and that TCR diversity may had an impact on the prognosis of glucocorticoid-treated IOI. This study may contribute to a better understanding of the immune status of IOI and provide new insights for T-cell -associated IOI pathogenesis, diagnosis and treatment prediction.
Collapse
Affiliation(s)
- Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Feng B, Zheng D, Yang L, Su Z, Tang L, Zhu Y, Xu X, Wang Q, Lin Q, Hu J, Lin M, Huang L, Zhou X, Liu H, Li S, Pan W, Shi R, Lu Y, Wu B, Ding B, Wang Z, Guo J, Zhang Z, Zheng G, Liu Y. Post-hospitalization rehabilitation alleviates long-term immune repertoire alteration in COVID-19 convalescent patients. Cell Prolif 2023; 56:e13450. [PMID: 36938980 PMCID: PMC10542649 DOI: 10.1111/cpr.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
The global pandemic of Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an once-in-a-lifetime public health crisis. Among hundreds of millions of people who have contracted with or are being infected with COVID-19, the question of whether COVID-19 infection may cause long-term health concern, even being completely recovered from the disease clinically, especially immune system damage, needs to be addressed. Here, we performed seven-chain adaptome immune repertoire analyses on convalescent COVID-19 patients who have been discharged from hospitals for at least 6 months. Surprisingly, we discovered lymphopenia, reduced number of unique CDR3s, and reduced diversity of the TCR/BCR immune repertoire in convalescent COVID-19 patients. In addition, the BCR repertoire appears to be activated, which is consistent with the protective antibody titres, but serological experiments reveal significantly lower IL-4 and IL-7 levels in convalescent patients compared to those in healthy controls. Finally, in comparison with convalescent patients who did not receive post-hospitalization rehabilitation, the convalescent patients who received post-hospitalization rehabilitation had attenuated immune repertoire abnormality, almost back to the level of healthy control, despite no detectable clinic demographic difference. Overall, we report the potential long-term immunological impairment for COVID-19 infection, and correction of this impairment via post-hospitalization rehabilitation may offer a new prospect for COVID-19 recovery strategy.
Collapse
|
3
|
Zhuo Y, Yang X, Shuai P, Yang L, Wen X, Zhong X, Yang S, Xu S, Liu Y, Zhang Z. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood. Front Immunol 2022; 13:916430. [PMID: 36159829 PMCID: PMC9493076 DOI: 10.3389/fimmu.2022.916430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The adaptive immune system plays an important role in defending against different kinds of diseases, including infection and cancer. There has been a longtime need for a simple method to quantitatively evaluate the potency of adaptive immunity in our bodies. The tremendously diversified T-cell receptor (TCR) repertoires are the foundation of the adaptive immune system. In this study, we analyzed the expressed TCRβ repertoires in the peripheral blood of 582 healthy donors and 60 cancer patients. The TCR repertoire in each individual is different, with different usages of TCR Vβ and Jβ genes. Importantly, the TCR diversity and clonality change along with age and disease situation. Most elder individuals and cancer patients have elevated numbers of large TCRβ clones and reduced numbers of shared common clones, and thus, they have very low TCR diversity index (D50) values. These results reveal the alteration of the expressed TCRβ repertoire with aging and oncogenesis, and thus, we hypothesize that the TCR diversity and clonality in the peripheral blood might be used to evaluate and compare the adaptive immunities among different individuals in clinical practice.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangliang Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueping Wen
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Xuemei Zhong
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shihan Yang
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shaoxian Xu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| | - Zhixin Zhang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| |
Collapse
|
4
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Meunier S, de Bourayne M, Hamze M, Azam A, Correia E, Menier C, Maillère B. Specificity of the T Cell Response to Protein Biopharmaceuticals. Front Immunol 2020; 11:1550. [PMID: 32793213 PMCID: PMC7387651 DOI: 10.3389/fimmu.2020.01550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The anti-drug antibody (ADA) response is an undesired humoral response raised against protein biopharmaceuticals (BPs) which can dramatically disturb their therapeutic properties. One particularity of the ADA response resides in the nature of the immunogens, which are usually human(ized) proteins and are therefore expected to be tolerated. CD4 T cells initiate, maintain and regulate the ADA response and are therefore key players of this immune response. Over the last decade, advances have been made in characterizing the T cell responses developed by patients treated with BPs. Epitope specificity and phenotypes of BP-specific T cells have been reported and highlight the effector and regulatory roles of T cells in the ADA response. BP-specific T cell responses are assessed in healthy subjects to anticipate the immunogenicity of BP prior to their testing in clinical trials. Immunogenicity prediction, also called preclinical immunogenicity assessment, aims at identifying immunogenic BPs and immunogenic BP sequences before any BP injection in humans. All of the approaches that have been developed to date rely on the detection of BP-specific T cells in donors who have never been exposed to BPs. The number of BP-specific T cells circulating in the blood of these donors is therefore limited. T cell assays using cells collected from healthy donors might reveal the weak tolerance induced by BPs, whose endogenous form is expressed at a low level. These BPs have a complete human sequence, but the level of their endogenous form appears insufficient to promote the negative selection of autoreactive T cell clones. Multiple T cell epitopes have also been identified in therapeutic antibodies and some other BPs. The pattern of identified T cell epitopes differs across the antibodies, notwithstanding their humanized, human or chimeric nature. However, in all antibodies, the non-germline amino acid sequences mainly found in the CDRs appear to be the main driver of immunogenicity, provided they can be presented by HLA class II molecules. Considering the fact that the BP field is expanding to include new formats and gene and cell therapies, we face new challenges in understanding and mastering the immunogenicity of new biological products.
Collapse
Affiliation(s)
- Sylvain Meunier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Marie de Bourayne
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Moustafa Hamze
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Aurélien Azam
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Evelyne Correia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Catherine Menier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Tanno H, Gould TM, McDaniel JR, Cao W, Tanno Y, Durrett RE, Park D, Cate SJ, Hildebrand WH, Dekker CL, Tian L, Weyand CM, Georgiou G, Goronzy JJ. Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proc Natl Acad Sci U S A 2020; 117:532-540. [PMID: 31879353 PMCID: PMC6955297 DOI: 10.1073/pnas.1915008117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The T cell repertoire in each individual includes T cell receptors (TCRs) of enormous sequence diversity through the pairing of diverse TCR α- and β-chains, each generated by somatic recombination of paralogous gene segments. Whether the TCR repertoire contributes to susceptibility to infectious or autoimmune diseases in concert with disease-associated major histocompatibility complex (MHC) polymorphisms is unknown. Due to a lack in high-throughput technologies to sequence TCR α-β pairs, current studies on whether the TCR repertoire is shaped by host genetics have so far relied only on single-chain analysis. Using a high-throughput single T cell sequencing technology, we obtained the largest paired TCRαβ dataset so far, comprising 965,523 clonotypes from 15 healthy individuals including 6 monozygotic twin pairs. Public TCR α- and, to a lesser extent, TCR β-chain sequences were common in all individuals. In contrast, sharing of entirely identical TCRαβ amino acid sequences was very infrequent in unrelated individuals, but highly increased in twins, in particular in CD4 memory T cells. Based on nucleotide sequence identity, a subset of these shared clonotypes appeared to be the progeny of T cells that had been generated during fetal development and had persisted for more than 50 y. Additional shared TCRαβ in twins were encoded by different nucleotide sequences, implying that genetic determinants impose structural constraints on thymic selection that favor the selection of TCR α-β pairs with entire sequence identities.
Collapse
Affiliation(s)
- Hidetaka Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Timothy M Gould
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - Yuri Tanno
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Russell E Durrett
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Daechan Park
- Department of Life Sciences, Ajou University, Suwon 16499, South Korea
| | - Steven J Cate
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Cornelia L Dekker
- Department of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Stanford, CA 94305
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712;
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94304
| |
Collapse
|
7
|
Quantitative characterization of T-cell repertoire alteration in Chinese patients with B-cell acute lymphocyte leukemia after CAR-T therapy. Bone Marrow Transplant 2019; 54:2072-2080. [PMID: 31383996 DOI: 10.1038/s41409-019-0625-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/18/2019] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has displayed potent anti-leukemia activity in acute lymphocytic leukemia (ALL), acting as a new ray of hope to refractory/relapsed patients. However, the influence of CAR-T therapy on host immune system has not been well elucidated. Thus, We applied high-throughput T cell receptor β chain sequencing to track the dynamic change of T-cell repertoire induced by CAR-T therapy in B-cell ALL patients. Six Chinese patients achieving complete remission were under observation, whose blood samples, bone marrow samples and infused CAR-T samples were collected at serial time points before and after CAR-T therapy. We observed decreased TCR diversity and increased clonality of T-cell repertoire in both peripheral blood and bone marrow after CAR-T administration. The persistent T cell clones in blood and bone marrow expanded following leukemic cell destruction and were barely detected in CAR T-cell pool. For the first time, our results demonstrated CAR-T therapy could stimulate the clonal proliferation of CAR-negative T cells in patients. Considering other groups' animal results indicating that CAR-T therapy could facilitate the proliferation of tumor antigen-specific T cells and that the emergence of these T cell clones followed the destruction of leukemic cells, they are most likely tumor antigen-specific.
Collapse
|
8
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
10
|
Castro R, Navelsaker S, Krasnov A, Du Pasquier L, Boudinot P. Describing the diversity of Ag specific receptors in vertebrates: Contribution of repertoire deep sequencing. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:28-37. [PMID: 28259700 DOI: 10.1016/j.dci.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
During the last decades, gene and cDNA cloning identified TCR and Ig genes across vertebrates; genome sequencing of TCR and Ig loci in many species revealed the different organizations selected during evolution under the pressure of generating diverse repertoires of Ag receptors. By detecting clonotypes over a wide range of frequency, deep sequencing of Ig and TCR transcripts provides a new way to compare the structure of expressed repertoires in species of various sizes, at different stages of development, with different physiologies, and displaying multiple adaptations to the environment. In this review, we provide a short overview of the technologies currently used to produce global description of immune repertoires, describe how they have already been used in comparative immunology, and we discuss the future potential of such approaches. The development of these methodologies in new species holds promise for new discoveries concerning particular adaptations. As an example, understanding the development of adaptive immunity across metamorphosis in frogs has been made possible by such approaches. Repertoire sequencing is now widely used, not only in basic research but also in the context of immunotherapy and vaccination. Analysis of fish responses to pathogens and vaccines has already benefited from these methods. Finally, we also discuss potential advances based on repertoire sequencing of multigene families of immune sensors and effectors in invertebrates.
Collapse
Affiliation(s)
- Rosario Castro
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Sofie Navelsaker
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Adamstuen Campus, Oslo 0454, Norway; Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
11
|
Gea-Banacloche J, Komanduri KV, Carpenter P, Paczesny S, Sarantopoulos S, Young JA, El Kassar N, Le RQ, Schultz KR, Griffith LM, Savani BN, Wingard JR. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune Dysregulation and Pathobiology Working Group Report. Biol Blood Marrow Transplant 2017; 23:870-881. [PMID: 27751936 PMCID: PMC5392182 DOI: 10.1016/j.bbmt.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Immune reconstitution after hematopoietic stem cell transplantation (HCT) beyond 1 year is not completely understood. Many transplant recipients who are free of graft-versus-host disease (GVHD) and not receiving any immunosuppression more than 1 year after transplantation seem to be able to mount appropriate immune responses to common pathogens and respond adequately to immunizations. However, 2 large registry studies over the last 2 decades seem to indicate that infection is a significant cause of late mortality in some patients, even in the absence of concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, there are not enough long-term follow-up clinics able to measure even basic immune parameters late after HCT. Second, the correlation between laboratory measurements of immune function and infections is not well known. Third, accurate documentation of infectious episodes is notoriously difficult. Finally, it is unclear what measures can be implemented to improve the immune response in a clinically relevant way. A combination of long-term multicenter prospective studies that collect detailed infectious data and store samples as well as a national or multinational registry of clinically significant infections (eg, vaccine-preventable severe infections, opportunistic infections) could begin to address our knowledge gaps. Obtaining samples for laboratory evaluation of the immune system should be both calendar and eventdriven. Attention to detail and standardization of practices regarding prophylaxis, diagnosis, and definitions of infections would be of paramount importance to obtain clean reliable data. Laboratory studies should specifically address the neogenesis, maturation, and exhaustion of the adaptive immune system and, in particular, how these are influenced by persistent alloreactivity, inflammation, and viral infection. Ideally, some of these long-term prospective studies would collect information on long-term changes in the gut microbiome and their influence on immunity. Regarding enhancement of immune function, prospective measurement of the response to vaccines late after HCT in a variety of clinical settings should be undertaken to better understand the benefits as well as the limitations of immunizations. The role of intravenous immunoglobulin is still not well defined, and studies to address it should be encouraged.
Collapse
Affiliation(s)
- Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland.
| | - Krishna V Komanduri
- Sylvester Adult Stem Cell Transplant Program, University of Miami, Coral Gables, Florida
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington School of Medicine Pediatrics, Seattle, Washington
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine and Duke Cancer Institute, Durham, North Carolina
| | - Jo-Anne Young
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nahed El Kassar
- National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Robert Q Le
- Medical Officer, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Professor of Pediatrics, UBC, Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and Research Institute, Vancouver, Canada
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Long Term Transplant Clinic, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R Wingard
- University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
12
|
Gonçalves P, Ferrarini M, Molina-Paris C, Lythe G, Vasseur F, Lim A, Rocha B, Azogui O. A new mechanism shapes the naïve CD8 + T cell repertoire: the selection for full diversity. Mol Immunol 2017; 85:66-80. [PMID: 28212502 DOI: 10.1016/j.molimm.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/17/2022]
Abstract
During thymic T cell differentiation, TCR repertoires are shaped by negative, positive and agonist selection. In the thymus and in the periphery, repertoires are also shaped by strong inter-clonal and intra-clonal competition to survive death by neglect. Understanding the impact of these events on the T cell repertoire requires direct evaluation of TCR expression in peripheral naïve T cells. Several studies have evaluated TCR diversity, with contradictory results. Some of these studies had intrinsic technical limitations since they used material obtained from T cell pools, preventing the direct evaluation of clonal sizes. Indeed with these approaches, identical TCRs may correspond to different cells expressing the same receptor, or to several amplicons from the same T cell. We here overcame this limitation by evaluating TCRB expression in individual naïve CD8+ T cells. Of the 2269 Tcrb sequences we obtained from 13 mice, 99% were unique. Mathematical analysis of the data showed that the average number of naïve peripheral CD8+ T cells expressing the same TCRB is 1.1 cell. Since TCRA co-expression studies could only increase repertoire diversity, these results reveal that the number of naïve T cells with unique TCRs approaches the number of naïve cells. Since thymocytes undergo multiple rounds of divisions after TCRB rearrangement and 3-5% of thymocytes survive thymic selection events the number of cells expressing the same TCRB was expected to be much higher. Thus, these results suggest a new repertoire selection mechanism, which strongly selects for full TCRB diversity.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Marco Ferrarini
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | | | - Grant Lythe
- Department of Applied Mathematics, University of Leeds, Leeds LS29JT, UK
| | - Florence Vasseur
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| | - Annik Lim
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France
| | - Benedita Rocha
- Lymphocyte Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris, France; INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France.
| | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Faculté de Médecine Paris Descartes, Paris, France
| |
Collapse
|
13
|
Characterization of T-cell Receptor Repertoire in Inflamed Tissues of Patients with Crohn's Disease Through Deep Sequencing. Inflamm Bowel Dis 2016; 22:1275-85. [PMID: 27135481 DOI: 10.1097/mib.0000000000000752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intestinal tissues of patients with Crohn's disease (CD) contain expanded populations of T cells which are believed to mediate inflammation. We performed a detailed characterization of these T-cell repertoires. METHODS We obtained biopsies from the neoterminal ileum of 12 patients undergoing evaluation for postoperative recurrent CD and 4 individuals with normal terminal ileum and no history of inflammatory bowel disease (controls). Samples of diseased terminal ileum were obtained from 5 patients undergoing surgery for stricturing or penetrating CD. Total RNA was extracted from tissues and peripheral blood mononuclear cells, and cDNAs were generated. We used next-generation sequencing to characterize T-cell receptor (TCR)-α and TCR-β cDNAs in ileal mucosal tissue and matched peripheral blood mononuclear cells of 17 patients with CD to identify oligoclonal expansions of T-cell populations associated with CD. RESULTS TCR diversity in mucosal tissue was significantly lower than that of matched peripheral blood mononuclear cells, indicating expansion of certain T-cell populations in inflamed intestinal tissue. A single TCR-β clonotype, CASSWTNGEQYF (TRBV10-1-TRBJ2-7), was enriched at a frequency of 7.0% to 28.9% in the neoterminal ileum of 4 of 12 patients with recurrent CD. The abundance of this clonotype significantly correlated with the severity of disease recurrence, based on Rutgeerts score (P = 0.015). CONCLUSIONS Specific populations of T cells are expanded in the inflamed intestinal mucosa of patients with CD; their abundance correlates with severity of disease recurrence. Studies of these T cells could provide information about mechanisms of CD pathogenesis. Deep TCR sequencing is a powerful tool that rapidly provides in-depth, real-time assessment of the T-cell repertoire.
Collapse
|
14
|
Fontenot AP, Falta MT, Kappler JW, Dai S, McKee AS. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation. THE JOURNAL OF IMMUNOLOGY 2016; 196:22-7. [PMID: 26685315 DOI: 10.4049/jimmunol.1502011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic beryllium (Be) disease is a granulomatous lung disorder that results from Be exposure in a genetically susceptible host. The disease is characterized by the accumulation of Be-responsive CD4(+) T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific TCR interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be(2+) cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce posttranslational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens.
Collapse
Affiliation(s)
- Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Michael T Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - John W Kappler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206; and Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Shaodong Dai
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Amy S McKee
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
15
|
Tamura K, Hazama S, Yamaguchi R, Imoto S, Takenouchi H, Inoue Y, Kanekiyo S, Shindo Y, Miyano S, Nakamura Y, Kiyotani K. Characterization of the T cell repertoire by deep T cell receptor sequencing in tissues and blood from patients with advanced colorectal cancer. Oncol Lett 2016; 11:3643-3649. [PMID: 27284367 PMCID: PMC4887943 DOI: 10.3892/ol.2016.4465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to characterize infiltrated T cell clones that define the tumor immune environment and are important in the response to treatment in patients with advanced colorectal cancer (CRC). In order to explore predictive biomarkers for the efficacy of immunochemotherapies, T cell receptor (TCR) repertoire analysis was performed using blood samples and tumor tissues obtained from patients with advanced CRC that had been treated with a combination of five-cancer peptide vaccines and oxaliplatin-based chemotherapy. The TCR-α/β complementary DNAs (cDNAs), prepared from the messenger RNAs (mRNAs) obtained from 17 tumor tissues and 39 peripheral blood mononuclear cells of 9 CRC patients at various time points, were sequenced. The oligoclonal enrichment of certain TCR sequences was identified in tumor tissues and blood samples; however, only a few TCR sequences with a frequency of >0.1% were commonly detected in pre- and post-treatment tumor tissues, or in post-treatment blood and tissue samples. The average correlation coefficients of the TCR-α and TCR-β clonotype frequencies between the post-treatment tumor tissues and blood samples were 0.023 and 0.035, respectively, and were much lower compared with the correlation coefficients of the TCR-α and TCR-β clonotype frequencies between pre- and post-treatment blood samples (0.430 and 0.370, respectively), suggesting that T cell populations in tumor tissues vary from those in blood. Although the sample size was small, a tendency for the TCR diversity in tumor tissues to drastically decrease during the treatment was indicated in two patients, who exhibited a longer progression-free survival time. The results of the present study suggest that TCR diversity scores in tissues may be a useful predictive biomarker for the therapeutic effect of immunochemotherapy for patients with advanced CRC.
Collapse
Affiliation(s)
- Kenji Tamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Takenouchi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yuka Inoue
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shinsuke Kanekiyo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kazuma Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Hou XL, Wang L, Ding YL, Xie Q, Diao HY. Current status and recent advances of next generation sequencing techniques in immunological repertoire. Genes Immun 2016; 17:153-64. [PMID: 26963138 DOI: 10.1038/gene.2016.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/26/2023]
Abstract
To ward off a wide variety of pathogens, the human adaptive immune system harbors a vast array of T-cell receptors (TCRs) and B-cell receptors (BCRs), collectively referred to as the immune repertoire. High-throughput sequencing (HTS) of TCR/BCR genes allows in-depth molecular analysis of T/B-cell clones, providing an unprecedented level of detail when examining the T/B-cell repertoire of individuals. It can evaluate TCR/BCR complementarity-determining region 3 (CDR3) diversity and assess the clonal composition, including the size of the repertoire; similarities between repertoires; V(D)J segment use; nucleotide insertions and deletions; CDR3 lengths; and amino acid distributions along the CDR3s at sequence-level resolution. Deep sequencing of B-cell and T-cell repertoires offers the potential for a quantitative understanding of the adaptive immune system in healthy and disease states. Recently, paired sequencing strategies have also been developed, which can provide information about the identity of immune receptor pairs encoded by individual T or B lymphocytes. HTS technology provides a previously unimaginable amount of sequence data, accompanied, however, by numerous challenges associated with error correction and interpretation that remain to be solved. The review details some of the technologies and some of the recent achievements in this field.
Collapse
Affiliation(s)
- X-L Hou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - L Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Y-L Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Q Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - H-Y Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Milam AV, Allen PM. Functional Heterogeneity in CD4(+) T Cell Responses Against a Bacterial Pathogen. Front Immunol 2015; 6:621. [PMID: 26697015 PMCID: PMC4675919 DOI: 10.3389/fimmu.2015.00621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
To investigate how CD4+ T cells function against a bacterial pathogen, we generated a Listeria monocytogenes-specific CD4+ T cell model. In this system, two TCRtg mouse lines, LLO56 and LLO118, recognize the same immunodominant epitope (LLO190-205) of L. monocytogenes and have identical in vitro responses. However, in vivo LLO56 and LLO118 display vastly different responses during both primary and secondary infection. LLO118 dominates in the primary response and in providing CD8 T cell help. LLO56 predominates in the secondary response. We have also shown that both specific [T cell receptor (TCR)-mediated] and non-specific stimuli (bypassing the TCR) elicit distinct responses from the two transgenics, leading us to conclude that the strength of self-pMHC signaling during development tightly dictates the cell’s future response in the periphery. Herein, we review our findings in this transfer system, focusing on the contribution of the immunomodulatory molecule CD5 and the importance of self-interaction in peripheral maintenance of the cell. We also discuss the manner in which individual TCR affinities to foreign and self-pMHC contribute to the outcome of an immune response; our assertion is that there exists a spectrum of possible T cell responses to recognition of cognate antigen during infection, adding immense diversity to the immune system’s response to pathogens.
Collapse
Affiliation(s)
- Ashley Viehmann Milam
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA
| |
Collapse
|
18
|
Lythe G, Callard RE, Hoare RL, Molina-París C. How many TCR clonotypes does a body maintain? J Theor Biol 2015; 389:214-24. [PMID: 26546971 PMCID: PMC4678146 DOI: 10.1016/j.jtbi.2015.10.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/13/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. The number of T cells of one clonotype is an integer. The history of a clonotype starts with release from the thymus, and ends with extinction. Competition and cross-reactivity are included in a natural way. The average number of cells per clonotype, in a human body, is only of order 10.
Collapse
Affiliation(s)
- Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
| | - Robin E Callard
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rollo L Hoare
- Institute for Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
19
|
Miles JJ, McCluskey J, Rossjohn J, Gras S. Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 2015; 93:433-41. [PMID: 25582337 DOI: 10.1038/icb.2014.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
T cells are the master regulators of immune system function, continually walking the biological tightrope between adequate host defence and accidental host pathology. Tolerance is maintained or broken through an intricate structural interplay between the T-cell receptor (TCR) and major histocompatibility complex (MHC) molecule cradling peptide antigens (p). Recent advances in structural biology have shown that the TCR/pMHC interface is surprising precise and extraordinarily malleable. We have seen that seemingly minor changes in the TCR/pMHC interface can abrogate function, as well as substantial conformational changes before and after TCR docking. Our understanding of T-cell biology has also been altered with the knowledge that MHC molecules can bind not only peptides, but also an array of natural and synthetic compounds. Here, we review some examples of the precision and flexibility intrinsic to the TCR/p/MHCI axis.
Collapse
Affiliation(s)
- John J Miles
- 1] QIMR Berghofer Medical Research Institute and QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Brisbane, Queensland, Australia [2] School of Medicine, The University of Queensland, Brisbane, Queensland, Australia [3] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- 1] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK [2] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [3] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stephanie Gras
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [2] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol 2013; 4:485. [PMID: 24421780 PMCID: PMC3872652 DOI: 10.3389/fimmu.2013.00485] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
In order to recognize and combat a diverse array of pathogens the immune system has a large repertoire of T cells having unique T cell receptors (TCRs) with only a few clones specific for any given antigen. We discuss how the number of different possible TCRs encoded in the genome (the potential repertoire) and the number of different TCRs present in an individual (the realized repertoire) can be measured. One puzzle is that the potential repertoire greatly exceeds the realized diversity of naïve T cells within any individual. We show that the existing hypotheses fail to explain why the immune system has the potential to generate far more diversity than is used in an individual, and propose an alternative hypothesis of “evolutionary sloppiness.” Another immunological puzzle is why mice and humans have similar repertoires even though humans have over 1000-fold more T cells. We discuss how the idea of the “protecton,” the smallest unit of protection, might explain this discrepancy and estimate the size of “protecton” based on available precursor frequencies data. We then consider T cell cross-reactivity – the ability of a T cell clone to respond to more than one epitope. We extend existing calculations to estimate the extent of expected cross-reactivity between the responses to different pathogens. Our results are consistent with two observations: a low probability of observing cross-reactivity between the immune responses to two randomly chosen pathogens; and the ensemble of memory cells being sufficiently diverse to generate cross-reactive responses to new pathogens.
Collapse
Affiliation(s)
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University , Atlanta, GA , USA
| | - Louis N Schoettle
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, School of Life Sciences, Arizona State University , Tempe, AZ , USA
| | - Rustom Antia
- Department of Biology, Emory University , Atlanta, GA , USA
| |
Collapse
|
21
|
O'Keefe CL, Risitano AM, Maciejewski JP. Clinical Implications of T Cell Receptor Repertoire Analysis after Allogeneic Stem Cell Transplantation. Hematology 2013; 9:189-98. [PMID: 15204100 DOI: 10.1080/10245330410001701530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Stem cell transplantation (SCT) constitutes a major challenge to the immune system. Long-term impairment of immunity against various common infectious stimuli leads to increased susceptibility to infectious diseases; in contrast, an immune response against the recipient may cause the devastating graft-versus-host disease (GvHD). Recovery of the immune system (both qualitative and quantitative) after SCT is perhaps the most important factor in determining the clinical outcome. Consequently, immune reconstitution has been extensively studied using different approaches, including quantitative analysis of immune cells as well as their phenotypic characterization. Analysis of diversity and clonality is an important tool in determining competence of the immune system, assuming that a broad diversity assures efficient response to different stimuli and clonal dominance reflects ongoing, potentially relevant immune responses. Detailed analysis of the immune repertoire through the flow cytometric and molecular study of the T cell receptor repertoire has been applied to gain quantitative and qualitative insights about the T cell immune competence and responsiveness. After SCT, a contraction of the T cell pool and a reduction in T cell receptor diversity is clearly associated with clinical immunodeficiency. Reconstitution of the immune system is often characterized by dominance of oligoclonal T cell populations, reflecting specific antigen-driven immune responses. Detailed characterization of T lymphocytes by T cell receptor analysis is possible, and may lead to the identification of individual clones involved in specific immune reactions, such as alloresponses in GvHD, the closely related graft-versus-leukemia effect and opportunistic viral agents such as CMV or EBV.
Collapse
Affiliation(s)
- Christine L O'Keefe
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
22
|
Wlodarski MW, Schade AE, Maciejewski JP. T-large granular lymphocyte leukemia: current molecular concepts. Hematology 2013; 11:245-56. [PMID: 17178663 DOI: 10.1080/10245330600774793] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-large granular lymphocyte (T-LGL) leukemia is a chronic and often indolent T cell lymphoproliferation characterized by extreme expansion of a semi-autonomous cytotoxic T lymphocyte (CTL) clone. Clinically, T-LGL can be associated with various cytopenias; neutropenia constitutes the most frequent manifestation. LGL clone represents a pathologic counterpart of the cytotoxic effector T cell but an abnormal memory CD8 cell seems to provide the supply of the matured LGL population. Analysis of clonal T cell receptor (TCR) rearrangement and complementarity determining region 3 (CDR3) of the TCR beta-chain is a useful tool to investigate clonal expansions, track the frequency of expanded clones and also clinically useful to monitor the response to therapy. The lessons learned from molecular analysis of clonal repertoire support a clinically-derived conclusion that the LGL clone arises in the context of an initially polyclonal immune response or an autoimmune process. Consequently, specific manifestations of T-LGL may be a result of the recognition spectrum of the transformed clone and the cytokines it produces. Due to the often monoclonal manifestation, T-LGL constitutes a suitable model to investigate polyclonal CTL-mediated processes. Application of new technologies, including TCR repertoire analysis by sequencing, clonotypic quantitative PCR and VB flow cytometry facilitate clinical diagnosis and may allow insights into the regulation of TCR repertoire and consequences resulting from the contraction of clonal diversity.
Collapse
MESH Headings
- Adult
- Aged
- Autoimmune Diseases/epidemiology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Clone Cells/pathology
- Comorbidity
- Diagnosis, Differential
- Female
- Gene Expression Regulation, Leukemic
- Gene Rearrangement, T-Lymphocyte/genetics
- Herpesviridae Infections/complications
- Humans
- Killer Cells, Natural/pathology
- Leukemia, T-Cell/diagnosis
- Leukemia, T-Cell/epidemiology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/physiopathology
- Leukemia, T-Cell/virology
- Leukocyte Count
- Leukocytosis/diagnosis
- Lymphocyte Activation
- Lymphoproliferative Disorders/epidemiology
- Male
- Middle Aged
- Receptors, Antigen, T-Cell/genetics
- Retroviridae Infections/complications
- T-Lymphocytes, Cytotoxic/pathology
- Tumor Virus Infections/epidemiology
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
23
|
Burrows SR, Miles JJ. Immune parameters to consider when choosing T-cell receptors for therapy. Front Immunol 2013; 4:229. [PMID: 23935599 PMCID: PMC3733007 DOI: 10.3389/fimmu.2013.00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/22/2013] [Indexed: 11/13/2022] Open
Abstract
T-cell receptor (TCR) therapy has arrived as a realistic treatment option for many human diseases. TCR gene therapy allows for the mass redirection of T-cells against a defined antigen while high affinity TCR engineering allows for the creation of a new class of soluble drugs. However, deciding which TCR blueprint to take forward for gene therapy or engineering is difficult. More than one quintillion TCR combinations can be generated by somatic recombination and we are only now beginning to appreciate that not all are functionally equal. TCRs can exhibit high or low degrees of HLA-restricted cross-reactivity and alloreact against one or a combination of HLA alleles. Identifying TCR candidates with high specificity and minimal cross-reactivity/alloreactivity footprints before engineering is obviously highly desirable. Here we will summarize what we currently know about TCR biology with regard to immunoengineering.
Collapse
Affiliation(s)
- Scott R Burrows
- Human Immunity Laboratory and Cellular Immunology Laboratory, Queensland Institute of Medical Research , Brisbane, QLD , Australia ; School of Medicine, The University of Queensland , Brisbane, QLD , Australia
| | | |
Collapse
|
24
|
Turchaninova MA, Britanova OV, Bolotin DA, Shugay M, Putintseva EV, Staroverov DB, Sharonov G, Shcherbo D, Zvyagin IV, Mamedov IZ, Linnemann C, Schumacher TN, Chudakov DM. Pairing of T-cell receptor chains via emulsion PCR. Eur J Immunol 2013; 43:2507-15. [DOI: 10.1002/eji.201343453] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/05/2013] [Accepted: 05/16/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Maria A. Turchaninova
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Olga V. Britanova
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Dmitriy A. Bolotin
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Mikhail Shugay
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Ekaterina V. Putintseva
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Dmitriy B. Staroverov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - George Sharonov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
| | - Dmitriy Shcherbo
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
- Evrogen JSC; Moscow Russia
| | - Ivan V. Zvyagin
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
- CEITEC MU; Masaryk University; Brno Czech Republic
| | - Ilgar Z. Mamedov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
- CEITEC MU; Masaryk University; Brno Czech Republic
| | - Carsten Linnemann
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Ton N. Schumacher
- Division of Immunology; The Netherlands Cancer Institute; Amsterdam The Netherlands
| | - Dmitriy M. Chudakov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science; Moscow Russia
- CEITEC MU; Masaryk University; Brno Czech Republic
| |
Collapse
|
25
|
Johnson PLF, Yates AJ, Goronzy JJ, Antia R. Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age. Proc Natl Acad Sci U S A 2012; 109:21432-7. [PMID: 23236163 PMCID: PMC3535632 DOI: 10.1073/pnas.1209283110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A diverse array of T cells is required for defense against pathogens. The naive CD4 T-cell repertoire reaches its peak diversity by early human adulthood and is maintained until older age. Surprisingly, around age 70, this diversity appears to plummet abruptly. A similar qualitative pattern holds for the CD4 T memory-cell population. We used mathematical models to explore different hypotheses for how such a loss of diversity might occur. The prevailing hypotheses suggest that the loss of diversity is due to a decline in emigration of cells from the thymus or a contraction in total number of cells. Our models reject these mechanisms because they yield only a gradual and minimal decline in the repertoire instead of the observed sudden and profound decrease later in life. We propose that an abrupt decline in the repertoire could be caused by the accumulation of mutations (defined here as any cell-intrinsic heritable event) that provide a short-term fitness advantage to a small number of T-cell clones (e.g., by an increased division rate or decreased death rate), with the person as a whole incurring the long-term cost of a decreased ability to fight infections.
Collapse
Affiliation(s)
| | - Andrew J. Yates
- Department of Systems and Computational Biology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jörg J. Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305; and
- Department of Medicine, Palo Alto Department of Veterans Affairs Health Care System, Palo Alto, CA 94304
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
26
|
Abstract
αβ-TCRs expressed at the CD8(+) T-cell surface interact with short peptide fragments (p) bound to MHC class I molecules (pMHCI). The TCR/pMHCI interaction is pivotal in all aspects of CD8(+) T-cell immunity. However, the rules that govern the outcome of TCR/pMHCI engagement are not entirely understood, and this is a major barrier to understanding the requirements for both effective immunity and vaccination. In the present study, we discovered an unexpected feature of the TCR/pMHCI interaction by showing that any given TCR exhibits an explicit preference for a single MHCI-peptide length. Agonists of nonpreferred length were extremely rare, suboptimal, and often entirely distinct in sequence. Structural analysis indicated that alterations in peptide length have a major impact on antigenic complexity, to which individual TCRs are unable to adapt. This novel finding demonstrates that the outcome of TCR/pMHCI engagement is determined by peptide length in addition to the sequence identity of the MHCI-bound peptide. Accordingly, the effective recognition of pMHCI Ag, which is a prerequisite for successful CD8(+) T-cell immunity and protective vaccination, can only be achieved by length-matched Ag-specific CD8(+) T-cell clonotypes.
Collapse
|
27
|
High frequency of herpesvirus-specific clonotypes in the human T cell repertoire can remain stable over decades with minimal turnover. J Virol 2012; 87:697-700. [PMID: 23077319 DOI: 10.1128/jvi.02180-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
High-throughput T cell receptor sequencing on sequentially banked blood samples from healthy individuals has shown that high-frequency clonotypes can remain relatively stable for up to 18 years, with minimal inflation, deflation, or turnover. These populations included T cell expansions specific for Epstein-Barr virus. Thus, in spite of exposure to a barrage of microorganisms over the course of life, the dominant clonotypes in the mature peripheral T cell repertoire can alter surprisingly little.
Collapse
|
28
|
Immune aging and autoimmunity. Cell Mol Life Sci 2012; 69:1615-23. [PMID: 22466672 DOI: 10.1007/s00018-012-0970-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
Abstract
Age is an important risk for autoimmunity, and many autoimmune diseases preferentially occur in the second half of adulthood when immune competence has declined and thymic T cell generation has ceased. Many tolerance checkpoints have to fail for an autoimmune disease to develop, and several of those are susceptible to the immune aging process. Homeostatic T cell proliferation which is mainly responsible for T cell replenishment during adulthood can lead to the selection of T cells with increased affinity to self- or neoantigens and enhanced growth and survival properties. These cells can acquire a memory-like phenotype, in particular under lymphopenic conditions. Accumulation of end-differentiated effector T cells, either specific for self-antigen or for latent viruses, have a low activation threshold due to the expression of signaling and regulatory molecules and generate an inflammatory environment with their ability to be cytotoxic and to produce excessive amounts of cytokines and thereby inducing or amplifying autoimmune responses.
Collapse
|
29
|
Castro R, Bernard D, Lefranc MP, Six A, Benmansour A, Boudinot P. T cell diversity and TcR repertoires in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2011; 31:644-654. [PMID: 20804845 DOI: 10.1016/j.fsi.2010.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 05/29/2023]
Abstract
In vertebrates, the diverse and extended range of antigenic motifs is matched to large populations of lymphocytes. The concept of immune repertoire was proposed to describe this diversity of lymphocyte receptors--IG and TR--required for the recognition specificity. Immune repertoires have become useful tools to describe lymphocyte and receptor populations during the immune system development and in pathological situations. In teleosts, the presence of conventional T cells was first proposed to explain graft rejection and optimized specific antibody production. The discovery of TR genes definitely established the reality of conventional T cells in fish. The development of genomic and EST databases recently led to the description of several key T cell markers including CD4, CD8, CD3, CD28, CTLA4, as well as important cytokines, suggesting the existence of different T helper (Th) subtypes, similar to the mammalian Th1, Th2 and Th17. Over the last decade, repertoire studies have demonstrated that both public and private responses occur in fish as they do in mammals, and in vitro specific cytotoxicity assays have been established. While such typical features of T cells are similar in both fish and mammals, the structure of particular repertoires such as the one of gut intra-epithelial lymphocytes seems to be very different. Future studies will further reveal the particular characteristics of teleost T cell repertoires and adaptive responses.
Collapse
Affiliation(s)
- R Castro
- Virologie et Immunologie Moléculaires, INRA, 78352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
30
|
Picarda E, Anegon I, Guillonneau C. T-cell receptor specificity of CD8(+) Tregs in allotransplantation. Immunotherapy 2011; 3:35-7. [PMID: 21524168 DOI: 10.2217/imt.11.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent studies in the field of CD8(+) Tregs have allowed a better identification and characterization of this subset of regulatory cells. Their key role in the regulation of allogeneic responses is now well established. To take full advantage of CD8(+) Treg cells in future therapeutic applications, a better knowledge is required, particularly concerning the contribution of the T-cell receptor (TCR) in cell function as well as the role and importance of its antigenic specificity. Here, we focused on the CD8(+)CD45RC(low) Tregs, which in rats induce an indefinite long-term allograft acceptance. We summarized recent findings on their interaction properties with antigen-presenting cells. Identification of the antigenic targets and TCR repertoire of CD8(+) Tregs will allow a better understanding of their recognition properties and will highlight the potential of such of specific population in cell-based treatment.
Collapse
|
31
|
Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, Asher TE, Almeida JR, Levy S, Price DA, Davenport MP, Douek DC. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4285-94. [PMID: 21383244 DOI: 10.4049/jimmunol.1003898] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human naive T cell repertoire is the repository of a vast array of TCRs. However, the factors that shape their hierarchical distribution and relationship with the memory repertoire remain poorly understood. In this study, we used polychromatic flow cytometry to isolate highly pure memory and naive CD8(+) T cells, stringently defined with multiple phenotypic markers, and used deep sequencing to characterize corresponding portions of their respective TCR repertoires from four individuals. The extent of interindividual TCR sharing and the overlap between the memory and naive compartments within individuals were determined by TCR clonotype frequencies, such that higher-frequency clonotypes were more commonly shared between compartments and individuals. TCR clonotype frequencies were, in turn, predicted by the efficiency of their production during V(D)J recombination. Thus, convergent recombination shapes the TCR repertoire of the memory and naive T cell pools, as well as their interrelationship within and between individuals.
Collapse
MESH Headings
- Adult
- Clone Cells
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/isolation & purification
- Immunologic Memory/genetics
- Male
- Middle Aged
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/isolation & purification
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic/immunology
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Young Adult
Collapse
Affiliation(s)
- Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Baum PD, Young JJ, McCune JM. Measurement of absolute T cell receptor rearrangement diversity. J Immunol Methods 2011; 368:45-53. [PMID: 21385585 DOI: 10.1016/j.jim.2011.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/21/2011] [Accepted: 03/01/2011] [Indexed: 01/25/2023]
Abstract
T cell receptor (TCR) diversity is critical for adaptive immunity. Existing methods for measuring such diversity are qualitative, expensive, and/or of uncertain accuracy. Here, we describe a method and associated reagents for estimating the absolute number of unique TCR Vβ rearrangements present in a given number of cells or volume of blood. Compared to next generation sequencing, this method is rapid, reproducible, and affordable. Diversity of a sample is calculated based on three independent measurements of one Vβ-Jβ family of TCR rearrangements at a time. The percentage of receptors using the given Vβ gene is determined by flow cytometric analysis of T cells stained with anti-Vβ family antibodies. The percentage of receptors using the Vβ gene in combination with the chosen Jβ gene is determined by quantitative PCR. Finally, the absolute clonal diversity of the Vβ-Jβ family is determined with the AmpliCot method of DNA hybridization kinetics, by interpolation relative to PCR standards of known sequence diversity. These three component measurements are reproducible and linear. Using titrations of known numbers of input cells, we show that the TCR diversity estimates obtained by this approach approximate expected values within a two-fold error, have a coefficient of variation of 20%, and yield similar results when different Vβ-Jβ pairs are chosen. The ability to obtain accurate measurements of the total number of different TCR gene rearrangements in a cell sample should be useful for basic studies of the adaptive immune system as well as in clinical studies of conditions such as HIV disease, transplantation, aging, and congenital immunodeficiencies.
Collapse
Affiliation(s)
- Paul D Baum
- Division of Experimental Medicine, University of California, San Francisco, 94143-1234, United States.
| | | | | |
Collapse
|
33
|
Miles JJ, Douek DC, Price DA. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol 2011; 89:375-87. [PMID: 21301479 DOI: 10.1038/icb.2010.139] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The naïve T-cell repertoire is vast, containing millions of unique T-cell receptor (TCR) structures. Faced with such diversity, the mobilization of TCR structures from this enormous pool was once thought to be a stochastic, even chaotic, process. However, steady and systematic dissection over the last 20 years has revealed that this is not the case. Instead, the TCR repertoire deployed against individual antigens is routinely ordered and biased. Often, identical and near-identical TCR repertoires can be observed across different individuals, suggesting that the system encompasses an element of predictability. This review provides a catalog of αβ TCR bias by disease and by species, and discusses the mechanisms that govern this inherent and widespread phenomenon.
Collapse
Affiliation(s)
- John J Miles
- T Cell Modulation Laboratory, Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, UK.
| | | | | |
Collapse
|
34
|
Romano N, Caccia E, Piergentili R, Rossi F, Ficca AG, Ceccariglia S, Mastrolia L. Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). FISH & SHELLFISH IMMUNOLOGY 2011; 30:773-782. [PMID: 21220030 DOI: 10.1016/j.fsi.2010.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/21/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
All jawed vertebrates share lymphocyte receptors that allow the recognition of pathogens and the discrimination between self and non-self antigens. The T cell transmembrane receptor (TcR) has a central role in the maturation and function of T lymphocytes in vertebrates via an important role in positive selection of the variable region of TcR αβ/γδ chains. In this study, the TcRβ transcript expression and TcRβ(+) cell distribution during the ontogeny of the immune system of sea bass (Dicentrarchus labrax, L.) were analysed. RT-PCR analysis of larvae during early development demonstrated that the β chain transcript is expressed by 19 days post-fertilisation (p.f.). RNA probes specific for the β chain were synthesised and used for in situ hybridisation experiments on 30 day p.f. to 180 day old juvenile larvae. A parallel immunohistochemical study was performed using the anti-T cell monoclonal antibody DLT15 developed in our laboratory [Scapigliati et al., Fish Shellfish Immunol 1996; 6:383-401]. The first thymus anlage was detectable at 32-33 days p.f. (Corresponding to about 27 days post-hatch). DLT15(+) cells were detected at day 35 p.f. in the thymus whereas TcRβ(+) cells were recognisable at day 38 p.f. in the thymus and at day 41 p.f. in the gut. TcRβ(+) cells were observed in capillaries from 41 to 80 days p.f. At day 46 p.f., TcRβ(+) cells were identified in the head kidney and were detected in the spleen 4 days later. The present results demonstrate that TcRβ(+) cells can be differentiated first in the thymus and then in other organs/tissues, suggesting potential TcRβ(+) cell colonisation from the thymus to the middle gut. Once the epithelial architecture of the thymus is completed with the formation of the cortical-medullary border (around 70-75 days p.f.), DLT15(+) cells or TcRβ(+) cells are confined mainly to the cortex and cortical-medullary border. In particular, a large influx of TcRβ(+) cells was observed at the cortical-medullary border from 72 to 90 days p.f., suggesting a role in positive selection for this thymic region during the ontogeny of the fish immune system. This study provides novel information about the primary differentiation and distribution of TcRβ(+) cells in sea bass larvae and juveniles.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Rudd BD, Venturi V, Davenport MP, Nikolich-Zugich J. Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2056-2064. [PMID: 21248263 PMCID: PMC4119821 DOI: 10.4049/jimmunol.1003013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Defects in T cell responses against pathogens and reduced diversity of TCRs have been described at both extremes of the life span. Yet, we still lack information on how Ag-specific T cell populations are maintained and/or altered from birth to old age. In this study, for the first time to our knowledge, we provide insight into Ag-specific TCR repertoire changes over the life span at the single-cell level. We have examined the TCR diversity of the primary CD8(+) T cell response to the immunodominant HSV-1 epitope HSV glycoprotein B 495-502 (HSV gB(498-505); SSIEFARL) (gB-8p) in neonatal, adult, and old C57BL/6 mice. The global distinctive features of the gB-8p-specific TCR repertoire were preserved in mice of different ages. However, both old and especially neonatal mice exhibited significant decreases in TCR diversity compared with that of adult mice. Still, although the neonatal Ag-specific repertoire comprised expectedly shorter germline-biased CDR3β lengths, the repertoire was surprisingly complex, and only a minority of responding cells lacked random nucleotide additions. Changes with aging included increased use of the already dominant TCRVβ10 family, a trend for lower content of the TCR containing the germline WG motif in the CDR3, and a remarkable sharing of one dominant clonotype between individual old mice, implying operation of selective mechanisms. Implications for the rational design of vaccines for neonates and the elderly are discussed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Clone Cells
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Evolution, Molecular
- Herpesvirus 1, Human/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Longevity/genetics
- Longevity/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/biosynthesis
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| | - Vanessa Venturi
- Computational Biology Unit, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| |
Collapse
|
36
|
Abstract
Nonhuman primates have been used for biomedical research for several decades. The high level of genetic homology to humans coupled with their outbred nature has made nonhuman primates invaluable preclinical models. In this review, we summarize recent advances in our understanding of the nonhuman primate immune system, with special emphasis on studies carried out in rhesus macaque (Macaca mulatta). We highlight the utility of nonhuman primates in the characterization of immune senescence and the evaluation of new interventions to slow down the aging of the immune system.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|
37
|
Gruber A, Cannarile MA, Cheminay C, Ried C, Marconi P, Häcker G, Brocker T. Parenchymal cells critically curtail cytotoxic T-cell responses by inducing Bim-mediated apoptosis. Eur J Immunol 2010; 40:966-75. [DOI: 10.1002/eji.200939485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Kuivaniemi H, Platsoucas CD, Tilson MD. Aortic aneurysms: an immune disease with a strong genetic component. Circulation 2008; 117:242-52. [PMID: 18195185 DOI: 10.1161/circulationaha.107.690982] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Helena Kuivaniemi
- Center for Molecular Medicine and Genetics and Department of Surgery, Wayne State University School of Medicine, 540 E Canfield Ave, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
39
|
Packer AN, Muraro PA. Optimized clonotypic analysis of T-cell receptor repertoire in immune reconstitution. Exp Hematol 2007; 35:516-21. [PMID: 17309832 DOI: 10.1016/j.exphem.2006.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/13/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In recent years, T-cell receptor (TCR) sequencing analysis has proven an effective technique for the identification of T-cell populations of interest in cancer and autoimmunity, as well as for the characterization of peripheral immune repertoire reconstitution after hematopoietic stem cell transplantation (HSCT). However, despite its increased utilization, to our knowledge no group has investigated the minimum number of sequences necessary to accurately and efficiently describe the composition of TCR repertoire. The primary aim of this study was to optimize a procedure for clonotypic analysis of the TCR repertoire in patients undergoing autologous HSCT. MATERIALS AND METHODS TCR beta-chain diversity was analyzed by DNA sequencing and CDR3 spectratyping CD8(+) T cells isolated from three patients with multiple sclerosis undergoing autologous HSCT. Samples were collected at baseline and 1 or 2 years post-HSCT. RESULTS Using DNA cloning and high throughput sequencing, we analyzed over 1500 in-frame TCR sequences, allowing us to evaluate how our measures of TCR repertoire diversity change with increasing numbers of sequences included in the analysis. Our findings show that by analyzing 75 to 100 in-frame sequences, we are able to estimate TCR diversity within 5.0% to 7.4% of the values obtained at endpoint analysis (213-312 sequences per sample). CONCLUSIONS This study confirms the use of TCR sequencing as an effective technique for the characterization of immune renewal after autologous HSCT. In addition, we demonstrate for the first time convincing evidence to support the use of moderate sample sizes to accurately and efficiently evaluate TCR repertoire diversity.
Collapse
Affiliation(s)
- Amy N Packer
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
40
|
Wang X, Jia S, Meyer L, Yassai MB, Naumov YN, Gorski J, Hessner MJ. Quantitative measurement of pathogen-specific human memory T cell repertoire diversity using a CDR3 beta-specific microarray. BMC Genomics 2007; 8:329. [PMID: 17880719 PMCID: PMC2039751 DOI: 10.1186/1471-2164-8-329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 09/19/2007] [Indexed: 11/10/2022] Open
Abstract
Background Providing quantitative microarray data that is sensitive to very small differences in target sequence would be a useful tool in any number of venues where a sample can consist of a multiple related sequences present in various abundances. Examples of such applications would include measurement of pseudo species in viral infections and the measurement of species of antibodies or T cell receptors that constitute immune repertoires. Difficulties that must be overcome in such a method would be to account for cross-hybridization and for differences in hybridization efficiencies between the arrayed probes and their corresponding targets. We have used the memory T cell repertoire to an influenza-derived peptide as a test case for developing such a method. Results The arrayed probes were corresponded to a 17 nucleotide TCR-specific region that distinguished sequences differing by as little as a single nucleotide. Hybridization efficiency between highly related Cy5-labeled subject sequences was normalized by including an equimolar mixture of Cy3-labeled synthetic targets representing all 108 arrayed probes. The same synthetic targets were used to measure the degree of cross hybridization between probes. Reconstitution studies found the system sensitive to input ratios as low as 0.5% and accurate in measuring known input percentages (R2 = 0.81, R = 0.90, p < 0.0001). A data handling protocol was developed to incorporate the differences in hybridization efficiency. To validate the array in T cell repertoire analysis, it was used to analyze human recall responses to influenza in three human subjects and compared to traditional cloning and sequencing. When evaluating the rank order of clonotype abundance determined by each method, the approaches were not found significantly different (Wilcoxon rank-sum test, p > 0.05). Conclusion This novel strategy appears to be robust and can be adapted to any situation where complex mixtures of highly similar sequences need to be quantitatively resolved.
Collapse
Affiliation(s)
- Xujing Wang
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and The Children's Hospital Research Institute of Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and The Children's Hospital Research Institute of Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lisa Meyer
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and The Children's Hospital Research Institute of Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Maryam B Yassai
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Yuri N Naumov
- The Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | - Jack Gorski
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Department of Pediatrics, The Medical College of Wisconsin and The Children's Hospital Research Institute of Children's Hospital of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
41
|
Abstract
We review recent advances toward a comprehensive mathematical theory of T-cell immunity. A key insight is that the efficacy of the T-cell response is best analyzed in terms of T-cell receptor (TCR) avidity and the distribution of this avidity across the TCR repertoire (the 'avidity spectrum'). Modification of this avidity spectrum by a wide range of tuning and tolerance mechanisms allows the system to adapt cross-reactivity and specificity to the challenge at hand while avoiding inappropriate responses against non-pathogenic cells and tissues. Theoretical models relate molecular kinetic parameters and cellular properties to systemic level statistics such as avidity spectra. Such bridge equations are crucial for rational clinical manipulation of T cells at the molecular level.
Collapse
Affiliation(s)
- Hugo A van den Berg
- Warwick Systems Biology Centre, Mathematics Institute, University of Warwick, Coventry, UK.
| | | |
Collapse
|
42
|
Beltman JB, Marée AFM, Lynch JN, Miller MJ, de Boer RJ. Lymph node topology dictates T cell migration behavior. J Exp Med 2007; 204:771-80. [PMID: 17389236 PMCID: PMC2118562 DOI: 10.1084/jem.20061278] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 02/15/2007] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity is initiated by T cell recognition of foreign peptides presented on dendritic cells (DCs) by major histocompatibility molecules. These interactions take place in secondary lymphoid tissues, such as lymph nodes (LNs) and spleen, and hence the anatomical structure of these tissues plays a crucial role in the development of immune responses. Two-photon microscopy (2PM) imaging in LNs suggests that T cells walk in a consistent direction for several minutes, pause briefly with a regular period, and then take off in a new, random direction. Here, we construct a spatially explicit model of T cell and DC migration in LNs and show that all dynamical properties of T cells could be a consequence of the densely packed LN environment. By means of 2PM experiments, we confirm that the large velocity fluctuations of T cells are indeed environmentally determined rather than resulting from an intrinsic motility program. Our simulations further predict that T cells self-organize into microscopically small, highly dynamic streams. We present experimental evidence for the presence of such turbulent streams in LNs. Finally, the model allows us to estimate the scanning rates of DCs (2,000 different T cells per hour) and T cells (100 different DCs per hour).
Collapse
Affiliation(s)
- Joost B Beltman
- Theoretical Biology, Utrecht University, 3584 CH Utrecht, Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Scheinberg P, Melenhorst JJ, Hill BJ, Keyvanfar K, Barrett AJ, Price DA, Douek DC. The clonal composition of human CD4+CD25+Foxp3+ cells determined by a comprehensive DNA-based multiplex PCR for TCRB gene rearrangements. J Immunol Methods 2007; 321:107-20. [PMID: 17316678 PMCID: PMC4402232 DOI: 10.1016/j.jim.2007.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 01/10/2007] [Indexed: 11/16/2022]
Abstract
The characterization of the T-cell receptor (TCR) repertoire of CD4+ regulatory T cells (T(R)) has been limited due to the RNA degradation that results following permeabilization and fixation as routinely used for intracellular staining of Foxp3. In the present study the clonal composition of human umbilical cord blood (UCB) and adult peripheral blood mononuclear cell (PBMC) CD4+ T(R) and non-T(R) was characterized by a DNA-based multiplex PCR which allowed for the consistent clonotypic characterization of cells that have undergone fixation and permeabilization. To validate this method, CD8+ T cells from two HLA A()0201 individuals were sorted and compared clonotypically based upon their ability either to secrete interferon-gamma in response to a CMV pp65 epitope or to bind to the corresponding pMHC I tetramer. Clonotypes shared between the CD4+CD25+Foxp3+ and CD4+CD25+Foxp3- subsets were observed in all 3 UCB and in one adult PBMCs, suggesting that naïve and memory CD4+ T(R) can share the same clonotypes as CD4+ non-T(R) in humans.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Clone Cells/immunology
- DNA Primers
- Fetal Blood/cytology
- Fetal Blood/immunology
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- Forkhead Transcription Factors/analysis
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Humans
- Immunophenotyping/methods
- Interleukin-2 Receptor alpha Subunit/analysis
- Interleukin-2 Receptor alpha Subunit/genetics
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phosphoproteins/immunology
- Polymerase Chain Reaction/methods
- RNA Stability
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Reproducibility of Results
- T-Lymphocytes, Regulatory/immunology
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Phillip Scheinberg
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jan J. Melenhorst
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brenna J. Hill
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - A. John Barrett
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Baum PD, McCune JM. Direct measurement of T-cell receptor repertoire diversity with AmpliCot. Nat Methods 2007; 3:895-901. [PMID: 17060913 PMCID: PMC2366817 DOI: 10.1038/nmeth949] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 09/01/2006] [Indexed: 11/09/2022]
Abstract
Many studies require the measurement of nucleic acid sequence diversity. Here we describe a method, called AmpliCot, that measures the sequence diversity of PCR products on the basis of DNA hybridization kinetics, thereby avoiding the time, expense and biases associated with cloning and sequencing. SYBR Green dye is used to measure DNA hybridization kinetics in a homogeneous, automated fashion. PCR products are prepared in wholly double-stranded homoduplex form for a baseline measurement of DNA concentration. The DNA is melted and then reannealed under stringent conditions that allow only homoduplexes to form. The sequence diversity of a sample is proportional to the product of its concentration and the time required for it to anneal. After validating AmpliCot with a library of diverse sequences, we use it to measure the diversity of expressed rearrangements of the gene encoding the T-cell antigen receptor (TCR) beta chain. AmpliCot measurements are in good agreement with previous estimates of murine TCR repertoire diversity that required extensive cloning and sequencing.
Collapse
Affiliation(s)
- Paul D Baum
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110, USA
| | | |
Collapse
|
45
|
Bonarius HP, Baas F, Remmerswaal EB, van Lier RA, Berge IJT, Tak PP, de Vries N. Monitoring the T-cell receptor repertoire at single-clone resolution. PLoS One 2006; 1:e55. [PMID: 17183685 PMCID: PMC1762342 DOI: 10.1371/journal.pone.0000055] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/13/2006] [Indexed: 01/04/2023] Open
Abstract
The adaptive immune system recognizes billions of unique antigens using highly variable T-cell receptors. The αβ T-cell receptor repertoire includes an estimated 106 different rearranged β chains per individual. This paper describes a novel micro-array based method that monitors the β chain repertoire with a resolution of a single T-cell clone. These T-arrays are quantitative and detect T-cell clones at a frequency of less than one T cell in a million, which is 2 logs more sensitive than spectratyping (immunoscope), the current standard in repertoire analysis. Using T-arrays we detected CMV-specific CD4+ and CD8+ T-cell clones that expanded early after viral antigen stimulation in vitro and in vivo. This approach will be useful in monitoring individual T-cell clones in diverse experimental settings, and in identification of T-cell clones associated with infectious disease, autoimmune disease and cancer.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Base Sequence
- Clone Cells
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- DNA/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- In Vitro Techniques
- Jurkat Cells
- Oligonucleotide Array Sequence Analysis/methods
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Hendrik P.J. Bonarius
- Division of Clinical Immunology and Rheumatology, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - Frank Baas
- Department of Neurogenetics, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - René A.W. van Lier
- Department of Experimental Immunology, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - Ineke J.M. ten Berge
- Division of Nephrology, Department of Internal Medicine, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - Paul P. Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
| | - Niek de Vries
- Division of Clinical Immunology and Rheumatology, Academic Medical Centre, University of AmsterdamAmsterdam, Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Intlekofer AM, Wherry EJ, Reiner SL. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol Rev 2006; 211:203-13. [PMID: 16824129 DOI: 10.1111/j.0105-2896.2006.00396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We are often taught that secondary, or memory, responses by lymphocytes are more vigorous than primary responses. An expectation commonly associated with this notion is that the initial encounter with a pathogen should result in immunity to re-infection. Although this outcome is sometimes the case, it is not universally true. In this review, we propose a unified model of T-cell memory to explain the apparent successes and failures of eliciting vaccine-like protection from prior encounters with pathogens. We speculate that memory T cells arise as an invariant consequence of clonal selection during an immune response. The quality of memory T cells, however, seems to vary in the degree to which they have acquired effector characteristics and, thus, their ability to confer immunity to re-infection. Although not all memory T cells possess the embellished attributes of fully developed effector cells, they all seem to share the rudimentary quality of preserving an antigen specificity that has proven itself useful. We suggest that the ability to maintain the integrity of the T-cell repertoire, more than establishing immunity to re-infection, may represent the fundamental form of memory for the adaptive immune system.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
47
|
Whitmire JK, Benning N, Whitton JL. Precursor frequency, nonlinear proliferation, and functional maturation of virus-specific CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3028-36. [PMID: 16493061 DOI: 10.4049/jimmunol.176.5.3028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The early events regulating antiviral CD4 responses were tracked using an adoptive transfer model. CD4+ T cell expansion was nonlinear, with a lengthy lag phase followed by 2 days of explosive proliferation. A small number of naive Ag-specific CD4+ T cells were found in nonlymphoid tissues and, in the 8 days following infection, the number of activated cells increased in all tissues analyzed, and their effector functions matured. Finally, we show that a naive mouse contains approximately 100 naive CD4+ precursor cells specific for a single epitope, a precursor frequency of approximately 10(-5), similar to that of naive CD8+ T cells, indicating that the approximately 50-fold difference in size of the two responses to virus infection is determined by something other than the number of precursor cells.
Collapse
Affiliation(s)
- Jason K Whitmire
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
48
|
Wlodarski MW, O'Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky I, Loughran TP, Maciejewski JP. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell–receptor restriction in large granular lymphocyte leukemia. Blood 2005; 106:2769-80. [PMID: 15914562 DOI: 10.1182/blood-2004-10-4045] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.
Collapse
|
49
|
Scherer A, Bonhoeffer S. Epitope down-modulation as a mechanism for the coexistence of competing T-cells. J Theor Biol 2005; 233:379-90. [PMID: 15652147 DOI: 10.1016/j.jtbi.2004.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 10/12/2004] [Accepted: 10/14/2004] [Indexed: 01/19/2023]
Abstract
Efficient immune responses against pathogens are frequently characterized by the simultaneous targeting of multiple epitopes. However, it remains unclear how the targeting of multiple epitopes is maintained in the face of competition for antigenic stimulation. Here, we investigate this question by using mathematical models of the population dynamics of a viral pathogen, antigen presentation sites and T-cells. We first show that direct competition for access to antigen presenting sites and indirect competition through killing of the pathogen select for dominance of the T-cell response with the highest affinity for its epitope. We then incorporate in our model that epitopes can become down-modulated following interaction with epitope specific T-cells. We demonstrate that epitope down-modulation leads to differentiation of epitope presentation on antigen presenting sites. This differentiation promotes the coexistence of multiple epitope specific responses. Hence, we propose that the functional relevance of epitope down-modulation may be to enable the persistence of a broad immune response despite competition for antigenic stimulation.
Collapse
Affiliation(s)
- Almut Scherer
- Ecology & Evolution, ETH Zürich, ETH Zentrum NW, 8092 Zürich, Switzerland.
| | | |
Collapse
|
50
|
O'keefe CL, Sobecks RM, Wlodarski M, Rodriguez A, Bell K, Kuczkowski E, Bolwell BJ, Maciejewski JP. Molecular TCR diagnostics can be used to identify shared clonotypes after allogeneic hematopoietic stem cell transplantation. Exp Hematol 2004; 32:1010-22. [PMID: 15504556 DOI: 10.1016/j.exphem.2004.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In allogeneic hematopoietic stem cell (HSCT) transplantation, recovery of the T cell receptor (TCR) repertoire depends upon the composition of the graft and is modulated by peri-transplant immunosuppression, viral infections, and graft-vs-host disease (GVHD). We hypothesized that after allogeneic HSCT, molecular analysis of the TCR repertoire can be used to identify and quantitate immunodominant T cell clones that may play a role in GVHD or other clinical events. METHODS We utilized a rational strategy for the analysis of the expanded CTL clones. First, we studied the VB spectrum in a cohort of patients who had received either matched sibling or unrelated donor grafts. The CDR3 sequences of immunodominant clones were identified and clonotypic PCR and sequencing was applied to determine the level of clonotype sharing. RESULTS Significant expansions of VB families were observed following transplantations; 61% were oligo/monoclonal. Immunodeficiency was reflected by depletion of multiple VB families from both the CD8 and CD4 repertoires. The level of sharing varied between clonotypes, suggesting that some antigens have a more "public" spectrum while others are restricted to specific patients. Immunodominant CDR3 sequences common to allogeneic HSCT, healthy controls, and other conditions were identified. CONCLUSION The clonotypes of expanded CTL clones may reflect responses to alloantigens (e.g., in correlation with clinical GVHD) or pathogens. In the future, molecular T cell diagnostics may become a powerful clinical tool in transplantation to monitor disease and to direct treatment.
Collapse
Affiliation(s)
- Christine L O'keefe
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic Foundation, Cleveland , Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|